

(mol/L)	<u>(mg/L)</u>	рH	<u>(mg/L)</u>	_ <u>(mol/L</u>)
1 x 10 ⁻¹⁴	0.0000000001	0	10000	1 x 10 ⁰
1 x 10 ⁻¹³	0.000000001	1	1000	1 x 10 ⁻¹
1 x 10 ⁻¹²	0.00000001	2	100	1 x 10 ⁻²
1 x 10 ⁻¹¹	0.0000001	3	10	1 x 10 ⁻³
1 x 10 ⁻¹⁰	0.000001	4	1.0	1 x 10 ⁻⁴
1 x 10 ⁻⁹	0.00001	5	0.1	1 x 10 ⁻⁵
1 x 10 ⁻⁸	0.0001	6	0.01	1 x 10 ⁻⁶
1 x 10 ⁻⁷	0.001	7	0.001	1 x 10 ⁻⁷
1 x 10 ⁻⁶	0.01	8	0.0001	1 x 10 ⁻⁸
1 x 10 ⁻⁵	0.1	9	0.00001	1 x 10 ⁻⁹
1 x 10 ⁻⁴	1.0	10	0.000001	1 x 10 ⁻¹⁰
1 x 10 ⁻³	10	11	0.0000001	1 x 10 ⁻¹¹
1 x 10 ⁻²	100	12	0.00000001	1 x 10 ⁻¹²
1 x 10 ⁻¹	1000	13	0.00000001	1 x 10 ⁻¹³
1 x 10º	10000	14	0.000000001	1 x 10 ⁻¹⁴

Carbonate Chemistry

When carbon dioxide enters the water: CO_2 (air, decaying OM) \Leftrightarrow CO_2 (dissolved) + H₂O Some of the dissolved CO_2 hydrates (reacts with water) to from carbonic <u>acid</u> (H₂CO₃): $CO_2 + H_2O \Leftrightarrow H_2CO_3$ Carbonic acid will dissociate: $H_2CO_3 \Leftrightarrow HCO_3^- + H^+$ Forming bicarbonate and a free hydrogen ion $HCO_3^- \Leftrightarrow CO_3^{2^-} + H^+$ Bicarbonate further dissociates: to carbonate and a free hydrogen ion CO_2 reactions

Lakes/reservoirs (many western states) that have a lot of carbonate can resist changes in pH with the addition of acids

Ability to resist changes in pH with respect to the addition of acid is called *Alkalinity* or *Acid neutralizing capacity (ANC)*

The Buffer System

Alkalinity is a total measure of the substances in water that have "acid-neutralizing" ability. Alkalinity indicates a solution's power to react with acid and "buffer" its pH -that is, the power to keep its pH from changing.

So... while pH measures the *strength* of an acid (base), alkalinity measures the ability to <u>neutralize</u> acid (base).

Mathematically, alkalinity can be determined by:

Alkalinity = $[HCO_3^{-1} + 2[CO_3^{2-1} + [OH^{-1} - [H^{+1}]]]$

Alkalinity provides a buffering capacity to aqueous system. The higher the alkalinity is, the higher the buffering capacity against pH changes.

What is Alkalinity?

Alkalinity essentially becomes a measure of the buffering capacity of the Carbonate/Bicarbonate ions --- and to some extent---the hydroxide ions of water.

These 3 ions all react with H+ ions to reduce acidity, increasing alkalinity & pH

 $HCO_{3}^{-} + H^{+} \Rightarrow CO_{2} + H_{2}O$ $CO_{3}^{-2} + H^{+} \Rightarrow HCO_{3}$ $OH^{-} + H^{+} \Rightarrow H_{2}O$

Alkalinity - closer look

An aqueous solution that resists changes in pH when acid or base is added is known to have sufficient buffering capacity.

Atmospheric carbon dioxide produces a natural buffer and is the most important buffer system in water and wastewater treatment.

 $CO_2(g) \Leftrightarrow CO_2(aq) + H_2O$ (A) CO_2 equilibrium $CO_2(aq) + H_2O \Leftrightarrow H_2CO_3$ (B) carbonic acid $H_2CO_3 \Leftrightarrow H^+ + HCO_3^-$ (C) bicarbonate $HCO_3^- \Leftrightarrow H^+ + CO_3^{-2}$ (D) carbonate

 CO_2 in solution [$CO_2(aq)$] is in equilibrium with atmospheric $CO_2(g)$.

This is critical concept, because the change in any components in eqs. (B), (C), or (D) will disrupt that equilibrium causing CO_2 to either be released or to be dissolved into solution.

Buffering and the Carbonate System

NaOII	Effect on pH	<u>Effect on Alkalinity</u>
NaOH	Increase	+1.55 mg/L as CaCO3 per mg/L
(caus	tic soda)	
Ca(OH2)	Increase	+1.21 mg/L as CaCO3 per mg/L
(Lime	e)	
NaHCO3	small	+0.60 mg/L as CaCO3 per mg/L
(sodiu	um increas	se
bicarl	oonate)	
Na2CO3	moderate	+0.90 mg/L as CaCO3 per mg/L
(soda	ash) increa	ise

Hardness is a chemica concentration of calciur represents 2/3 of total l	I parameter of water that m and magnesium ions pardness: Mg typically a	at represents the total . Calcium typically about 1/3.
is commonly confuse term used to report bot	d with alkalinity. The c h measures, mg/L CaC	onfusion relates to the O_3 .
If limestone is primary s concentrations will be s	source of both hardnes similar if not identical.	s and alkalinity, the
Hardness is <u>sometimes</u> industry), but usually a carbonate equivalent . The degree of hardnes	s expressed in grains p as parts per million (p ss standard as develope	er gallon (water treatment pm) as calcium ed by the Water Quality
Term	Grains/gallon	mg/L or ppm
Soft	Less than 1.0	less than 17 1
Slightly Hard Moderately Ha	1.0 to 3.5 ard 3.5 to 7.0	17.1 to 60 60 to 120
Hard	7.0 to 10.5	120 to 180
Very Hard	10.5 and above	180 and above
NOTE: 1 grain/g	gal = 17.1 ppm or mg/L as (CaCO ₃
Hardness - W	'hat is it?	

It is called hardness because if calcium and magnesium are present in your water, making a lather or suds for washing is "hard" (difficult) to do. Thus, cleaning with hard water is hard.

How do people decide when it's time to add salt to their water softener???

Common soap is a sodium salt of a fatty acid, stearic acid:

 $Na^{+}C_{18}H_{35}O_{2}^{-}$

Soap reacts with Calcium (Magnesium) salts to form soap "curd"

 $CaSO_4 + 2 NaC_{18}H_{35}O_2 \Rightarrow Ca(C_{18}H_{35}O_2)_2 \checkmark + Na_2SO_4$

(soap curd)

Hard water is naturally likely to also have a high pH, because it is also high in carbonates that buffer the pH toward the alkaline side (due to carbonate hardness)

Why "hardness"?

Avoiding Scale Problems

If the Langelier Index calculation yields a positive index scaling problems can be avoided by:

- Demineralization, Reverse Osmosis, distillation, or deionization. Removing the dissolved minerals will lower the hardness.
 - **Softening.** Water softening or cation exchange will reduce the calcium and magnesium concentrations in water.
 - Acidification. Lowering the actual pH of the water to below the saturation pH_s will prevent scale deposits.
 - Low Temperature. Avoiding high temperatures where scale formation is more likely will prevent scale deposits.

Laundering --

- Fabrics washed in hard water wear out up to 15% quicker (Purdue, 1991)
- Colors fade & whites darken more quickly when cleaned with hard water.
- Laundry washed in hard water became re-soiled with greater ease.

Hard Water Scale --

- Can decrease the life of toilet flushing units by 70% (AWWA).
- Can decrease the life of water faucets by 40% (AWWA).
- Shortens life of dishwashers and clothes washers by as much as 30%.

Water Heater Efficiency --

- Can reduce a gas water heater's efficiency by as much as 29%,
- Can reduce an electric water heater's efficiency by as much as 21%.
- Water heater's useful life can be reduced by as much as 50 % . (USDI)

Cleaning Tasks --

- Time required for typical cleaning tasks was increased by almost 50%.
- •Can result in streaks, spots and film on glass and dishware.
- Soap curd film on the body can leave skin dry and hair dull and limp.

Hardness - Facts and figures

- Due to natural geology, hardness is generally a problem in Wisconsin
- Scale formation can cause problems throughout a system
- It's the same CaCO₃ that causes scale that is also the source of most of a water's alkalinity.
- Hardness can result in precipitation of some toxic metals, lowering their bio-availability (Hardness is considered when establishing WPDES discharge permit limits for metals)
- Any technique that will remove calcium and magnesium ions will reduce hardness

Hardness: What You Need to Know

1. Determine the pH at which CaCO₃ is saturated $pH_{S=CaCO3 \text{ saturation}} = (9.3+A+B) - (C+D)$ A = (log TDS) - 1 10 B = [-13.12 x (log °C + 273)] + 34.55 $C = (log [Ca^{+2}] \text{ mg/L as CaCO}_3)] - 0.4$ $D = (log [Alkalinity] \text{ mg/L as CaCO}_3)$ 2. Compare actual pH to pH at which CaCO₃ is saturated $LSI = pH - pH_{s=CaCO3 \text{ saturation}}$ 3. Actual pH < saturation pH = increasing corrosivity Actual pH > saturation pH = Tends to deposit CaCO₃ Langelier Index Explained

Aggressive Index - Corrosion index calculated from pH, calcium hardness and total alkalinity. Hardness/ Alkalinity Variable $pH_{actual} + C + D = Aggressive Index$ Hardness (mg/L) "C" "D" kalinity (mg/L) 1.00 1.30 1.48 10 7.26 + 2.49 + 2.11 = 11.8620 30 Characteristic 1.60 Aggressive Index 40 1.70 1.78 1.84 50 Non-Aggressive > 12.0 60 70 80 100 Moderate Aggressive 10.0 to 11.9 1.90 2.00 **Highly Aggressive** < 10.0 2.11 **D** 2.18 2.24 130 150 175 Since Hardness is typically gonna be ~ 150-250 ppm 200 2.30 250 2.40 in WI, the "C" factor will range from 2.2 to 2.5 2.49 **C** 310 400 2.60 500 600 2.70 2.78 Alkalinities in WI typically range from 100-150 ppm, 700 800 900 2.84 2.90 2.95 thus the "D" factor will range from 2.00 to 2.18. 3.00 Therefore, C + D ranges from 4.2 to 4.7 This means that waters of pH 7.3 to 7.8 and above --or typical for most WI water sources-- will generally be NON-Aggressive. Instead of corrosion, scale formation is of concern. garessive Index

CO ₂	Carbon dioxide
H_2CO_3	Carbonic acid
CO ₃ ²⁻	Carbonate
HCO ₃ -	Bicarbonate
Ca(HCO ₃) ₂	Calcium bicarbonate
CaCO ₃	Calcium carbonate
H⁺	Hydrogen ion
OH ⁻	Hydroxyl ion
PO ₄ ³⁻	Phosphate ion
Acronyms	

Chlorine gas rapidly hydrolyzes to hypochlorous acid according to: Cl₂ + H₂O → HOCl + H⁺ + Cl⁻
Aqueous solutions of sodium or calcium hypochlorite hydrolyze to: Ca(OCl)₂ + 2H₂O → Ca²⁺ + 2HOCl + 2OH⁻ NaOCl + H₂O → Na⁺ + HOCl + OH⁻
The two chemical species formed by chlorine in water, hypochlorous acid (HOCl) and hypochlorite ion (OCl –), are commonly referred to as "free" or "available" chlorine.
Hypochlorous acid is a weak acid and will disassociate according to: HOCl ⇔ H⁺ + OCl –
In waters with pH between 6.5-8.5, the reaction is incomplete and both species (HOCl and OCl –) will be present.
Hypochlorous acid is the more germicidal of the two.

a) Cl_{2 (gas)} + H₂O reacts to form hypochlorus acid, HOCI & HCI hydrochloric acid. b) If pH > 8, the HOCI dissociates to hypochlorite ion OCI-If however, the pH << 7, then HOCI will not dissociate. c) If NH₃ is present, HOCI will react to form one of 3 types of chloramines depending on the pH, temperature, and reaction time. Monochloramine: $NH_3 + HOCI \rightarrow NH_2CI + H_2O$ pH 4.5 to 8 (more common at 8) Dichloramine: NH₂CI + 2HOCI -> NHCl₂ + 2H₂O pH 4.5 to 8 Trichloramine (stinks!): $NHCl_2 + 3HOCl \rightarrow NCl_3 + 3H_2O$ common when pH < 4.5Chloramines: effective vs. bacteria but NOT viruses. Thus...add more chlorine to prevent the formation of chloramines and form other stronger forms of disinfectants. d) additional free chlorine + chloramine = H^+ , H_2O , and N_2 gas which will come out of solution.

PROCEDURE FOR DISINFECTION OF DRINKING WATER IN ONTARIO

			Log Ina	ctivation	ı					
	2 3 pH pH		3	4 pH						
			pH							
Temperature (°C)	6 ta 9	10	6 to 9	10	6 ta 9	10				
0.5	6	45	9	66	12	90				
5	4	30	6	44	8	60				
10	3	22	4	33	6	45				
15	2	15	3	22	4	30				
20	1	11	2	16	3	22				
25	1	7	1	11	2	15				

CT VALUES FOR INACTIVATION OF VIRUSES BY FREE CHLORINE

June 2003

Virus inactivation by Chlorine

Organism	Disinfectant						
	Free chlorine, pH 6 to 7	Pre-formed chloramine, pH 8 to 9	Chlorine dioxide, pH 6 to 7	Ozone pH 6 to 7			
E. coli	0.034-0.05	95-180	0.4-0.75	0.02			
Polio virus 1	1.1-2.5	768-3740	0.2-6.7	0.1-0.2			
Rotavirus	0.01-0.05	3806-6476	0.2-2.1	0.006-0.06			
Bacteriophage f ₂	0.08-0.18	-	-	-			
G. <i>lamblia</i> cysts	47->150	-	-	0.5-0.6			
G. muris cysts	30-630	-	7.2-18.5	1.8-2.0 ^a			
C. parvum	7200 ^b	7200 ^e	78 ^b	5-10 ^c			

CT Values for Disinfectants	s to Inacti	TABLE 1 vate 99.9	9% (<mark>4-log</mark> :	s) of Giard	lia Lambli	a Cysts
USEP	A Guidar	ice Manua	al to the S	WIR [_]		
Disinfectant	рН	<1°C	5°C	10°C	20°C	25°C
Free Chlorine at 2 mg/l ³	6	165	116	87	44	29
	7	236	165	124	62	41
	8	346	243	182	91	61
	9	500	353	265	132	88
Ozone	6-9	2.9	1.9	1.43	0.72	0.48
Chlorine Dioxide	6-9	63	26	23	15	11
Chloramine (performed ⁴)	6-9	3800	2200	1850	1100	750
 ² These CT values for free chlorine, of enteric viruses. ³ CT values will vary depending on a chlorine. CT values for different fr EPA, 1990). 	ozone, and concentratio ree chlorine	chlorine diox n of free chlo concentration	tide will guara vrine. Values ns are specifi	antee greater indicated ar- ied in the Gu	than 99.99% e for 2.0 mg/ idance Manu	6 inactivati I of free al (U.S.

Disinfectant Options and Giardia

- Chlor<u>amination</u>
- Bromination
- Iodination???
- Chlorine Dioxide
- Ozone
- UV

Chlorination Alternatives

Chloramines as a disinfectant

Bromine H ₂ O + Br ₂ ⇔ H ⁺ +Br ⁻ + HOBr	lodine H ₂ O + I ₂ ⇔ H⁺ I ⁻ + HOI
 Major difference (vs. Cl2): effectiveness starts dropping at pH 8.5 Does form bromaminesas effective as HOBr Bromine is relatively scarce, making it more expensive choice Bromine is more physiologically active thus its use is limited. 	 Effectiveness NOT affected by pH Does NOT react with ammonia (no lodamines) lodine is very scarce, making it a very expensive choice lodine is extremely physiologically active (i.e., thyroid gland)thus its use is limited.
Bromine & Iodine Dis	sinfection

- 3 O₂ ⇐⇒ 2 O_{3 (ozone)}
 O₃ → O₂ + O• (oxygen radical)
 Bugs killed immediately upon contact (cell rupture)
- · Oxygen radical apparently is the actual cause
- · strongest disinfectant used in water treatment
- effectiveness unimpaired by NH₃ or pH
- · leaves DO in its wake
- Must be generated on-site ٠
- no residual •
- difficult to adjust to differing demand •
- expensive •

Ozone Disinfection

ADVANTAGES	DIS-ADVANTAGES	
Strong oxidizing power + short contact time = effective kill of	 Toxicity ↑with concentration and exposure time; 	
Produces no taste or odor:	 Cost is > chlorination; 	
	 Installation can be complicated; 	
 Provides oxygen to the water after disinfecting; 	Ozone-destroying device is required at the exhaust	
 Requires no chemicals; 		
 Oxidizes iron and manganese; 	aldehydes and ketones by	
 Destroys and removes algae; 	reacting with certain organics;	
 Reacts with and removes all organic matter; 	 No residual in distribution system, ∴post-chlorination is required; 	
 Decays rapidly in water, avoiding any undesirable residual effects; 	 Much less soluble in water than chlorine; thus special mixing devices are necessary; and 	
• Removes color, taste, and odor;	 Oxidizes some refractory organics either too slowly or not at all to be 	
 Aids coagulation. 	of practical significance.	
Ozone - Advantages	s & Disadvantages	

UV Disinfection

The valence states of As are: -3, 0, +1, +3, and +5 (Welch *et al.*, 1988). Elemental arsenic (valence 0) is rarely found under natural conditions. The +3 and +5 states are found in a variety of minerals and in natural waters. The valence state affects the toxicity of arsenic compounds. arsine (-3) > organo-arsines > arsenites (+3) > arsenates (+5) > arsonium metals (+1) > elemental arsenic (0). Concentrations of As in the earth's crust range 1.5 - 5 mg/kg Arsenic is a major constituent of many mineral species in igneous and sedimentary rocks; Igneous rock types-- the highest arsenic levels in

basalts.
 Sedimentary rocks- higher As than igneous; particularly Fe/Mn

Arsenic (As) General Information

Existing Technology Coagulation/Filtration Polymer	may require use of Fe; sludge issues requires pH < 7.5, may need to add Fe
Alum Fe-based	lower pH to 5-7, increase Alum addition pH to 5.5-8.5, increase Fe addition
Lime Softening	requires pH 10.5-11; add Mg or Fe
Fe/Mn Filtration	best with Fe: As of 20:1
Emerging Technolo	ду
Ion Exchange	TSS and Fe ppts clog, anions compete
Activated Alumina	other ions (CI ⁻ , SO ₄ ⁼) compete for sites
Filtration/Membranes	best with Fe: As of 20:1
Electrochemical	currently used in Europe only
Treatment Options 3	Summary

www.h	tnwe	b.com/	down	loads/	hhremove_	_ar.pdf

Viraraghvan, T., Subramaniam, K.S., and Swaminathan, T. V., - Drinking water without arsenic: A review of treatment technologies, March 1996, ENSIC, Asian Institute of Technology, Bangkok

Treatment method	As(III)	As(V)
Aeration and stripping	P	P
Coagulation, precipitation and filtration	F-G	G-E
Lime softening	F-G	G-E
Ion exchange		
Anion	G-E	G-E
Cation	Р	Р
Membrane Processes		
Reverse Osmosis	F-G	G-E
Electrodialysis	F-G	G-E
Chemical oxidation and disinfection	Р	Р
Adsorption	·	
Gramilated Activated Carbon	F-G	F-G
Powdered Activated Carbon	P-F	P-F
Activated Alumina	G-E	E

As Treatment Technology Effectiveness

System Size	25-500	501-3,300	3.3K-10K	>10K
Annual				
Household Costs	\$ 327-\$162	\$ 71-\$58	\$ 38	\$32-\$0.8
The estimated a 10 µg/L (require	average annual c ed to treat) are sh	osts for CWSs, w own below catego	hich exceed the f orized by system	inal MCL of size.
The estimated a 10 μg/L (require	average annual c ed to treat) are sh	osts for CWSs, w own below catego	hich exceed the f orized by system	inal MCL of size.
The estimated a 10 μg/L (require Average A ι	average annual c ed to treat) are sh nnual Costs	osts for CWSs, w own below catego per CWS (D	hich exceed the f orized by system ollars)	inal MCL of size.
The estimated a 10 µg/L (require Average A CWS Syste	average annual c ed to treat) are sh nnual Costs em Size	osts for CWSs, w own below catego per CWS (D Costs (\$)	hich exceed the f orized by system ollars)	inal MCL of size.
The estimated a 10 µg/L (require Average Ai CWS Syste 25-500	average annual co ed to treat) are sh nnual Costs em Size	posts for CWSs, w own below categr per CWS (D Costs (\$) \$6,494-\$1	hich exceed the f orized by system ollars) 2,358	inal MCL of size.
The estimated a 10 µg/L (require Average An CWS Syste 25-500 501-3,300	average annual ca ad to treat) are sh nnual Costs em Size	osts for CWSs, w own below catego per CWS (D Costs (\$) \$6,494-\$1 \$22,100-\$	hich exceed the f orized by system ollars) 2,358 53,086	inal MCL of size.
The estimated a 10 µg/L (require Average An CWS Syste 25-500 501-3,300 3,300-10,000	average annual co ed to treat) are sh nnual Costs em Size	osts for CWSs, w own below catego per CWS (D Costs (\$) \$6,494-\$1 \$22,100-\$ \$111, 646	hich exceed the f orized by system ollars) 2,358 53,086	inal MCL of size.

www.htnweb.com/downloads/hhremove_ar.pdf

Treatment technologies for the removal of arsenic and their relative treatment ${\rm Costs}^1$ in community treatment plants

Arsenic species	Treatment method	Percentage removal	Relative treatment cost (US Cents/1000gallons)		
			0.3 mgd	1.0 mgd	50 mgd
As(V)	Alum	>90	175	44	19
(Arsenate)	coagulation/filtr				
	ation, pH 6-7				
	Iron coagulation	>90	175	44	19
	/ filtration, pH				
	6-8				
	Excess lime	>90	305	63	40
	softening				
	Activated	>95	122	62	51
	alumina, pH 5-6				
	Ion exchange	<90	83	51	42
	Reverse osmosis	<90	332	164	129

Note : For As(III removal, oxidation treatment of As(III) to As(V) is required

Viraraghvan,T., Subramaniam, K.S., and Swaminathan, T. V., - Drinking water without arsenic: A review of treatment technologies, March 1996, ENSIC, Asian Institute of Technology, Bangkok

As Treatment technology Costs