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PREFACE

Goals of This Book

In the past few decades, the study of supply chain management has evolved into a cohesive
body of knowledge—not merely a haphazard collection of models, algorithms, and theo-
rems, but a rich theory whose components intersect and inform each other. We wrote this
book to help codify the foundations of this emerging supply chain theory and to demon-
strate how recent developments build upon the classical models. Our focus is primarily
on the seminal models and algorithms of supply chain theory—the building blocks that
underlie much of the supply chain literature. We believe that an understanding of these
models provides researchers with a sort of guidebook to the literature, as well as a toolbox
to draw from when developing new models. We also discuss some more recent models
that demonstrate how the classical models can be extended and applied in richer settings.
These models provide graduate students and other new researchers in the field with some
examples of the trajectory of research on supply chain theory—how the building blocks
can be assembled to create something more complex, interesting, or useful.

Studying supply chain theory as a whole allows us the luxury of gaining some perspective
on the field, a perspective that is not always evident when we immerse ourselves deeply
in the literature on a particular topic. To that end, wherever possible, we have attempted
to highlight the connections among supply chain models—for example, the conceptual
similarities among different supply chain pooling models, the ways that inventory and
location models can be combined, or the ways that inventory theory interacts with game
theory to produce supply chain coordination models.

xxxi
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Who Should Read This Book

This book was written for anyone who is interested in quantitative approaches for studying
supply chains. This includes people from a wide range of disciplines, such as industrial
engineering/operations research, mathematics, management, economics, computer science,
and finance. This also includes students (primarily graduate students), faculty, researchers,
and practitioners of supply chain theory. And it includes scholars who are new to supply
chain theory and want a gentle but rigorous introduction to it, or scholars who are well
versed in the field and want a refresher or a reference for the seminal models. Finally, since
you are holding this book, it most likely includes you.

One of the hallmarks—and, in our opinion, the great pleasures—of supply chain theory
is that it makes use of a wide variety of the tools of operations research, mathematics,
and computer science. In this book, you will find mathematical programming models (lin-
ear, integer, nonlinear, conic, stochastic, robust), duality theory, optimization techniques
(Lagrangian relaxation, column generation, dynamic programming, line search, plus op-
timization by calculus and finite differences), heuristics and approximations, probability,
stochastic processes, game theory, combinatorics, simulation, and complexity theory.

To make use of this book, you need not be an expert in all of these. (We are not.)
We assume that you are familiar with basic optimization theory—that you know how to
formulate a linear program and its dual, that you know how branch-and-bound works, and
that you can perform a simple line search method such as bisection search. We also assume
that you understand probability distributions and know how to compute expectations of
random variables and functions thereof. We assume that your calculus is in good working
order, that you can compute derivatives and integrals, including ones that involve multiple
variables or other derivatives or integrals. We assume you have met Markov chains before,
but we don’t require you to remember much about them. For just about everything else,
we will start from the ground up and tell you (or remind you of) what you need to know
in order to understand the topic at hand. For some topics, you will find a useful reference
in Appendix C, which lists formulas for calculating expectations, loss functions, geometric
series, and some tricky derivatives and integrals. Because Lagrangian relaxation and
column generation play a role in several chapters of this book, we have included a brief
primer on those topics in Appendix D.

Probably the single most important prerequisite for this book is a high level of general
mathematical maturity. We discuss a lot of mathematical proofs, and ask you to write your
own in the homework problems. If you do not have much experience in this area, you
may find the proofs to be the most challenging aspect of this book. To help you out, we
have included in Appendix B a short guide to proof-writing. We hope this appendix will
familiarize you with some of the basic principles of proof-writing, as well as some of the
finer points of proof style and syntax. But, proof-writing is perhaps more art than science,
and the appendix will only get you so far. You will learn to be a good proof-writer mainly
by practicing the craft.

Organization of This Book

Our intention in writing this book was to cover a broad range of topics in supply chain
theory, even if that meant that we could not cover some topics as deeply as we might have
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liked. Most of the material in this book is derived from earlier papers, and of course we
have cited those papers carefully so that readers can delve deeper into any topics they wish.
We have also cited important related references, and review articles where possible, so that
readers can find more information about topics that interest them.

Most of this book (Chapters 2–12) deals with centralized supply chain models, in which
all of the decision variables are under the control of a single decision-maker. Most classical
supply chain models, such as those for optimizing inventories and facility locations, are
centralized models. In contrast, the decentralized models of Chapters 13–15 involve
multiple parties with independent, conflicting objectives and the autonomy to choose their
decision variables to optimize those objectives. The bullwhip effect (Chapter 13) is an
example of a result of this decentralization, while the models of Chapters 14 and 15 discuss
strategies for mitigating the negative financial effects of decentralization.

This chapters of this book are as follows:

• Chapter 1 (“Introduction”) gives an overview of supply chain management and
defines terms that we will use throughout the book.

• Chapter 2 (“Forecasting and Demand Modeling”) discusses classical and machine-
learning–based forecasting methods, as well as three approaches—the Bass diffusion
model, leading indicators, and choice models—that have been used more recently
to predict demand. We refer to these latter approaches as “demand modeling” to
differentiate them from classical forecasting techniques and to emphasize the fact
that they aim to provide a model of the demand itself and not merely of its statistical
properties.

• We discuss classical single-location inventory models in Chapters 3 (“Deterministic
Inventory Models”), 4 (“Stochastic Inventory Models: Periodic Review”), and 5
(“Stochastic Inventory Models: Continuous Review”). For most of these models,
we discuss how to formulate the objective function as well as how to optimize
it—exactly or heuristically, in closed form or using algorithms—by our choice of
inventory parameters. We also explore the theoretical properties of some of these
models, including the optimality of inventory policies and the worst-case performance
of heuristics.

• In Chapter 6 (“Multiechelon Inventory Models”), we discuss multiechelon inventory
models, including both stochastic-service models (including the Clark–Scarf model
for serial systems and the Shang and Song approximation) and guaranteed-service
models (also known as strategic safety stock placement problems).

• Chapter 7 (“Pooling and Flexibility”) discusses risk pooling, as well as other tech-
niques, such as postponement, transshipments, and process flexibility, that can pro-
vide similar pooling benefits.

• In Chapter 8 (“Facility Location Models”), we turn our attention to facility loca-
tion models. We present the classical uncapacitated fixed-charge location problem
(UFLP) in some detail, including its formulation as an integer programming problem
and its solution by Lagrangian relaxation. We then discuss other classical location
models such as the p-median problem and covering models, as well as stochastic
versions of the UFLP. Finally, we cover network design problems, including both
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problems in which we make yes/no decisions on the nodes and those in which we do
the same for the arcs.

• In Chapter 9 (“Supply Uncertainty”), we consider randomness in the availability or
quantity of supply and develop models for coping with this uncertainty in inventory
and facility location models.

• Chapter 10 (“The Traveling Salesman Problem”) discusses perhaps the most famous
supply chain problem, the traveling salesman problem (TSP). We discuss both exact
and heuristic solution methods for the TSP, as well as theoretical properties of the
model and the algorithms. We conclude with a digression on TSP “world records.”

• In Chapter 11 (“The Vehicle Routing Problem”), we extend the TSP to consider
the more practical problem of routing multiple vehicles simultaneously to deliver
to many customers, a problem known as the vehicle routing problem (VRP). We
present algorithms, focusing mainly on heuristics for this very difficult computational
problem. We discuss theoretical properties of the problem, as well as some of the
many extensions that have been proposed to add more practical features to the
classical model.

• Chapter 12 (“Integrated Supply Chain Models”) discusses models that combine
multiple types of models discussed earlier in the book. In particular, we include
location–inventory, location–routing, and inventory–routing models.

• In Chapter 13 (“The Bullwhip Effect”), we discuss a phenomenon of demand vari-
ability amplification known as the bullwhip effect. The bullwhip effect can occur
because of irrational or suboptimal behavior on the part of supply chain managers,
but it can also occur as the result of rational, optimizing behavior. We cover math-
ematical models for proving that the bullwhip effect occurs as a result of the latter
type.

• When supply chain partners each optimize their own objective functions, they typi-
cally arrive at solutions that are suboptimal from the point of view of the total supply
chain. In Chapter 14 (“Supply Chain Contracts”), we discuss contracts that achieve
coordination within a supply chain made up of individual players with differing
objectives.

• Chapter 15 (“Auctions”) introduces mathematical models for auctions, which are
frequently used to set prices within supply chains. Auctions can be thought of as
another way to mitigate the effects of decentralized decision-making and to bring
supply chains into closer coordination.

• Chapter 16 (“Applications of Supply Chain Theory”) explores three non-supply-chain
fields in which supply chain theory has been widely applied: electricity systems,
health care, and public sector operations. In each of these topics, we cover a few
(typically more recent) models that directly apply the tools you will have learned
earlier in the book. Our aim is to demonstrate the application of supply chain theory,
now that you have mastered its methodologies.

• The book concludes with four appendices. Appendix A contains homework problems
whose solutions use material from multiple chapters. Appendix B provides a short
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primer on how to write mathematical proofs. Appendix C lists helpful formulas that
are used throughout the book. Appendix D gives a brief overview of Lagrangian
relaxation and column generation.

The material in this book can accommodate a good deal of reordering and omission
by the instructor. The only real exception is the inventory-theoretic material (Chapters 3–
6), which is at the core of much of the subsequent material in the book and therefore
should be covered early on. However, not all of the material in the inventory chapters
is used elsewhere, and much of it can be skipped if desired. A bare-bones treatment of
the essential inventory topics would include Section 3.2 on the EOQ model, Section 4.3.2
on the newsvendor problem, and Section 5.1 on (r,Q) policies—and even this material
could be omitted for students who are already familiar with it. In addition, the material
in Section 9.6 and Chapter 12 relies on the facility location chapter (Chapter 8), primarily
Section 8.2. And of course, Chapter 16, on applications of supply chain theory, draws on
material from throughout the book. Other than these, there are no precedence constraints
regarding the sequence of material covered, and the instructor is free to rearrange the topics
according to his or her preferences, interests, and expertise, as well as those of the students.

The final section of each chapter (except Chapter 1) contains a case study, a new feature
in the second edition. The case studies are drawn from the journal Interfaces (now called
the INFORMS Journal on Applied Analytics). Each case study illustrates an application
by a real company or organization of the ideas discussed in the chapter. The case studies
show the reader how supply chain theory can be applied, sometimes as-is and sometimes
with substantial modifications, to solve real-world problems with significant impact.

We have adapted the original notation for the models discussed in the case studies, in
order to be consistent with the rest of the book. In some cases we have also simplified or
made other minor modifications to the models, while striving to maintain the main ideas of
the original models. Each case study gives some basic facts about the company involved—
for example, its ranking within its industry. We have attempted to update these facts where
possible, but in general the reader should assume the facts were correct at the time that the
original Interfaces article was published, if not still true today, even if we use the present
tense in stating them.

Each of the chapters (again, except Chapter 1) is followed by a set of homework problems,
and Appendix A presents problems that use material from multiple chapters. The problems
challenge readers to understand, interpret, and extend the models and algorithms discussed
in the text. Some of them involve simply applying the models and algorithms presented in
the book as-is. Most of them, however, ask the reader to prove theorems, develop models,
or somehow explore the material more deeply than it is covered in the chapters. Some of
the problems require data sets that are too large to include in the text itself. These data sets
are posted on the web site for this book. Where relevant, citations to the original sources
for homework problems are given in the solutions, rather than in the problems themselves.

The book’s web site also contains a list of errata. If you find errors not contained on this
list, please e-mail the authors, whose contact information can also be found on the site.

New in the Second Edition

The second edition of Fundamentals of Supply Chain Theory is nearly twice as long as
the first. The book has been revised from beginning to end. We have added three entirely
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new chapters, on the TSP, the VRP, and applications of supply chain theory. The inventory
chapters have been reorganized and significantly expanded, as has the facility location
chapter. We have rearranged the material on risk pooling and supply uncertainty into
(we feel) more logical groupings. Other new topics include machine learning models
for forecasting (Section 2.4), a multisupplier inventory model with supply uncertainty
(Section 9.4), a conic optimization approach for the LMRP (Section 12.2.8), location–
routing and inventory–routing models (Sections 12.3 and 12.4), a game-theoretic analysis
of the VCG auction (Section 15.4.3), and a primer on column generation (Section D.2).

The end-of-chapter case studies are a new feature for the second edition. We have added
nearly 200 new homework problems and over 60 new worked examples. We redesigned all
of the figures for improved clarity and have added 140 new ones. The algorithm pseudocode
has been updated to a more modern format, and the index is now more comprehensive.

Resources for Instructors

We have developed the following resources to assist instructors:

• An instructor’s manual containing full solutions to the homework problems

• PowerPoint slides for in-class presentation of the book material

• In-depth MATLAB coding assignments so that students can implement the models
and algorithms discussed in the book

These resources are available to verified instructors via links on the book’s web site.
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CHAPTER 1

INTRODUCTION

1.1 THE EVOLUTION OF SUPPLY CHAIN THEORY

The field of supply chain management arose from managers’ recognition that buying,
selling, manufacturing, assembling, warehousing, transporting, and delivering goods—that
is, the activities of a supply chain—are expensive endeavors, and that careful attention to
how these activities are carried out may reduce their cost. Supply chains used to be viewed,
at least by some managers, as “necessary evils.” As a result, the mindset for supply chain
managers revolved around reducing costs, by reducing inventory levels, taking advantage
of economies of scale in shipping, optimizing network designs, reducing volatility in
demands, and so on. By and large, these improvements were invisible to companies’
customers, provided that they did not result in longer lead times, more frequent stockouts,
or other degraded service.

By the end of the last century, however, the purpose of the supply chain had begun
to change as some firms discovered that supply chains could be a source of competitive
advantage, rather than simply a cost driver. For example, Dell demonstrated that, through
excellent supply chain management, it could deliver computers—fully customized to the
buyer’s specifications—just a few days after they were ordered. In doing so, it shattered
the existing paradigm for computer purchases, in which consumers could choose from only
a limited number of preconfigured options. Similarly, Walmart showed that, by operating
an extremely high-volume supply chain, it could land products on shelves for less money
per item. As a result, Walmart offered its customers a high level of product availability and

1Fundamentals of Supply Chain Theory, . Lawrence V. Snyder and Zuo-Jun Max Shen. 
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Snyder/SupplyChainTheory

Second Edition
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low prices, and this combination ushered the company to its place as the world’s largest
retailer. Amazon built a supply chain that is not only quick and reliable, but also feature-
rich, offering users varied shipping options, convenient tracking tools, and flexible return
policies. This expansive supply chain has allowed Amazon to overcome consumers’ desire
for instant gratification and their preference for seeing and touching products before they
buy them.

Just as the practice of supply chain management has come into its own, so, we would
argue, has the study of supply chain management. In the past several decades, a huge
number of papers have been published that introduce mathematical models for evaluating,
analyzing, and optimizing supply chains. Supply chain management has become one of
the most popular applications of operations research (OR), and one of its greatest success
stories. But recently, the mathematical study of supply chains has begun to be viewed not
simply as an application area for OR tools, but rather as a methodological area, capable of
standing on its own two feet, with its own tools and theory. These tools are now themselves
starting to be applied, not just to supply chains, but to health care, energy, humanitarian
relief, the service sector, and other industries. This emerging supply chain theory is the
subject of this book.

Although the models and algorithms in this book are most commonly applied to tradi-
tional, private-sector supply chains, many can be applied to new kinds of supply chains, and
even to areas we might not think of as supply chains. Understanding the building blocks of
traditional supply chains will prepare you to understand more recent applications of supply
chain theory. The final chapter of this book is devoted to exploring how the tools of supply
chain theory are used in a few of these application areas—electricity systems, health care,
and public sector operations.

1.2 DEFINITIONS AND SCOPE

The term supply chain management is difficult to define, and its definition has changed
over time as the purposes and components of supply chains have evolved. Perhaps the most
authoritative definition comes from the Council of Supply Chain Management Professionals
(CSCMP), who define supply chain management as follows:

Supply chain management encompasses the planning and management of all activities
involved in sourcing and procurement, conversion, and all logistics management activi-
ties. Importantly, it also includes coordination and collaboration with channel partners,
which can be suppliers, intermediaries, third party service providers, and customers. In
essence, supply chain management integrates supply and demand management within
and across companies. (Council of Supply Chain Management Professionals 2018b)

In the interest of keeping things a little simpler, we offer the following definitions:
A supply chain consists of the activities and infrastructure whose purpose is to move
products from where they are produced to where they are consumed. Supply chain
management is the set of practices required to perform the functions of a supply chain
and to make them more efficient, less costly, and more profitable.

Supply chain management costs firms nearly US$1.5 trillion per year in the United States
alone, representing nearly 8% of gross domestic product (GDP) (Council of Supply Chain
Management Professionals 2018a). These practices include a huge range of tasks, such
as forecasting, production planning, inventory management, warehouse location, supplier
selection, procurement, and shipping. Mathematical models have been developed to analyze
and optimize each of these practices, and these models are the primary focus of this book.



DEFINITIONS AND SCOPE 3
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Figure 1.1 Schematic diagram of supply chain network.

Figure 1.2 Supply “chain.”

The terms “logistics” and “logistics management” are closely related to “supply chain
management,” and it can be difficult to draw a clear distinction. Some companies use “lo-
gistics” to refer to the physical movement of goods; “supply chain management” includes
logistics, as well as nonmovement activities such as inventory management and procure-
ment. For other companies, “logistics” means functions carried out by the company itself,
while “supply chain management” includes activities it conducts with partners, suppliers,
and customers. Often, though, the two terms are used more or less interchangeably.

Supply chains are often represented graphically as a schematic network that illustrates
the relationships between its elements. (See Figure 1.1.) Each vertical “level” of the supply
chain (suppliers, plants, etc.) is called an echelon. A location in the network is referred to
as a stage or node. The links between stages represent some type of flow—typically, the
flow of goods, but sometimes the flow of information or money. The portion of the supply
chain from which products originate (the left-hand portion in Figure 1.1) is referred to as
upstream, while the demand end is referred to as downstream.

Actually, the phrase “supply chain” is a bit of a misnomer, since “chain” implies a linear
system similar to the one pictured in Figure 1.2. In this system, sometimes referred to as a
serial system, each echelon has only a single stage. But today’s supply chains more closely
resemble the complex network in Figure 1.1; each echelon may have dozens, hundreds,
or even thousands of nodes. (Nevertheless, we will often study serial systems of the type
pictured in Figure 1.2. Even more frequently, we will study single-stage systems.)

The models we study generally try to find the least-cost or greatest-profit solution that
satisfies some constraints. For example, a firm might want to choose warehouse locations to
minimize transportation costs, subject to the constraint that every customer must be served.
Or it might want to decide how much inventory should be stored at a given warehouse in
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order to minimize the cost of holding inventory, subject to a “service level” constraint that
requires a certain percentage of customer orders to be satisfied on time. Or it might want
to design a contract with its supplier to maximize its own profit, or that of the supply chain
as a whole.

The ideal supply chain management model would globally optimize every aspect of the
supply chain, but such a model is impossible both because of the difficulties in modeling
some aspects of the supply chain mathematically and because the resulting model would
be too large and complex to solve. Instead, supply chain models typically focus on local
optimization of one element of the supply chain, or on the integration of two or more
aspects of the supply chain, generally in less detail.

1.3 LEVELS OF DECISION-MAKING IN SUPPLY CHAIN MANAGEMENT

It is convenient to think about three levels of supply chain management decisions: strategic,
tactical, and operational.

• Strategic aspects of the supply chain involve decisions that take effect over a long
time horizon, typically years or decades. These aspects have a major impact on all
functions of the firm. Examples include locations and sizes of warehouses, locations
and capabilities of factories, and contracts with suppliers.

• Tactical aspects of the supply chain involve decisions over a moderate time horizon
like months. Tactical decisions can be changed periodically but generally with some
difficulty. Examples include assignments of customers to warehouses and inventory
replenishment policies at warehouses.

• Operational aspects of the supply chain occur over short planning horizons such
as days or weeks, during which policies must be executed but cannot be changed.
Examples include filling customer orders and routing of delivery vehicles.

The models in this book are concerned with all three levels of decisions. For example,
the facility location models of Chapters 8 and 12 are strategic, the inventory models of
Chapters 3–6 are tactical, and the routing models of Chapters 10 and 11 are operational.



CHAPTER 2

FORECASTING AND DEMAND MODELING

2.1 INTRODUCTION

Demand forecasting is one of the most fundamental tasks that a business must perform.
It can be a significant source of competitive advantage by improving customer service
levels and by reducing costs related to supply–demand mismatches. In contrast, biased or
otherwise inaccurate forecasting results in inferior decisions and thus undermines business
performance.

For example, the toy retailer Toys “R” Us made a huge mistake in demand forecasting
for the 2015 Christmas season. For several days, the actual number of online orders was
more than twice the company’s forecasts, and the company’s distribution centers were
overwhelmed. As a result, the company was forced to throttle demand by terminating some
online sales, resulting in lower demand and lower revenue (Ziobro 2016).

The goal of the forecasting models discussed in this chapter is to estimate the quantity
of a product or service that consumers will purchase. Most classical forecasting techniques
involve time-series methods that require substantial historical data. Some of these methods
are designed for demands that are stable over time. Others can handle demands that
exhibit trends or seasonality, but even these require the trends to be stable and predictable.
However, products today have shorter and shorter life cycles, in part driven by rapid
technology upgrades for high-tech products. As a result, firms have much less historical
data available to use for forecasting, and any trends that may be evident in historical data
may be unreliable for predicting the future.

5Fundamentals of Supply Chain Theory, . Lawrence V. Snyder and Zuo-Jun Max Shen. 
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Snyder/SupplyChainTheory

Second Edition
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In this chapter, we first discuss some classical methods for forecasting demand, in
Sections 2.2 and 2.3. Next, in Section 2.4, we discuss more recent approaches to forecasting
demand using machine learning when we have large quantities of historical data available.
In Sections 2.5–2.8, we discuss several methods that can be used to predict demands for new
products or products that do not have much historical data. To distinguish these methods
from classical time-series–based methods, we call them demand modeling techniques.

The methods that we discuss in this chapter are quantitative. They all involve mathe-
matical models with parameters that must be calibrated. In contrast, some popular methods
for forecasting demand with little or no historical data, such as the Delphi method, rely on
experts’ qualitative assessments or questionnaires to develop forecasts.

Demand processes may exhibit various forms of nonstationarity over time. These include
the following:

• Trends: Demand consistently increases or decreases over time.

• Seasonality: Demand shows peaks and valleys at consistent intervals.

• Product life cycles: Demand goes through phases of rapid growth, maturity, and
decline.

Moreover, demands exhibit random error—variations that cannot be explained or predicted—
and this randomness is typically superimposed on any underlying nonstationarity.

2.2 CLASSICAL DEMAND FORECASTING METHODS

Classical forecasting methods use prior demand history to generate a forecast. Some of
the methods, such as moving average and (single) exponential smoothing, assume that past
patterns of demand will continue into the future, that is, no trend is present. As a result,
these techniques are best used for mature products with a large amount of historical data.
On the other hand, regression analysis and double and triple exponential smoothing can
account for a trend or other pattern in the data. We discuss each of these methods next.

In each of the models that follow, we use D1, D2, . . . , Dt, . . . to represent the historical
demand data, i.e., the realized demands in periods 1, 2, . . ., t, . . .. We also use yt to denote
the forecast of period t’s demand that is made in period t− 1.

2.2.1 Moving Average

The moving average method calculates the average amount of demand over a given interval
of time and uses this average to predict the future demand. As a result, moving average
forecasts work best for demand that has no trend or seasonality. Such demand processes
can be modeled as follows:

Dt = I + εt, (2.1)

where I is the mean or “base” demand and εt is a random error term.
A moving average forecast of order N uses the N most recent observed demands. The

forecast for the demand in period t is simply given by

yt =
1

N

t−1∑
i=t−N

Di. (2.2)
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Table 2.1 Monthly historical demand of books and CDs for Examples 2.1–2.5.

Demand (Thousands)
Month An Inventory Story The TSP Mystery CDs

1 10.61 12.61 10.21
2 12.01 16.01 23.01
3 9.77 15.77 10.97
4 10.19 18.19 14.59
5 9.44 19.44 29.44
6 11.40 23.40 16.80
7 9.66 23.66 18.86
8 9.90 25.90 38.90
9 9.01 27.01 18.61

10 10.20 30.20 24.20
11 10.90 32.90 48.90
12 8.98 32.98 22.78

That is, the forecast is simply the arithmetic mean of the previous N observations. This is
known as a simple moving average forecast of order N .

A generalization of the simple moving average forecast is the weighted moving average,
which allows each period to carry a different weight. For instance, if more recent demand
is deemed more relevant, then the forecaster can assign larger weights to recent demands
than to older ones. If wi is the weight placed on the demand in period i, then the weighted
moving average forecast is given by

yt =

∑t−1
i=t−N wiDi∑t−1
i=t−N wi

. (2.3)

Typically, the weights decrease by 1 in each period: wt−1 = N , wt−2 = N − 1, . . .,
wt−N = 1.

� EXAMPLE 2.1

A book store has historical demand data for the book An Inventory Story for the past
12 months, as shown in Table 2.1. From a quick look, it is clear that the demand
is relatively stable, fluctuating around the value 10, which makes it suitable for
the moving average method. Suppose the book store manager wants to predict the
demand of this book for the next month. Using an order of N = 5, the forecast is
given by

y13 =
D8 +D9 +D10 +D11 +D12

5
= 9.80.

�

2.2.2 Exponential Smoothing

Exponential smoothing is a technique that uses a weighted average of all past data as the
basis for the forecast. It gives more weight to recent information and smaller weight to
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observations in the past. Single exponential smoothing assumes that the demand process
is stationary. Double exponential smoothing assumes that there is a trend, while triple
exponential smoothing accounts for both trends and seasonality. These methods all require
user-specified parameters that determine the relative weights placed on recent and older
observations when predicting the demand, trend, and seasonality. These three weights are
called, respectively, the smoothing factor, the trend factor, and the seasonality factor. We
discuss each of these three methods next.

2.2.2.1 Single Exponential Smoothing Define 0 < α ≤ 1 as the smoothing
constant. Then, we can express the current forecast as the weighted average of the previous
forecast and most recently observed demand value:

yt = αDt−1 + (1− α)yt−1. (2.4)

Note that α is the weight placed on the demand observation and 1−α is the weight placed
on the last forecast. Typically, we place more weight on the previous forecast, so α is closer
to 0 than to 1.

Since each forecast depends on the previous forecast, we need a way to get the process
started. One simple way to do this is to set y1 = D1. Note that this method requires one
historical demand observation D1; the first “real” forecast, i.e., the first forecast that uses
(2.4), is y2.

Using (2.4), we can write

yt−1 = αDt−2 + (1− α)yt−2,

so
yt = αDt−1 + α(1− α)Dt−2 + (1− α)2yt−2.

We can continue the substitution in this way and eventually obtain

yt =

∞∑
i=0

α(1− α)iDt−i−1 =

∞∑
i=0

αiDt−i−1,

where αi = α(1 − α)i. The single exponential smoothing forecast includes all past
observations, but since αi < αj for i > j, the weights are decreasing as we move
backward in time, as illustrated in Figure 2.1. Moreover,

∞∑
i=0

αi =

∞∑
i=0

α(1− α)i = 1

by (C.50) in Appendix C. These weights can be approximated with an exponential function
f(i) = αe−αi. This is why this method is called exponential smoothing.

� EXAMPLE 2.2

Suppose that the book store manager from Example 2.1 wishes to use exponential
smoothing to forecast next month’s demand for An Inventory Story. Using α = 0.2,
we first initialize y1 = D1, and then obtain

y2 = 0.2D1 + 0.8y1 = 10.61
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Figure 2.1 Weight distribution for single exponential smoothing.

y3 = 0.2D2 + 0.8y2 = 10.89.

y4 = 0.2D3 + 0.8y3 = 10.67

Continuing in this manner, we eventually get

y13 = 0.2D12 + 0.8y12 = 9.98.

�

2.2.2.2 Double Exponential Smoothing Double exponential smoothing can be
used to forecast demands with a linear trend. Such demands can be modeled as follows:

Dt = I + tS + εt, (2.5)

where I is the base demand, S is the slope of the trend in the demand, and εt is an error
term. The forecast for the demand in period t is the sum of two separate estimates from
period t− 1: one of the base signal (the value of the demand process) and one of the slope.
That is,

yt = It−1 + St−1, (2.6)

where It−1 is the estimate of the base signal and St−1 is the estimate of the slope, both
made in period t − 1. It−1 represents our estimate of where the demand process fell in
period t− 1; in period t, the process will be St−1 units greater. The estimates of the base
signal and slope are calculated as follows:

It =αDt + (1− α)(It−1 + St−1) (2.7)

St =β(It − It−1) + (1− β)St−1, (2.8)

where α is the smoothing constant and β is the trend constant. Equation (2.7) is similar to
(2.4) for single exponential smoothing in the sense that α is the weight placed on the most
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recent actual demand Dt and 1− α is the weight on the previous forecast. Equation (2.8)
can be explained similarly: It places a weight of β on the most recent estimate of the slope
(obtained by taking the difference between the two most recent base signals) and a weight
of 1−β on the previous estimate. Note that, if the trend is downward-sloping, then St will
(usually) be negative.

As with single exponential smoothing, we need a way to initialize the process. This time,
we need two historical demand observations to initialize the forecasts, and we typically set
I1 = D1 and S1 = D2 −D1 (then y2 = I1 + S1 = D2). The first “real” forecast (using
(2.7)–(2.8) to get values for (2.6)) is y3.

This particular version of double exponential smoothing is also known as Holt’s method
(Holt 1957).

� EXAMPLE 2.3

Suppose that the bookstore manager from Example 2.1 now turns her attention to
another book (The TSP Mystery), with a different set of historical demand data, as
presented in Table 2.1. In contrast to the stable demand of An Inventory Story, The
TSP Mystery’s monthly demand data exhibits an increasing trend. Therefore, moving
averages and single exponential smoothing may not accurately predict the demand of
The TSP Mystery in the next month. For example, if we use a simple moving average
of order N = 5, we get y13 = 29.80, which is much smaller than the demands in
months 11 and 12. This may not be a good forecast, as we expect the demand in
month 13 to continue to increase over time.

Instead, we will use double exponential smoothing for The TSP Mystery, with
α = β = 0.2. We initialize I1 = D1 = 12.61 and S1 = D2 −D1 = 3.40. Then we
have

y2 = I1 + S1 = 16.01

I2 = 0.2D2 + 0.8(I1 + S1) = 16.01

S2 = 0.2(I2 − I1) + 0.8S1 = 3.40

y3 = I2 + S2 = 19.41

I3 = 0.2D3 + 0.8(I2 + S2) = 18.68

S3 = 0.2(I3 − I2) + 0.8S2 = 3.25.

We continue this process and finally obtain

I12 = 0.2D12 + 0.8(I11 + S11) = 35.65

S12 = 0.2(I12 − I11) + 0.8S11 = 1.94.

So the forecast from double exponential smoothing is y13 = I12 + S12 = 37.59,
which coincides with the increasing trend. �

2.2.2.3 Triple Exponential Smoothing Triple exponential smoothing can be used
to forecast demands that exhibit both trend and seasonality. Seasonality means that the
demand series has a pattern that repeats every N periods for some fixed N . N consecutive
periods are called a season. (If the demand pattern repeats every year, for example, then a
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Figure 2.2 Random demands with trend and seasonality.

season is one year. This is different from the common usage of the word “season,” which
would refer to a portion of the year.)

To model the seasonality, we use a parameter ct, 1 ≤ t ≤ N, to represent the ratio
between the average demand in period t and the overall average. (Thus,

∑
ct = N .) For

example, if c6 = 0.88, then on average, the demand in period 6 is 12% below the overall
average demand. The ct are called seasonal factors. We assume that the seasonal factors
are unknown but that they are the same every season. The demand process can be modeled
as follows:

Dt = (I + tS)ct + εt, (2.9)

where I is the value of base signal at time 0, S is the true slope, and εt is a random error
term. (See Figure 2.2.)

The forecast for period t is given by

yt = (It−1 + St−1)ct−N , (2.10)

where It−1 and St−1 are the estimates of the base signal and slope in period t−1 and ct−N
is the estimate of the seasonal factor one season ago.

The idea behind smoothing with trend and seasonality is basically to “de-trend” and “de-
seasonalize” the time series by separating the base signal from the trend and seasonality
effects. The method uses three smoothing parameters, α, β, and γ, in estimating the base
signal, the trend, and the seasonality, respectively:

It =α
Dt

ct−N
+ (1− α)(It−1 + St−1) (2.11)

St =β(It − It−1) + (1− β)St−1 (2.12)

ct =γ
Dt

It
+ (1− γ)ct−N . (2.13)
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Equations (2.11) and (2.12) are very similar to (2.7) and (2.8) for double exponential
smoothing, except that (2.11) uses the deseasonalized demand observation, Dt/ct−N ,
instead ofDt, to average it with the current forecast. In (2.13), It is our estimate of the base
signal, so Dt/It is our estimate of ct based on the most recent demand. This is averaged
with our previous estimate of ct (made N periods ago) using weighting factor γ.

Initializing triple exponential smoothing is a bit trickier than for single or double expo-
nential smoothing. To do so, we usually need at least two entire seasons’ worth of data
(2N periods), which will be used for the initialization phase. One common method is to
initialize the slope as

S2N =
1

N

(
DN+1 −D1

N
+
DN+2 −D2

N
+ · · ·+ D2N −DN

N

)
. (2.14)

In other words, we take the per-period increase in demand between periods 1 and N + 1,
and the per-period increase between periods 2 and N + 2, and so on; and then we take the
average over those N values. To initialize the seasonal factors ct, we estimate the seasonal
factor for each period in the first two seasons, and then average them over those two seasons
to obtain the initial seasonal factors:

cN+t =
1

2

(
Dt∑N

j=1Dj/N
+

DN+t∑N
j=1DN+j/N

)
(2.15)

for t = 1, . . . , N . Each denominator is the average demand in one season of the available
data, so the fractions in the parentheses estimate the seasonal factor for the tth period in
each season. The right-hand side as a whole averages these estimates over the two seasons.
Finally, we estimate the base signal as I2N = D2N/c2N . The first “real” forecast is y2N+1.

This method is also sometimes known as Winters’s method or the Holt–Winters method
(Winters 1960).

� EXAMPLE 2.4

The book store described in Example 2.1 also sells CDs. The total monthly demand
of all CDs in the last year is given in Table 2.1. Note that in addition to the increasing
trend, the monthly demand has a seasonal pattern with seasons of one quarter: the
demand in the first and third months of a quarter is about half of that in the second
month of the same quarter. This observation motivates us to use triple exponential
smoothing for demand forecasting.

Since the observed pattern repeats quarterly, i.e., every 3 months, we choose
N = 3. To initialize the seasonal factors, we extract the average over the first two
quarters:

c4 =
1

2

(
D1

(D1 +D2 +D3)/3
+

D4

(D4 +D5 +D6)/3

)
= 0.71

c5 =
1

2

(
D2

(D1 +D2 +D3)/3
+

D5

(D4 +D5 +D6)/3

)
= 1.51

c6 =
1

2

(
D3

(D1 +D2 +D3)/3
+

D6

(D4 +D5 +D6)/3

)
= 0.79.

The base signal and slope are initialized with the first two quarters as

I6 = D6/c6 = 21.36
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S6 =
1

3

(
D4 −D1

3
+
D5 −D2

3
+
D6 −D3

3

)
= 1.85.

Then, we forecast D7 and update the signals and seasonality with α = β = γ = 0.2

as follows:

y7 = (I6 + S6)c4 = 16.39

I7 = 0.2
D7

c4
+ 0.8(I6 + S6) = 23.91

S7 = 0.2× (I7 − I6) + 0.8S6 = 1.99

c7 = 0.2× D7

I7
+ 0.8c4 = 0.72.

Repeating this procedure for the subsequent periods, we ultimately obtain the final
results:

I12 = 33.09

S12 = 1.86

c12 = 0.75 c11 = 1.51 c10 = 0.74

y13 = (I12 + S12)c10 = 25.90.

So, our forecast for the demand in month 13 is 25.90. �

2.2.3 Linear Regression

Historical data can also be used to forecast demands by determining a cause–effect rela-
tionship between some independent variables and the demand. For instance, the demand
for sales of a brand of laptop computer may heavily depend on the sales price and the
features. A regression model can be developed which describes this relationship. The
model can then be used to forecast the demand for laptops with a given price and a given
set of features.

In linear regression, the model specification assumes that the dependent variable, Y , is a
linear combination of the independent variables. For example, in simple linear regression,
there is one independent variable, X , and two parameters, β0 and β1:

Y = β0 + β1X. (2.16)

Here, X and Y are random variables. For any given pair of observed variables x and y, we
have

y = β0 + β1x+ ε, (2.17)

where ε is a random error term. The objective of regression analysis is to estimate the
parameters β0 and β1.

To build a regression model, we need historical data points—observations of both the
independent variable(s) and the dependent variable. Let (x1, y1), (x2, y2), . . . , (xn, yn) be
n paired data observations for a simple linear regression model. The goal is to find values
of β0 and β1 so that the line defined by (2.16) gives the best fit of the data. In particular,
β0 and β1 are chosen to minimize the sum of the squared residuals, where the residual for
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data point i is defined as the difference between the observed value of yi and the predicted
value of yi obtained by substituting X = xi in (2.16). That is, we want to solve

minimize
β0,β1

n∑
i=1

ê2
i = minimize

β0,β1

n∑
i=1

(yi − (β0 + β1xi))
2
, (2.18)

where êi is the residual for data point i. The optimal values of β0 and β1 are given by

β̂1 = rxy
sy
sx

(2.19)

β̂0 = ȳ − β̂1x̄, (2.20)

where x̄ and ȳ are the sample means of the xi and yi, respectively; rxy is the sample
correlation coefficient between x and y; and sx and sy are the sample standard deviations
of x and y, respectively (see, e.g., Tamhane and Dunlop (1999)).

If the demands exhibit a linear trend over time, then we can use regression analysis to
forecast the demand using the time period itself (rather than, say, price or features) as the
independent variable. In this case, it can be shown (see, e.g., Nahmias (2005, Appendix
2-B)) that the optimal values of β0 and β1 are given by:

β̂1 =
Axy
Axx

(2.21)

β̂0 =
1

n

n∑
i=1

Di −
β1(n+ 1)

2
, (2.22)

where D1, . . . , Dn are the observed demands and

Axy =n

n∑
i=1

iDi −
n(n+ 1)

2

n∑
i=1

Di (2.23)

Axx =
n2(n+ 1)(2n+ 1)

6
− n2(n+ 1)2

4
. (2.24)

According to the comparison by Carbonneau et al. (2008), linear regression often
achieves better performance than moving average and trend methods.

� EXAMPLE 2.5

Return to the sales data for The TSP Mystery in Table 2.1. Rather than using double
exponential smoothing to forecast the demand for period 13, as we did in Example 2.3,
we can instead use linear regression. Using either (2.19)–(2.20) or (2.21)–(2.22), we
get β̂0 = 10.88 and β̂1 = 1.89. Therefore, the forecast for the demand in period 13
is

10.88 + 13 · 1.89 = 35.46.

The observed data and the best-fit line are plotted in Figure 2.3.

�
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Figure 2.3 Observed demands for The TSP Mystery and best-fit line for Example 2.5.

2.3 FORECAST ACCURACY

2.3.1 MAD, MSE, and MAPE

At some point after a forecast is computed, the actual demand is observed, providing us
with an opportunity to evaluate the quality of the forecast. The most basic measure of
the forecast accuracy is the forecast error, denoted et, which is defined as the difference
between the forecast for period t and the actual demand for that period:

et = yt −Dt, (2.25)

where yt is a forecast obtained using any method and Dt is the actual observed demand.
Since the forecast and the demand are random variables, so is the forecast error; let µe

and σ2
e denote its mean and variance, respectively. If the mean of the forecast error, µe,

equals 0, we say the forecasting method is unbiased: It does not produce forecasts that are
systematically either too low or too high. However, even an unbiased forecasting method
can still be very inaccurate. One way to measure the accuracy is using the variance of
the forecast error, σ2

e . To compute µe or σ2
e , however, we need to know the probabilistic

process that underlies both the demands and the forecasts. Typically, therefore, we use
performance measures based on sample quantities rather than population quantities.

Two of the most common such measures are the mean absolute deviation (MAD) and
the mean squared error (MSE), defined as follows:

MAD =
1

n

n∑
t=1

|et| (2.26)

MSE =
1

n

n∑
t=1

e2
t . (2.27)
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MSE is identical to the sample variance of the random forecast error et except for the
denominator of the coefficient. MAD is sometimes preferred to MSE in real applications
because it avoids the calculation of squaring, though modern spreadsheet and statistics
packages can compute either performance measure easily. When the forecast errors are
normally distributed, their standard deviation is often estimated as

σe ≈ 1.25MAD. (2.28)

This is useful when σe is required (e.g., for inventory optimization models—see Sec-
tion 4.3.2.7), since, as previously noted, we do not typically know σe directly.

Note that both MAD and MSE are dependent on the magnitude of the values of demand;
if we express the demands in different units (e.g., tons vs. pounds), the performance
measures will change. By comparison, the mean absolute percentage error (MAPE) is
independent of the magnitude of the demand values:

MAPE =
1

n

n∑
t=1

∣∣∣∣ etDt

∣∣∣∣× 100. (2.29)

� EXAMPLE 2.6

Table 2.2 gives the hypothetical actual demands for periods 13–24 for An Inventory
Story from Example 2.1. It also gives the moving average forecasts for these periods
(using N = 5), the single exponential smoothing forecasts for these periods (using
α = 0.2), and the corresponding forecast errors. Finally, at the end of the table are the
performance measures (MAD, MSE, and MAPE) for each of the forecasting methods.
In this case, the moving average has slightly smaller values of the performance
measures and is therefore slightly more accurate. �

2.3.2 Forecast Errors for Moving Average and Exponential Smoothing

Assume that the demand is generated by the process

Dt = µ+ εt, (2.30)

where εt ∼ N(0, σ2). Since the demand process is stationary, either moving average or
exponential smoothing is an appropriate forecasting method.

In a moving average of order N , the forecast yt is given by (2.2). It follows that

µe = E[yt −Dt] =
1

N

t−1∑
i=t−N

E[Di]− E[Dt] =
1

N
Nµ− µ = 0.

Therefore, moving-average forecasts are unbiased when the demand is stationary.
We can also derive the variance of the forecast error, which can be expressed as

σe =
√

Var[yt −Dt] =
√

Var[yt] + Var[Dt]

=

√√√√ 1

N2

t−1∑
i=t−N

Var[Di] + Var[Dt]
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Table 2.2 Demands (Dt), forecasts (yt), and forecast errors (et) for An Inventory Story, periods
13–24, for Example 2.6.

Moving Exponential
Average Smoothing

t Dt yt et yt et

13 10.98 9.80 −1.18 9.98 −1.00
14 12.07 10.01 −2.06 10.18 −1.89
15 11.45 10.63 −0.82 10.56 −0.89
16 9.39 10.88 1.49 10.74 1.35
17 10.59 10.57 −0.02 10.47 −0.12
18 8.43 10.90 2.47 10.49 2.06
19 11.78 10.39 −1.39 10.08 −1.70
20 7.71 10.33 2.62 10.42 2.71
21 7.86 9.58 1.72 9.88 2.02
22 8.38 9.27 0.89 9.47 1.09
23 4.11 8.83 4.72 9.26 5.15
24 12.88 7.97 −4.91 8.23 −4.65

MAD 2.02 2.05
MSE 6.13 6.26
MAPE 25.97 26.85

=

√
1

N2
Nσ2 + σ2

=σ

√
1 +N

N
.

Note that the second equality uses the fact that the forecast and demand in period t are
statistically independent.

If forecasts are instead performed using exponential smoothing, one can show (see
Problem 2.12) that

µe = 0 (2.31)

σe = σ

√
2

2− α
. (2.32)

2.4 MACHINE LEARNING IN DEMAND FORECASTING

2.4.1 Introduction

We are in the age of big data. The huge volume of data generated every day, the high velocity
of data creation, and the large variety of sources all make today’s business information
environment different than it was only a decade ago. Using data intelligently is key to
business decision-making. A 2012 Harvard Business Review article notes: “Data-driven
decisions are better decisions—it’s as simple as that. Using big data enables managers to
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decide on the basis of evidence rather than intuition. For that reason it has the potential to
revolutionize management” (McAfee and Brynjolfsson 2012).

Fortunately, many businesses have access to large volumes of historical demand data that
can help when forecasting future demands. In this section, we introduce some of the main
machine learning techniques for demand forecasting. Compared with classical forecasting
methods such as the time series methods discussed in Section 2.2, machine learning models
often significantly increase prediction accuracy.

2.4.2 Machine Learning

In general, machine learning (ML) refers to a set of algorithms that can learn from and
make predictions about data. These algorithms take data as inputs and generate predictions
or decisions as outputs. Machine learning is closely related to statistical learning, which
refers to a set of tools for modeling and understanding complex data sets (James et al.
2013). Machine learning and statistical learning have developed rapidly in recent years.
Both techniques fall into the overall field of data science, which covers a wider range of
topics, including database design and data visualization techniques.

One category of ML algorithms is called supervised learning, in which the historical data
contain both inputs and outputs, and the learning algorithm learns to predict an output for
a given set of inputs. For example, we might have historical data that contains the outdoor
temperature and the number of glasses of lemonade that were sold on each day. The learning
algorithm tries to infer the relationship between the two, so that for a given temperature,
it can predict the number of glasses of lemonade that will be sold. Regression is a simple
example. In contrast, unsupervised learning explores relationships and structures within
the data without any known “ground truth” labels or outputs. For example, if we wish to
partition consumers into market segments, we might use a clustering algorithm, which is a
type of unsupervised learning. (See Friedman et al. (2001) or James et al. (2013) for further
discussion of this dichotomy.) Demand forecasting falls into the category of supervised
learning since we need to predict future demands (outputs) using historical demand data
and other market information (inputs).

Common supervised learning methods include linear regression (and its nonlinear ex-
tensions), kernel methods, tree-based models, support vector machines (SVMs), and neural
networks. Graphical models involving hidden Markov models (or, in their simplest form,
mixture models) and Markov random fields also receive considerable attention. In the
following subsections, we discuss the learning methods that are most commonly applied to
demand forecasting.

2.4.2.1 Linear Regression Linear regression is a very simple supervised learning
method. It assumes that the output Y is linear in the inputsX1, X2, . . . , Xp, where p is the
number of distinct input variables (also called predictors or features):

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp. (2.33)

For particular values of the inputs and outputs, we have

y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε, (2.34)

where ε is a random error term. The βjs are coefficients that need to be estimated from
data. If p = 1, then we have simple linear regression, which we discuss in Section 2.2.3.
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Table 2.3 Snippet of historical data on demand for baseball jerseys for Examples 2.7–2.9.

Batting Avg. Games Won Years in Majors Demand (Cases)

0.274 68 1 14.3
0.332 150 11 28.7
0.262 79 12 17.6
0.396 127 8 26.0
0.262 156 4 27.1
0.280 142 7 26.0
0.112 75 10 14.7
0.429 82 0 19.2
0.259 88 7 18.1
0.302 95 6 19.4

(In Section 2.2.3, we focused on the use of time as the independent variable in order to
predict demands as a function of time. Here, our independent variables can be any feature.)

The most common way to obtain the βjs is least squares, which seeks to find the
minimizer of the sum of the squares of the residuals. (Recall from Section 2.2.3 that the
residual for data point i is the difference between the observed and predicted values of yi.)
The derived estimated coefficients are denoted β̂j . Then we can make predictions on new
inputs by using

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂pxp, (2.35)

where ŷ is our predicted value for the output, given the observed values {x1, x2, . . . , xp}
of the inputs.

� EXAMPLE 2.7

A sports apparel retailer sells jerseys (T-shirts) with the names of major league
baseball players stitched onto the back. The retailer believes that the demand for a
given player’s jersey depends on his batting average last year, the number of games
his team won last year, and the number of years the player has been playing in the
major leagues. Therefore, the retailer keeps careful records of these statistics, as
well as the demand for jerseys, for each player. Last year’s records for 300 players
can be found in the file jerseys.xlsx, the first few rows of which are reproduced
in Table 2.3. Demands are expressed in cases sold last year. (In baseball, batting
averages are expressed as decimals between 0 and 1.)

The retailer wishes to predict the demand for this year’s jerseys using the historical
data. Let X1 represent batting average, X2 represent games won, and X3 represent
years in majors. Using regression, we find that

β̂0 = −0.0651

β̂1 = 18.0430

β̂2 = 0.1403

β̂3 = 0.1831.
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For example, if Roy Hobbs had a 0.292 average last year, his team won 95 games,
and he has been in the major leagues for 4 years, the demand for his jersey this year
can be predicted as

ŷ = −0.0651 + 18.0430× 0.292 + 0.1403× 95 + 0.1831× 4 = 19.2644.

�

Although the linear regression model assumes a linear relationship between the output
and the inputs, we can model nonlinear relationships by introducing basis functions and
splines. When the number of predictors is large, we can utilize shrinkage methods such as
least absolute shrinkage and selection operator (LASSO) and ridge regression. In general,
linear regression is a simple but strong learning method.

2.4.2.2 Tree-based models Tree-based models use decision trees to make predic-
tions for a given set of inputs. They can be applied both to regression problems (in which
the outputs are continuous) and to classification problems (in which the outputs are cate-
gorical). The trees used for these two types of problems are referred to as regression trees
and classification trees, respectively. In demand forecasting, regression trees have received
more attention because of their simplicity and interpretability.

A regression tree divides the space of input variables, i.e., the set of possible values
of X1, X2, . . . , Xp, into distinct and nonoverlapping regions and assigns a single output,
ck, to each region k. If a given input x1, x2, . . . , xp falls into region k, then the demand
forecast y for that input is equal to ck. The ck values are determined simply by averaging
the observations in the historical data that fall into that region.

The goal is to choose the partition strategy that minimizes the sum of squares of the resid-
uals, similar to linear regression. However, in practice, the number of possible partitions
may be too large to enumerate. Therefore, it is common to use a binary splitting method
called recursive partitioning, which generates two regions from the original region at each
iteration. For the purposes of prediction, the size of the tree is limited by a pruning process.
A single tree may not perform well due to high variance of the forecast, so researchers
have developed methods that combine several trees to enhance the prediction performance.
These include random forests, bagging, and boosting.

Tree-based models are used widely in demand forecasting for many industries. For
example, Ferreira et al. (2015) apply regression trees with bagging to predict the demand
of new styles for an online retailer. They show that tree-based models outperform linear
regression and some nonlinear regression models consistently. Ali et al. (2009) develop
regression trees to predict stock-keeping unit (SKU) sales for a European grocery retailer.
They incorporate information about current promotions when constructing regression trees
and show that regression trees provide better accuracy than linear regression and SVMs.

� EXAMPLE 2.8

Return to the baseball-jersey data set from Example 2.7. Figure 2.4 shows one
possible regression tree for this data set. For example, we would predict a demand
of 23.5 cases for Roy Hobbs (who has a 0.292 batting average, has been in the major
leagues for 4 years, and is on a team that has won 95 games).
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Figure 2.4 Regression tree for baseball jerseys for Example 2.8.

Of course, there are many possible regression trees for this data set, and the figure
gives only one example. Better ones can be found using the recursive partitioning
method.

�

2.4.2.3 Support vector machines SVMs are designed to partition the space of
input variables into two regions, i.e., to make a binary prediction about a given output
based on which region a given input vector falls into. The partition is accomplished by
finding a separating hyperplane. In particular, assuming that the training data set is linearly
separable, the optimal separating hyperplane is found by solving the following optimization
problem:

minimize
β0,β

||β||22 (2.36)

subject to yi(xi · β + β0) ≥ 1 ∀i = 1, 2, . . . , N, (2.37)

whereN is the number of observations, yi is the binary output (yi ∈ {0, 1}) for observation
i,xi ∈ Rp is the vector of input variables for observation i, and · denotes dot product. This is
also called a maximum margin classifier, where the margin is defined as 1

||β||2 . The optimal
values of the vector β ∈ Rp and the scalar β0 characterize the separating hyperplane. For
a given input vector x1, . . . , xp, we predict an output value of 1 if xi · β + β0 > 0 and a
value of 0 otherwise.

For example, suppose we wish to predict which customers will purchase a product based
on their age, income, and money spent at the store in the past year. We code each customer
in the historical data with a 1 or 0 depending on whether they purchased the product, then
solve (2.36)–(2.37) to find the hyperplane that does the best job of separating the 1s from
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the 0s. For each new customer, we simply calculate xi · β + β0 and make a prediction
accordingly.

SVMs can be generalized to allow nonlinearities by mapping the input space into a
high-dimensional space using kernel functions. In essence, this allows the region to be
partitioned using a surface that is not linear, i.e., is not a hyperplane. Popular choices of
kernel functions include polynomials and radial basis functions (RBFs).

Since SVMs can be used to make binary predictions, they can be used to predict whether
a given customer will purchase a product. They can also be used to forecast the demand
as a quantity using support vector regression (SVR), an adaptation of the SVM approach
to regression problems using kernel functions. SVR is among the best machine learning
methods for supply chain demand forecasting (Carbonneau et al. 2008).

� EXAMPLE 2.9

For the baseball-jersey data set from Example 2.7, let us first use SVM to predict
whether the demand for a given player’s jerseys will be greater than or equal to 25
cases this year. We can label the historical data by assigning yi = 1 to players
whose jerseys had a demand greater than or equal to 25 and yi = 0 for those
who did not. Solving the SVM optimization problem1 results in the solution β =

(4.5879, 0.0745, 0.1154) and β0 = −12.1620. In other words, if

−12.1620 + (4.5879, 0.0745, 0.1154) · (x1, x2, x3) > 0,

then we predict that the demand will be greater than or equal to 25. For Roy Hobbs,
who has an input vector of xi = (0.292, 95, 4), we have

−12.1620 + (4.5879, 0.0745, 0.1154) · (0.292, 95, 4) = −3.2832,

so we predict that Roy will not sell more than 25 cases of jerseys this year.
Next, we can use an SVR model to predict the demand for Roy Hobbs jerseys

explicitly. Using MATLAB’s fitrsvm function, we obtain SVR coefficients of
β = (13.8451, 0.1387, 0.1932) and β0 = 1.1436. Therefore, we can predict the
demand for Roy Hobbs jerseys as

1.1436 + (13.8451, 0.1387, 0.1932) · (0.292, 95, 4) = 19.1357 cases.

(Note that the SVM and SVR optimization problems are nonconvex and typically
have multiple optima. Your results might differ if you use a different implementation
to solve the same problem.) �

2.4.2.4 Neural Networks A neural network consists of several nodes, also called
neurons, arranged into layers. The first layer of nodes represents the inputs (the Xi

values); the last layer represents the outputs (the Y value); and one or more layers in
between, called hidden layers, process the information from the input layer and perform
the actual computation of the network. (See Figure 2.5.) Neural networks have been used
extensively for classification problems such as image and speech processing, where the

1We did not use (2.36)–(2.37), but rather a modified formulation, since the training data set in this example is not
linearly separable. We used MATLAB’s fitcsvm function to do the optimization.
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goal is to determine what sort of physical or linguistic object the inputs represent. But
neural networks can and have been successfully applied to regression-type problems such
as demand forecasting.

The central idea behind neural networks is that in each layer (except the first), we
extract linear combinations of the inputs from the previous layer as derived features, and
then model the output as a nonlinear function of these features. For example, in a typical
network with a single hidden layer with M nodes, each hidden-layer node m = 1, . . . ,M

calculates the derived feature

Zm = σ(α0m +αTmX), (2.38)

where X is the vector of inputs, α0m is a scalar, αm is a vector with p elements (one per
input feature), and σ(·) is a nonlinear function called the activation function. Note that the
term inside the σ(·) is a linear combination of the inputs plus a constant. Typical activation
functions include the sigmoid function and the ReLU function. The Zm are also called
hidden units since they are not directly observed. Once the hidden units are calculated by
the hidden-layer nodes, the output Y is modeled as a function of the hidden units:

Y = g(Z1, . . . , ZM ), (2.39)

where g(·) is a (possibly nonlinear) function.
The key challenge in fitting a neural network model is the determination of the weights

α0m and αm. This is usually done using some sort of algorithm that modifies the weights
as the network “learns” right and wrong answers. The most common such algorithm is
known as backpropagation, which calculates gradients with respect to the weights; another
method (such as gradient descent) is then used to update the weights. Determining these
weights—sometimes referred to as training the network—can be computationally intensive.
However, once the network is trained, generating an output value for a new set of inputs is
extremely efficient. (For further details, see, e.g., Friedman et al. (2001).)

Some neural networks contain multiple hidden layers, not just one; this can improve
the accuracy of the network’s predictions but makes the network harder to train. Such
deep neural networks have led to huge advances in machine learning, with great successes
not only in classification and prediction problems such as image processing and demand
forecasting, but also, when coupled with reinforcement learning (RL), in solving decision
problems such as those in board games; one famous example is Google DeepMind’s
AlphaGo program, which beat the world-champion (human) Go player in 2016.

Carbonneau et al. (2008) test two different types of neural networks on demand forecast-
ing and conclude that neural networks perform better than traditional methods. Venkatesh
et al. (2014) combine neural networks with clustering to predict demand for cash at auto-
matic teller machines (ATMs). They find that their model increases the prediction accuracy
substantially.

2.5 DEMAND MODELING TECHNIQUES

As the pace of technology accelerates, companies are introducing new products faster and
faster to stay competitive. There is a diffusion process associated with the demand for any
new product, so companies need to plan the timing and quantity of new product releases
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Figure 2.5 A simple neural network.

carefully to match supply and demand as closely as possible. To do so, they need to
understand the life cycles and demand dynamics of their products.

One of the authors has worked with a high-tech company in China. The company was
complaining about their very inaccurate demand forecasts, which led to excess inventory
valued at approximately $25 million. The author was invited to give lectures on demand
forecasting and inventory management. The first day’s lecture focused on the classical
time-series demand forecasting techniques discussed earlier in this chapter. The reaction
from the company’s forecasting team was lukewarm. They were already quite familiar
with these techniques and had tried hard to make them work, unsuccessfully. It turns out
that classical forecasting techniques did not work well with the company’s highly variable,
short-life-cycle products, so the firm introduced products at the wrong times in the wrong
quantities. The forecasting team’s reaction was quite different when the author discussed
the Bass diffusion model, the leading-indicator method, and choice models, which are
designed to account for short life cycles and other important factors. We discuss each of
these methods in detail in the following sections. (As a postscript, the company reported
more than a 50% increase in sales about one and a half years after they improved their
forecasting techniques, partially due to the fact that money was being invested in a better
mix of products.)

2.6 BASS DIFFUSION MODEL

The sales patterns of new products typically go through three phases: rapid growth, maturity,
and decline. The Bass diffusion model (Bass 1969) is a well-known parametric approach
for estimating the demand trajectory of a single new product over time. Bass’s basic
three-parameter model has proved to be very effective in delivering accurate forecasts
and insights for a huge variety of new product introductions, regardless of pricing and
advertising decisions. The model forecasts well even when limited or no historical data
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Figure 2.6 Color TVs in the 1960s: Forecasts from Bass model and actual demands. Reprinted
by permission, Bass, Empirical generalizations and marketing science: A personal view, Marketing
Science, 14(3), 1995, G6–G19. ©1995, the Institute for Operations Research and the Management
Sciences (INFORMS), 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA.

are available. For example, Figure 2.6 depicts demand data (forecast and actual) for the
introduction of color television sets in the 1960s.

The premise of the Bass model is that customers can be classified into innovators
and imitators. Innovators (or early adopters) purchase a new product without regard to
the decisions made by other individuals. Imitators, on the other hand, are influenced in
the timing of their purchases by previous buyers through word-of-mouth communication.
Refer to Figure 2.7 for an illustration. The number of innovators decreases over time, while
the number of imitators purchasing the product first increases, and then decreases. The
goal of the Bass model is to characterize this behavior in an effort to forecast the demand.
It mathematically characterizes the word-of-mouth interaction between those who have
adopted the innovation and those who have not yet adopted it. Moreover, it attempts to
predict two important dimensions of a forecast: how many customers will eventually adopt
the new product, and when they will adopt. Knowing the timing of adoptions is important
as it can guide the firm to smartly utilize resources in marketing the new product. Our
analysis of this model is based on that of Bass (1969).

2.6.1 The Model

The Bass model assumes that P (t), the probability that a given buyer makes an initial
purchase at time t given that she has not yet made a purchase, is a linear function of the
number of previous buyers; that is,

P (t) = p+
q

m
D(t), (2.40)
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where D(t) is the cumulative demand by time t. Equation (2.40) suggests that two factors
will influence the probability that a customer makes a purchase at time t. The first factor is
the coefficient of innovation, denoted p, which is a constant, independent of how many other
customers have adopted the innovation before time t. The second factor, q

mD(t), measures
the “contagion” effect between the innovators and the imitators and is proportional to
the number of customers who have already adopted by time t. The parameters q and m
represent the coefficient of imitation and the market size, respectively. We require p < q.
In fact, usually p� q; for example, p = 0.03 and q = 0.38 have been reported as average
values (Sultan et al. 1990).

We assume that the time index, t, is measured in years. Of course, any time unit is
possible, but the values we report for p and q implicitly assume that t is measured in years.

Let d(t) be the derivative of D(t), i.e., the demand rate at time t. Using Bayes’ rule,
one can show that

P (t) =
d(t)

m−D(t)
. (2.41)

(See Section 2.6.2 for a derivation of the analogous equation in the discrete-time model.)
Combining (2.40) and (2.41), we have

d(t) =
(
p+

q

m
D(t)

)
(m−D(t)). (2.42)

Our goal is to characterize D(t) so that we can understand how the demand evolves over
time. To a certain extent, (2.42) does this, but (2.42) is a differential equation; it expresses
D(t) in terms of its derivative. Our preference would be to have a closed-form expression
for D(t). Fortunately, this is possible:

Theorem 2.1

D(t) =m
1− e−(p+q)t

1 + q
pe
−(p+q)t

(2.43)
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d(t) =
mp(p+ q)2e−(p+q)t(
p+ qe−(p+q)t

)2 (2.44)

Proof. Omitted.

As a corollary, one can determine the time at which the demand rate peaks, and the
demand rate and cumulative demand at that point:

Corollary 2.2 The peak demand occurs at time

t∗ =
1

p+ q
ln

(
q

p

)
. (2.45)

The demand rate and cumulative demand at time t∗ are given by

d(t∗) =
m(p+ q)2

4q
(2.46)

D(t∗) =
m(q − p)

2q
. (2.47)

Proof. Omitted; see Problem 2.17.

If p is very small, then the demand growth occurs slowly, whereas if p and q are large,
sales take off rapidly and fall off quickly after reaching their maximum. Note that the
formulas in Corollary 2.2 are only well defined if q > p, which we previously assumed to
be true. If, instead, q < p, then the innovation effects will dominate the imitation effects,
and the peak demand will occur immediately upon the introduction of the product and will
decline thereafter. In summary, by varying the values of p and q, we can represent many
different patterns of demand diffusion.

� EXAMPLE 2.10

The bookstore manager from Example 2.3 now wishes to model the demand for a
third book, The Case of the Violated Constraint, which is expected to be a best-seller
but whose sales will taper off after their peak. The bookstore’s marketing department
has estimated that the sales of the book will follow a Bass diffusion process with
parameters p = 0.05, q = 0.3, and m = 2700, which are calculated assuming that
the time index is measured in weeks (not years).

At what time will the sales of The Case of the Violated Constraint reach their
peak, and what will the demand rate be at that time? How many copies of the book
will have been sold by that point? What will the demand rate be at week 20, and how
many copies will have been sold by that point?

From Corollary 2.2, we have

t∗ =
1

0.05 + 0.3
ln

(
0.3

0.05

)
= 5.12,

so the peak occurs during week 5. Moreover,

d(t∗) =
2700(0.05 + 0.3)2

4 · 0.3
= 27.63
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D(t∗) =
2700(0.3− 0.05)

2 · 0.3
= 1125.00

and, from (2.43)–(2.44),

D(20) = 2700
1− e−(0.05+0.3)·20

1 + 0.3
0.05e

−(0.05+0.3)·20
= 2682.86

d(20) =
2700 · 0.05(0.05 + 0.3)2e−(0.05+0.3)·20(

0.05 + 0.3e−(0.05+0.3)·20
)2 = 5.97.

Therefore, at the time of peak demand, the demand rate will be 27.63 books per week,
and 1125 books will have been sold. At week 20, the demand rate will be 5.97 books
per week, and 2682.86 (or 2683) books will have been sold. �

Seasonal influence factors can be incorporated into the Bass framework. Kurawarwala
and Matsuo (1996) present a growth model to forecast demand for short-life-cycle products
that is motivated by the Bass diffusion model. They use αt to denote the seasonal influence
parameter at time t, given as a function with a periodicity of 12 months. Their proposed
seasonal growth model is characterized by the following differential equation:

d(t) =
(
p+

q

m
D(t)

)
(m−D(t))αt, (2.48)

where D(t) is the cumulative demand by time t (D(0) ≡ 0), d(t) is its derivative, and m,
p, and q are the scale and shape parameters, which are analogous to the parameters in the
Bass diffusion model. This is identical to (2.42) except for the multiplier αt.

Integrating (2.48), we get the cumulative demand D(t) as follows:

D(t) = m

[
1− e−(p+q)

∫ t
0
ατdτ

1 + q
pe
−(p+q)

∫ t
0
ατdτ

]
. (2.49)

When αt = 1 for all t, (2.49) reduces to (2.43) from Bass’s original model.

2.6.2 Discrete-Time Version

A discrete-time version of the Bass model is available. In this case, dt represents the
demand in period t, and Dt represents the cumulative demand up to period t. Let Pt be
the probability that a customer buys the product in period t given that she did not buy it in
periods 1, . . . , t− 1. Bayes’ rule says that

P(A|B) =
P(B|A)P(A)

P(B)
.

Here, let A represent “customer buys in t” and B represent “customer didn’t buy in
1, . . . , t− 1.” Then

P(A|B) =
1 · dtm

1− Dt
m

=
dt

m−Dt
.

(Note the similarity to (2.41), which is for continuous time.) Then the discrete-time
analogue of (2.42) is

dt =
(
p+

q

m
Dt−1

)
(m−Dt−1), (2.50)

where D0 ≡ 0.
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2.6.3 Parameter Estimation

The Bass model is heavily driven by the parameters m, p, and q. In this section, we briefly
discuss how these parameters may be estimated.

If historical data are available, we can estimate the parameters p, q, andm by first finding
the least-squares estimates of the parameters a, b, and c in the following linear regression
model:

dt = a+ bDt−1 + cD2
t−1 t = 2, 3, . . . .

Note that this model uses the discrete-time version of the Bass model (in which we observe
demands dt and calculate cumulative demands Dt) since, in practice, we observe discrete
demand quantities rather than a continuous demand function. After finding a, b, and c
using standard regression analysis, the parameters of the Bass model can be determined as
follows:

m =
−b−

√
b2 − 4ac

2c
(2.51)

p =
a

m
(2.52)

q =−mc. (2.53)

However, because the Bass model is typically used for new products, in most cases
historical data are not available to estimate the parameters. Instead, m is typically esti-
mated qualitatively, using judgment or intuition from management about the size of the
market, market research, or the Delphi method. In some markets these estimates can be
rather precise. For instance, the pharmaceutical industry is known for their accurate de-
mand estimates, which derive from abundant data regarding the incidence of diseases and
ailments (Lilien et al. 2007). The parameters p and q tend to be relatively consistent within
a given industry, so these can often be estimated from the diffusion patterns of similar
products. Lilien and Rangaswamy (1998) provide industry-specific data for a wide range
of industries. (See Table 2.4 for some examples.)

2.6.4 Extensions

After more than half a century, the Bass model is still actively used in demand forecasting
and production planning. Sultan et al. (1990), Mahajan et al. (1995), and Bass (2004)
provide broad overviews of these applications. The original model has also been extended
in a number of ways. Ho et al. (2002) provide a joint analysis of demand and sales dynamics
when the supply is constrained, and thus the usual word-of-mouth effects are mitigated.
Their analysis generalizes the Bass model to include backorders and lost sales and describes
the diffusion dynamics when the firm actively makes supply-related decisions to influence
the diffusion process. Savin and Terwiesch (2005) describe the demand dynamics of
two new products competing for a limited target market, generalizing the innovation and
imitation effects in Bass’s original model to account for this competition. Schmidt and
Druehl (2005) explore the influence of product improvements and cost reductions on the
new-product diffusion process. Ke et al. (2013) consider the problem of extending a
product line while accounting for both inventory (supply) and diffusion (demand). The
model determines whether and when to introduce the line extension and the corresponding
production quantities. Islam (2014) uses the Bass model (as well as experimental discrete
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Product p q

Cable TV 0.100 0.060
Camcorder 0.044 0.304
Cellular phone 0.008 0.421
CD player 0.157 0.000
Radio 0.027 0.435
Home PC 0.121 0.281
Hybrid corn 0.000 0.797
Tractor 0.000 0.234
Ultrasound 0.000 0.534
Dishwasher 0.000 0.179
Microwave 0.002 0.357
VCR 0.025 0.603

choice data—see Section 2.8) to predict household adoption of photovoltaic (PV) solar
cells.

2.7 LEADING INDICATOR APPROACH

Product life cycles are becoming shorter and shorter, so it is difficult to obtain enough
historical data to forecast demands accurately. One idea that has proven to work well in
such situations is the use of leading indicators—products that can be used to predict the
demands of other, later products because the two products share a similar demand pattern.
This approach was introduced by Aytac and Wu (2013) and by Wu et al. (2006), who
describe an application of the method at the semiconductor company Agere Systems.

The approach is applied in situations in which a company introduces many related
products, such as multiple varieties of semiconductors, cellular phones, or grocery items.
The idea is first to group the products into clusters so that all of the products within a cluster
share similar attributes. There are several ways to perform this clustering. If one can
identify a few demand patterns that all products follow, then it is natural simply to group
products sharing the same pattern into the same cluster. For instance, after examining
demand data for about 3500 products, Meixell and Wu (2001) find that the products follow
six basic demand patterns (i.e., diffusion curves from the Bass model in Section 2.6) and
can be grouped into these patterns using statistical cluster analysis. Wu et al. (2006), on
the other hand, focus on exogenously defined product characteristics, such as resources,
technology group, or sales region, and group the products that have similar characteristics
into the same cluster.

The goal is then to identify some potential leading-indicator products within each cluster.
A product is a leading indicator if the demand pattern of this product will likely be
approximately repeated later by other products in the same cluster. For example, Figure 2.8
depicts the demand for a leading indicator product (solid line) and the total demand for all
of the products in the cluster (dashed line). If the leading indicator curve is shifted to the

Table 2.4 Bass model parameters. Adapted with permission from Lilien and Rangaswamy,
Marketing Engineering: Computer-Assisted Marketing Analysis and Planning, Addison-Wesley,
with permission obtained from Pearson, 1998, p. 201.
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Figure 2.8 An example of a leading-indicator product.

right by three periods (the “lag”), the two curves share a similar structure. Therefore, the
leading indicator product provides some basis for predicting the demand of the rest of the
products in the cluster. Even though all of the products are on the market simultaneously,
the lag provides enough time so that supply chain planning for the products in the cluster
can take place based on the forecasts provided by the leading indicator. Of course, correctly
identifying the leading indicator is critical.

Wu et al. (2006) suggest the following procedure to identify a leading indicator within
a given cluster. Let C be the set of products, i.e., the cluster. Each product i ∈ C will be
treated as a potential leading indicator. Suppose we have historical demand data through
period T . Let Dit be the observed demand for product i in period t, and let Dt be the
total demand for the entire cluster in period t, t = 1, . . . , T . Then leading indicators can
be identified using Algorithm 2.1. In line 4 of the algorithm, the correlation ρik measures
how well the demand of item i over the time interval [1, T − k] predicts the demand of the
cluster over [k + 1, T ].

Once a leading indicator iwith time lag k is identified as having a satisfactory correlation
coefficient ρik, we can forecast the demand for the rest of the product cluster using the
demand history from the leading indicator as follows:

1. Regress the demand time-series of product cluster C (excluding i) over [k + 1, T ]

against the time series of the leading indicator over [1, T − k] using the model

D−it = β0 + β1Di,t−k (2.54)

and determine the optimal regression parameters β0 and β1.
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Algorithm 2.1 Leading-indicator identification
1: choose kmin, kmax, ρmin . Initialization
2: for all i ∈ C, k ∈ {kmin, . . . , kmax} do . Correlation calculation
3: shift product-i demands by k periods
4: calculate ρik (correlation between “i lag k” and C \ {i}) as

ρik ←
∑T
t=k+1(Di,t−k − D̄i)(D

−i
t − D̄−i)√∑T

t=k+1(Di,t−k − D̄i)2
∑T
t=k+1(D−it − D̄−i)2

,

whereDit is the observed demand for product i in period t, D̄i is its mean over the time
interval [k + 1, T ], D−it is the total demand for all products in the cluster excluding i
in period t, and D̄−i is its mean over the time interval [k + 1, T ]

5: end for
6: for all i ∈ C, k ∈ {kmin, . . . , kmax} do . Identification of leading indicators
7: if ρik ≥ ρmin then
8: label i as leading indicator with lag k
9: end if

10: end for
11: if any leading indicators were found then
12: return leading indicators and corresponding clusters
13: else
14: for all C do . Reclustering
15: using statistical cluster analysis, subdivide C into clusters based on statistical

demand patterns; attributes can include demand mean or SD, shipment frequency, etc.
16: end for
17: go to 2
18: end if
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2. For a given month t > T (that is, a month for which we do not have historical data
but whose demand we wish to forecast), generate the forecast for the cluster, D̃−it ,
using the time series of the leading indicator i from k periods earlier:

D̃−it = β0 + β1Di,t−k. (2.55)

2.8 DISCRETE CHOICE MODELS

2.8.1 Introduction to Discrete Choice

In economics, discrete choice models involve choices between two or more discrete alterna-
tives. For example, a customer chooses which of several competing products to buy; a firm
decides which technology to use in production; or a passenger chooses which transportation
mode to travel by. The set of choices is assumed to be discrete, and the corresponding mod-
els are therefore called discrete choice models. (A related set of models, called continuous
choice models, assume that the range of choices is continuous. Although these models are
not the focus of our discussion, many of the concepts that we describe below are easily
transferable to continuous choice models. In fact, discrete choices generally reveal less
information about the choice process than continuous ones, so the econometrics of discrete
choice is usually more challenging.)

The idea behind discrete choice models is to build a statistical model that predicts
the choice made by an individual based on the individual’s own attributes as well as the
attributes of the available choices. For example, a student’s choice of which college to attend
is determined by factors relating to the student, including his or her career goals, scholarly
interests, and financial situation, as well as factors relating to the colleges, including their
reputations and locations. Choice models attempt to quantify this relationship statistically.
Rather than modeling the attributes (career goals, scholarly interests, etc.) as independent
variables and then predicting the choice as the dependent variable, choice models are at
the aggregate (population) level and assume that each decision-maker’s preferences are
captured implicitly by that model.

At first, it may seem that discrete choice models mainly deal with “which”-type rather
than “how many”-type decisions, unlike the other forecasting and demand-modeling tech-
niques described in this chapter. However, discrete choice models can be and have been
used to forecast quantities, such as the number and duration of phone calls that households
make (Train et al. 1987); the demand for electric cars (Beggs et al. 1981) and mobile
telephones (Ida and Kuroda 2009); the demand for planned transportation systems, such
as highways, rapid transit systems, and airline routes (Train 1978, Ramming 2001, Garrow
2010)); and the number of vehicles a household chooses to own (McFadden 1984). Choice
models estimate the probability that a person selects a particular alternative. Thus, aggre-
gating the “which” decision across the population will give answers to the “how many”
questions and can be very useful for forecasting demand.

Discrete choice models take many forms, including binary and multinomial logit, binary
and multinomial probit, and conditional logit. However, there are several features that are
common to all of these models. These include the way they characterize the choice set,
consumer utility, and the choice probabilities. We briefly describe each of these features
next. (See Train (2009) for more details about these features.)
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The Choice Set: The choice set is the set of options that are available to the decision-maker.
The alternatives might represent competing products or services, or any other options or
items among which the decision-maker must choose. For a discrete choice model, the set
of alternatives in the choice set must be mutually exclusive, exhaustive, and finite. The
first two requirements mean that the set must include all possible alternatives (so that the
decision-maker necessarily does make a choice from within the set) and that choosing
one alternative means not choosing any others (so one alternative from the set dominates
all other options for the decision-maker). The third requirement distinguishes discrete
choice analysis from, say, linear regression analysis in which the dependent variable can
(theoretically) take an infinite number of values.

Consumer Utility: Suppose there are N decision-makers, each of whom must select an
alternative from the choice set I . A given decision-maker n would obtain a certain level
of utility from alternative i ∈ I; this utility is denoted Uni. Discrete choice models usually
assume that the decision-maker is a utility maximizer. That is, he will choose alternative i
if and only if Uni > Unj for all j ∈ I , j 6= i.

If we know the utility values Uni for all n ∈ N and all i ∈ I , then it will be very
easy for us to calculate which alternative decision-maker n will choose (and therefore to
predict the demand for each alternative). However, since in most cases we do not know
the utility values perfectly, we must estimate them. Let Vni be our estimate of alternative
i’s utility for decision-maker n. (The Vni values are called representative utilities. We
omit a discussion about how these might be calculated; see, for example, Train (2009).)
Normally, Vni 6= Uni, and we use εni to denote the random estimation error; that is,

Uni = Vni + εni. (2.56)

Choice Probabilities: Once we have determined the Vni values, we can calculate Pni, the
probability that decision-maker n chooses alternative i, as follows:

Pni = P(Uni > Unj ∀j 6= i)

= P(Vni + εni > Vnj + εnj ∀j 6= i) (2.57)

The Vni values are constants. To estimate the probability, then, we need to know the
probability distributions of the random variables εni.

Different choice models arise from different distributions of εni and different methods
for calculating Vni. For instance, the logit model assumes that εni are drawn iid from a
member of the family of generalized extreme value distributions, and this gives rise to a
closed-form expression for Pni. (Logit is therefore the most widely used discrete choice
model.) The probit model, on the other hand, assumes that εni come from a multivariate
normal distribution (and are therefore correlated, not iid), but the resulting Pni values
cannot be found in closed form and must instead be estimated using simulation.

2.8.2 The Multinomial Logit Model

Next we derive the multinomial logit model. (Refer to McFadden (1974) or Train (2009)
for further details of the derivation.) “Multinomial” means that there are multiple options
from which the decision-maker chooses. (In contrast, binomial models assume there are
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only two options.) The logit model is obtained by assuming each εni is independently and
identically distributed from the standard Gumbel distribution, a type of generalized extreme
value distribution (also known as type I extreme value). The pdf and cdf of the standard
Gumbel distribution are given by

f(x) =e−xe−e
−x

(2.58)

F (x) =e−e
−x
. (2.59)

We can rewrite the probability that decision-maker n chooses alternative i (2.57) as

Pni = P(εnj < Vni + εni − Vnj ∀j 6= i). (2.60)

Since εnj has a Gumbel distribution, by (2.59) the probability in the right-hand side of
(2.60) can be written as

e−e
−(εni+Vni−Vnj)

if εni is given. Since the ε are independent, the cumulative distribution over all j 6= i is the
product of the individual cumulative distributions:

Pni|εni =
∏
j 6=i

e−e
−(εni+Vni−Vnj)

.

Therefore, we can calculate Pni by conditioning on εni as follows:

Pni =

∫
(Pni|εni)f(εni)dεni

=

∫
(Pni|εni)e−εnie−e

−εni
dεni

=

∫ ∏
j 6=i

e−e
−(εni+Vni−Vnj)

 e−εnie−e
−εni

dεni. (2.61)

After some further manipulation (see Problem 2.24), we get

Pni =
eVni∑
j e
Vnj

. (2.62)

(The sum in the denominator is over all j, including j = i.) Note that the probability that
individual n chooses alternative i is between 0 and 1 (as is necessary for a well defined
probability). As Vni, the estimate of i’s utility for n, increases, so does the probability
that n chooses i; this probability approaches 1 as Vni approaches ∞. Similarly, as Vni
decreases, so does the probability that n chooses i, approaching 0 in the limit.

The expected number of individuals who will choose product i, N(i), is simply given
by

N(i) =

N∑
n=1

Pni. (2.63)

Of course, we usually don’t know Pni for every individual n, so instead we resort to
methods to estimate N(i) without relying on too much data. See Koppelman (1975) for a
discussion of several useful techniques for this purpose.



36 FORECASTING AND DEMAND MODELING

Table 2.5 Estimated utilities Vni for uPhone models for Example 2.11.

Model Tech-Heads Mainstream Casual

10B 0.1 0.6 0.4
10W −0.2 0.7 0.5
10+B 1.3 0.5 −0.1

10+W 1.1 0.4 0.1

Table 2.6 exp(Vni) values for Example 2.11.

Model Tech-Heads Mainstream Casual

10B 1.11 1.82 1.49
10W 0.82 2.01 1.65
10+B 3.67 1.65 0.90
10+W 3.00 1.49 1.11

Table 2.7 Choice probabilities Pni and segment sizes for Example 2.11.

Model Tech-Heads Mainstream Casual

10B 0.13 0.26 0.29
10W 0.10 0.29 0.32
10+B 0.43 0.24 0.18
10+W 0.35 0.21 0.21

Segment size 0.3 M 1.7 M 0.4 M

� EXAMPLE 2.11

Pear Computer is about to launch model 10 of its popular smart phone, the uPhone.
The company is planning four new versions of the uPhone: the uPhone 10 white
and black (abbreviated as models 10W and 10B, respectively) and the uPhone 10+
white and black (models 10+W and 10+B). The company has segmented the market
into three categories, which they call Tech Heads, Mainstream Users, and Casual
Users. Based on market research, Pear Computer has estimated the utilities Vni of
each category for each phone model as given in Table 2.5.

The company wishes to know the probability that a user of each market segment
will choose each model. We will assume the estimation errors have a Gumbel
distribution.

Table 2.6 lists the values of exp(Vni) for all n and i. From these, we can estimate
the probabilities Pni as shown in Table 2.7. Note that for a given market segment,
the probabilities for the four models sum to 1 (except for rounding error) since we
are assuming each consumer will choose exactly one of the models. If we wanted to
model the situation in which a consumer may choose not to purchase any uPhone,
then we could add a fifth option representing no purchase.

Table 2.7 also lists the total size of each market segment. From the information in
the table, we can estimate the total number of each model sold. For example, Pear
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Computer can expect to sell

0.13× 0.3 + 0.26× 1.7 + 0.29× 0.4 = 0.60

million units of the model 10B. Similarly, the demand forecast is 0.65 M for 10W,
0.60 M for 10+B, and 0.55 M for 10+W. �

We refer the readers to other texts (Ben-Akiva and Lerman 1985, Train 2009) for
details about this and other choice models. We next give an example of how discrete choice
modeling techniques can be used to estimate demand in a supply chain management setting.

2.8.3 Example Application to Supply Chain Management

Suppose there is a retailer who sells a set I of products. The retailer wishes to estimate the
probability that a given customer would be interested in purchasing product i, for i ∈ I , so
that he can decide which products to offer. Suppose that the customer follows a multinomial
logit choice model, as in Section 2.8.2. The retailer’s estimate Vi of the customer’s utility
Ui for product i ∈ I is given by

Ui = Vi + εi. (2.64)

(Equation (2.64) is identical to (2.56) except that we have dropped the index n since we
are considering only a single customer.) If i = 0, then Ui and Vi denote the actual and
estimated utility of making no purchase.

For any subset S ⊆ I , let Pi(S) denote the probability that the customer will purchase
product i, assuming that her only choices are in the set S, and let Pi(S) = 0 if i /∈ S. Let
P0(S) denote the probability that the customer will not purchase any product. Then, from
(2.62), we have

Pi(S) =


eVi

eV0+
∑
j e
Vj
, if i ∈ S ∪ {0},

0, otherwise.
(2.65)

The retailer’s objective is to choose which products to offer in order to maximize his
expected profit. Suppose that the retailer earns a profit of πi for each unit of product i sold.
Suppose also that the retailer cannot offer more than C products. (C might represent shelf
space.) Then the retailer needs to solve the following assortment problem:

maximize
∑
i∈S

πiPi(S) (2.66)

subject to |S| ≤ C (2.67)

S ⊆ I (2.68)

(If there are multiple customers, we can just multiply the objective function by the number
of customers, assuming they have identical utilities. For a discussion of handling non-
homogenous customers, see Koppelman (1975).) This is a combinatorial optimization
problem; the goal is to choose the subset S. This problem is not trivial to solve (though
it can be solved efficiently). However, the bigger problem is that the utilities Ui, and
hence the probabilities Pi(S), are unknown to the retailer. One option is for the retailer
to offer different assortments of products over time, estimate the utilities based on the
observed demands for each assortment, and refine his assortment as his estimates improve.
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Rusmevichientong et al. (2010) propose such an approach. They introduce a policy that the
retailer can follow to generate a sequence of assortments in order to maximize the expected
profit over time. The assortment offered in a given period depends on the demands observed
in the previous periods. Rusmevichientong et al. (2010) also propose a polynomial-time
algorithm to solve the assortment problem itself.

CASE STUDY 2.1 Semiconductor Demand Forecasting at Intel

Wu et al. (2010) describe a collaboration between Intel Corporation and Lehigh
University researchers to apply the leading-indicator approach (Section 2.7) to forecast
demands for new products in the semiconductor industry.2 At the time of the collabora-
tion, Intel was the largest semiconductor manufacturer in the world and produced chips
for several vertical markets, such as mobile, desktop, and server devices. Forecasting
demands for semiconductors is difficult due to their short life cycles, long lead times,
and high demand volatility. (For another application of the leading-indicator approach
in the semiconductor industry, see Wu et al. (2006).)

The approach developed by the researchers involved two key ideas. The first is
that by combining forecasts from multiple diffusion models (including, possibly, the
Bass model of Section 2.6), we may get better forecasts than if we simply choose a
single diffusion model. The second is that leading indicators can be used to update the
forecast obtained from the diffusion models using a Bayesian approach.

In particular, Wu et al. (2010) propose fitting, say, 10 different diffusion models to
historical data. The Bass model is one good choice, but there are other similar models
such as the Weibull, Skiadas, and simple logistic diffusion models. In particular, if we
have already observed T periods of demand data for the new product, we can best-fit
the parameters of each diffusion model (see Section 2.6.3) to the historical data and
evaluate the accuracy of each model. The poorly performing models can be eliminated
(for the Intel study, the list was narrowed down to five), and the remaining models
can each be used to produce a forecast for the demands in period T + 1 through
T + τ , for some desired τ . An error term can be added to the forecast to produce a
probability distribution rather than just a point forecast. This distribution is called the
prior distribution.

Next, leading indicators are identified from older generation products or other avail-
able time series. For each leading indicator, we generate a forecast for periods T +

1, . . . , T + k, where k is the lag for that leading indicator. (See Section 2.7.) Then,
we fit each diffusion model to this extended time series in which periods 1, . . . , T come
from observed data and T + 1, . . . , T +k come from the leading indicator forecast. We
then use the diffusion model, with the parameters determined in the previous step, to
produce a forecast distribution for periods T + k + 1, . . . , T + τ . This distribution is
called the sampling distribution.

Finally, we perform a Bayesian update using the prior and sampling distributions
to produce a posterior distribution for each diffusion model. These distributions are
then combined by taking, for each future time period, a weighted sum of the forecasts

2In this and subsequent case studies, we have adapted the original notation to be consistent with the rest of the
book. In some cases we have also simplified or made other minor modifications to the models, while striving to
maintain the main ideas of the original models.
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generated by the various diffusion models. Wu et al. (2010) show both analytically
and empirically that this results in a smaller variance of forecast error than any of the
individual forecasts.

The team implemented the method for 60 Intel products from the mobile, desktop,
and server markets. Wu et al. (2010) report that over 10 monthly forecasting cycles,
the new method reduced the 12-month forecast error, as measured by MAPE (see
Section 2.3), by 9.7%. Moreover, the accuracy of the 4-month forecast, which is
the most important given the products’ production cycles, improved by 33%. Intel
estimated that this would translate to at least $1.3 million in increased revenue per
product over 4 months due to the improved forecasts leading to fewer stockouts. In
addition, the decision-support system built by the team to implement this approach
executes quickly, reducing the time required to generate forecasts from approximately 3
days under Intel’s old aproach to 2 hours using the new system. The work described by
Wu et al. (2010) was a finalist for INFORMS’s prestigious Wagner Prize for Excellence
in Operations Research Practice; see Butler and Camm (2010).

PROBLEMS

2.1 (Forecasting without Trend) A hospital receives regular shipments of liquefied
oxygen, which it converts to oxygen gas that is used for life support. The company that
sells the oxygen to the hospital wishes to forecast the amount of liquefied oxygen the
hospital will use tomorrow. The number of liters of liquefied oxygen used by the hospital
in each of the past 30 days is reported in the file oxygen.xlsx.

a) Using a moving average with N = 7, forecast tomorrow’s demand.
b) Using single exponential smoothing with α = 0.1, forecast tomorrow’s demand.

2.2 (Forecasting with Trend) The demand for a new brand of dog food has been steadily
rising at the local PetMart pet store. The previous 26 weeks’ worth of demand (number of
bags) are given in the file dog-food.xlsx.

a) Using double exponential smoothing with α = 0.2 and β = 0.1, forecast next
week’s demand. Initialize your forecast by setting It = Dt for t = 1, 2 and
S2 = I2 − I1.

b) Using linear regression, forecast next week’s demand.

2.3 (Forecasting Cupcake Sales) Karl’s Cupcakes recently launched a new variety of
cupcake. The weekly demands, measured in dozens, during the first two weeks of sales
were D1 = 47.2 and D2 = 52.3.

a) Use double exponential smoothing with α = 0.1 and β = 0.2 to calculate y3, the
forecast made in week 2 for the demand in week 3.

b) Suppose the actual demand in week 3 is 59.4. What is y4, the forecast made in
week 3 for the demand in week 4?

2.4 (Forecasting with Seasonality) A hardware store sells potting soil, the demand for
which is highly seasonal and has also exhibited a slight upward trend. The number of bags
of soil sold each month for the past 40 months is reported in the file potting-soil.xlsx.
Using triple exponential smoothing with α = 0.2, β = 0.1, and γ = 0.3, forecast the
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demand for May. Initialize your forecast by setting

It = Dt

St = It − It−1

ct =
12Dt∑12
i=1Di

for periods t = 1, . . . , 12. (There are better ways to initialize this method, but this method
is simpler.)

2.5 (Forecasting Melon Slicers) Matt’s Melon Slicers sells specialized knives for water-
melons, the demand for which is highly seasonal, with the majority of the demand occurring
during the summer. The company has been selling melon slicers for three years and has
calculated the following estimates of the seasonal factors, with each period representing
one quarter:

Quarter t ct

Winter 9 0.4
Spring 10 0.8
Summer 11 1.9
Fall 12 0.9

At the end of period 12, the company calculated the following estimates of the base
signal and slope: I12 = 642, S12 = 84.

a) Calculate y13, the forecast made in period 12 for the demand in period 13.
b) Suppose the demand in period 13 turns out to be 341. Calculate I13, S13, and

c13.

2.6 (Forecasting Using Regression) The demand for bottled water at football (aka
soccer) matches is correlated to the outside temperature at the start of the match. The file
bottled-water.xlsx reports the temperature (◦C) and number of bottles of water sold
for each home match played at a certain stadium for the past two seasons (19 home matches
per season).

a) Using these data, build a linear regression model to relate the demand for bottled
water to the match-time temperature. What are β̂0 and β̂1?

b) The temperatures for the next three matches are predicted to be 21.6◦, 27.3◦,
and 26.6◦, respectively. Forecast the demand for bottled water at each of these
matches.

2.7 (Multiple-Period-Ahead Forecasts) In this chapter, we discussed time-series meth-
ods for forecasting the demand one period ahead, i.e., in period t−1, we generate a forecast
yt for the demand in period t. Suppose instead that we wish to forecast multiple periods
ahead, i.e., in period t− 1, we generate a forecast yt−1,t+k for the demand in period t+ k,
for k ≥ 0. Explain how to adapt each of the following methods to handle this case:

a) Moving average
b) Double exponential smoothing
c) Linear regression
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2.8 (Forecasting using Machine Learning Methods) Using the data set provided in
Problem 2.6, choose a learning-based forecasting method—a tree-based model, SVR, or
neural networks—for forecasting bottled water given temperatures. Use your selected
method to forecast the demand during matches when the temperatures are 21.6◦, 27.3◦,
and 26.6◦. Compare your results with those you obtained using linear regression in
Problem 2.6(b).

2.9 (Ridge Regression) Ridge regression introduces an `2-norm penalty to the objective
function of linear regression. Consider a simple version in which we have only a single
input (p = 1); then we are minimizing

n∑
i=1

(
yi − (β0 + β1x

i)
)2

+ λ(β2
0 + β2

1),

where λ > 0 is the penalty parameter. Derive closed-form expressions for β0 and β1. You
may use a matrix representation if you wish.

2.10 (Forecasting Fires) The file nyc-fires.csv contains the number of fires re-
sponded to by the New York City Fire Department on each day from January 1, 2013
through June 30, 2016 (NYC OpenData 2017). It also contains the high temperature
(in ◦F) and the total precipitation (in inches) on the same days (National Oceanic and
Atmospheric Administration (NOAA) 2017).

Load the data into MATLAB, Excel, or another software package of your choice. Add a
variable called IsWeekend that indicates whether each day is a weekend day (Saturday or
Sunday). Split the data into two parts, one for 2013–2015 (this will be your training data)
and one for 2016 (this will be your testing data).

In this problem, you will build models to predict the number of fires on a given day
using the three features (high temperature, precipitation, and weekend (Y/N)). Use only
the training data when building your models.

a) Build a linear regression model. Report the coefficients β̂i.
b) Build a regression tree model with at most 10 branching nodes. (A branching

node is a node that has child nodes.) Include a diagram of your tree.
c) Build an SVR model. Report the coefficients β and β0.
d) For each method in parts (a)–(c), predict the number of fires on each day in the

testing data. Report the predicted and actual values and the forecast error for the
first 10 records in the testing data. Also report the MSE for each method for the
entire testing set.

2.11 (Exponential Smoothing for Retail Sales) The file retail-sales-data.csv

contains weekly sales data for 99 departments within 45 retail stores over approximately 3
years. This is actual data from a real company but has been anonymized (see Kaggle.com
(2017)).

a) Extract the sales data for store 2, department 93. Determine the most appropriate
form of exponential smoothing (single, double, or triple) and apply that method
to forecast the sales. Use 0.15 for all of the smoothing constants (α, β, and/or
γ). Begin forecasting at the earliest period you can. (For example, in double
exponential smoothing the forecasts begin in period 3.) Report the MSE, MAD,
and MAPE for your forecasts. Plot the actual and forecast sales on a single plot.

b) Repeat part (a) for store 3, department 60.
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c) Repeat part (a) for store 1, department 16.

2.12 (Mean and Variance of Exponential Smoothing Forecast Error) Prove equations
(2.31) and (2.32).

2.13 (Forecasting Simulation) Consider a product whose daily demand follows (2.30)
with µ = 40 and σ = 6.

a) Build a spreadsheet simulation of the demand process, as well as a moving average
forecast of order 5. Simulate the system for at least 500 periods. Report the MSE
and MAD of the forecast. Also calculate the standard deviation of the forecast
error. How accurate is the approximation given in (2.28) for your simulated
values?

b) Repeat part (a) for an exponential smoothing forecast with constant α = 0.1.
c) Based on the results of parts (a) and (b), does one forecasting method appear to

work better than the other?

2.14 (Bass Diffusion for LPhone) HCT, an Asian manufacturer of a new 4G cell phone,
the LPhone 5, is planing to enter the U.S. market, and they are in the process of signing a
contract with a third-party logistics (3PL) provider in which they must specify the size of
the warehouse they want to rent from the 3PL. HCT wants to forecast the total sales of the
LPhone 5, as well as the time at which the LPhone 5 reaches its peak sales. After some
thorough market research, HCT has estimated that p = 0.008, q = 0.421, and m = 5.8

million. Calculate when the peak sales will occur and how many LPhone 5 the company
will have sold by that point.

2.15 (Bass Diffusion for iPeel) Banana Computer Co. plans to launch its latest consumer
electronic device, the iPeel, early next year. Based on market research, it estimates that the
market potential for the iPeel is 170,000 units, with coefficients of innovation and imitation
of 0.07 and 0.31, respectively.

a) If the iPeel is introduced on January 1, on what date will the sales peak? What
will be the demand rate on that date, and how many units will have been sold?

b) On what date will 90% of the sales have occurred?
c) Plot the demand rate and cumulative demand as a function of time.

2.16 (Bass Diffusion for Books) A new novel was published recently, and the demand
for it is expected to follow a Bass diffusion process. The publisher decided to print only a
limited number of copies, observe the demand for the book for 20 weeks, estimate the Bass
parameters, and then undertake a second printing for the remainder of the life cycle of the
book using these parameters. The demand for the book during these 20 weeks is reported
in the file novel.xlsx. Using these data, estimatem, p, and q using the method described
in Section 2.6.3.

2.17 (Proof of Corollary 2.2) Prove Corollary 2.2.

2.18 (Influentials and Imitators) Suppose that potential adopters of a given product fall
into two distinct segments: influentials and imitators. Each segment has its own within-
segment innovation and imitation parameters and experiences its own Bass-type contagion
process. In addition, the influentials can exert a cross-segment influence on the imitators,
but not vice-versa. Let θ denote the proportion of influentials in the population of eventual
adopters (0 ≤ θ ≤ 1), and θ̄ = 1 − θ denote the proportion of imitators. Let pi and qi
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denote the within-segment innovation and imitation parameters, respectively, for i = 1, 2,
where i = 1 represents influentials and i = 2 represents imitators. Let qc denote the
cross-segment imitation parameter.

a) Write a formula expressing each segment’s instantaneous adoption behavior,
analogous to (2.42).

b) What is special about the case in which θ = 0 or θ = 1?
c) If there are no pre-release purchases (i.e., D1(0) = D2(0) = 0), write a formula

expressing the cumulative adoption at time t, analogous to (2.43).

2.19 (Demand Diffusion across Multiple Markets) A company plans to introduce a
variety of new products to multiple vertical markets. The demands from these verticals
are likely to follow different diffusion patterns. The company is interested in combining
diffusion models derived from different vertical markets to help characterize the overall
market demand. However, they are not sure about whether doing so would introduce
additional variances and biases into the forecast. Show that combining forecasts of different
diffusion models using weights that are inversely proportional to their forecast variances
yields a combined forecast variance that is smaller than the forecast variance of each
individual diffusion model.

2.20 (Leading Indicators) A battery manufacturer produces a large number of models
of lithium-ion batteries for use in computers and other electronic devices. The products are
introduced at different times and follow different demand processes. The company wishes
to determine whether some of the products can serve as leading indicators for the rest of
the products. The file batteries.xlsx contains historical demand data for 25 products
for the past 26 weeks.

a) Using Algorithm 2.1 with parameters kmin = 3, kmax = 9, and ρmin = 0.85,
determine all pairs (i, k) such that product i is a leading indicator with lag k.
(Note: You should not need to recluster the products.)

b) Using one of the (i, k) you found in part (a), forecast the demand for the rest of
the cluster in periods 27 and 28.

2.21 (Discrete Choice with Uniform Errors) Suppose that, in the discrete choice model,
the estimation error εni has a U [−1, 1] distribution for all n and i. Write an expression for
Pni, analogous to (2.61). Your expression may include εni, Vni, and Vnj , but not εnj .

2.22 (Discrete Choices for Day Care) A university is in the process of choosing a
location for a new day care center for its faculty’s children. The two options for the
location are city A, where the university is located, or city B, a neighboring city known
for larger houses but a longer commute. The university wants to estimate the number of
faculty with kids who are living or will live in city A during the next 10 years. To that end,
the university wishes to estimate the choice probability between the two cities for a typical
family. Suppose that the utility a family obtains from living in each city depends only on
the average house purchase price, the distance between the city and the campus, and the
family’s opinion of the convenience and quality of life of each city. The first two of these
factors can be observed by the researcher, but the researcher cannot observe the third. The
researcher believes that the observed part of the utility is a linear function of the observed
factors; in particular, the utility of living in each city can be written as

UA =− 0.45PPA − 0.23DA + εA
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UB =− 0.45PPB − 0.23DB + εB ,

where the subscripts A and B denote city A and city B, andPP andD are the purchase price
and distance. The unobserved component of the utility for each alternative, εA and εB , vary
across households depending on how each household views the quality and convenience
of living in each city. If these unobserved components are distributed iid with a standard
Gumbel distribution, calculate the probability that a household will choose to live in city
A.

2.23 (Using Discrete Choice to Forecast Movie Sales) Three new movies will be shown
at a movie theater this weekend. The theater wishes to estimate the expected number of
people who will come to see each movie so they can decide how many screenings to offer,
how large a theater each movie should be shown in, and so on. The movie studios that
produced the three movies held “sneak peak” screenings of the films and conducted post-
movie interviews of the attendees. Based on these interviews, they estimated the utility of
each movie based on a viewer’s age range. They also estimated the utility of not seeing
any movie. These estimated utilities are denoted Vni, although here n refers not to an
individual but to a type of individual (based on age range). The following table lists the Vni
values, as well as the number of people who are considering seeing a movie at that theater
this weekend.

Age Range
Movie 16–25 26–35 36+

Prognosis Negative 0.22 0.54 0.62
Rochelle, Rochelle 0.49 0.57 0.51
Sack Lunch 0.53 0.31 0.38
No movie 0.10 0.27 0.41

Population 700 1900 1150

a) Assume that the actual utilities Uni differ from the estimated utilities Vni by
an additive iid error term that has a standard Gumbel distribution. Using the
multinomial logit model of Section 2.8.2, calculate the expected demand for each
movie.

b) Now suppose the movie theater doesn’t know about the multinomial logit model
and assumes thatPni is simply calculated using a weighted sum of the Vni values;
that is,

Pni =
Vni∑
j Vnj

.

What are the expected demands for each movie using this method?

2.24 (Proof of (2.62)) Prove equation (2.62).



CHAPTER 3

DETERMINISTIC INVENTORY MODELS

3.1 INTRODUCTION TO INVENTORY MODELING

3.1.1 Why Hold Inventory?

Think about some of the products you bought the last time you went to the grocery store.
How much of each did you buy? Why did you choose these quantities?

Here are some possible reasons:

1. You bought a gallon of milk but only a pint of cream because you drink much more
milk than cream in a week.

2. You bought a six-pack of soda, rather than a single bottle, because you don’t want to
have to go to the store every time you want to drink a bottle of soda.

3. You bought a “family size” box of cereal, rather than a small box, because larger
boxes are more cost-effective (cheaper per ounce) than smaller ones.

4. Although you usually eat one bag of potato chips per week, you bought three bags
in case your hungry friends show up unexpectedly one night this week.

5. You asked the store to special-order your favorite brand of gourmet mustard (which
it doesn’t normally stock), even though you already have a half jar at home, because
you know it will take a few weeks before the mustard is delivered.

45Fundamentals of Supply Chain Theory, . Lawrence V. Snyder and Zuo-Jun Max Shen. 
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Snyder/SupplyChainTheory

Second Edition
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6. Although it would be more cost-effective and convenient to buy 12 rolls of paper
towels, you only bought 3, because you don’t have enough space to store 12 rolls at
home.

7. You bought four boxes of pasta, even though you only eat one box per week, because
they were on sale for a greatly reduced price.

8. Even though grapes were on sale, you bought one pound instead of two because you
knew the second pound would spoil before you had a chance to eat them.

9. You bought a pound of butter (four sticks), even though you probably won’t use
more than one stick before your next trip to the store, because butter only comes in
1-pound packages.

All of these decisions affected the amount of inventory of groceries that you have in your
home. Aside from the cost you paid to purchase these items, you are also paying a cost
simply to hold the inventory (as opposed to buying a single item each time you need it and
using it immediately). For example, if you used your credit card to make your purchase,
then you are paying a little more interest by buying a six-pack of soda today rather than
buying individual bottles throughout the week. If you paid cash, then you are tying up your
cash in groceries rather than using it for some other purpose, such as going to the movies,
or putting your money in an interest-earning savings account. You are also paying for
the physical space required to store your groceries (as part of your rent or mortgage), the
energy required to keep refrigerated items cold, and the insurance to protect your grocery
investment if your house is burglarized or damaged in a fire.

Companies, too, would prefer not to hold any inventory, since inventory is expensive
(even more than it is for you). However, most companies hold some inventory, for the same
reasons that you hold inventory of your groceries:

1. Different products are purchased at different rates—the demand rate—and therefore
require different levels of inventory.

2. There is an inconvenience, and often an expense, associated with placing an order
with a supplier (analogous to your trip to the grocery store). For example, there may
be an administrative cost to process the order and transmit it to the supplier, or there
may be a cost to rent a truck to deliver the products. These are fixed costs since they
are (roughly) independent of the size of the order, and they make it impractical to
place an order each time a single item is needed.

3. Firms often receive volume discounts for placing large orders with their suppliers.
Volume discounts and fixed costs are both types of economies of scale, which make
it more cost-effective to order in bulk; that is, to place fewer, larger orders.

4. Demand for most products is random, and often so are lead times and other supply
factors, and this uncertainty requires firms to hold inventory to ensure that they can
satisfy the demand (at least most of the time).

5. After a firm places an order, the products do not arrive until after a (typically nonzero)
lead time. Since the firm’s own customers usually don’t want to wait for this lead
time, especially in retail settings, the firm must place a replenishment order even
when it is still holding some inventory.
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6. Warehouses have only a finite amount of storage capacity, and this may constrain
the size of the firm’s order. A related type of capacity (which is less relevant for
the grocery example) is production capacity: If demand is highly seasonal (e.g., for
snowblowers) but production capacity is limited, then the firm may need to produce
more in off-peak times (summer) in order to meet the demand during peak times
(winter).

7. Suppliers often offer sales and temporary discounts, just like retail stores do, and
prices for many products (especially commodities) vary constantly. In response to
both types of price fluctuations, firms buy large quantities when prices are low and
hold goods in inventory until they’re needed.

8. Some inventory is perishable, so firms must limit the quantity they buy to avoid being
saddled with unusable inventory.

9. Many products are available only in fixed batch sizes such as cases or pallets, and
the firm is forced to order in increments of those units.

These are all reasons that firms plan to hold inventory. In addition, firms may hold
unplanned inventory—for example, inventory of products that have become obsolete sooner
than expected.

Firms may hold inventory of goods at all stages of production—raw materials, compo-
nents, work-in-process, and finished goods. The latter types of inventory are usually made
by the firm, rather than ordered from a supplier, but similar issues still arise—for example,
there may be a fixed cost to initiate a production run, it may be cheaper per unit to produce
large batches, the processing time may be uncertain, and so on. In fact, although we tend to
discuss inventory models as though the firm is buying a product from an outside supplier,
most inventory models apply equally well to production systems, in which case we are
deciding how much to produce, rather than how much to order, and the “ordering” costs
are really production costs.

3.1.2 Classifying Inventory Models

Mathematical inventory models can be classified along a number of different dimensions:

• Demand. Is demand deterministic or stochastic? Does the rate stay the same all the
time or does it vary over time—say, from season to season?

• Lead time. Is production or delivery instantaneous, or is there a positive lead time?
Is the lead time deterministic or stochastic?

• Review type. Is inventory assessed continuously or periodically? In continuous-
review models, the inventory is constantly monitored, and an order is placed whenever
a certain condition is met (for example, the inventory level falls below a given value).
In periodic-review models, the inventory is only checked every time period (say,
every week), and an order is placed if the reorder condition is met. In periodic-
review models, we usually assume that demands occur at a single instant during the
period, even though they may really occur continuously throughout it.

• Planning horizon. Finite-horizon models consider a finite number of periods or time
units, while infinite-horizon models assume the planning horizon extends forever.
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Although it is unrealistic to assume that the firm will continue operating the same
system, under the same conditions, forever, infinite-horizon models are often more
tractable than finite-horizon ones and are therefore quite common.

• Stockout type. If demand exceeds supply, how is the excess demand handled? Most
models consider either backorders, in which case excess demand stays on the books
until it can be satisfied from a future shipment, or lost sales, in which case excess
demands are simply lost—the customer takes her business elsewhere. In retail
settings, it is usually more accurate to assume lost sales, whereas backorders are
more common in business-to-business settings.

• Ensuring good service. Some models ensure that not too many stockouts occur
by including a penalty in the cost function for each stockout. Others include a
constraint on the allowable percentage of demands that may be stocked out. The
former approach often leads to more tractable models, but it can be very difficult to
quantify the cost of a stockout; therefore, service-level constraints are common in
practice.

• Fixed cost. Some inventory models include a fixed cost to place an order, while
others do not. The presence and magnitude of a fixed cost determines whether the
firm places many small orders or few large orders. Moreover, inventory models with
fixed costs are often more difficult to analyze and solve than those without, so we
often ignore the fixed cost in modeling an inventory system even if one is present in
the real system.

• Perishability. Can inventory be held across multiple time periods, or is it perishable?
Perishable items include not just foods, but also fresh flowers and medicine (which
will spoil), high-tech products (which will become obsolete), and newspapers and
airline tickets (which have a deadline after which they can’t be sold).

Like all mathematical models, inventory models must balance two competing factors—
realism and tractability. In many cases, it is more accurate to assume one thing but easier to
assume the opposite. For example, many inventory models are much more mathematically
tractable if we assume backorders, so we might do so even if we are modeling inventory
at a retail store, for which the lost-sales assumption is more accurate. Similarly, it is often
convenient to assume lead times are zero even though they rarely are in practice. If the lead
time is short compared to the order cycle—for example, if the firm places monthly orders
and the lead time is 2 days—this assumption may not hurt the model’s accuracy too much.
Modeling is as much an art as a science, and part of modeling process involves determining
both the cost (in terms of realism) and the benefit (in terms of tractability) of “assuming
away” a given real-life factor.

3.1.3 Costs

The goal of most inventory models is to minimize the cost (or maximize the profit) of the
inventory system. Four types of costs are most common:

• Holding cost. This represents the cost of actually keeping the inventory on hand.
Like the costs associated with storing your groceries, the holding cost includes the
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Inventory level

Figure 3.1 Inventory level curve.

cost of storage space, taxes, insurance, breakage, theft, and, most significantly,
opportunity cost—the money the firm could be earning if it didn’t have its capital
tied up in inventory. The holding cost is often expressed as a percentage of the
value of the product per year. For example, the holding cost might be 25% per
year. If the item costs $100, then it costs $1562.50 to hold 250 items for 3 months
(1562.50 = 0.25 · 100 · 250 · (3/12)). We will usually use h to represent the holding
cost per item per unit time.

In reality, the inventory level is not constant but fluctuates over time, as pictured in
Figure 3.1. Here, the holding cost is the area under the curve times h, so we would
use integration to compute it. In some of the inventory models discussed in this book,
the inventory “curve” is made up of straight lines, so computing the area is easy.

• Fixed cost. This is the cost to place an order, independent of the size of the order.
It is sometimes called the setup cost, and we will usually denote it by K. The fixed
cost accounts for the administrative cost of placing an order, the cost of using a truck
to deliver the product, and so on.

• Purchase cost. This is the cost per unit to buy and ship the product, generally denoted
by c. (It is also sometimes known as the variable cost or per-unit cost.) Therefore,
the total order cost (fixed + purchase) to order x units is given by{

0, if x = 0

K + cx, if x > 0.

One picky but worthwhile note: If there is a nonzero lead time, then we typically
assume that the firm pays the purchase cost c when the order arrives, not when it
is placed. This assumption doesn’t affect the total purchase cost per year (unless
we’re modeling the time value of money), but it does affect the holding cost if h is
a function of c: If the firm was to pay the purchase cost when the order is placed,
its capital would be tied up during the lead time, but this would not be accurately
reflected in the holding cost.
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• Stockout cost. This is the cost of not having sufficient inventory to meet demand, also
called the penalty cost or stockout penalty, and is denoted by p. If excess demand
is backordered, the penalty cost includes bookkeeping costs, delay costs, fines for
missing promised delivery dates, and—most significantly—loss of goodwill (the
potential loss of future business since the customer is unhappy). If excess demand is
lost, the penalty cost also includes the lost profit from the missed sale. The penalty
is generally charged per unit of unmet demand. If excess demand is backordered,
the penalty may be proportional to the amount of time the backorder is on the books
before it is filled, or (less commonly) it may be a one-time penalty charged when the
demand is backordered.

3.1.4 Inventory Level and Inventory Position

There are several measures that we use to assess the amount of inventory in the system at
any given time. On-hand inventory (OH) refers to the number of units that are actually
available at the stocking location. Backorders (BO) represent demands that have occurred
but have not been satisfied. Generally, it’s not possible for the on-hand inventory and the
backorders to be positive at the same time.

The inventory level (IL) is equal to the on-hand inventory minus backorders:

IL = OH −BO.

If IL > 0, we have on-hand inventory, and if IL < 0, we have no units on hand but we do
have backorders. Therefore, we can write

OH = IL+

BO = IL−,

where x+ = max{x, 0} and x− = |min{x, 0}|. (Be warned: Some authors use x− =

min{x, 0}.)
It seems reasonable to think of IL as the relevant measure to consider when making

ordering decisions—we look at the shelves, see how much inventory we have, and place an
order if there’s not enough. But IL by itself does not give us enough information to make
good ordering decisions. For instance, suppose the inventory level is 5, you’re expecting
a demand of 50 next week, and there’s a lead time of 4 weeks. How much should you
order? The answer depends on how much you’ve already ordered—i.e., how much is “in
the pipeline,” ordered but not received. Such items are called on order (OO). Therefore,
we usually make ordering decisions based on the inventory position (IP ), which equals the
inventory level plus items on order:

IP = OH −BO +OO.

The distinction between inventory level and inventory position is subtle but important.
Typically, we use inventory position to make ordering decisions, but holding and backorder
costs are assessed based on inventory level. If the lead time is zero, then OO = 0 and
IL = IP .

3.1.5 Roadmap

In this chapter and the next three, we will explore some classical inventory models and
a few of their variants. This chapter discusses deterministic models—first a continuous-
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review model, the economic order quantity (EOQ) model, perhaps the oldest and best-
known mathematical inventory model (Section 3.2), and some of its extensions; and then
a periodic-review model, the Wagner–Whitin model (Section 3.7). Then, Chapters 4 and
5 discuss stochastic models. The models in all three of these chapters make inventory
decisions for a single stage (location). Multistage models are considered in Chapter 6.

The models discussed in this chapter are sometimes known as economic lot size problems.
In fact, there is some inconsistency about how this term is used in the literature. Some
authors refer to the EOQ model (Section 3.2) as the economic lot size model. Other authors
refer to the Wagner–Whitin model (Section 3.7) as the economic lot size model. More
generally, the term can be used to refer to any model in which an optimal lot size must be
determined, typically under deterministic demand. To avoid confusion, we will avoid this
term and instead use the names of the individual models discussed.

3.2 CONTINUOUS REVIEW: THE ECONOMIC ORDER QUANTITY PROBLEM

3.2.1 Problem Statement

The economic order quantity (EOQ) problem is one of the oldest and most fundamental
inventory models; it was first introduced by Harris (1913). The goal is to determine the
optimal amount to order each time an order is placed to minimize the average cost per year.
(We’ll express everything per year, but the model could just as easily be per month or any
other time period.)

We assume that demand is deterministic and constant with a rate of λ units per year.
Stockouts are not allowed—we must always order enough so that demand can be met.
Since demand is deterministic, this is a plausible assumption. The lead time is 0—orders
are received instantaneously. There is a fixed cost K per order, a purchase cost c per unit
ordered, and an inventory holding cost h per unit per year. There is no stockout penalty
since stockouts are not allowed.

The inventory level1 evolves as follows. Assume that the on-hand inventory is 0 at time
0; we place an order at time 0, and it arrives instantaneously. The inventory level then
decreases at a constant rate λ until the next order is placed, and the process repeats.

Any optimal solution for the EOQ model has two important properties:

• Zero-inventory ordering (ZIO) property. Since the lead time is 0, it never makes
sense to place an order when there is a positive amount of inventory on hand—we
only place an order when the inventory level is 0.

• Constant order sizes. If Q is the optimal order size at time 0, it will also be the
optimal order size every other time we place an order since the system looks the
same every time the inventory level hits 0. Therefore, the order size is the same every
time an order is placed.

(You should convince yourself that these properties are indeed optimal.) The inventory
level is pictured as a function of time in Figure 3.2. T is called the cycle length—the amount

1Since the lead time is 0, the inventory position is equal to the inventory level at all times.
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Figure 3.2 EOQ inventory level curve.

of time between orders—and it relates to the order quantity Q and λ by the equation

T =
Q

λ
.

3.2.2 Cost Function

We want to find the optimal Q to minimize the average annual cost. (We say “average”
annual cost since the actual cost in any given year may fluctuate a bit as the sawtooth pattern
falls slightly differently across the start of each year.) Note that minimizing the annual cost
is not the same as minimizing the cost per cycle; minimizing the cost per cycle would mean
choosing very tiny order quantities. The key trade-off is between fixed cost and holding
cost: If we use a large Q, we’ll place fewer orders and hold more inventory (small fixed
cost but large holding cost), whereas if we use a small Q, we’ll place more orders and hold
less inventory (large fixed cost but small holding cost).

The strategy for solving the EOQ is to express the average annual cost as a function of
Q, then minimize it to find the optimal Q.

Order Cost: Each order incurs a fixed cost of K. It also incurs a purchase cost of c per
unit ordered, but this cost is irrelevant for the optimization problem at hand—that is, the
optimal value of Q does not depend on c. (Why?) Therefore, we’ll ignore the per-unit cost
c in our analysis. Since the time between orders is T years, the order cost per year is

K

T
=
Kλ

Q
. (3.1)

Holding Cost: The average inventory level in a cycle is Q/2, so the average amount of
inventory per year isQ/2 ·1 year =Q/2. (Another way to think about this is that the area of
a triangle in the inventory curve in Figure 3.2 is QT/2, and there are 1/T cycles per year,
so the total area under the inventory curve for 1 year is QT/2 · 1/T = Q/2.) Therefore,
the average annual holding cost is

hQ

2
. (3.2)
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Figure 3.3 Fixed, holding, and total costs as a function of Q.

Total Cost: Combining (3.1) and (3.2), we get the total average annual cost, denoted g(Q):

g(Q) =
Kλ

Q
+
hQ

2
. (3.3)

The fixed, holding, and total cost curves are plotted as a function of Q in Figure 3.3.

3.2.3 Optimal Solution

The optimal Q can be obtained by taking the derivative of g(Q) and setting it to 0:

dg(Q)

dQ
= −Kλ

Q2
+
h

2
= 0

=⇒ Q2 =
2Kλ

h

=⇒ Q∗ =

√
2Kλ

h
. (3.4)

Q∗ is known as the economic order quantity. (“Economic” is just another word for
“optimal.”) We should also take a second derivative to verify that g(Q) is convex (and thus
the first-order condition yields a minimum, not a maximum):

d2g(Q)

dQ2
=

2Kλ

Q3
> 0,

as desired.
Note that in Figure 3.3, we drew the optimal order quantity Q∗ at the intersection of the

fixed and holding cost curves. This was not an accident. Of course, in general, it is not true
that the minimum of the sum of two functions occurs where the two functions intersect, but
it happens to be true for the EOQ. Why? The curves intersect when

Kλ

Q
=
hQ

2
=⇒ Kλ

Q2
=
h

2
.
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This is exactly the condition obtained by setting the first derivative to 0. Thus, the fixed and
holding costs should always be balanced. If the fixed costKλ/Q is greater than the holding
cost hQ/2, then Q is not optimal; we should be ordering less frequently and holding more
inventory. (And vice versa.)

Another way to see that the fixed and holding costs are equal in the optimal solution is
to note that the product of the two terms in (3.3) is

Kλ

Q
· hQ

2
=
Kλh

2
,

a constant. In general, when two quantities multiply to a constant, their sum is minimized
when the quantities are equal. Another non-calculus-based proof is given in Problem 3.21.

It should also be noted that, although we ignored the per-unit cost c in this analysis, c
does influence Q∗ indirectly if h is a function of c.

The optimal cost can be expressed as a function of the parameters by plugging the
optimal Q∗ into g(Q):

g(Q∗) =
Kλ√

2Kλ
h

+
h

2

√
2Kλ

h

=

√
Kλh

2
+

√
Kλh

2

=
√

2Kλh. (3.5)

It’s nice that the optimal cost has such a convenient form. This is not true for many other
problems. The ability to express g(Q∗) in closed form allows us to learn about structural
properties of the EOQ and related models, such as the power-of-two policies discussed in
Section 3.3, as well as to embed the EOQ into other, richer models, such as the location
model with risk pooling (LMRP) in Section 12.2.

The optimal EOQ solution and its cost are summarized in the next theorem, whose proof
follows from arguments already made above.

Theorem 3.1 The optimal order quantity in the EOQ model is given by

Q∗ =

√
2Kλ

h
(3.6)

and its cost is given by
g(Q∗) =

√
2Kλh. (3.7)

Using Theorem 3.1, we can make some statements about how the solution changes as
the parameters change:

• As h increases, Q∗ decreases, since larger holding cost =⇒ it’s more expensive to
hold inventory =⇒ order smaller quantities more frequently

• As K increases, Q∗ increases, since it’s more expensive to place orders =⇒ we
place fewer of them, with larger quantities

• As c increases, Q∗ decreases if h is proportional to c (and stays the same if they are
independent)
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• As λ increases, Q∗ increases

Obviously, if any of the costs increase, then g(Q∗) will increase. If λ increases, g(Q∗)

will increase, as well. This does not mean that the firm prefers small demand, however.
Remember that the EOQ only reflects costs, not revenues; the increased cost of large λ
would be outweighed by the increased revenue.

� EXAMPLE 3.1

Joe’s Corner Store sells 1300 candy bars per year. It costs $8 to place an order to the
candy bar supplier. Each candy bar costs the store $0.75. Holding costs are estimated
to be 30% per year. What is the optimal order quantity?

We have h = 0.3 · 0.75 = 0.225, so

Q∗ =

√
2Kλ

h
=

√
2 · 8 · 1300

0.225
= 304.1.

The optimal cycle time is

T ∗ =
Q∗

λ
=

304.1

1300
= 0.23.

So the store should order 304.1 candy bars every 0.23 years, or approximately four
times per year. The optimal cost is

√
2Kλh =

√
2 · 8 · 1300 · 0.225 = 68.41.

If we must order in integer quantities, then we need to round Q∗ down and up and
check the cost of each:

g(304) =
8 · 1300

304
+

0.225 · 304

2
= 68.4105

g(305) =
8 · 1300

305
+

0.225 · 305

2
= 68.4108,

so we should order 304. �

3.2.4 Sensitivity Analysis

Suppose the firm did not want to order Q∗ exactly. For example, it might need to order in
multiples of 10 (Q = 10n), or it might want to order every month (T = 1/12). How much
more expensive is a suboptimal solution? It turns out that the answer is “not much,” and
that we can determine the exact percentage increase in cost using a very simple formula.

Theorem 3.2 Suppose Q∗ is the optimal order quantity in the EOQ model. Then for any
Q > 0,

g(Q)

g(Q∗)
=

1

2

(
Q∗

Q
+

Q

Q∗

)
. (3.8)

Proof.

g(Q)

g(Q∗)
=

Kλ
Q + hQ

2√
2Kλh
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=
Kλ

Q
√

2Kλh
+

hQ

2
√

2Kλh

=
1

Q

√
Kλ

2h
+
Q

2

√
h

2Kλ

=
1

2Q

√
2Kλ

h︸ ︷︷ ︸
=Q∗

+
Q

2

√
h

2Kλ︸ ︷︷ ︸
=1/Q∗

=
1

2

(
Q∗

Q
+

Q

Q∗

)

The right-hand side of (3.8) grows slowly as Q deviates more from Q∗, meaning that
the EOQ is not very sensitive to errors in Q. For example, if we order twice as much as we
should (Q = 2Q∗), the error is 1.25 (25% more expensive than optimal). If we order half
as much (Q = Q∗/2), the error is also 1.25.

Theorem 3.2 ignores the per-unit cost c. If we include the annual cost cλ in the numerator
and denominator of (3.8), then the percentage increase in cost would be even smaller (and
the expressions would not simplify as nicely).

� EXAMPLE 3.2

Suppose Joe’s Corner Store (Example 3.1) ordered 250 candy bars per order instead
of the optimal 304.1. How much would the cost increase as a result of this suboptimal
solution?

g(Q)

g(Q∗)
=

1

2

(
304.1

250
+

250

304.1

)
= 1.019

So this solution would cost 1.9% more than the optimal solution. (You can also
confirm this by calculating g(250) explicitly and comparing it to g(Q∗).) �

3.2.5 Order Lead Times

We assumed the lead time is 0. What if the lead time was positive—say, L years? The
optimal solution doesn’t change—we just place our order L years before it’s needed. For
example, if L = 1 month = 1/12 years, then the order should be placed 1/12 years before
the inventory level reaches 0. It’s generally more convenient to express this in terms of
the reorder point (r). When the inventory level reaches r, an order is placed. How do we
compute r? Well, r should be equal to the amount of product demanded during the lead
time, or

r = λL. (3.9)

� EXAMPLE 3.3

In Example 3.1, if L = 1/12, the store should place an order whenever the inventory
level reaches r = 1300 · (1/12) = 108.3. �
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3.3 POWER-OF-TWO POLICIES

From Section 3.2.3, we know that the optimal solution to the EOQ model is Q∗ =√
2Kλ/h. We also know that the order interval T is given by T = Q/λ, so the op-

timal order interval is T ∗ =
√

2K/λh. But what if T ∗ is some inconvenient number?
How can we place an order, for example, every

√
10 weeks? In this section, we discuss

power-of-two policies, in which the order interval is required to be a power-of-two multiple
of some base period. The base period may be any time period—week, day, work shift, etc.
If the base period is a day (say), then the power-of-two restriction says that orders can be
placed every 1 day, or every 2 days, or every 4 days, or every 8 days, and so on, or every 1/2
day, or every 1/4 day, and so on. Policies based on a convenient base period such as days or
months are more convenient to implement than those involving base periods like

√
10. We

already know that the EOQ model is relatively insensitive to deviations from the optimal
solution from Theorem 3.2. Our goal is to determine exactly how much more expensive a
power-of-two policy is than the optimal policy.

Power-of-two policies have another advantage over the optimal EOQ policy: They make
coordination easier at a central warehouse. If retailers each order according to their own
EOQ policies, the warehouse will see a chaotic mess of order times. If, instead, each retailer
follows a power-of-two policy with the same base period, the warehouse will see orders
line up nicely, making its own inventory planning easier. The problem of finding optimal
order intervals in this setting is one version of a problem known as the one warehouse,
multiretailer (OWMR) problem. The optimal policy for the OWMR problem is not known,
but it has been shown that power-of-two policies are very close to optimal (Roundy 1985,
Muckstadt and Roundy 1993).

3.3.1 Analysis

The problem statement is exactly as in the EOQ model (see Section 3.2.1). In addition, we
assume there is some base planning period TB . The actual reorder interval chosen must be
of the form

T = TB2k (3.10)

for some k ∈ {. . . ,−2,−1, 0, 1, 2, . . .}. We need to determine (1) the best power-of-two
policy, i.e., the best value of k, and (2) how far from optimal this policy is.

From the EOQ model, we know that the optimal order interval is

T ∗ =

√
2K

λh
. (3.11)

Let f(T ) be the EOQ cost if an order interval of T is chosen, ignoring the per-unit cost;
that is,

f(T ) =
K

T
+
hλT

2
. (3.12)

(This follows from substituting Q = Tλ in the EOQ cost function (3.3).) One can easily
verify that f is convex, so the optimal k in (3.10) is the smallest integer k satisfying

f(TB2k) ≤ f(TB2k+1), (3.13)
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that is,

K

TB2k
+
hλ

2
TB2k ≤ K

TB2k+1
+
hλ

2
TB2k+1

⇐⇒ K

TB2k+1
≤ hλ

2
TB2k

⇐⇒ K

hλ
≤ (TB2k)2

⇐⇒ 1√
2
T ∗ =

√
K

hλ
≤ TB2k. (3.14)

Therefore, the optimal power-of-two order interval is T̂ = TB2k, where k is the smallest
integer satisfying (3.14).

3.3.2 Error Bound

Theorem 3.3 If T̂ is the optimal power-of-two order interval and T ∗ is the optimal (not
necessarily power-of-two) order interval, then

f(T̂ )

f(T ∗)
≤ 3

2
√

2
≈ 1.06.

In other words, the cost of the optimal power-of-two policy is no more than 6% greater
than the cost of the optimal (non-power-of-two) policy. This holds for any choice of the
base period TB .
Proof. Since k is the smallest integer satisfying (3.13), we have

f(TB2k−1) > f(TB2k)

⇐⇒ K

TB2k
>
hλ

2
TB2k−1

⇐⇒
√

4K

hλ
> TB2k,

or

T̂ <
√

2T ∗. (3.15)

Together, (3.14) and (3.15) imply that the optimal power-of-two order interval T̂ must be
in the interval [ 1√

2
T ∗,
√

2T ∗). Note that this is true for any base period TB . Now, using
(3.11) and (3.12),

f

(
1√
2
T ∗
)

=

√
2K

T ∗
+
hλ

2

1√
2
T ∗

=

√
2K√
2K
λh

+
hλ

2

1√
2

√
2K

λh
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=
3

2
√

2

√
2Kλh

=
3

2
√

2
f(T ∗).

Similarly,

f(
√

2T ∗) =
K√
2T ∗

+
hλ

2

√
2T ∗

=
1√
2

√
Kλh

2
+

√
2

2

√
2Kλh

=
3

2
√

2

√
2Kλh

=
3

2
√

2
f(T ∗).

Since f is convex and the optimal T̂ lies somewhere between 1√
2
T ∗ and

√
2T ∗,

f(T̂ )

f(T ∗)
≤ 3

2
√

2
≈ 1.06.

Since we don’t know precisely where T̂ falls in the range [ 1√
2
T ∗,
√

2T ∗), this is only

a worst-case bound that occurs on the endpoints of the range. If T̂ falls somewhere in the
middle of the range, the power-of-two policy may be even better than 6% above optimal.
In fact, if we assume that T̂ is uniformly distributed in the range, we get an expected bound
of only 2%:

Theorem 3.4 Assuming that the optimal power-of-two order interval T̂ is uniformly dis-
tributed in the range [ 1√

2
T ∗,
√

2T ∗),

E[f(T̂ )]

f(T ∗)
≤ 1√

2

(
ln 2 +

3

4

)
≈ 1.02. (3.16)

Proof. Omitted.

� EXAMPLE 3.4

Suppose Joe (owner of Joe’s Corner Store, from Example 3.1) must order candy
bars in power-of-two multiples of 1 month. What is the optimal power-of-two order
interval, and what is the cost ratio versus the optimal (non-power-of-two) solution?

We have TB = 1/12 years. You can confirm that

f
(
TB20

)
= f(0.0833) = 108.19

f
(
TB21

)
= f(0.1667) = 72.38

f
(
TB22

)
= f(0.3333) = 72.75
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By the convexity arguments above, the optimal power-of-two order interval is T̂ =

0.1667 years, or every 2 months. The cost ratio is 72.38/68.41 = 1.0580, within the
bound of 1.06. �

3.4 THE EOQ WITH QUANTITY DISCOUNTS

It is common for suppliers to offer discounts based on the quantity ordered. The larger the
order, the lower the purchase cost per item. (You may have observed something similar
when you shop for groceries. When you buy in bulk, you pay less per unit.) The specific
structure for the discounts can take many forms, but two types are most common: all-units
discounts and incremental discounts. Both discount structures use breakpoints to determine
the purchase price. For example, the supplier may charge $1 per unit if the firm orders
0–100 units, $0.90 per unit if the firm orders 100–250 units, and $0.85 per unit if the firm
orders more than 250 units. The two discount structures differ based on how the total
purchase cost is determined.

We assume there are n breakpoints, denoted b1, . . . , bn. For convenience, we also define
b0 ≡ 0 and bn+1 ≡ ∞. The interval [bj , bj+1) is called the region for breakpoint j, or
simply region j for short. Each region j, j = 0, . . . , n, is associated with a purchase price
cj . The costs are decreasing in j: c0 > c1 > · · · > cn. The total purchase cost, denoted
c(Q), is calculated in each of the discount structures as follows:

• All-units discounts. All units in the order incur the price determined by the breakpoint.
That is, if Q ∈ [bj , bj+1), then the total purchase cost is c(Q) = cjQ.

• Incremental discounts. The units in each region incur the purchase price for that
region. That is, if Q ∈ [bj , bj+1), then the total purchase cost is

c(Q) =

j−1∑
i=0

ci(bi+1 − bi) + cj(Q− bj). (3.17)

(Note that c(Q) does not include the fixed ordering cost.) Figure 3.4 plots c(Q) as a
function of Q for both all-units and incremental discounts.

� EXAMPLE 3.5

Suppose that Joe’s candy supplier (from Example 3.1) charges $0.75 per candy bar
if Joe orders 0–400 candy bars, $0.72 each for 401–800, and $0.68 each for 800
or more. That is, b1 = 400, b2 = 800, c0 = 0.75, c1 = 0.72, and c2 = 0.68.
Figures 3.5(a) and 3.5(b) depict the total purchase cost, c(Q), for the all-units and
incremental discount structures, respectively. �

We will formulate models to determine the optimal order quantity under both discount
structures. In both cases, the approach will amount to solving multiple EOQ problems, one
for each region, and using their solutions to determine the solution to the original problem.
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(a) All-units discounts.
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(b) Incremental discounts.

Figure 3.4 Total purchase cost c(Q) under quantity discounts.
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(a) All-units discounts.
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(b) Incremental discounts.

Figure 3.5 Total purchase cost c(Q) for Example 3.5.

3.4.1 All-Units Discounts

We can no longer ignore the purchase cost as we did in (3.3). In fact, not only do we need
to include the purchase cost itself, but we must also account for the fact that the holding
cost typically depends on the purchase cost, as discussed in Section 3.1.3. Let i be the
annual holding cost rate expressed as a percentage of the purchase cost. That is, if i = 0.25

and c = 100, then h = 25 per year.



THE EOQ WITH QUANTITY DISCOUNTS 63

Q∗0 Q∗1 Q∗2

g0(Q)

g1(Q)

g2(Q)

b1 b2

Q

g(Q)

Figure 3.6 Total cost curves for all-units quantity discount structure.

Suppose we knew that the optimal order quantity lies in region j. Then we would simply
need to find the Q that minimizes the EOQ cost function for region j:

gj(Q) = cjλ+
Kλ

Q
+
icjQ

2
. (3.18)

As j increases, cj decreases, gj(Q) shifts down and becomes flatter, and its minimum point
moves to the right; see Figure 3.6. The heavy segments of the cost curves identify the
“active” cost function in each region. Our objective is to minimize g(Q), the discontinuous
function defined by the heavy segments.

The function gj(Q) has the same structure as g(Q) in (3.3) except for the additional
constant. Therefore, its minimizer is given by

Q∗j =

√
2Kλ

icj
. (3.19)

Of course, if Q∗j falls outside of region j, then if the firm orders Q∗j , it will incur a cost
other than gj(Q∗j ). Q∗j is meaningless in this case. We say that Q∗j is realizable if it lies in
region j. In Figure 3.6, only Q∗0 is realizable. Does this mean that Q∗0 is necessarily the
optimal solution? No: The breakpoints to the right of Q∗0 are also candidates. The optimal
order quantity always equals either the largest realizable Q∗j or one of the breakpoints to
its right. (Why?)

Therefore, we can determine Q∗ as follows. First, we calculate Q∗j for each j. Let
Q∗i be the largest realizable Q∗j , and gi(Q∗i ) its cost. We then evaluate gj(bj) for each bj
greater than Q∗i . Finally, we set Q∗ to the quantity with the lowest cost (Q∗i if gi(Q∗i ) is
the lowest cost, and bj if gj(bj) is the lowest cost for some j).

Since Q∗j increases as j increases, if we start in region n when we calculate Q∗j and
work backward, we can stop as soon as we find one realizable Q∗j ; this is necessarily the
largest realizable Q∗j .
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� EXAMPLE 3.6

Recall from Example 3.1 that λ = 1300, K = 8, and i = 0.3. If candy purchases
follow the quantity discount structure in Example 3.5, what is Joe’s optimal order
quantity?

We first determine the largest realizable Q∗j by working backward from segment
2:

Q∗2 =

√
2 · 8 · 1300

0.3 · 0.68
= 319.3

Q∗1 =

√
2 · 8 · 1300

0.3 · 0.72
= 310.3

Q∗0 =

√
2 · 8 · 1300

0.3 · 0.75
= 304.1

Only Q∗0 is realizable, and it has cost

0.75 · 1300 +
√

2 · 8 · 1300 · 0.3 · 0.75 = 1043.4.

Next, we calculate the cost of the breakpoints to the right of Q∗0:

g1(400) = 0.72 · 1300 +
8 · 1300

400
+

0.3 · 0.72 · 400

2
= 1005.2

g2(800) = 0.68 · 1300 +
8 · 1300

800
+

0.3 · 0.68 · 800

2
= 978.6

Therefore, the optimal order quantity is Q = 800, which incurs a purchase cost of
$0.68 and a total annual cost of $978.60. �

3.4.2 Incremental Discounts

We now turn our attention to incremental discounts. The total cost function for region j is
given by

gj(Q) =
c(Q)

Q
λ+

Kλ

Q
+
i c(Q)
Q Q

2
,

where c(Q) is given by (3.17). Note that the purchase cost term is no longer a constant
with respect to Q, even within a given segment: As Q increases, so does the number of
“cheap” units, and the average cost per unit decreases.

We can rewrite gj(Q) as

gj(Q) =
1

Q

[
j−1∑
i=0

ci(bi+1 − bi)− cjbj

]
λ+ cjλ+

Kλ

Q

+
i

2

[
j−1∑
i=0

ci(bi+1 − bi)− cjbj

]
+
icjQ

2

=cjλ+
ic̄j
2

+
(K + c̄j)λ

Q
+
icjQ

2
, (3.20)
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Figure 3.7 Total cost curves for incremental quantity discount structure.

where

c̄j =

j−1∑
i=0

ci(bi+1 − bi)− cjbj .

The right-hand side of (3.20) is structurally identical to the EOQ cost function; therefore,
its minimizer is given by

Q∗j =

√
2(K + c̄j)λ

icj
(3.21)

with cost

gj(Q
∗
j ) = cjλ+

ic̄j
2

+
√

2(K + c̄j)λicj . (3.22)

Figure 3.7 plots gj(Q) for a two-breakpoint problem. As a rule, gj(Q) is always the lowest
curve in region j because the functions are convex and are equal at the breakpoints. On the
other hand, Q∗j is not always realizable. (In the figure, Q∗1 is not realizable.) Our objective
is to minimize g(Q), the continuous, piecewise function defined by the heavy segments.

If Q∗j is not realizable, then clearly it cannot be optimal for g(Q), and moreover, its
breakpoints cannot be optimal either. (Why?) Therefore, the optimal order quantity is
equal to the realizable Q∗j that has the lowest cost.

� EXAMPLE 3.7

Return to Example 3.6 and suppose now that Joe faces an incremental quantity
discount structure with the same breakpoints and purchase costs. What is Joe’s
optimal order quantity?

We first determine c̄j for each j:

c̄0 =0
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c̄1 =0.75 · 400− 0.72 · 400 = 12

c̄2 =0.75 · 400 + 0.72 · 400− 0.68 · 800 = 44

Next, we calculate Q∗j for each j:

Q∗0 =

√
2(8 + 0)1300

0.3 · 0.75
= 304.1

Q∗1 =

√
2(8 + 12)1300

0.3 · 0.72
= 490.7

Q∗2 =

√
2(8 + 44)1300

0.3 · 0.68
= 814.1

All three solutions are realizable. Using (3.22), these solutions have the following
costs:

g0(Q∗0) = 0.75 · 1300 +
0.3 · 0

2
+
√

2(8 + 0)1300 · 0.3 · 0.75 = 1043.4

g1(Q∗1) = 0.72 · 1300 +
0.3 · 12

2
+
√

2(8 + 12)1300 · 0.3 · 0.72 = 1043.8

g2(Q∗2) = 0.68 · 1300 +
0.3 · 44

2
+
√

2(8 + 44)1300 · 0.3 · 0.68 = 1056.7

Therefore, the optimal order quantity is Q = 304.1, which incurs a total annual cost
of $1043.40. �

3.4.3 Modified All-Units Discounts

All-units discounts are somewhat problematic because, for order quantities Q just to the
left of breakpoint j, it is cheaper to order bj than to order Q, even though Q < bj . For
example, under the cost structure in Example 3.5, it costs $292.50 to purchase 390 units
but $288.00 to purchase 400 units. (See Figure 3.5(a).)

In practice, suppliers usually allow the buying firm to pay the lower price—$288.00 in
the example above—for order quantities that fall into this awkward zone. This is especially
true for transportation costs, since all-units discounts are common in shipping, with the cost
determined based on the weight shipped. If a shipment totals, say, 390 kg but it is cheaper
to ship 400 kg, the firm could add 10 kg worth of bricks to the shipment, but a solution that
is preferable for both the shipper and the transportation company is for the firm to “ship x,
declare y”—for example, ship 390 kg, declare 400 kg.

This structure is sometimes known as the modified all-units discount structure. Its c(Q)

curve is displayed in Figure 3.8(a). The flat portions of the curve represent the regions in
which the firm orders or ships one quantity but declares a greater quantity.

Sometimes, there is also a minimum charge for each order or shipment, in which case
there is an additional horizontal segment at the start of the c(Q) curve; see Figure 3.8(b).

A special case of the modified all-units discount structure is the carload discount struc-
ture, in which the bj are equally spaced and cj is the same for all j. This structure arises
from rail or truck carload shipments, in which the transportation company charges a per-unit
cost c for each unit shipped, up to some maximum cost for each car. Once the capacity of
a car is exceeded, a new car begins, at a cost of c per unit, and so on.
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(b) With minimum cost.

Figure 3.8 Total purchase cost c(Q) for modified all-units discounts structure.

Unfortunately, modified all-units discount structures are much more difficult to analyze
than the discount structures discussed above. (See, for example, Chan et al. (2002).) We
omit further discussion here.

3.5 THE EOQ WITH PLANNED BACKORDERS

We assumed in Section 3.2.1 that backorders are not allowed. In this section, we discuss a
variant of the EOQ problem in which backorders are allowed. Since demand is determin-
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Figure 3.9 EOQB inventory curve.

istic, we have the same number of backorders in every order cycle—they are “planned”
backorders. (See Figure 3.9.) We’ll call this model the EOQ with backorders (EOQB).

Let p be the backorder penalty per item per year, and let x be the fraction of demand that
is backordered. Both Q and x are decision variables. The holding cost is charged based on
on-hand inventory; the average on-hand inventory is given by

Q(1− x)2

2
.

Similarly, the backorder cost is charged based on the number of backorders; the average
backorder level is given by

Qx2

2
.

(Compute the area under the triangle, then divide by the length of an order cycle.) Finally,
the number of orders per year is given by λ/Q, just like in the EOQ model.

Therefore, the total average cost per year in the EOQB is given by

g(Q, x) =
hQ(1− x)2

2
+
pQx2

2
+
Kλ

Q
. (3.23)

Note that g is a function of bothQ and x. Therefore, to minimize it, we need to take partial
derivatives with respect to both variables and set them equal to 0.

∂g

∂x
= −hQ(1− x) + pQx = 0 (3.24)

∂g

∂Q
=
h(1− x)2

2
+
px2

2
− Kλ

Q2
= 0 (3.25)

Let’s first look at (3.24):

−hQ(1− x) + pQx = 0

⇐⇒ h(1− x) = px

⇐⇒ x∗ =
h

h+ p
(3.26)

Interestingly, x∗ does not depend on Q; even if we choose a suboptimal Q, the optimal x
to choose is still h/(h + p). At this point, we could substitute h/(h + p) for x in (3.25)
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and solve for Q, but instead we’ll plug x∗ into g(Q, x):

g(Q, x∗) =
hQ

2

(
p

h+ p

)2

+
pQ

2

(
h

h+ p

)2

+
Kλ

Q

=
Q

2

(
p2h+ h2p

(h+ p)2

)
+
Kλ

Q

=
hp

h+ p

Q

2
+
Kλ

Q

This is exactly the same form as the EOQ cost function (3.3) with the holding costh replaced
by hp/(h + p). In other words, the EOQB cost function (assuming x is set optimally) is
equivalent to the EOQ cost function with the holding cost h scaled by p/(h+p). Therefore
we can use (3.6) and (3.7) to obtain the optimal Q and the optimal cost for the EOQB, as
stated in the next theorem.

Theorem 3.5 In the EOQ model with backorders, the optimal solution and cost are given
by

Q∗ =

√
2Kλ(h+ p)

hp
(3.27)

x∗ =
h

h+ p
(3.28)

g(Q∗, x∗) =

√
2Kλhp

h+ p
(3.29)

How do the optimal solution and cost in Theorem 3.5 compare to the analogous quantities
from the EOQ model? First, comparing (3.29) and (3.7), we can see that the optimal cost
is smaller in the EOQB than in the EOQ. This makes sense, since the EOQ is a special case
of the EOQB in which the constraint x = 0 has been added. From (3.27), we can see that
the optimal order quantity is greater in the EOQB than in the EOQ. This is because placing
larger orders in the EOQB does not require us to carry quite as much inventory as it does
in the EOQ, and therefore, the extra flexibility offered by the backorder option allows us to
place larger orders.

As p → ∞, Q∗ approaches the optimal EOQ order quantity, x∗ approaches 0, and the
optimal cost approaches the EOQ optimal cost.

Note also that x is strictly greater than 0, provided that h is. Therefore, it is always
optimal to allow some backorders. To see why, suppose we set x = 0—then the EOQB
inventory curve in Figure 3.9 collapses to the EOQ curve in Figure 3.2. Now, if we increase
x slightly, we create a tiny negative triangle at the end of each cycle in Figure 3.9, incurring
a tiny backorder cost. (See Figure 3.10.) But we also reduce the height of the positive part
of the inventory curve throughout the rest of the cycle, resulting in a substantial savings in
holding cost. As we continue to increase the number of backorders, the marginal savings
in holding cost decreases and the marginal increase in backorder cost increases. At some
point, the marginal cost of adding a backorder will outweigh the marginal savings in holding
cost, so we will have an x∗ somewhere between 0 and 1.

What if we consider the same model but assume that unmet demands are lost, rather
than backordered? It turns out that in this case, it is optimal either to meet every demand
(x = 0) or to meet no demands (x = 1)—see Problem 3.16.
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� EXAMPLE 3.8

Recall Example 3.1. Suppose Joe is willing to stock out occasionally and estimates
that each backorder costs the store $5 in lost profit and loss of good will. What is the
optimal order quantity, the optimal fill rate (fraction of demand met from stock), and
the optimal cost?

Q∗ =

√
2Kλ(h+ p)

hp
=

√
2 · 8 · 1300(0.225 + 5)

0.225 · 5
= 310.81

x∗ =
h

h+ p
= 0.0431

g(Q∗, x∗) =

√
2Kλhp

h+ p
=

√
2 · 8 · 1300 · 0.225 · 5

0.225 + 5
= 66.92

The fill rate is 1 − x∗ = 0.9569. The cost has decreased by 2.2% versus the cost
without backorders. �

3.6 THE ECONOMIC PRODUCTION QUANTITY MODEL

In a manufacturing environment, the amount of time required to produce a batch of items
usually depends on how large the batch is—producing more items requires more time. The
EOQ model cannot handle this feature, since it assumes that orders are received after a
deterministic (possibly zero) lead time, regardless of the order quantity. In other words,
the EOQ assumes that the production rate is infinite—an arbitrary number of items can be
produced in a fixed amount of time. This assumption may be reasonable in settings in which
the firm is placing orders to an outside supplier that holds finished goods in inventory, or
whose capacity is much larger than the firm’s order quantity, so that the production time is
negligible. In this section, we discuss a variant of the EOQ model that allows the production
rate to be finite and is therefore more applicable to manufacturing settings. It is known as
the economic production quantity (EPQ) model. The EPQ was introduced by Taft (1918, as
cited by Erlenkotter (1990)). It is sometimes known as the economic production lot (EPL)
problem.

Let µ be the production rate, i.e., the firm can produce µ items per year. We assume
µ > λ (otherwise the manufacturing process cannot keep up with the demand). The
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manufacturing process is active during a portion of the time (called active intervals) and is
idle otherwise, and during active intervals, the process adds finished goods to inventory at
a rate of µ. Meanwhile, the demand process is ongoing, reducing the inventory at a rate of
λ. Let ρ = λ/µ be the utilization ratio, which indicates the portion of time the system is
active. Q is now interpreted as a production batch size rather than an order quantity.

The process is depicted in Figure 3.11. Note that during active intervals, the inventory
increases at a rate µ − λ since items are being added to inventory by the manufacturing
process and withdrawn from it by the demand process simultaneously. Since we still initiate
the replenishment process after exactly Q items have been demanded, the order interval T
still equals Q/λ years. Moreover, since we produce exactly Q units in an active interval,
the active interval must last Q/µ = ρT years. This means that the maximum inventory
level, which occurs ρT years into each cycle, is ρT (µ− λ) = (1− ρ)Q.

The fixed cost per year is still Kλ/Q, as in the EOQ model, since T = Q/λ. The
average inventory level is (1− ρ)Q/2, so the average annual holding cost is h(1− ρ)Q/2.
Therefore, the total annual cost is

g(Q) =
Kλ

Q
+
h(1− ρ)Q

2
. (3.30)

We could find the Q that minimizes this cost function by differentiating, as we did for the
EOQ, but it is simpler to recognize that (3.30) differs from (3.3) only by the constant (1−ρ)

in the second term. In other words, the EPQ is equivalent to the EOQ with the holding cost
parameter h scaled by 1− ρ. Therefore, the optimal solution to the EPQ, and its cost, are
as given in the next theorem.

Theorem 3.6 In the EPQ model, the optimal solution and cost are given by

Q∗ =

√
2Kλ

h(1− ρ)
(3.31)

g(Q∗) =
√

2Kλh(1− ρ). (3.32)

Proof. Follows from replacing h with h(1− ρ) in Theorem 3.1.

Since ρ < 1, the optimal EPQ solution is larger than that of the EOQ, while the optimal
EOQ cost is smaller. Both results are justified by the fact that items arrive later after the
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replenishment order in the EPQ than they do in the EOQ, and therefore, the holding cost
for a given Q is smaller. Note also that as µ→∞, the EPQ reduces to the EOQ.

3.7 PERIODIC REVIEW: THE WAGNER–WHITIN MODEL

3.7.1 Problem Statement

We now shift our attention to a periodic-review model known as the Wagner–Whitin
model (Wagner and Whitin 1958). Similar to the EOQ model, the Wagner–Whitin model
assumes that the demand is deterministic, there is a fixed cost to place an order, and stock-
outs are not allowed. The objective is to choose order quantities to minimize the total cost.
However, unlike the EOQ model, the Wagner–Whitin model allows the demand to change
over time—to be different in each period. This model is sometimes referred to as the
dynamic economic lot-sizing (DEL) model or the uncapacitated lot-sizing (ULS) model.

Because of the fixed cost, it may not be optimal to place an order in every time period.
However, we will show that, as in the EOQ, optimal solutions have the zero-inventory
ordering (ZIO) property. Therefore, the problem boils down to deciding how many whole
periods’ worth of demand to order at once.

Unlike the infinite-horizon EOQ model, the Wagner–Whitin model considers a finite
horizon, consisting of T periods. In each period, we must decide whether to place a
replenishment order, and if so, how large an order to place. The demand in period t is given
by dt, and stockouts are not allowed. The lead time is 0. As in the EOQ model, there is
a fixed cost K per order and an inventory holding cost h per unit per period. (Note that
h represents the holding cost per year in the EOQ model but per period here.) One could
also include a purchase cost c, but since the total number of units ordered throughout the
horizon is constant (independent of the ordering pattern), it is safe to ignore this cost.

Assume that the on-hand inventory is 0 at time 0. In each time period, the following
events occur, in the following order:

1. The replenishment order, if any, is placed and is received instantly.

2. Demand occurs and is satisfied from inventory.

3. Holding costs are assessed based on the on-hand inventory.

(This type of timeline is known as a sequence of events. It is important to specify the
sequence of events clearly in periodic-review models. For example, the holding costs
would be very different if events 2 and 3 were reversed.)

We first formulate this model as a mixed-integer optimization problem (MIP). We will
then discuss a dynamic programming (DP) algorithm for solving it.

3.7.2 MIP Formulation

Our formulation will use the following decision variables:

qt = the number of units ordered in period t
yt = 1 if we order in period t, 0 otherwise
xt = the inventory level at the end of period t



PERIODIC REVIEW: THE WAGNER–WHITIN MODEL 73

We also define x0 ≡ 0. Then the Wagner–Whitin model can be formulated as follows:

minimize
T∑
t=1

(Kyt + hxt) (3.33)

subject to xt = xt−1 + qt − dt ∀t = 1, . . . , T (3.34)

qt ≤Myt ∀t = 1, . . . , T (3.35)

xt ≥ 0 ∀t = 1, . . . , T (3.36)

qt ≥ 0 ∀t = 1, . . . , T (3.37)

yt ∈ {0, 1} ∀t = 1, . . . , T (3.38)

The objective function (3.33) calculates the fixed cost (for each period in which we place
an order) plus the cost of holding inventory at the end of each period. Constraints (3.34)
are the inventory-balance constraints: They say that the ending inventory in period t is
equal to the starting inventory, plus the new units ordered, minus the demand. Constraints
(3.35) prohibit qt from being positive unless yt is 1. Here, M is a large number; it could be
set to

∑T
s=t ds, for example. Constraints (3.36)–(3.37) are nonnegativity constraints. In

particular, (3.36) also prohibits stockouts by requiring every period to end with nonnegative
inventory. Finally, constraints (3.38) are integrality constraints on the y variables.

This problem can be interpreted as a simple supply chain network design problem (to be
more precise, an arc design problem; see Section 8.7.2). It can be solved as an MIP, but it is
more common to solve it using DP or as a shortest path problem, as we discuss in the next
section. See Pochet and Wolsey (1995, 2006) for thorough discussions of mathematical
programming formulations for this and other lot-sizing models. See also Case Study 3.1
for an alternate formulation approach for a similar problem.

3.7.3 Dynamic Programming Algorithm

The DP algorithm depends on the following result:

Theorem 3.7 Every optimal solution to the Wagner–Whitin model has the ZIO property;
that is, it is optimal to place orders only in time periods in which the initial inventory is
zero.

Proof. Suppose (for a contradiction) there is an optimal solution in which an order is
placed in period t even though the inventory level at the beginning of period t is positive;
i.e., xt−1 > 0. The xt−1 units in inventory were ordered in a period before t and incurred
a holding cost to be held from period t− 1 to t. If these items had instead been ordered in
period t, then (1) the holding cost would decrease since fewer units are held in inventory,
and (2) the fixed cost would stay the same since the number of orders would not change,
only the size of each order. This contradicts the assumption that the original policy is
optimal; hence, every optimal solution must have the ZIO property.

Theorem 3.7 and its proof assume that h > 0; if h may equal 0, then the theorem would
read “There exists an optimal solution...”

As a corollary to Theorem 3.7, each order is of a size equal to the total demand in an
integer number of subsequent periods; that is, in period t we either order dt, or dt + dt+1,
or dt + dt+1 + dt+2, and so on. The problem then boils down to deciding in which periods
to order. We formulate this problem as a DP.
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Let θt be the optimal cost in periods t, t+ 1, . . . , T if we place an order in period t (and
act optimally thereafter). We can define θt recursively in terms of θs for later periods s.
First define θT+1 ≡ 0. Then

θt = min
t<s≤T+1

{
K + h

s−1∑
i=t

(i− t)di + θs

}
. (3.39)

The minimization determines the next period s in which we will place an order, assuming
that we order in period t. (Setting s = T + 1 means we never order again; the order in
period t is the last order.) A given choice of s is evaluated using the expression inside the
braces. The first two terms calculate the cost incurred in periods t through s− 1: the order
cost of K, plus the holding cost for the items that will be held until future periods. (The dt
units demanded in period t will be held for 0 periods; dt+1 units will be held for 1 period;
. . .; and ds−1 units will be held for s− 1− t periods.) A new order will be placed in period
s, and θs includes the cost in period s and all future periods.

The DP algorithm for the Wagner–Whitin problem is summarized in Algorithm 3.1. At
the conclusion of the algorithm, θ1 equals the cost of the optimal solution. The optimal
solution itself is obtained by “backtracking”—we place orders in period 1, period s(1),
period s(s(1)), and so on.

Algorithm 3.1 Wagner–Whitin algorithm
1: θT+1 ← 0 . Initialization
2: for t = T, . . . , 1 do . Main loop
3: θt ← right-hand side of (3.39) . Minimization over s
4: s(t)← argmin in right-hand side of (3.39)
5: end for
6: return θt, s(t) for all t = 1, . . . , T

The complexity of the algorithm is O(T 2) since step 2 requires O(T ) operations and
must be performed O(T ) times. Faster algorithms, which run in O(T ) time, have been
developed for this problem but will not be discussed here (Federgruen and Tzur 1991,
Wagelmans et al. 1992). Despite the efficiency of this algorithm, a number of heuristics
have been introduced and are still popular in practice. These include Silver–Meal, part
period balancing, least unit cost, and other heuristics (Silver et al. 1998). One explanation
for the persistent use of these approximate methods is that they tend to be less sensitive to
changes in the data, so that as demand forecasts change for several periods into the future,
the current production plan doesn’t change much.

The Wagner–Whitin model can equivalently be represented by a network with T + 1

nodes in which each node represents a time period and an arc from period t to period s
represents ordering in period t to satisfy the demands of periods t, t + 1, . . . , s − 1. The
cost of this arc is

K + h

s−1∑
i=t

(i− t)di. (3.40)

Solving the Wagner–Whitin problem is equivalent to finding a shortest path through this
network (which is, in turn, equivalent to solving the DP given above). Figure 3.12 depicts
the network for a 4-period problem. Note that there is one extra node, node 5, called the
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Figure 3.12 Wagner–Whitin network.

“dummy node,” that serves as a sink for arcs representing ordering from the current time
period until the end of the horizon.

� EXAMPLE 3.9

A garden center sells bags of organic compost for vegetable gardens. Compost is
heavy, and special trucks must be used to transport it, so shipping is expensive; each
order therefore incurs a fixed cost of $500. The holding cost for each cubic meter of
compost is $2 per period. We consider a 4-period planning horizon. The demand for
compost in periods 1–4 is 90, 120, 80, and 70 cubic meters, respectively. Find the
optimal order quantity in each period and the total cost.

From (3.39), we have the following:

θ5 =0

θ4 =K + h(0 · d4) + θ5

=500 [s(4) = 5]

θ3 = min{K + h(0 · d3) + θ4,K + h(0 · d3 + 1 · d4) + θ5}
= min{1000, 640}
=640 [s(3) = 5]

θ2 = min{K + h(0 · d2) + θ3,K + h(0 · d2 + 1 · d3) + θ4,

K + h(0 · d2 + 1 · d3 + 2 · d4) + θ5}
= min{1140, 1160, 940}
=940 [s(2) = 5]

θ1 = min{K + h(0 · d1) + θ2,K + h(0 · d1 + 1 · d2) + θ3,

K + h(0 · d1 + 1 · d2 + 2 · d3) + θ4,

K + h(0 · d1 + 1 · d2 + 2 · d3 + 3 · d4) + θ5}
= min{1440, 1380, 1560, 1480}
=1380 [s(1) = 3]
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Therefore, we order in periods 1 and s(1) = 3; the optimal order quantities are
Q1 = d1 + d2 = 210 and Q3 = d3 + d4 = 150 cubic meters; and the total cost is
1380. �

3.7.4 Extensions

Many of the assumptions made in Section 3.7.1 can be relaxed without making the problem
substantially harder. For example, period-specific costs (ht, Kt, ct) can easily be accom-
modated. Similarly, nonzero lead times can be handled, provided the lead time is still fixed
and constant. Positive initial inventories can be handled with appropriate modifications to
the cost function in period 1.

Other extensions are considerably more difficult. For example, we assumed implicitly
that there were no capacity constraints—an order can be placed of any size, and any amount
of inventory can be carried over. Capacitated versions of the Wagner–Whitin model turn
out to be NP-hard (Florian et al. 1980). Backlogging and concave order costs (instead of
linear) are considered by Zangwill (1966); the model is still polynomially solvable, but the
solution approach is less tractable than the DP presented here.

CASE STUDY 3.1 Ice Cream Production and Inventory at Scotsburn Dairy Group

Scotsburn Dairy Group is one of Canada’s largest producers of ice cream and other
dairy products. Its factory in Truro, Nova Scotia produces nearly 30 million liters of
ice cream per year. Scotsburn collaborated with the industrial engineering department
at Dalhousie University to optimize the production and inventory of ice cream at the
Truro facility. The collaboration first began as an undergraduate design project, then
a Master’s project. The approach is described by Gunn et al. (2014).

The team developed a hierarchical planning process that includes a monthly model
for setting inventory targets and staffing levels over a 1-year horizon; a weekly model
to determine how much of each stock-keeping unit (SKU) to produce per week; and a
daily model to optimize the production schedule. All three were formulated as integer
programming (IP) models. We focus on the weekly model, which is an extension of the
Wagner–Whitin model discussed in Section 3.7.

The Truro facility produces over 300 SKUs of ice cream, which the researchers
aggregated into just over 100 product families. The weekly model determines how
much of each family to produce in each week over a 13-week horizon. The model is
used on a rolling-horizon basis, meaning that the company only implements next week’s
plan; it then solves the model again for another 13-week horizon.

Let F be the set of product families. Let a+
t and a−t be the maximum and minimum

number of production hours that may be used in week t, respectively. (These are
outputs from the monthly planning model.) Let uf,t1,t2 be the number of production
hours required to produce family f ∈ F in week t1 to cover the demand in weeks
t1, . . . , t2, and let cf,t1,t2 be the cost (including both fixed and holding costs) to do so.
Similar to (3.40),

cf,t1,t2 = Kf + hf

t2∑
t=t1

(t− t1)dtf ,
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where the parameters are as in Section 3.7 but are now also indexed by the product
family, f . The decision variable xf,t1,t2 equals 1 if family f is produced in week t1
in order to cover the demand in weeks t1, . . . , t2, and 0 otherwise. Note that this
is a different type of formulation than that used in Section 3.7.2 since the decision
variables determine how many periods’ of demand to produce rather than modeling the
production and inventory levels explicitly.

The Scotsburn weekly model can be formulated as follows2:

minimize
∑
f∈F

T∑
t1=1

T∑
t2=t1

cf,t1,t2xf,t1,t2 (3.41)

subject to
t∑

t1=1

T∑
t2=t

xf,t1,t2 = 1 ∀f ∈ F,∀t = 1, . . . , T (3.42)

a−t ≤
∑
f∈F

∑
t2≥t

uf,t,t2xf,t,t2 ≤ a+
t ∀t = 1, . . . , T (3.43)

xf,t1,t2 ∈ {0, 1} ∀f ∈ F,∀t1, t2 = 1, . . . , T (3.44)

The objective function (3.41) calculates the total production and inventory costs. Con-
straints (3.42) ensure that the demand for each product family f in each week t is
produced in some production run that includes period t. Constraints (3.43) require the
total number of production hours used in period t to be within the allowable range.
Constraints (3.44) are integrality constraints.

Scotsburn solves this model using CPLEX, which can solve a typical instance—
roughly 10,000 variables and 2,000 constraints—to 2% optimality within a few minutes.
The company reports that the full project—including the monthly, weekly, and daily
planning models—helped to improve the fill rate (fraction of demand met from stock)
from 90.2% to 96.2%; it also improved the production rate (units produced per hour)
by 3% as a result of having fewer time-consuming production setups.

PROBLEMS

3.1 (EOQ for Steel) An auto manufacturer uses 500 tons of steel per day. The company
pays $1100 per ton of steel purchased, and each order incurs a fixed cost of $2250. The
holding cost is $275 per ton of steel per year. Using the EOQ model, calculate the optimal
order quantity, cycle length, and average cost per year.

3.2 (EOQ for MP3s) Suppose that your favorite electronics store maintains an inventory
of a certain brand and model of MP3 player. The store pays the manufacturer $165 for each
MP3 player ordered. Each order incurs a fixed cost of $40 in order processing, shipping,
etc. and requires a 2-week lead time. The store estimates that its cost of capital is 17% per
year, and it estimates its other holding costs (warehouse space, insurance, etc.) at $1 per
MP3 player per month. The demand for MP3 players is steady at 40 per week.

2The real model includes multiple production lines and allows for overtime, but we omit these aspects for the
sake of simplicity and instead assume that the factory has a single production line with hard constraints on the
production hours available.
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a) Using the EOQ model, calculate the optimal order quantity, reorder point (r), and
average cost per year.

b) Now suppose that backorders are allowed, and that each backorder incurs a
stockout penalty of $60 per stockout per year. Using the EOQ model with
planned backorders, calculate the optimal order quantity, stockout percentage
(x), reorder point (r), and average cost per year. How much money would the
store save per year by allowing stockouts, expressed as a percentage?

3.3 (EOQ for Cat Toys) Mason’s Meows is a company that makes cat toys. The company
sells 1200 toys per year. The firm incurs a fixed cost of $150 in labor each time it starts up
the manufacturing process to begin a new batch of toys. Each toy costs Mason’s Meows
$9 to produce. The company’s accountant recommends using a holding cost equal to 20%
of the cost of the toy, per year.

a) What is the optimal batch size, Q∗? If the company uses batches of sizeQ∗, how
many times per year, on average, will it start up the manufacturing process?

b) After careful analysis, the inventory team at Mason’s Meows realized that the
per-unit production cost is smaller if the batch size is larger. In particular, the
production cost is $9 per unit for batches of fewer than 400 units and $7.50 per
unit for batches of 400 or more units. Now what is the optimal batch size?

3.4 (EOQ for Vaccines) A medical clinic dispenses vaccines at a steady rate of 520
doses per month. Each order placed to the vaccine manufacturer incurs a fixed cost of
$140. Each vaccine dose held in inventory incurs a holding cost of $3 per year.

a) Using the EOQ model, calculate the optimal order quantity, Q∗, and the optimal
average cost per year, g(Q∗).

b) Suppose that the fixed cost K increases. Will Q∗ increase, decrease, or stay the
same? Briefly explain your answer.

3.5 (EOQ for Automobile Components) An automobile manufacturing plant uses ex-
actly 8 power-lock mechanisms per hour. Each replenishment order to the supplier of the
power-lock mechanisms incurs a fixed cost of $85. Each mechanism stored in inventory
incurs a holding cost of $1.50 per week.

a) Using the EOQ model, calculate the optimal order quantity, Q∗, and the optimal
average cost per year, g(Q∗).

b) Suppose that the plant must order in power-of-two multiples of 1 week. (That
is, the plant can place an order every week, or every 2 weeks, or every 4 weeks,
..., or every 1

2 week, or every 1
4 week, . . ..) What is the optimal power-of-two

order interval, and what is the cost ratio versus the optimal (non-power-of-two)
solution?

3.6 (Snack Bar Inventory Management, Part 1) A snack bar at a certain theme park sees
a (constant, deterministic, continuous) demand of 150 cases per day. (We are aggregating
the various products sold by the snack bar into a single product and expressing its demand
in terms of number of cases.) Replenishment orders are placed to a central warehouse
located within the theme park, with negligible lead time, and it costs $10 in labor costs to
deliver an order to the snack bar from the warehouse. It costs $1.20 per case per day in
refrigeration costs and other holding costs to hold cases of food in inventory at the snack
bar.
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Figure 3.13 Shortest path network for Problem 3.7.

a) Calculate the optimal order quantity, Q∗, for the snack bar.
b) If the snack bar uses Q∗ as its order quantity, how often will it order?
c) Suppose the snack bar must order in multiples of 20 cases. (That is, it must order

20 cases, or 40 cases, or 60 cases, or . . ..) Do you think the snack bar’s costs will
increase significantly due to this restriction? Briefly explain your answer.

3.7 (Snack Bar Inventory Management, Part 2) For the snack bar in Problem 3.6,
suppose now that the demand is different on different days of the week, as given in the
following table. Replenishment orders can only be placed at the start of each day. The
fixed and holding costs are as given in Problem 3.6.

Day (#) Day (Name) Demand

1 Sunday 220
2 Monday 155
3 Tuesday 105
4 Wednesday 90
5 Thursday 170
6 Friday 210
7 Saturday 290

a) Assume that the snack bar uses a 7-day planning horizon, beginning on Sunday.
Let cts be the cost to place an order on day t that will last through the end of day
s− 1, including both the fixed ordering cost and the holding cost. Calculate c12,
c47, and c68.

b) Suppose instead that the snack bar uses a 3-day planning horizon and that the
shortest path network representing fixed and holding costs is as given in Fig-
ure 3.13. (The numbers in this figure come from different data than those in part
(a).) On which day(s) should the snack bar place orders?

3.8 (EOQ with Nonzero Lead Time) Consider the EOQ model with fixed lead time
L > 0 (Section 3.2.5). Prove that the average amount of inventory on order is equal to the
lead-time demand.

3.9 (Change in Optimal EOQ Cost) Suppose we have two instances of the EOQ
problem, h1, K1, λ1 and h2, K2, λ2, such that

√
2K1λ1h1 <

√
2K2λ2h2. True, false, or

indeterminate: The holding cost component (i.e., the hQ/2 part) of the optimal objective
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function value is greater under instance 2 than under instance 1. Briefly explain your
answer.

3.10 (EOQ with Fixed Batch Sizes) Suppose that in the EOQ model we can only order
batches that are an integer multiple of some number QB ; that is, we can order a batch of
size QB , 2QB , 3QB , etc.

a) Prove that, for the optimal order quantity Q̂ = mQB ,√
m− 1

m
≤ QE

Q̂
≤
√
m+ 1

m
,

where QE =
√

2Kλ/h is the optimal (non-integer-multiple) EOQ quantity.
b) Suppose that m ≥ 2 for Q̂. Using the result in part (a), prove that g(Q̂) ≤

1.32g(QE), where g(·) is the EOQ cost function.
c) Bonus: Prove that g(Q̂) ≤ 1.06g(QE) (still assuming m ≥ 2).

3.11 (Tightness of Power-of-2 Bound) Prove that the bound given in Theorem 3.3 is
tight by developing an instance of the problem such that

f(T̂ )

f(T ∗)
=

3

2
√

2
.

Hint: You should be able to come up with a suitable value of TB in terms of the problem
parameters. That is, you should not need to pick values for λ, h, andK; instead, you should
be able to leave the values of these parameters unspecified and to express TB in terms of
the parameters to achieve the desired result.

3.12 (Quantity Discounts for Steel) Return to Problem 3.1 and suppose that the steel
supplier offers the auto manufacturer a price of $1490 per ton of steel if Q < 1200 tons;
$1220 per ton if 1200 ≤ Q < 2400, and $1100 per ton if Q ≥ 2400. The annual holding
cost rate, i, is 0.25.

a) Calculate Q∗ and g(Q∗) for the all-units discount structure.
b) Calculate Q∗ and g(Q∗) for the incremental discount structure.

3.13 (Sequence of Q∗j ) In the EOQ model with incremental quantity discounts, prove
that Q∗j−1 < Q∗j for all j = 1, . . . , n.

3.14 (Sensitivity Analysis for EOQB:Q) Prove that a result analogous to Theorem 3.2
also describes the sensitivity of the EOQB model with respect to Q; that is, prove that, for
any Q:

g(Q, x∗)

g(Q∗, x∗)
=

1

2

(
Q∗

Q
+

Q

Q∗

)
.

3.15 (Sensitivity Analysis for EOQB: x) In this problem, you will explore the EOQB
model’s sensitivity to x, the fraction of demand that is backordered.

a) Let Q(x) be the optimal Q for a given x. Derive an expression for g(Q(x), x),
the cost that results from choosing an arbitrary value of x and then setting Q
optimally.

b) Prove that for any 0 ≤ x ≤ 1,

g(Q(x), x)

g(Q∗, x∗)
=

√
(1− x)2h+ x2p

x∗p
.
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c) Prove that if h < p, then for all x,

g(Q(x), x)

g(Q∗, x∗)
≤ 1√

x∗
.

3.16 (EOQ with Planned Lost Sales) Suppose that we are allowed to stock out in the
EOQ model, but instead of excess demands being backordered (as in Section 3.5), they are
lost. Let x be the fraction of demand that is lost, and let p be the cost per lost sale. Let c be
the cost to order each unit. In the standard EOQ and the EOQ with backorders, we could
ignore c because each year we order exactly λ items per year on average, regardless of the
order quantity Q. But if some demands are lost, we will not order items to replenish those
demands; therefore, the total per-unit ordering cost per year does depend on the solution
we choose.

a) Formulate the total cost per year as a function of Q and x.
b) Prove that

x∗ =


0, if λ(p− c) >

√
2Kλh

1, if λ(p− c) <
√

2Kλh

anything in [0, 1], if λ(p− c) =
√

2Kλh

c) Give an interpretation of the condition λ(p− c) >
√

2Kλh and explain in words
why the optimal value of x∗ follows the rule given in part (b).

d) Part (b) implies that either we meet every demand or we stock out on every
demand—x∗ is never strictly between 0 and 1 (except in the special case in which
λ(p− c) =

√
2Kλh). This is not the case in the EOQ with backorders. Explain

in words why the two models give different results.

3.17 (EOQ with Nonlinear Holding Costs) We assumed that the holding cost for one
item in the EOQ model equals ht, where t is the amount of time the item is in inventory.
Suppose instead the holding cost for one item is given by hebt, for b > 0.

a) Write the average annual cost as a function of Q, g(Q). (Your answer should not
include integrals.)

b) Write the first-order condition (i.e., dg/dQ = 0) for the function you derived in
part (a).

c) The first-order condition cannot be solved explicitly for Q—we can’t write an
expression like Q∗ = [something or other]. Instead, g(Q) must be optimized
numerically. Using a nonlinear programming solver, find the Q that minimizes
g(Q) using the following parameter values: λ = 500, K = 100, h = 1, b = 0.5.
Report both Q∗ and g(Q∗).

Note: As part (e) establishes, g(Q) is quasiconvex everywhere; therefore, you
may use a nonlinear solver that relies on this property.

d) Prove that g(Q) is convex at Q = Q∗.
Hint: We know the first-order condition says dg/dQ = 0 at Q = Q∗. Write

the second-order condition in such a way that you can make use of the first-order
condition.

e) A function f is said to be unimodal if there exists some point x∗ such that f is
increasing on the range x ≤ x∗ and decreasing on the range x ≥ x∗. A function
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f is said to be quasiconvex if −f is unimodal. Prove that g(Q) is quasiconvex
for all Q > 0.

f) Bonus: Prove that g(Q) is convex for all Q > 0.

3.18 (EOQ with Batch Demands) Consider an inventory system in which each order
is for Q units. Instead of the demand occurring continuously over time (as in the EOQ
model), the customer purchases exactly half of the inventory exactly halfway through the
order cycle and the remaining half exactly at the end of the order cycle. At that point, a new
order is placed, and it arrives instantly. (Therefore, there is no time at which the inventory
level equals 0.) The total demand per year is λ, just as in the EOQ model, which means
that each order cycle has the same length as in the EOQ model.

a) Write an expression for the average annual total cost.
b) What is the optimal order quantity, Q∗?

3.19 (EOQ vs. EOQB Costs)
a) Prove that the optimal annual holding plus backorder costs in the EOQB model

is strictly less than the optimal annual holding cost in the EOQ model.
b) Use part (a) to prove that the total cost (including fixed costs) decreases when we

allow backorders.

3.20 (EOQ Generalization) Consider an EOQ-like inventory model whose cost function
is given by

g(Q) =
aQ2 + b

cQ+ d
(3.45)

for constants a, b, c, and d with a, c > 0 and b, d ≥ 0.
Note that the classical EOQ problem is a special case, since the EOQ cost function (3.3)

can be obtained by setting

a = h

b = 2Kλ

c = 2

d = 0.

(3.46)

In this problem you will prove some properties of the cost function (3.45).
a) Prove that

Q∗ =

√
a2d2 + abc2 − ad

ac
.

Then show that the classical EOQ model is a special case, i.e., that for the
appropriate values of the constants, we get the classical EOQ order quantity.

b) Prove that

(Q∗)2 =
bc− 2adQ∗

ac
.

c) Use part (b) to prove that

g(Q∗) =
2a

c
Q∗.

Then show that the classical EOQ model is a special case, i.e., that for the
appropriate values of the constants, we have g(Q∗) = hQ∗ (Theorem 3.1).
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Figure 3.14 Inventory level curve for Problem 3.23.

d) Calculate Q∗ and g(Q∗) assuming a = 20, b = 125, c = 1.2, d = 2.7.
e) Bonus: Prove that

g(Q)

g(Q∗)
=

1

2

(
Q

Q∗
+
Q∗

Q

)
− [a nonnegative constant]

(analogous to Theorem 3.2), and indicate what the nonnegative constant is. Then
show that the classical EOQ model is a special case.

3.21 (Alternate EOQ Proof) Prove that the EOQ cost function can be rewritten as

g(Q) =
h

2λQ

(
Q−

√
2Kλ

h

)2

+

√
2Kh

λ
.

Use this to prove (3.4) without using calculus. (Thus, this method provides a proof of the
EOQ formula using algebra only.)

3.22 (EPQ for Laundry) A restaurant uses 80 cloth napkins per hour. The napkins are
washed by hand at a rate of 110 per hour. Each time the laundry process is started, the
restaurant incurs a fixed cost of $4.00. Napkins in inventory incur a holding cost of $0.08
per napkin per hour. Stockouts are not allowed. How many napkins should the restaurant
have in circulation?

3.23 (EOQ with Zero-Demand Sub-Cycles) Consider the following modification to the
EOQ problem. Suppose that, each time an order is placed, the demand is initially 0 for a
fraction β of the cycle, and then the demand occurs at a rate of λ/(1− β) for the duration
of the cycle. One can show (you need not) that the total cycle length is still Q/λ, just like
in the original EOQ model, and the cycle is divided as shown in Figure 3.14. Calculate the
optimal order quantity, Q∗.

3.24 (EOQ with Cycle-Length Costs) Suppose that the inventory ordered in the EOQ
problem must be stored in a special piece of storage equipment, and the cost of the
equipment depends on the amount of time the inventory will be stored, i.e., the amount of
time between replenishment orders. (For example, the product might be perishable; the
longer it will be stored in inventory, the more insulation is required in the container.) The
storage equipment is leased from a material-handling company. The lease cost per year is
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Figure 3.15 Inventory level curve for Problem 3.26.

given by w lnT , where w is a constant, T is the time between consecutive orders, and ln is
the natural log function. Holding and fixed costs are still incurred, as in the original EOQ
problem. (You can continue to ignore the per-unit purchase cost.)

a) Write the total cost function, g(Q).
b) Write an expression for the optimal order quantity, Q∗.
c) Suppose h = 2, λ = 150, K = 700, and w = 100. What is Q∗?
d) If w > 0, is the optimal order quantity for this model less than, greater than, or

equal to that for the original EOQ model?

3.25 (EOQ with Random Half-Orders) Suppose that, in the EOQ model, some orders
randomly arrive at only half the requested size. That is, if the order quantity is Q, then
the quantity delivered is Q with probability α and 1

2Q with probability 1 − α, for some
constant α (0 ≤ α ≤ 1). The remaining parameters and assumptions are as in the standard
EOQ model.

a) Determine a closed-form expression for the optimal order quantity, Q∗, as a
function of the problem parameters.

b) Will the optimal order quantity in this model be greater than, less than, or equal
to that of the classical EOQ? Briefly explain why. (Provide a logical explanation
based on the problem, not a mathematical answer based on part (a).)

3.26 (EOQ with Two Deliveries) Consider a variant of the EOQ model in which each
order arrives in two separate deliveries. In particular, if we place an order of size Q, then
a quantity αQ arrives instantly, and the remaining quantity, (1− α)Q, arrives αQ/λ years
later, for a fixed constant 0 < α < 1. Thus, the inventory curve looks like the curve
pictured in Figure 3.15.

The fixed cost K is incurred once per order cycle, even though there are two deliveries.
As in the standard EOQ, the holding cost is given by h per item per year.

Calculate the optimal order quantity, Q∗.

3.27 (Wagner–Whitin for Aircraft Engines) The Pratt & Whitin Company, which
manufactures aircraft engines, needs to decide how many units of a particular bolt to order
in order to build engines over the next 4 months. Orders for engines are placed over a year
in advance, so the company knows its near-term demand exactly; in particular, the number
of engines to produce in the next 4 months will be 150, 100, 80, and 200 in months 1
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through 4, respectively. Each engine requires a single bolt. Orders for bolts incur a fixed
cost of $120, and bolts held in inventory incur a holding cost of $0.80 per bolt per month.
Find the optimal order quantities in each period and the optimal total cost.

3.28 (Wagner–Whitin for Sunglasses) The file sunglasses.xlsx contains forecast
demand (measured in cases) for sunglasses at a major retailer for each of the next 52 weeks.
Each order placed to the supplier incurs a fixed cost of $1100. One case of sunglasses held
in inventory for one period incurs a holding cost of $2.40. Find the optimal order quantities
in each period and the optimal total cost.

3.29 (Wagner–Whitin for Glass) A small maker of art glass has orders to make paper-
weights, vases, and so on over the course of the coming 5 weeks. Based on these orders,
it has projected its requirements for its primary raw material—glass rods—over these 5
weeks to be 730, 580, 445, 650, and 880 kg, respectively. Each order to the glass rod
supplier incurs a fixed cost of $100, and each kg of glass rods held in inventory incurs a
holding cost of $0.10 per week.

a) Determine the optimal order quantity in each week, as well as the optimal total
cost.

b) Let t̂ be the first period in which there is no order in your optimal solution from
part (a). Suppose the raw material inventory is destroyed at the beginning of
period t̂ so that the workshop must order in period t̂. How much should it order
in each remaining period of the horizon, and what will be the resulting cost for
the entire horizon?

3.30 (Wagner–Whitin Solution from DP #1) Consider the Wagner–Whitin problem
with h = 2, K = 50, T = 4, and (d1, . . . , d4) = (20, 12, 17, 23). Suppose you have
performed the calculations for t ≥ 2 and found the following values for θt and s(t):

t

2 3 4 5

θt 134 96 50 0
s(t) 4 5 5 —

Determine which periods to order in, how much to order in each of those periods, and
the corresponding optimal cost.

3.31 (Wagner–Whitin Solution from DP #2) Follow the instructions for Problem 3.30
for an instance with h = 1, K = 20, T = 4, and (d1, . . . , d4) = (25, 15, 15, 30), using the
following values for θt and s(t):

t

2 3 4 5

θt 55 40 20 0
s(t) 4 4 5 —

3.32 (Wagner–Whitin with Randomly Perishable Goods) Suppose that in the Wagner–
Whitin model, all of the items currently held in inventory will perish (be destroyed) with
some probability q at the end of each time period. For example, if we order 4 periods’ worth
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of demand in period 1, the demand for period 1 will be satisfied for sure, but the inventory
consisting of the demand for periods 2–4 will perish with probability q; if it survives (with
probability 1 − q), the inventory for periods 3–4 will perish at the end of period 2 with
probability q; and so on. Once the initial ordering schedule is set, no additional orders may
be placed.

Obviously, we can no longer require that all demand be satisfied. We will assume that
unmet demand is lost (not backordered), and that lost demands incur a penalty cost of p
per unit. As in the standard Wagner–Whitin model, we will assume a holding cost of h per
unit per time period and a setup cost of K per order.

The sequence of events in each period is as follows:
1. The replenishment order, if any, is placed and is received immediately.
2. Demand occurs and is satisfied from inventory if possible.
3. Remaining inventory either perishes or does not.
4. Holding and stockout costs are incurred based on remaining inventory and lost sales.

a) Show how the arc costs can be computed to capture the new cost function so
that the Wagner–Whitin DP algorithm can still be used. Simplify your answer as
much as possible.

Hint: The formulas in Section C.5 may come in handy.
b) Illustrate your method by finding the optimal solution for the following 4-period

instance: h = 0.2, K = 200, p = 3, q = 0.25, and the demands in periods 1–4
are 200, 125, 250, 175. Indicate the optimal solution (order schedule) and the
cost of that solution.

c) Do you think the optimal solution to the problem with perishability will involve
more orders, fewer orders, or the same number of orders than the optimal solution
to the normal Wagner–Whitin problem (without perishability)? Explain your
answer.

3.33 (Wagner–Whitin → EOQ?) Does the Wagner–Whitin model approach the EOQ
model as the length of a time period gets shorter (keeping the total time horizon fixed)?
Conduct a small numerical experiment to confirm your answer.



CHAPTER 4

STOCHASTIC INVENTORY MODELS:
PERIODIC REVIEW

4.1 INVENTORY POLICIES

In this chapter and the next, we will consider inventory models in which the demand is
stochastic. A key concept in these chapters will be that of a policy. A policy is a simple rule
that provides a solution to the inventory problem. For example, consider a periodic-review
model with fixed costs (such as the Wagner–Whitin model) but with stochastic demands.
(We will examine such a model more closely in Section 4.4.) One could imagine several
possible policies for this system. Here are a few:

1. Every R periods, place an order for Q units.

2. Whenever the inventory position falls to s, order Q units.

3. Whenever the inventory position falls to s, place an order of sufficient size to bring
the inventory position to S.

4. Place an order whose size is equal to the first two digits of last night’s lottery number.
Then, wait a number of periods equal to the last two digits of the lottery number
before placing another order.

Now, you probably suspect that some of these policies will perform better (in the sense
of keeping costs small) than others. For example, policy 4 is probably a bad one. You
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probably also suspect that the performance of a policy depends on its parameters.1 For
example, policy 1 sounds reasonable, but only if we choose good values for R and Q.

It is often possible (and always desirable) to prove that a certain policy is optimal for
a given problem—that no other policy (even policies that no one has thought of yet) can
outperform the optimal policy, provided that we set the parameters of that policy optimally.
For example, policy 3 turns out to be optimal for the model in Section 4.4: If we choose
the right s and S, then we are guaranteed to incur the smallest possible expected cost.

When using policies, then, inventory optimization really has two parts: Choosing the
form of the optimal policy and choosing the optimal parameters for that policy. Sometimes
we can’t solve one of these parts optimally, so we use approximate methods. For example,
although it’s possible to find the optimal s and S for the model in Section 4.4, heuristics
are commonly used to find approximately optimal values. Similarly, for some problems,
no one even knows the form of the optimal policy, so we simply choose a policy that seems
plausible.

We’ll consider periodic-review models in this chapter. We’ll first consider problems with
no fixed costs (in Section 4.3) and then problems with nonzero fixed costs (in Section 4.4).
In both of these sections, we’ll simply choose a policy to use and focus on optimizing
the policy parameters (or, in the case of finite-horizon models, not restrict ourselves to a
policy at all). This is the approach taken in the seminal paper by Arrow et al. (1951).
Then, in Section 4.5, we’ll prove that the policies we chose for the periodic-review models
in Sections 4.3 and 4.4 are, in fact, optimal. (We won’t prove policy optimality for the
continuous-review models in Chapter 5, but those policies, too, are optimal.)

We will continue to use the same notation introduced in Chapter 3. All of the costs we
discussed in Section 3.1.3 are in play, including fixed cost K, purchase cost c, holding cost
h, and stockout cost p. We’ll assume that K and c are nonnegative, that h and p are strictly
positive, and that p > c (otherwise it costs more to buy the product from the supplier than
it does to stock out, so we should never place an order). Now, however, we’ll represent the
demand as a random variable D with mean µ, variance σ2, pdf f(d), and cdf F (d). (D
will represent demands over different time intervals in different models, but we’ll make
this clear in each section.) We’ll usually assume that D is a continuous random variable,
with a few exceptions.

Throughout most of this chapter, we will assume that unmet demands are backordered.
In Section 4.6, we briefly discuss the lost-sales assumption.

Before continuing, we introduce two important concepts in stochastic inventory theory:
cycle stock and safety stock. Cycle stock (or working inventory) is the inventory that is
intended to meet the expected demand. Safety stock is extra inventory that’s kept on hand
to buffer against uncertainty. The target inventory level or order quantity set by most
stochastic inventory problems can be decomposed into cycle and safety stock components.
We’ll see later that the cycle stock depends on the mean of the demand distribution, while
the safety stock depends on the standard deviation.

1We don’t mean the inputs to the problem, such as costs or demand parameters. Rather, we mean decision
variables for the inventory optimization problem, which are often referred to as “parameters.”
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4.2 DEMAND PROCESSES

In real life, customers tend to arrive at a retailer at random, discrete points in time. Similarly,
(some) retailers place orders to wholesalers at random, discrete times, and so on up the
supply chain. One way to model these demands is using a Poisson process, which describes
random arrivals to a system over time. If each customer may demand more than one unit,
we might use a compound Poisson process, in which arrivals are Poisson and the number
of units demanded by each customer is governed by some other probability distribution.

It will often be convenient for us to work with continuous demand distributions (rather
than discrete distributions such as Poisson), most commonly the normal distribution with
mean µ and variance σ2. Sometimes, the normal distribution is used as an approximation
for the Poisson distribution, in which case µ = σ2 since the Poisson variance equals its
mean. (This approximation is especially accurate when the mean is large.)

In the continuous-review case, normally distributed demands mean that the demand over
any t time units is normally distributed, with a mean and standard deviation that depend
on t. Although it’s unusual to think of demands occurring “continuously” in this way, it’s
a useful way to model demands over time. In the periodic-review case, we simply assume
that the demand in each time period is normally distributed.

One drawback to using the normal distribution is that any normal random variable will
sometimes have negative realizations, even though the demands that we aim to model are
nonnegative. If the demand mean is much greater than its standard deviation, then the
probability of negative demands is so small that we can simply ignore it. This suggests
that the normal distribution is appropriate as a model for the demand only if µ� σ—say,
if µ > 4σ. If this condition fails to hold, then it is more appropriate to use a distribution
whose support does not contain negative values, such as the lognormal distribution. (If
the true demands are Poisson and we are using the normal distribution to approximate it,
then another justification for the condition µ� σ is that the normal approximation for the
Poisson distribution is most effective when the Poisson mean, λ, is large, in which case
λ�

√
λ, which is the standard deviation.)

4.3 PERIODIC REVIEW WITH ZERO FIXED COSTS: BASE-STOCK
POLICIES

For the remainder of this chapter, we focus on periodic-review models. The time horizon
consists of T time periods; T can be finite or infinite. We will usually assume the lead
time is zero, but in Sections 4.3.4.1 and 4.6.2, we’ll discuss the implications of assuming a
nonzero lead time in the case of backorders (which is easy) and lost sales (which is hard).

We’ll first consider the important special case in whichK = 0 (in this section), and then
the more general case of K ≥ 0 (in Section 4.4). We’ll also assume that the costs h, p, c,
and K are constant throughout the time horizon.

We will model the time value of money by discounting future periods using a discount
factor γ ∈ (0, 1]. That is, $1 spent (or received) in period t + 1 is equivalent to $γ in
period t. If γ = 1, then there is no discounting. For the single-period and finite-horizon
problems, our objective will be to minimize the total expected discounted cost over the
horizon. However, the total cost over an infinite horizon will be infinite if γ = 1 and may
still be infinite if γ < 1. Therefore, in the infinite-horizon case, we will minimize the
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expected cost per period if γ = 1 and the total expected discounted cost over the horizon
if γ < 1. (The solutions to the two problems turn out to be closely related.)

The sequence of events in each period t is as follows:

1. The inventory level is observed.

2. A replenishment order of size Qt is placed and is received instantly.

3. Demand dt occurs; as much as possible is satisfied from inventory, and the rest is
backordered.

4. Holding and stockout costs are assessed based on the ending inventory level.

The ending inventory level in period t (step 4) is denoted ILt. It is equal to the starting
inventory level in period t+ 1 (step 1) and is given by ILt = ILt−1 +Qt − dt.

4.3.1 Base-Stock Policies

Throughout Section 4.3, we’ll assume that the firm follows a base-stock policy.2 A base-
stock policy works as follows: In each time period, we observe the current inventory
position and then place an order whose size is sufficient to bring the inventory position up
to S. (We sometimes say we “order up to S.”) S is a constant—it does not depend on the
current state of the system—and is known as the base-stock level. Base-stock policies are
optimal when K = 0; we will prove this in Section 4.5.1. One of the earliest analyses of
this type of policy is by Arrow et al. (1951).

In multiple-period models, the base-stock level may be different in different periods. If
the base-stock level is the same throughout the horizon, then in every period, we simply
order dt−1 items. (Why?)

We will divide this problem into three cases—with T = 1, 1 ≤ T <∞, and T =∞—
and find the optimal base-stock levels in each case.

4.3.2 Single Period: The Newsvendor Problem

4.3.2.1 Problem Statement Consider a firm selling a single product during a single
time period. Single-period models are most often applied to perishable products, which
include (as you might expect) products such as eggs and flowers that may spoil, but also
products that lose their value after a certain date, such as newspapers, high-tech devices,
and fashion goods. The key element of the model is that the firm only has one opportunity
to place an order—before the random demand is observed.

Even if the firm actually sells its products over multiple periods (as is typical), the
operations in subsequent periods are not linked: Excess inventory cannot be held over until
the next period, nor can excess demands (that is, unmet demands are lost, not backordered).
Therefore, the firm’s multiperiod model can be reduced to multiple independent copies of
the single-period model presented here.

This model is one of the most fundamental stochastic inventory models, and many of
the models discussed subsequently in this book use it as a starting point. It is often referred
to as the newsvendor (or newsboy) model. The story goes like this: Imagine a newsvendor

2Base-stock policies are also sometimes known as order-up-to policies, S-policies, or (S − 1, S)-policies.
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who buys newspapers each day from the publisher for $0.30 each and sells them for $1.00.
The daily demand for newspapers at his newsstand is normally distributed with a mean of
50 and a standard deviation of 8. If the newsvendor has unsold newspapers left at the end
of the day, he cannot sell them the next day, but he can sell them back to the publisher
for $0.12 (called the salvage value). The question is: How many newspapers should he
buy from the publisher each day? If he buys exactly 50, he has an equal probability of
being understocked and overstocked. But it costs more to stock out than to have excess
(since stocking out costs him 70 cents in lost profit while excess newspapers cost him
30 − 12 = 18 cents each). So he should order more than 50 newspapers each day—but
how many more?

The inventory carried by the newsvendor can be decomposed into two components:
cycle stock and safety stock. As noted in Section 4.1, cycle stock is the inventory that is
intended to meet the expected demand—in our example, 50—whereas safety stock is extra
inventory that’s kept on hand to buffer against demand uncertainty—the amount over 50
ordered by the newsvendor. We will see later that the newsvendor’s cycle stock depends
on the mean of the demand distribution, while the safety stock depends on the standard
deviation.

It is possible for the safety stock to be negative: If stocking out is less expensive than
holding extra inventory, the newsvendor would want to order fewer than 50 papers. This can
actually occur in practice—for example, for expensive and highly perishable products—but
it is the exception rather than the rule.

The mathematical analysis of the newsvendor problem originated with Arrow et al.
(1951), though some of the ideas are much older: Edgeworth (1888) uses newsvendor-type
logic to determine the amount of cash to keep on hand at a bank to satisfy random with-
drawals by patrons. Morse and Kimball (1951) introduced the name “newsboy problem,”
and Porteus (2008) cites Matt Sobel as proposing the gender-neutral term “newsvendor
problem.”

As previously noted, the newsvendor model applies to perishable goods. In particular,
it applies to goods that perish before the next ordering opportunity. Many perishable goods
have a shelf life that exceeds the order interval: For example, a supermarket might place
replenishment orders every few days for milk, which has a shelf life of a few weeks.
Cases like this are much more difficult to optimize; for a more detailed discussion, see
Section 16.3.2.

4.3.2.2 Formulation As usual, we will use h to represent the holding cost: the cost
per unit of having too much inventory on hand. In the newsvendor problem, this typically
consists of the purchase cost of the unit, minus any salvage value, but may include other
costs, such as processing costs. (Since inventory cannot be carried to the next period,
this cost is not technically a holding cost, though we will refer to it that way anyway.)
Similarly, p represents the stockout cost: the cost per unit of having too little inventory,
consisting of lost profit and loss-of-goodwill costs. The holding cost is the cost per unit
of positive ending inventory, while the stockout cost is the cost per unit of negative ending
inventory. The costs h and p are sometimes referred to as overage and underage costs,
respectively (and some authors denote them co and cu). We can assume that the purchase
cost is included in h and that its negative is included in p, and therefore, we assume that
c = 0. We’ll also assume the firm starts the period with IL = 0, but this, too, is easy to
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relax (see Section 4.3.2.6). Since there is only a single period, the discount factor γ won’t
play a role in the analysis.

We will refer to the model discussed here as the implicit formulation of the newsvendor
problem since the costs and revenues are not modeled explicitly but instead are accounted
for in the holding and stockout costs h and p. (In contrast, see the explicit formulation in
Section 4.3.2.4.)

Recall thatD is a random variable that represents the demand per period. We’ll assume,
for now, that D has a continuous distribution. In Section 4.3.2.8, we’ll modify the analysis
to handle discrete demand distributions.

Our goal is to determine the base-stock level S to minimize the expected cost in the
single period. The strategy for solving this problem is first to develop an expression for the
cost as a function of d (the observed demand) and S (call it g(S, d)); then to determine the
expected cost ED[g(S,D)] (call it g(S)); and then (in Section 4.3.2.3) to determine S to
minimize g(S).

Let I(S, d) = (S − d)+ and B(S, d) = (d − S)+ be the on-hand inventory and
backorders, respectively, at the end of the period if the firm orders up to S and sees a
demand of d units. The cost for an observed demand of d is

g(S, d) = hI(S, d) + pB(S, d)

= h(S − d)+ + p(d− S)+. (4.1)

Since the demand is stochastic, however, we must take an expectation over D. Let
I(S) = E[I(S,D)] and B(S) = E[B(S,D)] be the expected on-hand inventory and
backorders if the firm orders up to S. Then,

g(S) = hI(S) + pB(S) (4.2)

= hE[(S −D)+] + pE[(D − S)+]

= h

∫ ∞
0

(S − d)+f(d)dd+ p

∫ ∞
0

(d− S)+f(d)dd

= h

∫ S

0

(S − d)f(d)dd+ p

∫ ∞
S

(d− S)f(d)dd (4.3)

Let

n(x) = E[(X − x)+] =

∫ ∞
x

(y − x)f(y)dy (4.4)

n̄(x) = E[(X − x)−] =

∫ x

0

(x− y)f(y)dy. (4.5)

These functions are known as the loss function and the complementary loss function,3

respectively. They can be defined for any probability distribution; here, we define them
in terms of the demand distribution. (See Section C.3.1 for more information about these
functions.) Then we can rewrite (4.3) as

g(S) = hn̄(S) + pn(S). (4.6)

3The term “complementary loss function” is our own; to the best of our knowledge, this function does not have a
name in common usage.
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This gives us three ways to write the expected cost function: using I(S) and B(S) (4.2),
using integrals (4.3), and using loss functions (4.6). It is also common to use the following
identities:

I(S) = S − µ+B(S) (4.7)∫ S

0

(S − d)f(d)dd = S − µ+

∫ ∞
S

(d− S)f(d)dd (4.8)

n̄(S) = S − µ+ n(S), (4.9)

all of which follow from the fact that x+ = x + x− for all x. These let us rewrite (4.2),
(4.3), and (4.6) as

g(S) = h(S − µ) + (h+ p)B(S) (4.10)

= h(S − µ) + (h+ p)

∫ ∞
S

(d− S)f(d)dd (4.11)

= h(S − µ) + (h+ p)n(S). (4.12)

4.3.2.3 Optimal Solution The derivatives of the loss function and its complement
are given by

n′(x) = F (x)− 1 (4.13)

n̄′(x) = F (x). (4.14)

(See Problem 4.23.) Moreover, n′′(x) = n̄′′(x) = f(x) > 0, so n(·) and n̄(·) are both
convex, and therefore so is g(S). To minimize g(S), therefore, we set its first derivative to
0. Using (4.6),

dg(S)

dS
= hF (S) + p(F (S)− 1) = (h+ p)F (S)− p. (4.15)

Setting this equal to 0 gives

(h+ p)F (S)− p = 0

=⇒ F (S) =
p

h+ p
(4.16)

=⇒ S∗ = F−1

(
p

h+ p

)
. (4.17)

Alternately, we can differentiate (4.12) to get

dg(S)

dS
= h+ (h+ p)(F (S)− 1) = (h+ p)F (S)− p,

which is identical to (4.15) and so gives the same optimal solution as (4.17).
The expression for S∗ in (4.17) is an important one, so we’ll state it as a theorem (which

we’ve now proven).

Theorem 4.1 The optimal base-stock level for a single-period model with no fixed costs
(the newsvendor model) is given by

S∗ = F−1

(
p

h+ p

)
.
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F−1
(

p
h+p

) d

f(d)

Figure 4.1 Optimal solution to newsvendor problem plotted on demand distribution.

p/(h + p) is known as the critical ratio (or critical fractile). It is implicit in a result by
Arrow et al. (1951) but was first formulated explicitly by Whitin (1953). Since p and h are
both positive,

0 <
p

h+ p
< 1,

so F−1(p/(h+ p)) always exists. F (S) = P(D ≤ S), or the probability of no stockouts.
This is known as the type-1 service level (see Section 4.3.4.2). Equation (4.17) then says
that under the optimal solution, the type-1 service level should be equal to the critical ratio.
It is optimal to stock out in 1−p/(h+p) = h/(h+p) fraction of periods. To put it another
way, the probability of not having a stockout is equal to the shaded area in Figure 4.1,
and Theorem 4.1 says that this area should equal p/(h + p) and that the non-shaded area
should equal h/(h + p). As p increases, the critical ratio increases, so S∗ and the type-1
service level both increase—it is more costly to stock out, so we should do it less frequently.
As h increases, the critical ratio decreases, as does S∗—it is more costly to have excess
inventory, so we will order less. The type-1 service level necessarily decreases as well.

Theorem 4.1—or one very much like it—holds for a wide range of models, not just
the single-period newsvendor model formulated here. Perhaps most importantly, a variant
of the theorem still holds for the mutliperiod, infinite-horizon version of the model; see
Section 4.3.4.

� EXAMPLE 4.1

Cora’s Newsstand faces the costs and demand process described in Section 4.3.2.1:
a holding cost of h = 0.18, a stockout cost of p = 0.70, and demand distributed as
N(50, 82). What is the optimal number of newspapers for Cora to order?
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Applying Theorem 4.1, we have

S∗ = F−1

(
0.70

0.18 + 0.70

)
= F−1(0.795) = 56.6.

If Cora can only order an integer number of newspapers, we use (4.6) to calculate
g(S) for the neighboring integer values of S. One of the neighboring integer values
is guaranteed to be optimal by the convexity of g(·).

g(56) = 0.18n̄(56) + 0.70n(56) = 2.0034

g(57) = 0.18n̄(57) + 0.70n(57) = 2.0000

Therefore, the optimal integer number of newspapers is 57.
If the demand distribution is discrete, it is always optimal to order the larger

neighboring S—see Section 4.3.2.8. But in this example, the demand distribution is
continuous even though the order quantity must be discrete, so we must check both
g(S) values. �

4.3.2.4 Explicit Formulation The formulation given in Sections 4.3.2.2–4.3.2.3 in-
terprets h and p as the overage and underage costs, respectively—the cost per unit of having
too much or too little inventory. The actual cost and revenue parameters are included im-
plicitly through the overage and underage costs. For instance, in the example described in
Section 4.3.2.1, there is a revenue of $1.00, a purchase cost of $0.30, and a salvage value
of $0.12, but these don’t appear explicitly in the expected cost function (4.2); rather, they
are factored into h and p.

Instead, one can write the expected cost function explicitly using these cost parameters,
and the resulting formulation is sometimes more intuitive. In particular, let r be the revenue
earned per unit sold, let c be the cost per unit purchased, and let v be the salvage value
earned for each unit of excess inventory. We assume r ≥ v, otherwise we earn more by
salvaging a unit than by selling it, so we would never sell any items.

Let h and p be the holding and stockout costs, but reinterpret them to exclude the costs
and revenues related to selling, buying, and salvaging the inventory. For example, h might
represent a storage cost or a cost to dispose of the inventory; p might represent loss of
goodwill or bookkeeping costs related to unmet demands.

As before, the objective is to minimize g(S), which should now include revenues as
negative costs. We have:

g(S) =cS + h

∫ S

0

(S − d)f(d)dd+ p

∫ ∞
S

(d− S)f(d)dd

− r

[
(1− F (S))S +

∫ S

0

df(d)dd

]
− v

∫ S

0

(S − d)f(d)dd (4.18)

=(c− r)S + (h+ r − v)

∫ S

0

(S − d)f(d)dd+ p

∫ ∞
S

(d− S)f(d)dd

=(c− r)S + (h+ r − v)n̄(S) + pn(S). (4.19)

Sometimes, this is instead formulated as a profit maximization problem in which we maxi-
mize π(S) ≡ −g(S).
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Since n̄(·) and n(·) are both convex, and since r ≥ v, g(·) is convex (and π(·) is
concave), so it suffices to set the first derivative of (4.19) to 0:

dg

dS
= c− r + (h+ r − v)F (S) + p(F (S)− 1) = 0

⇐⇒ F (S) =
p+ r − c

h+ p+ r − v

⇐⇒ S∗ = F−1

(
p+ r − c

h+ p+ r − v

)
. (4.20)

We can translate this to the implicit version of the problem by determining the overage
and underage costs (which we’ll denote by h′ and p′, respectively, since they have a
slightly different meaning than h and p in the explicit formulation). For each unit of excess
inventory, we incur a holding cost of h, and we paid c for the extra unit but earn v as a
salvage value; therefore, h′ = h+ c− v. Similarly, for each stockout, we incur a penalty
of p in addition to the lost profit r − c, so p′ = p+ r − c. Therefore, applying (4.17), we
get

S∗ = F−1

(
p′

h′ + p′

)
= F−1

(
p+ r − c

h+ p+ r − v

)
, (4.21)

which matches (4.20). The expected cost functions (4.12) and (4.19) are not equal, but they
differ only by an additive constant (see Problem 4.15).

It is perfectly acceptable to set any of the cost or revenue parameters to 0 if they are
negligible or should not be included in the model.

One word of caution: Avoid mixing the implicit and explicit approaches, since doing
so can lead to incorrect accounting of the various costs and revenues. For example, it is a
common mistake to use something like the objective function from the implicit formulation
(4.3), but to add cS or subtract

r

[
(1− F (S))S +

∫ S

0

df(d)dd

]
to reflect a purchase cost or sales revenue. If the holding and stockout costs in (4.3) are
interpreted as overage and underage costs, then the purchase cost and sales revenue are
already implicitly included in h and p (as they are in Example 4.1). To include them
explicitly in the objective function would be to double-count them.

� EXAMPLE 4.2

Let us analyze the example in Section 4.3.2.1 using the explicit formulation. We
have r = 1, c = 0.3, and v = 0.12. There are no other overage or underage costs
(e.g., no disposal costs or loss of goodwill), so h = p = 0. Therefore, from (4.20),

S∗ = F−1

(
0 + 1− 0.3

0 + 0 + 1− 0.12

)
= F−1

(
0.70

0.88

)
,

which is the same optimality condition as in Example 4.1 and yields the same solution:
S∗ = 56.6. �

For the remainder of this chapter and for most of the rest of this book, we will use the
implicit formulation. An exception is Chapter 14, which uses something more like the
explicit approach.
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4.3.2.5 Normally Distributed Demands In this section, we discuss results for the
special case in which demands are normally distributed: D ∼ N(µ, σ2), with pdf f and
cdf F . We use φ(·) and Φ(·) to denote the pdf and cdf, respectively, of the standard normal
distribution:

φ(z) =
1√
2π
e−z

2/2 (4.22)

Φ(z) =

∫ z

−∞
φ(x)dx (4.23)

We also use zα to denote the αth fractile of the standard normal distribution; that is,
zα = Φ−1(α).

As discussed in Section 4.2, we will assume that µ � σ so that the probability of
negative demands is negligible.

From (4.16), we have

F (S∗) =
p

h+ p

⇐⇒ Φ

(
S∗ − µ
σ

)
=

p

h+ p

⇐⇒ S∗ = µ+ σΦ−1

(
p

h+ p

)
.

If we let α = p/(h+ p), we have

S∗ = µ+ zασ. (4.24)

The first term of (4.24) represents the cycle stock—it depends only on µ. The second term
represents the safety stock—it depends on σ. The newsvendor problem can be thought of
as a problem of setting safety stock. The firm already knows that it will need µ units to
satisfy the expected demand; the question is how much more to order to satisfy any demand
in excess of the mean. This extra inventory is the safety stock. (See Figure 4.2.)

Note that, as discussed in Section 4.3.2.1, the safety stock is negative if p < h since, in
that case, α < 0.5 and zα < 0.

We next derive an expression for the expected cost under the optimal solution, as we
did with the economic order quantity (EOQ) problem in Section 3.2.3. If X is a normally
distributed random variable, then its loss and complementary loss functions are given by

n(x) = L (z)σ (4.25)

n̄(x) = [z + L (z)]σ, (4.26)

where z = (x− µ)/σ and

L (z) =

∫ ∞
z

(y − z)φ(y)dy. (4.27)

(See Problem 4.22.) (4.25) and (4.26) assumeF (0) = 0; this is true for actual demands, but
it is only approximately true for the normal distribution we use to model demand. L (z) is
called the standard normal loss function; it is equivalent to n(x) in (4.4) ifX has a standard
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µ µ+ zασ
d

f(d)

Figure 4.2 Optimal solution to newsvendor problem plotted on normal demand distribution.

normal distribution. L (z) is tabulated in many textbooks, or it can be computed explicitly
as

L (z) = φ(z)− z (1− Φ(z)) . (4.28)

Equation (4.28) is convenient for calculating L (z) in, say, Excel, MATLAB, or Python,
since these and many other environments have built-in functions for φ(·) and Φ(·) but not
for L (z).

Then, for our problem with normally distributed demands, the cost function (4.6) be-
comes

g(S) = h [z + L (z)]σ + pL (z)σ = [hz + (h+ p)L (z)]σ (4.29)

for any S > 0, where z = (S − µ)/σ. From (4.24), z∗ = (S∗ − µ)/σ = zα. Then from
(4.29),

g(S∗) = [hzα + (h+ p)L (zα)]σ

= [hzα + (h+ p)φ(zα)− (h+ p)zα(1− Φ(zα))]σ (from (4.28))

= [hzα + (h+ p)φ(zα)− (h+ p)zα(1− α)]σ

= [(h+ p)φ(zα)− (h+ p)zα + (h+ p)zα]σ (since (h+ p)α = p)

= (h+ p)φ(zα)σ (4.30)

It seems surprising at first that (4.30) depends only on σ, not on µ. But with a little
reflection, this makes sense: Since the problem comes down to setting safety stock levels,
only σ should figure into the objective function. Remember that the objective function
includes only holding and stockout costs—costs that result from the randomness in demand,
not its magnitude.

Again, let’s summarize the optimal order quantity and its cost in a theorem:

Theorem 4.2 The optimal base-stock level for a single-period model with no fixed costs
(the newsvendor model) under demands that are distributed as N(µ, σ2) is given by

S∗ = µ+ zασ,
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where zα = Φ−1(α) and α = p/(h+ p). The optimal cost is given by

g(S∗) = (h+ p)φ(zα)σ.

� EXAMPLE 4.3

As in Example 4.1, suppose D ∼ N(50, 82), h = 0.18, and p = 0.70. Then
zα = Φ−1(0.70/(0.18 + 0.70)) = 0.8255. We already know that S∗ = 56.6 for this
problem. We could calculate the optimal cost by plugging S∗ into (4.3), or just use
(4.30):

g(S∗) = (0.18 + 0.70) · φ(0.8255) · 8 = 1.9976.

�

4.3.2.6 Nonzero Starting Inventory Level We assumed that the firm starts the
period with IL = 0. In fact, this assumption is easy to relax (and it will be important to
do so in the multiperiod versions of this model). If IL ≤ S∗, then the firm should order
up to S∗, as usual. But suppose IL > S∗. The firm can’t order up to S∗ since it already
has too much inventory. But should the firm order any units? By the convexity of g(S),
the answer is no: It would be better to leave the inventory level where it is. Therefore, the
optimal order quantity at the start of the period is

Q =

{
S∗ − IL, if IL ≤ S∗

0, if IL > S∗.
(4.31)

4.3.2.7 Forecasting and Standard Deviations In most real-world settings, we
do not know the demand process exactly. Instead, we generate a forecast or estimate of
the demand parameters required to make inventory decisions. We’ll assume the demand
is normally distributed. If we knew µ and σ, we would simply use them in (4.24) to
determine the optimal order quantity. But suppose we don’t know them; instead, suppose
we have observed the demand for a long time, and let dt be the observed demand in period
t. In each period, we can generate an estimate of µ and σ from the historical data. There
are many ways to do this (see Chapter 2); one of the simplest is to use a moving average
(Section 2.2.1) to estimateµ and what we might call a moving standard deviation to estimate
σ in period t:

µ̂t =
1

N

t−1∑
i=t−N

dt σ̂t =

√√√√ 1

N − 1

t−1∑
i=t−N

(dt − µ̂t)2

To choose an order quantity in period t, we replace µ with µ̂t in (4.24). However, it turns
out that σ̂t is not the right standard deviation to use in place of σ. Instead, the correct
quantity to use is the standard deviation of the forecast error.

Returning to our historical data, µ̂t serves as a forecast for the demand in period t. The
forecast error (the forecast minus the observed demand in a given period) is a random
variable, and it has a mean, denoted µe, and a standard deviation, denoted σe. The correct
quantity to replace σ with in (4.24) is σe. We’ll omit a rigorous explanation of why this is
the case (see, e.g., Nahmias (2005, Section 2.12)), but here is the intuition. The forecasting
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process introduces sampling error in addition to the randomness in demand, and it is this
error that the firm really needs to protect itself against using safety stock. Suppose that the
demand is very variable (σ is large), but we are extremely good at predicting it (µe and σe
are both small). We would need very little safety stock, because we can accurately predict
how much inventory we will need. Now suppose that the demand is extremely steady (σ is
small) but that, for some reason, our forecast is always 100 units too large (µe is large, σe is
small). Here, too, we need very little safety stock, because (knowing our forecast is always
too large), we can simply revise our forecast downward. Finally, suppose that the demand
is steady (σ is small) but our forecasts are all over the place—sometimes high, sometimes
low (µe is small, σe is large). In this case, we need a lot of safety stock to protect against
the uncertainty arising from our inability to predict the demand. In all of these cases, it is
the standard deviation of the forecast error that drives the inventory requirement.

Unfortunately, we don’t know σe any more than we know σ. Instead, we can observe
the forecast error in period t,

et = µ̂t − dt,

and estimate the standard deviation of the forecast error as

σ̂e,t =

√√√√ 1

N − 1

t−1∑
i=t−N

(et − µ̂e,t)2
,

where

µ̂e,t =
1

N

t−1∑
i=t−N

et

is the estimate of the mean of the forecast error made in period t. (If we know for sure
that our forecasts are unbiased, we can replace µ̂e,t with 0.) We then replace σ with σ̂e,t in
(4.24) and in the analysis that follows. Of course, if the firm uses a forecasting technique
other than moving average, we can simply replace the formulas above with the appropriate
ones.

Now, in nearly all of the models in this book (one exception is Section 13.2.2), we
assume that the demand parameters are known and stationary. In that case, the forecast µ̂t
is always equal to the true demand mean µ, and the forecast error is µ − dt with mean 0
and standard deviation

σ̂e,t =

√√√√ 1

N − 1

t−1∑
i=t−N

(et − µ̂e,t)2
=

√√√√ 1

N − 1

t−1∑
i=t−N

(µ− dt)2
,

which converges to σ in the long run. Therefore, µ and σ are the appropriate parameters to
use.

In general, one can show that σLe = cσL for some constant c (at least for moving average
and exponential smoothing forecasts; see, e.g., Hax and Candea (1984, p. 174), or Nahmias
(2005, Appendix 2-A)), so in some sense the distinction between the standard deviation of
the demand and that of the forecast error is academic, but it’s still worth drawing.

This analysis assumes that µe = 0, i.e., the forecast is unbiased. If it is not, we should
also use µ̂t − µe in place of µ in (4.24): If our forecasts tend to be too high (µe > 0), then
we should reduce the estimate of the mean demand to account for this; and if our forecasts
are low (µe < 0), we should increase it.
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S S + 1

g(S)

∆g(S)

Figure 4.3 g(S) and ∆g(S).

4.3.2.8 Discrete Demand Distributions Suppose now that D is discrete. In this
case, (4.3) becomes

g(S) = h

S∑
d=0

(S − d)f(d) + p

∞∑
d=S

(d− S)f(d). (4.32)

The expected cost can still be expressed in terms of loss functions, keeping (4.6) as is but
replacing the definitions of n(·) and n̄(·) in (4.4) and (4.5) with

n(x) = E[(X − x)+] =

∞∑
y=x

(y − x)f(y) (4.33)

n̄(x) = E[(X − x)−] =

x∑
y=0

(x− y)f(y). (4.34)

(See Section C.3.4 for more on loss functions for discrete distributions.)
The expected cost function g(S) is still convex but no longer differentiable; it is

piecewise-linear, with breakpoints at each positive integer. (Why?) Therefore, we cannot
use derivatives to minimize it. Instead, we can use finite differences. A finite difference is
very similar to a derivative except that, instead of measuring the change in the function as
the variable changes infinitesimally, it measures the change as the variable changes by one
unit. Let

∆g(S) = g(S + 1)− g(S).

Imagine starting at S = 0 and increasing S one unit at a time. If g(S + 1) < g(S), i.e.,
∆g(S) < 0, then we would want to increase S to S+ 1 to bring the cost down. Since g(S)

is convex, S∗ is the smallest S such that ∆g(S) ≥ 0. (See Figure 4.3.) Well,

∆g(S) =h

S+1∑
d=0

((S + 1)− d) f(d) + p

∞∑
d=S+1

(d− (S + 1)) f(d)
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−

[
h

S∑
d=0

(S − d)f(d) + p

∞∑
d=S

(d− S)f(d)

]

=h

S∑
d=0

f(d) + h

S∑
d=0

(S − d) f(d)− p
∞∑

d=S+1

f(d) + p

∞∑
d=S+1

(d− S) f(d)

−

[
h

S∑
d=0

(S − d)f(d) + p

∞∑
d=S+1

(d− S)f(d)

]
=hF (S)− p(1− F (S)).

Therefore, S∗ is the smallest S such that hF (S)− p(1− F (S)) ≥ 0; that is:

Theorem 4.3 The optimal base-stock level for a single-period model with no fixed costs
(the newsvendor model) under demands that have a discrete distribution with cdf F (·) is
the smallest S such that

F (S) ≥ p

h+ p
. (4.35)

Unless we get lucky, there is no S such that F (S) equals the critical ratio, as it does
for continuous demands, so instead we “round up” to the next greater integer. That is, if
F (S − 1) < p/(h + p) < F (S), there is no need to evaluate both g(S − 1) and g(S);
g(S) will always be smaller. Note, however, that this does not hold when the demands are
continuous but the order quantities must be discrete; see Problem 4.16.

4.3.3 Finite Horizon

Now consider a multiple-period problem consisting of a finite number of periods, T .
Suppose we are at the beginning of period t. Do we need to know the history of the system
(e.g., order quantities and demands through period t − 1) in order to make an optimal
inventory decision in period t? The answer is no: All of the information we need to
make the inventory decision is contained in a single quantity—the starting inventory level,
which equals the ending inventory level in the previous period, ILt−1. Moreover, once
we decide how much to order, we can easily calculate the probability distribution of the
ending inventory level in period t (as we’ll see below). This suggests that the periods
can be optimized recursively—in particular, using dynamic programming (DP). Just as in
the DP algorithm we used for the Wagner–Whitin problem (Section 3.7.3), this DP will
make inventory decisions for period t, assuming that optimal decisions have already been
made for periods t + 1, . . . , T and using the cost of those optimal decisions to calculate
the cost of the decisions in period t. However, in this DP, the optimal decisions in period t
will depend on a random state variable (in particular, ILt−1), whereas the decisions in the
Wagner–Whitin DP depended only on the period, t.

First consider what happens at the end of the time horizon. Presumably, on-hand
units and backorders must be treated differently now that the horizon has ended than they
would be during the horizon. The terminal cost function, denoted θT+1(x), represents the
additional cost incurred at the end of the horizon if we end the horizon with inventory level
x. For example, we may incur a terminal holding cost hT+1 for on-hand units that must
be disposed of, and a terminal stockout cost pT+1 for backorders that must be satisfied
through overtime or other expensive measures. Then θT+1(x) = hT+1x

+ + pT+1x
−. Or,
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maybe we can salvage excess units at the end of the horizon for a revenue of vT+1 per unit,
in which case θT+1(x) = −vT+1x

+ + pT+1x
−.

Let θt(x) be the optimal expected cost in periods t, t + 1, . . . , T if we begin period t
with an inventory level of x (and act optimally thereafter). We can define θt(x) recursively
in terms of θs(x) for later periods s. In each period t, we need to decide how much to
order, but we will express this optimization problem not in terms of the order quantity Q,
but the order-up-to level y, defined as y = x+Q.4 In particular:

θt(x) = min
y≥x
{c(y − x) + g(y) + γED[θt+1(y −D)]}, (4.36)

where

g(y) = h

∫ y

0

(y − d)f(d)dd+ p

∫ ∞
y

(d− y)f(d)dd = hn̄(y) + pn(y) (4.37)

is the single-period expected cost function (see (4.3) and (4.6)). The minimization considers
all possible order-up-to levels y ≥ x (sinceQmust be nonnegative) and, for each, calculates
the sum of the cost to order y − x units, the expected cost in period t, and the expected
discounted future cost. Note that if we order up to y in period t, then the starting inventory
level in period t+ 1 will be y−D, where D is the (random) demand in period t; therefore,
the (random) cost in periods t+ 1, . . . , T equals θt+1(y −D).

The DP algorithm for the finite-horizon problem is given in Algorithm 4.1. The optimal
expected cost for the entire horizon is given by θ1(x1), where x1 is the inventory level that
the system starts with at the beginning of period 1.

Algorithm 4.1 DP for finite-horizon inventory problem
1: for all x do . Calculate terminal costs
2: compute θT+1(x)

3: end for
4: for t = T, . . . , 1 do . Main loop
5: for all x do
6: compute θt(x) using (4.36) . DP recursion
7: yt(x)← argmin in right-hand side of (4.36)
8: end for
9: end for

10: return θt(x), yt(x) ∀t, x

One way to think about this DP is as follows. Imagine a spreadsheet whose columns
correspond to the periods 1, . . . , T, T +1 and whose rows correspond to the possible values
of x. The value in cell (x, t) equals θt(x). We start by filling in the θT+1(x) values in the
last column, one for each value of x. Then, we calculate the cells in column T : For each
x, we calculate θT (x) using (4.36)—which requires us to look in column T + 1 for the
θT+1(x) values—and write the result in cell (x, T ). Then we calculate the cells in column
T − 1, using the values in column T , and so on, until we solve period 1. Also imagine a
second spreadsheet with identical structure but whose cells contain yt(x) rather than θt(x).

4The order-up-to level y is related to, but not the same as, the base-stock level S. The order-up-to level depends
on x: If x < S, then y = S and if x ≥ S then y = x. In contrast, S is a fixed number, independent of x.
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The completed spreadsheets tell the firm everything it needs to know about optimally
managing the inventory system. If it finds itself with an inventory level of x at the start
of period t, it simply looks in the second spreadsheet and orders up to the yt(x) value that
is found in cell (x, t). (The corresponding cell in the first spreadsheet tells the expected
current and future cost of this action.)

Two problems with this approach bear mentioning. First, the DP calculates θt(x) “for
all x.” But x can potentially become arbitrarily large or small, depending on the values we
choose for y and on the random demands. For example, if yt = 100 andD ∼ N(100, 102),
it is possible (although extremely unlikely) that ILt will equal −100,000,000, so our
spreadsheet should extend at least this far. Of course, this is neither practical nor essential
(since the probability is so low), so we typically truncate the state space to consider only
“reasonable” x values. (The definition of “reasonable” depends on the specific problem at
hand.)

Second, even if we consider only a reasonably narrow range of x values, if D has
a continuous distribution, there are still an infinite number of possible inventory levels
to consider. This problem is typically addressed by discretizing the demand distribution
so we consider only a finite number of possible demand values. The granularity of the
discretization (e.g., do we round demands to the nearest integer? to the nearest 0.001? the
nearest 0.000001?) again depends on the specific problem. In general, larger ranges of x
values and smaller granularity result in more accurate solutions but longer run times.

Even after we resolve these two problems, this approach is still somewhat unsatisfying,
at least from a managerial point of view. The spreadsheets described above will work, but
they are fairly cumbersome. It would be nice if we could boil the information contained
in the spreadsheets down into a simple policy. To that end, let’s look more closely at the
results of the DP.

Figure 4.4 plots yt(x) for three different periods t and for a range of x values for
a particular instance of the problem.5 Essentially, each curve contains the data from a
column in the second spreadsheet. Notice that all three curves are flat for a while and then
climb linearly along the line y = x. That is, for each t, there exists some value St such
that, for x < St, we have yt(x) = St, and for x ≥ St, we have yt(x) = x. (In particular,
S1 = 15, S5 = 21, S8 = 17.) In other words, these curves each depict a base-stock policy!
In fact, we will prove in Section 4.5.1.2 that a base-stock policy is optimal in every period
of the finite-horizon model presented here—the pattern suggested by Figure 4.4 always
holds.

Recognizing the optimality of a base-stock policy has simplified the results: We don’t
need the entire yt(x) spreadsheet to tell us how to act in each period, we just need a
list of St values—the optimal base-stock level for each period t. In general, these can
be different for different periods, as suggested by Figure 4.4, although in some special
cases, the same base-stock level is optimal in every period (see Section 4.5.1.2). However,
base-stock optimality has not simplified the computation required to determine the optimal
policy—we still need to solve the DP to find the optimal base-stock levels in each period.
In particular, St is equal to yt(−∞), or, assuming we have truncated the range of possible
x values, St equals yt(x) for the smallest x value considered.

5Actually, for a somewhat more general version of the problem in which the parameters may change (determin-
istically) over time. The same general results hold for both models.



PERIODIC REVIEW WITH ZERO FIXED COSTS: BASE-STOCK POLICIES 105

−5 0 5 10 15 20 25

0

10

20

x

y t
(x

)

t = 1

t = 5

t = 8
y = x

Figure 4.4 DP results, K = 0: yt(x).

4.3.4 Infinite Horizon

Our third and final variety of periodic-review models with no fixed costs is the case in
which T = ∞. This problem is sometimes referred to as the infinite-horizon newsvendor
model. If the number of periods is infinite, then the total expected cost across the horizon
may be infinite, too. (It certainly will be if γ = 1.) An alternate objective is to minimize
the expected cost per period. The former case is known as the discounted-cost criterion,
while the latter is known as the average-cost criterion. We’ll consider the average-cost
criterion first, then the discounted-cost criterion.

Under the average-cost criterion, we assume γ = 1. The expected cost in a given period
if we use base-stock level S is given by

g(S) = h

∫ S

0

(S − d)f(d)dd+ p

∫ ∞
S

(d− S)f(d)dd = hn̄(S) + pn(S). (4.38)

This is exactly the same expected cost function as in the single-period model of Sec-
tion 4.3.2. Therefore, the same base-stock level—given in Theorem 4.1—is optimal, in
every period!

In formulating (4.38), we glossed over two potentially problematic issues. First, why
didn’t we account for the purchase cost c, and second, why didn’t we account for the cost in
future periods? Well, in the long run, the expected number of units ordered is the same—
µ—no matter what S we choose. And since γ = 1, the timing of our orders does not affect
the purchase cost. Therefore, the expected purchase cost per period is independent of S.

What about future periods? In (4.38), we didn’t account for the impact of our choice of
S on future periods. Is this approach sound, or do we need to account for the future cost,
as in the finite-horizon DP model of Section 4.3.3? For example, if we start period t with
ILt−1 > St, then the expected cost in period t is g(ILt−1) rather than g(St). In this case,
(4.38) would give an incomplete picture of the expected cost in period t since it assumes we
can always order up to S. This suggests that we cannot optimize the periods independently.
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However, as long as St ≤ St+1, we can be sure that the system starts period t + 1 with
ILt ≤ St+1. (Why?) Therefore, no matter what value we choose for St, we know that we
can always order up to St+1 in period t + 1. And, as we will see in Section 4.5.1.3, the
same base-stock level is optimal in every period. Therefore, St = St+1, so St ≤ St+1 and
we can optimize (4.38) to find the optimal base-stock level.

Now suppose γ < 1, i.e., consider the discounted-cost criterion. Since the timing of
orders now affects the cost, (4.38) is no longer valid. However, the solution turns out to be
nearly as simple: The optimal base-stock level is the same in every period, and it is given
by

S∗ = F−1

(
p− (1− γ)c

h+ p

)
. (4.39)

(We omit the proof.)
We summarize these conclusions in the following theorem:

Theorem 4.4 The optimal base-stock level in every period of an infinite-horizon model
with no fixed costs is given by

S∗ = F−1

(
p− (1− γ)c

h+ p

)
.

Note that this theorem holds for both γ = 1 and γ < 1, i.e., for both the average- and
discounted-cost criteria.

If demand is normally distributed, then the results from Section 4.3.2.5 still hold, after
modifying to account for γ. In particular,

S∗ = µ+ σΦ−1

(
p− (1− γ)c

h+ p

)
= µ+ zασ, (4.40)

where α = (p− (1− γ)c)/(h+ p). The comments on forecasting in Section 4.3.2.7 also
apply here.

4.3.4.1 Lead Times and Reorder Intervals So far, we have assumed that the lead
time is 0 and that the reorder interval—the number of periods that elapse between orders—
is 1. (The reorder interval is sometimes called the review period.) In this section, we relax
those assumptions to allow the lead time to be nonzero and the reorder interval to be greater
than 1. In general, we define the lead-time demand as the cumulative demand in L + R

consecutive periods. In the newsvendor problem in Section 4.3.2, L = 0 and R = 1, so
the lead-time demand is just the demand in a single period.

The sequence of events is the same as that on page 90. In the discussion that follows,
we will use the following notation:

ILt = ending inventory level (after step 4 of sequence of events) in period t
IPt = inventory position after order is placed but before demand is observed

(after step 2 of sequence of events) in period t
Dt = demand in period t
D[t, s) = cumulative demand in periods t, t+ 1, . . . , s− 1

≡ 0 if t > s
Dτ = cumulative demand in τ consecutive periods
fτ , F τ = pdf/pmf and cdf of Dτ
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t− L t− 2 t− 1 t t+ 1 t+ 2 t+ L

Orders:

On hand:

Period:

Figure 4.5 Inventory dynamics. All items on order or on hand in period t have arrived by period
t+L. Items ordered before t−L arrive before t, and items ordered after t arrive after t+L. In the
figure, L = 3.

nτ , n̄τ = loss function and complementary loss function of Dτ

For the moment, assume that the reorder interval R equals 1, but allow an L-period
lead time, L ≥ 0. That is, an order placed in period t (in step 2 of the sequence of
events) is received in step 2 of period t + L. From step 4 of the sequence of events, the
holding and stockout costs are incurred based on the ending inventory level, IL, a random
variable; therefore, to calculate the expected holding and stockout costs, we need to know
the distribution of IL, which in turn depends on the inventory policy parameters (e.g., S).
The distribution of IL is not obvious, because IL depends on both the random demand
and the inventory actions governed by S. Worse still, there is a delayed reaction: Inventory
decisions made in period t do not have an effect on IL until period t+L. In the intervening
periods, other orders may have arrived (increasing the inventory level) and demands will
have occurred (decreasing the inventory level).

The solution to this problem is to relate the inventory level at time t+L to the inventory
position at time t (which we know, in the case of a base-stock policy) and to the demand
during periods t, . . . , t + L (whose probability distribution we know). In particular, the
ending inventory level in period t+ L is given by

ILt+L = IPt −D[t, t+ L+ 1). (4.41)

Why is (4.41) true? Well, all of the items included in IPt—including items on hand and
on order—will have arrived by period t+L. Moreover, no items ordered after period twill
have arrived by period t+ L. Therefore, all items that are on hand or on order in period t
will be included in the ending inventory level in period t+L, except for theD[t, t+L+ 1)

items that have since been demanded. (See Figure 4.5.) Another way to think of this is that
if the inventory position in period t is IPt and there is no demand during [t, t+L], then the
inventory level in period t + L will be IPt; and if some demand does occur, then ILt+L
will be IPt minus that demand.

Equation (4.41) is a very important equation. It applies to the periodic-review models in
this chapter and—in modified form—to the continuous-review models in Chapter 5. The
idea dates back to Scarf (1960); Zipkin (2000) refers to it as a conservation of flow equation.

Note that (4.41) only holds for the lead time L; that is, in general,

ILt+L′ 6= IPt −D[t, t+ L′ + 1). (4.42)
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This is because some of the units included in IPt may not be delivered by period t+L′ (if
L′ < L), or some units ordered after period t may have been delivered by period t+L′ (if
L′ > L).

In steady state, we can drop the time indices from (4.41) and write

IL = IP −DL+1, (4.43)

where DL+1 is a random variable representing the lead-time demand. (We’re omitting
some of the probabilistic arguments necessary to justify the move from (4.41) to (4.43).
See, for example, Galliher et al. (1959) and Zipkin (1986b).) If L = 0, then (4.41) simply
says that the ending inventory in period t equals the inventory position after the order minus
the demand in the period.

Let us apply this insight to the infinite-horizon base-stock problem under the average-
cost criterion in Section 4.3.4. (Continue to assume that γ = 1.) Since this is a base-stock
policy, IPt = S in every period t. Therefore,

ILt+L = S −D[t, t+ L+ 1), (4.44)

or in steady state,
IL = S −DL+1. (4.45)

In other words, the pdf of IL is

fIL(x) = fL+1(S − x).

The expected cost is still given by (4.38), and Theorem 4.4 still gives the optimal base-stock
level, with f(·), F (·), n(·), and n̄(·) replaced by fL+1(·), FL+1(·), nL+1(·), and n̄L+1(·).
In essence, we have shifted the accounting so that actions taken in period t do not incur
costs until period t+ L, though all of that logic is buried in the expectations in (4.38).

For normally distributed demands, Theorem 4.4 says that

S∗ = (L+ 1)µ+
√
L+ 1zασ, (4.46)

where µ and σ refer to the demand per period (and so (L+ 1)µ is the mean and
√
L+ 1σ

is the standard deviation of lead-time demand). In (4.46), (L+ 1)µ is the cycle stock and
zα
√
L+ 1σ is the safety stock. The safety stock is held to protect against fluctuations in

lead time demand, which is why the safety stock component uses the standard deviation
of lead time demand. The reason the cycle stock level depends on the lead time, too, is
that the base-stock level refers to the inventory position—so if the lead time is 4 weeks, we
always want 4 weeks’ worth of cycle stock in the pipeline plus 1 week’s worth on hand.

Now let’s generalize this logic to allow a reorder interval of R ≥ 1, so that orders are
placed everyR periods. Continue to assume that the lead time is L ≥ 0. The conservation-
of-flow argument now goes as follows: Assume that period t is an order period and that
r ∈ {0, 1, . . . , R − 1}. All items included in IPt will have arrived by period t + L, and
therefore by period t+ L+ r. No items ordered after period t will have arrived by period
t + L + R − 1 (because any such items would have been ordered in period t + R at the
earliest), or therefore by period t+ L+ r. Therefore, the ending inventory level in period
t+ L+ r equals IPt minus the demand in periods t, . . . , t+ L+ r:

ILt+L+r = IPt −D[t, t+ L+ r + 1). (4.47)
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For a base-stock policy, IPt = S, so we have

ILt+L+r = S −D[t, t+ L+ r + 1) (4.48)

if t is an order period. Therefore, the expected cost is

g(S) =
1

R

R−1∑
r=0

gL+r+1(S), (4.49)

where g(S) is the newsvendor cost function (4.3) with f(·) replaced by fL+r+1(·). In
general, this cost function must be optimized numerically to find the optimal base-stock
level, S∗.

Note that if R = 1, then (4.47) and (4.48) reduce to (4.41) and (4.44), respectively, and
(4.49) reduces to (4.3).

� EXAMPLE 4.4

Suppose that Cora’s Newsstand also sells city maps, which, coincidentally, incur
the same cost and demand structure as in Example 4.1: h = 0.18, p = 0.70,
D ∼ N(50, 82). The maps are not perishable, so it makes sense for Cora to plan
her inventory using an infinite-horizon model. Unmet demands are backordered.
Assume that γ = 1. If L = 0, what is the optimal order quantity? What if L = 4?
What if, in addition, R = 3?

IfL = 0, then the analysis in Example 4.1 remains intact, and we have S∗ = 56.6.
Now suppose L = 4. From (4.46),

S∗ = 5 · 50 +
√

5 · 0.8255 · 8 = 264.8,

with cost
g(S∗) = (0.18 + 0.70)φ(0.8255)

√
5 · 8 = 4.47.

If, in addition, R = 3, then from (4.49) the cost function is

g(S) =
1

3

2∑
r=0

g5+r(S).

Optimizing numerically, we get S∗ = 344.5, with cost g(S∗) = 11.40. �

4.3.4.2 Service Levels The service level measures how successful an inventory pol-
icy is at satisfying the demand. There are many definitions of service level. The two most
common are as follows:

• Type-1 service level: the percentage of order cycles during which no stockout occurs,
sometimes called the cycle service level, denoted A.

• Type-2 service level: the percentage of demand that is met from stock, sometimes
called the fill rate, denoted B.

(An order cycle is the interval between two consecutive orders, or order arrivals. For
base-stock policies, the duration of each order cycle is equal to the reorder interval, R. For
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Table 4.1 Sample demands and stockouts.

Period Demand Stockouts

1 150 0
2 100 0
3 250 50

(s, S) policies, and for the continuous-review models in Chapter 5, the length of an order
cycle is stochastic.)

For example, suppose there are 3 periods with the demands and stockouts given in
Table 4.1. Then the type-1 service level A is 67% (because we stocked out in 1 of
3 periods), while the type-2 service level B is 90% (because we filled 450 out of 500
demands). In theory, the type-1 service level can be greater than the type-2 service level,
but this rarely happens since the type-1 service level is a more stringent measure—any
cycle during which a stockout occurs is counted as a “failure,” rather than just counting the
individual stockouts as failures. (The type-1 service level would be greater than the type-2
service level if, for example, stockouts occur very rarely, but when they do, the number of
stockouts is very large.)

Focusing now on base-stock policies, assume that the lead time is L ≥ 0 periods. If the
review period is R = 1 (see Section 4.3.4.1), the type-1 service level is easy to calculate:
By (4.45), no stockout will occur in a given period if and only if the lead-time demand for
the interval ending at that period is less than or equal to S, i.e., A = FL+1(S). If R > 1,
the type-1 service level is the probability that there are no stockouts in an order cycle, i.e.,
over the R periods between two order arrivals. No stockout occurs in a cycle if and only
if the inventory level at the end of the cycle (just before the next order arrival) is positive.
By (4.48), this inventory level is positive if and only if S −D[t, t + L + R) > 0, which
occurs with probability FL+R(S). To summarize:

Theorem 4.5 The type-1 service level under a periodic-review base-stock policy with lead
time L ≥ 0 and reorder interval R ≥ 1 is given by

A = FL+R(S),

where FL+R(·) is the cdf of the cumulative demand over L+R consecutive periods.

The type-2 service level is a bit trickier. The type-2 service level is

B = E
[

# of demands met from stock in a period
# of demands in a period

]
. (4.50)

We will start by making two simplifying assumptions to derive an approximate expression
for the type-2 service level, then relax one and then finally both assumptions to obtain
another approximation and an exact expression.

• Simplifying Assumption 1 (SA1): Backorders never last for more than one order
cycle. That is, each arriving order is large enough to clear all existing backorders.

• Simplifying Assumption 2 (SA2):

E
[

# of demands met from stock in a period
# of demands in a period

]
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=
E[# of demands met from stock in a period]

E[# of demands in a period]
.

SA1 is reasonable when S is sufficiently high, as it usually is in practice. SA2 is not true,
of course, since E[X/Y ] 6= E[X]/E[Y ] in general for random variables X and Y ; we will
explore the loss of accuracy caused by this assumption later in this section. We will use B̂1

to denote the type-2 service level under SA1 and SA2, B̂2 to denote that under SA2 only,
and B to denote the exact type-2 service level that assumes neither.

Under SA1 and SA2, we have

B̂1 =
E[# of demands met from stock in a period]

E[# of demands in a period]

=
E[# of demands met from stock in a cycle]

E[# of demands in a cycle]

= 1− E[# stockouts in a cycle]

E[# demands in a cycle]
, (4.51)

where the second equality follows from the fact that each cycle lasts exactly R periods.
Assume that an order is placed in period t and consider the cycle that begins in period t+L

and ends in period t+L+R−1. After the order arrives in period t+L, the inventory level
is positive (by SA1), so the number of stockouts in the cycle equals IL−t+L+R−1, using the
notation in Section 4.3.4.1. Therefore,

E[# stockouts in a cycle] = E[IL−t+L+R−1]

= E[(S −D[t, t+ L+R))−] = nL+R(S),

where the second equality follows from (4.48). Therefore,

B̂1 = 1− nL+R(S)

Rµ
. (4.52)

Johnson et al. (1995) and subsequent authors refer to this as the “traditional approach.”
Now relax SA1. We can no longer calculate the expected number of stockouts in a cycle

using the inventory level at the end of the cycle because not all of the “negative” items in
ILt+L+R−1 are stockouts from the current cycle; some may be left over from the previous
cycle. Therefore, we must account for these items more carefully.

Suppose period t is an order period. Let’s focus on the cycle that begins in period t+L

and ends in period t + L + R − 1. After the order arrives in t + L, no additional orders
arrive in this cycle. Therefore, the number of demands met from stock during this cycle
equals the difference between the on-hand inventory immediately after the order arrival in
period t+L (call this OH1) and the on-hand inventory at the end of period t+L+R− 1
(call this OH2). Moreover, the expected demand during the cycle is Rµ. Therefore,

B̂2 =
E[# of demands met from stock in a cycle]

E[# of demands in a cycle]

=
E[OH1]− E[OH2]

Rµ
.

It remains to evaluate E[OH1] and E[OH2]. First, OH1 = X+, where X is the inventory
level immediately after the order arrival in period t+ L. Then

X = ILt+L +Dt+L = S −D[t, t+ L) (4.53)



112 STOCHASTIC INVENTORY MODELS: PERIODIC REVIEW

since ILt+L = S −D[t, t+ L+ 1) by (4.48). Therefore,

E[OH1] = E
[
(S −D[t, t+ L))+

]
= n̄L(S). (4.54)

If L = 0, then the right-hand side of (4.53) is S (since D[t, t + L) ≡ 0), and in (4.54),
n̄L(S) = E[(S −DL)+] = S since (DL = 0).

Similarly,
E[OH2] = E

[
(S −D[t, t+ L+R))+

]
= n̄L+R(S).

Therefore,

B̂2 =
n̄L(S)− n̄L+R(S)

Rµ
, (4.55)

where n̄L(S) ≡ S if L = 0. This approach is due to Hadley and Whitin (1963); see
also Johnson et al. (1995), Zhang and Zhang (2007), and Teunter (2009). For another,
equivalent, formula for the type-2 service level under SA2, see Problem 4.17.

Since S is chosen to cover L + R periods of demand, we would expect the number of
stockouts over L periods to be negligible; put another way,

n̄L(S) = E
[(
DL − S

)−] ≈ E [− (DL − S
)]

= S − µL.

Therefore, from (4.55),

B ≈ S − µL− n̄L+R(S)

Rµ

=
S − µL−

(
S − (L+R)µ+ nL+R(S)

)
Rµ

(by (C.14))

=
Rµ− nL+R(S)

Rµ
= B̂1,

which provides another justification of (4.52).
Finally, let us relax both SA1 and SA2 to derive the exact fill rate. As above, assume

that t is an order period, and let X be the inventory level after the order arrives at the start
of period t+ L. First assume that L ≥ 1. Then from (4.53), X = S −DL, i.e., the pdf of
X is fX(x) = fL(S − x). We will evaluate (4.50) by conditioning on X: By the law of
total expectation,

B =E
[

# of demands met from stock in a period
# of demands in a period

]
=EX

[
E
[

# of demands met from stock in a period
# of demands in a period

∣∣∣∣X]]
=

∫ S

x=−∞

[∫ ∞
d=0

min{x+, d}
d

fR(d)dd

]
fL(S − x)dx

=

∫ S

x=0

[
FR(x) +

∫ ∞
d=x

x

d
fR(d)dd

]
fL(S − x)dx. (4.56)

In the last equality, the change in the lower limit of the first integral comes from the fact
that min{x+, d} = 0 for x < 0. If L = 0, then X = S, and (4.56) becomes

B = FR(S) +

∫ ∞
d=S

S

d
fR(d)dd. (4.57)
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If the demands are discrete, the integrals in (4.56) and (4.57) are replaced by sums; see
Babiloni et al. (2012).

We summarize the expressions for the type-2 service level in the following theorem.

Theorem 4.6 For a periodic-review base-stock policy with lead time L ≥ 0 and reorder
interval R ≥ 1: The approximate type-2 service level under simplifying assumptions SA1
and SA2 (see page 110) is

B̂1 = 1− nL+R(S)

Rµ
; (4.58)

the approximate type-2 service level under simplifying assumption SA2 is

B̂2 =
n̄L(S)− n̄L+R(S)

Rµ
, (4.59)

where n̄L(S) ≡ S if L = 0; and the exact type-2 service level is

B = FR(S) +

∫ ∞
d=S

S

d
fR(d)dd (4.60)

if L = 0 and

B =

∫ S

x=0

[
FR(x) +

∫ ∞
d=x

x

d
fR(d)dd

]
fL(S − x)dx (4.61)

if L ≥ 1.

Theorem 4.6 holds for both continuous and discrete demands, with the integrals in (4.61)
replaced by sums.

� EXAMPLE 4.5

Suppose that we use a base-stock level of S = 360 in the problem with L = 4 and
R = 3 in Example 4.4. What are the type-1 and type-2 service levels?

From Theorem 4.5, the type-1 service level is

A = F 7(360) = 0.6817.

From Theorem 4.6, the type-2 service level under SA1 and SA2 is

B̂1 ≈ 1− n7(360)

3 · 50
= 0.9709.

The type-2 service level under SA2 is

B̂2 =
n̄4(360)− n̄7(360)

3 · 50
=

160.0− 14.3693

150
= 0.9709.

Since n4(360) ≈ 10−21, B̂1 and B̂2 agree to at least 20 decimal places. On the other
hand, these both differ a bit from the exact service level, which is

B =

∫ 360

x=0

[
F 3(x) +

∫ ∞
d=x

x

d
f3(d)dd

]
f4(360− x)dx = 0.9732.

�



114 STOCHASTIC INVENTORY MODELS: PERIODIC REVIEW

Service levels are an important performance measure once the system has been opti-
mized, but they also often play a key role in the optimization itself. The main reason for
this is that the stockout penalty p is difficult to estimate, and so it is often preferable to
ignore stockouts in the objective function and instead limit them in a constraint, via the
service level. That is, we solve a problem of the form

minimize hI(S) (4.62)

subject to type-1 service level ≥ α (4.63)

or subject to type-2 service level ≥ β. (4.64)

The objective function comes from (4.2), ignoring the stockout cost. Since I(S) and
the service levels are all increasing functions of S, this optimization problem amounts to
finding S such that the constraint holds as an equality.

To optimize the base-stock level subject to the type-1 service-level constraint (4.63), we
simply have

S∗ = (FL+R)−1(α). (4.65)

Since the expressions for the type-2 service level above are more complex than those for
type-1, optimizing subject to (4.64) usually requires an iterative search to find the S that
satisfies B = β in one of the (approximate or exact) expressions for B Theorem 4.6.

� EXAMPLE 4.6

For the problem setting in Example 4.4 with L = 4 and R = 3, suppose Cora wishes
to require a type-1 service level of 0.9 or a type-2 service level of 0.95. What values
of S should she use?

To attain a type-1 service level of 0.9, we use (4.65) to get

S∗ = (F 7)−1(0.9) = 377.13.

For the type-2 service level, let’s first use the approximate service level B̂1:

1− n7(S)

5 · 50
= 0.95

⇐⇒ n7(S) = 7.5

⇐⇒ S = 351.96.

Now, since
n̄4(351.96)− n̄7(351.96)

3 · 50
= 0.95,

this value of S also satisfies the constraint using B̂2. On the other hand, setting
S = 350.83 makes the exact type-2 service level, B, equal 0.95. �

4.4 PERIODIC REVIEW WITH NONZERO FIXED COSTS: (s, S) POLICIES

4.4.1 (s, S) Policies

We now consider the more general case in which the fixed cost K may be nonzero. If
K 6= 0, it may no longer make sense to order in every period, since each order incurs a cost.
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Instead, the firm should order only when the inventory position becomes sufficiently low.
In particular, we will assume in this section that the firm follows an (s, S)-policy—and
in Section 4.5.2, we will prove that such policies are optimal for this system. An (s, S)

policy works as follows: In each time period, we observe the current inventory position;
if the inventory position is less than or equal to s, then we place an order whose size is
sufficient to bring the inventory position up to S. Both s and S are constants, and s ≤ S.
The quantity s is known as the reorder point and S as the order-up-to level. The reorder
point and order-up-to level may change from period to period.

In the special case in which s = S, we place an order in every period, and the (s, S)

policy is equivalent to a base-stock policy. (In the discrete-demand case, we would use
s = S − 1; this is why base-stock policies are sometimes known as (S − 1, S) policies.)

Arrow et al. (1951) were the first to formulate the expected cost function for a given
choice of the parameters s and S, and to begin the discussion of how to find the optimal
s and S. Their analysis simply assumed that the firm followed an (s, S) policy, as we do
in this section; the optimality of (s, S) policies for multiperiod problems was not proven
until Scarf’s (1960) paper.

(s, S) polices are closely related to (r,Q) policies, which we will cover in greater depth
in Chapter 5. In an (r,Q) policy, when the inventory position reaches the reorder point,
denoted r, we place an order of sizeQ. The difference is that in an (r,Q) policy, we always
order the same quantity (Q), while in an (s, S) policy, we instead order up to a fixed level
(S). The two types of policies are equivalent if, in every order cycle, there exists a time
at which the inventory position exactly equals the reorder point (s or r), and if we always
observe the inventory at that moment. Examples include continuous-review systems with
continuously distributed demand (as in Section 5.1) and periodic-review systems in which
the demand in each period can only be 0 or 1.

We will discuss how to determine the optimal s and S for the single-period, finite-
horizon, and infinite-horizon cases separately, just as we did in Section 4.3 for the zero-
fixed-cost case. Actually, the single-period case is not nearly as useful for the K > 0 case
as it is for the K = 0 case. This is because single-period models are most commonly used
for perishable products that must be ordered every period; a multiple-period model thus
reduces to multiple copies of a single-period one. Even if K > 0, we still need to order
the perishable product in every period, so the fixed cost becomes a constant and can be
ignored. Fixed-cost models are therefore most useful in their multiple-period incarnations.
Nevertheless, we will discuss the single-period model to introduce the basic concepts.

4.4.2 Single Period

Suppose the inventory position at the start of the (single) period is x. For given s and S, the
ordering rule is: If x ≤ s, order S − x; otherwise, order 0. Once we order (or don’t), we
incur holding and stockout costs just as in the zero-fixed-cost model, except the base-stock
level is replaced by S (if we order) and x (if we don’t). Therefore, the total expected cost
in the period—as a function of s and S—is given by

g(s, S) =

{
K + g(S), if x ≤ s
g(x), if x > s,
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where g(S) is the expected cost function for the single-period problem with no fixed costs
as expressed in (4.3) or (4.6). (As in the single-period model without fixed costs, we are
assuming c = 0.)

Optimizing g(s, S) over s and S is actually quite easy (Karlin 1958b): We already know
from Theorem 4.1 that F−1(p/(h+ p)) minimizes g(S), so our aim should be to order up
to this level unless the fixed cost makes doing so prohibitively expensive. In other words,
we should set S∗ = F−1(p/(h+p)) and set s∗ such that s∗ ≤ S∗ and g(s∗) = g(S∗)+K.
(Such an s∗ is guaranteed to exist for continuous demand distributions.) Because of the
convexity of g(S), if x ≤ s, it is cheaper to order up to S than to leave the inventory
position at x, and the reverse is true if x > s.

4.4.3 Finite Horizon

The finite-horizon model with nonzero fixed costs can be solved using a straightforward
modification of the DP model for the zero-fixed-cost case from Section 4.3.3. Just as before,
θt(x) represents the optimal expected cost in periods t, . . . , T if we begin period t with an
inventory level of x (and act optimally thereafter). Now θt(x) must account for the fixed
cost in period t (if any), as well as the purchase cost and expected holding and stockout
costs in period t, and the expected future costs, as in the K = 0 model. In particular,

θt(x) = min
y≥x
{Kδ(y − x) + c(y − x) + g(y) + γED[θt+1(y −D)]}, (4.66)

where

δ(z) =

{
1, if z > 0

0, otherwise

and g(·) is as expressed in (4.3) or (4.6).
The DP can be solved exactly as described in Section 4.3.3. Just as in that section,

the results of the DP tell us exactly what to order up to in each period t for each starting
inventory level x. However, just as before, we would rather have a simple policy to follow,
rather than having to specify yt(x) for every t and x. And, just as before, this is always
possible, because a simple policy is always optimal—in this case, an (s, S) policy.

To illustrate this, Figure 4.6 plots yt(x) for a particular instance of the problem.6

Just as in Figure 4.4, each curve is flat for a while and then climbs along the line y = x.
However, whereas in Figure 4.4 the two portions are continuous, here there is a discontinuity
representing the point at which we stop ordering. In particular, for period t, there are values
St and st such that for x ≤ st, we have yt(x) = St, and for x > st, we have yt(x) = x. In
other words, these curves each depict an (s, S) policy. We will prove in Section 4.5.2.2 that
an (s, S) policy is optimal in every period of a finite-horizon model with fixed costs—the
pattern suggested by Figure 4.6 always holds.

Once we solve the DP for a given instance, we still need to determine st and St from
the results. This is not difficult: st is equal to the largest x such that yt(x) = St, and, just
as in Section 4.3.3, St = yt(−∞) (or yt(x) for the smallest x value considered).

6Again, for a variant with time-varying parameters.
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Figure 4.6 DP results, K > 0: yt(x).

4.4.4 Infinite Horizon

Recall that the infinite-horizon model with no fixed costs (Section 4.3.4) is as simple as
the single-period model (Section 4.3.2). Unfortunately, this is not true in the fixed-cost
case. The infinite-horizon model is more difficult than its single-period or finite-horizon
counterparts. To analyze it, we will need a bit of renewal theory.

A renewal process is a random variable N(t) that counts the number of “renewals”
that have occurred by time t, where the amount of time between the (n − 1)st renewal
and the nth renewals is a random variable Xn. The Xn are independent and identically
distributed. (For example, if Xn has an exponential distribution, then the renewals may
represent arrivals and Nt is a Poisson arrival process.) Let Rn be a sequence of random
variables representing the reward that we “earn” at the time of the nth renewal. (Rn may
be negative, in which case it is a cost that we pay.) Then

R(t) =

N(t)∑
n=1

Rn

is the cumulative reward earned by time t, for t ≥ 0. We call R(t) a renewal-reward
process.

The renewal-reward theorem gives us an easy way to calculate the long-run expected
reward per unit time. Let E[X] = E[Xn] and E[R] = E[Rn]; we will assume that both are
finite.

Theorem 4.7 (Renewal-Reward Theorem)

lim
t→∞

E[R(t)]

t
=
E[R]

E[X]
(4.67)

Proof. Omitted; see, e.g., Ross (1996).
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Returning now to our infinite-horizon inventory model, we may consider a renewal to
occur each time an order is placed. Then the time between renewals, Xn, is the length of
an order cycle. It has a discrete probability distribution since this is a discrete-time model.
The reward at a given renewal is the negative of the cost incurred during the preceding
cycle. We are interested in calculating g(s, S), the expected cost per period for given s and
S. By the renewal-reward theorem,

g(s, S) =
E[cost per cycle]

E[cycle length]
, (4.68)

where both the numerator and denominator of the right-hand side are functions of (s, S).
Unfortunately, this still leaves us with two problems: (1) The expected cost per cycle

and the expected cycle length are not trivial to calculate, and (2) the resulting expected cost
function, g(s, S), is not convex. Problem (1) was resolved early on (see, e.g., Veinott and
Wagner (1965)), but for decades (2) could not be overcome, and all of the exact algorithms
for this problem relied on nearly complete enumeration, with some minor improvements
over the years (Veinott and Wagner 1965, Bell 1970, Archibald and Silver 1978). This all
changed when Zheng and Federgruen (1991, 1992) introduced a simple, efficient algorithm
that finds the exact optimal s and S. It can be viewed as a generalization of the algorithm
for (r,Q) policies discussed in Section 5.5.

We’ll assume that the per-period demands are drawn iid from a discrete (integer) dis-
tribution and that the lead time is zero. (Nonzero lead times can be handled using a
similar accounting trick as described in Section 4.3.4.1.) We’ll further assume that γ = 1

and consider the average-cost criterion (though Zheng and Federgruen (1991) show how
to modify the algorithm for the discounted-cost criterion). We will first derive the cost
function g(s, S), then state a few properties of it, and finally describe the algorithm.

Let M(j) be the expected number of periods until the next order is placed, assuming
the inventory level7 equals s + j (j ≥ 1) after placing the order in step 2 of the sequence
of events on page 90. If the inventory level after ordering is s+ j, then we place an order
in the next period if the demand d in the current period is at least j, and otherwise we wait
one period and then have a remaining expected wait of M(j − d) periods. Therefore, we
can express M(j) recursively as

M(j) =
∞∑
d=j

f(d) +

j−1∑
d=0

f(d)(1 +M(j − d)) = 1 +

j−1∑
d=0

f(d)M(j − d). (4.69)

Similarly, let k(s, y) be the total expected cost in the current period through the next order,
assuming the inventory level equals y ≥ s. k(s, y) includes the fixed cost but not the
inventory costs in the next order period, and includes the inventory costs but not the fixed
cost (if any) in the current period. Using similar logic, we can write k(s, y) recursively as

k(s, y) = g(y) +K

∞∑
d=y−s

f(d) +

y−s−1∑
d=0

f(d)k(s, y − d), (4.70)

where g(y) is as given in (4.32), since we incur inventory costs of g(y) in the current period
and then either place an order in the next period (if d ≥ y − s) or incur an additional
k(s, y − d) in costs (otherwise).

7Since the lead time is zero, the inventory level and inventory position are the same.
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One can show that the recursive equations (4.69) and (4.70) have the unique solution
given by

M(0) = 0 (4.71)

M(j) = M(j − 1) +m(j − 1) (4.72)

k(s, y) = K +

y−s−1∑
d=0

m(d)g(y − d), (4.73)

where

m(0) =
1

1− f(0)
(4.74)

m(j) =

j∑
d=0

f(d)m(j − d). (4.75)

The expected cost per cycle is k(s, S), and the expected cycle length is M(S− s), so from
(4.68),

g(s, S) =
K +

∑S−s−1
d=0 m(d)g(S − d)

M(S − s)
. (4.76)

Let y∗ be the minimizer of g(y). We will assume there is only one such minimizer,
and only one optimal reorder point and order-up-to level, but the analysis below is easily
extended if there are multiple minimizers; see Zheng and Federgruen (1991). The optimal
reorder point s∗ and order-up-to level S∗ lie on either side of y∗:

Lemma 4.8 s∗ < y∗ ≤ S∗.

Proof. Omitted; see Veinott and Wagner (1965) and Zheng and Federgruen (1991).

The following lemma provides three additional properties of the optimal solution that
will be important in the algorithm. First, it gives a condition that lets us identify the optimal
reorder point for a given order-up-to level S, denoted s(S). Second, it establishes an
efficient way to determine whether one order-up-to level is better than another. Third, it
gives an upper bound on S∗.

Lemma 4.9

(a) For a given order-up-to level S, let

s = max{y < y∗|g(y, S) ≤ g(y)}.

Then s is the optimal reorder point for S, i.e., s = s(S).

(b) Let Ŝ and S be two order-up-to levels. Then g(s(S), S) < g(s(Ŝ), Ŝ) if and only if
g(s(Ŝ), S) < g(s(Ŝ), Ŝ).

(c) If (s∗, S∗) are optimal parameters and g∗ = g(s∗, S∗) is the corresponding cost,
then

S∗ ≤ max{y ≥ y∗|g(y) ≤ g∗}.

Proof. Omitted; see Zheng and Federgruen (1991).
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Part (a) says that, for fixed S, we can find the optimal reorder point by increasing y until
g(y, S) > g(y). Part (b) says that if we have an incumbent order-up-to level Ŝ and we
are considering switching to a new one S, we can tell whether S is better by evaluating S
in conjunction with the original reorder point s(Ŝ)—we do not have to search for the best
reorder point for S. Part (c) says that S∗ is no larger than the largest y for which g(y) ≤ g∗.

We are now ready to describe Zheng and Federgruen’s algorithm. Pseudocode for the
algorithm is given in Algorithm 4.2. In the algorithm, S0 and s0 are the initial order-up-to
level and reorder point, ŝ and Ŝ represent the incumbent solution, and S and s represent a
solution under consideration.

Algorithm 4.2 Exact algorithm for periodic-review (s, S) policies with discrete demand
distribution (Zheng and Federgruen 1991)

1: S0 ← y∗ . Set initial S
2: s← y∗ . Initialize search for s(S0)

3: repeat . Search for s(S0)

4: s← s− 1

5: until g(s, S0) ≤ g(s)

6: s0 ← s . Set initial s
7: Ŝ ← S0; ŝ← s0; ĝ ← g(ŝ, Ŝ) . Initialize incumbent and cost
8: S ← Ŝ + 1 . Choose next order-up-to level to consider
9: while g(S) ≤ ĝ do . Check for termination via Lemma 4.9(c)

10: if g(ŝ, S) < ĝ then . Check for improvement via Lemma 4.9(b)
11: Ŝ ← S . Update incumbent order-up-to level
12: while g(s, Ŝ) ≤ g(s+ 1) do . Search for s(Ŝ)

13: s← s+ 1

14: end while
15: ŝ← s; ĝ ← g(ŝ, Ŝ) . Update incumbent reorder point and cost
16: end if
17: S ← S + 1 . Try next order-up-to level
18: end while
19: return (ŝ, Ŝ) . (ŝ, Ŝ) is optimal

Lines 1–6 identify the initial solution: S0 is set to y∗, and s0 is set to the largest s < S0

such that g(s, S0) ≤ g(s), which, by Lemma 4.9(a), is optimal forS0. We set the incumbent
solution Ŝ equal to the initial solution in line 7, and then, in line 8, we choose S = Ŝ + 1

as the next order-up-to level to consider.
Next, in lines 9–18, we progressively increment S in search of better order-up-to lev-

els. Line 10 checks whether a given candidate S is better than the incumbent Ŝ; by
Lemma 4.9(b), it suffices to compare g(ŝ, S) to ĝ = g(ŝ, Ŝ). If S improves the cost, we
replace the incumbent with it and search for the corresponding optimal s by incrementing
s until we have g(s) ≥ g(s, Ŝ) > g(s + 1) (lines 12–14), at which point we have found
the optimal s for Ŝ by Lemma 4.9(a). Regardless of whether the new S passed the test
in line 10, we move on to the next S (line 17). The while loop terminates when g(S) is
greater than the incumbent cost, which follows from Lemma 4.9(c): If g(S) > ĝ, then
g(S) > g∗, which means S is greater than the maximizer in Lemma 4.9(c) and cannot be
optimal. Moreover, all larger S values will also be greater than this maximizer and can be
ruled out.
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Table 4.2 g(y) for Example 4.7.

y g(y) y g(y)

0 24.00 8 3.57
1 20.01 9 3.81
2 16.10 10 4.39
3 12.41 11 5.17
4 9.17 12 6.07
5 6.59 13 7.03
6 4.82 14 8.01
7 3.85 15 9.00

� EXAMPLE 4.7

The daily demand for fruit juice at Cora’s Newsstand has a Poisson distribution with
mean 6 bottles. Each bottle held in inventory incurs a holding cost of h = 1 per day.
Unmet demands are backordered and incur a stockout cost of p = 4 per bottle per
day. To replenish her inventory of fruit juice, Cora must send an employee to pick
up the inventory at the supplier, at a labor cost of K = 5. Using Algorithm 4.2, find
s∗ and S∗.

Table 4.2 gives g(y) for y = 0, 1, . . . , 15. From the table, we can see that y∗ = 8,
so we initialize S0 and s to 8. We have:

g(7, 8) = 8.56 > g(7) = 3.85

g(6, 8) = 8.49 > g(6) = 4.82

g(5, 8) = 8.33 > g(5) = 6.59

g(4, 8) = 8.20 < g(4) = 9.17

Therefore, we terminate the repeat loop with s = 4 and set s0 to the same. We
set Ŝ = 8, ŝ = 4, and ĝ = g(4, 8) = 8.20. We set S = Ŝ + 1 = 9 and, since
g(9) = 3.81 < ĝ, we enter the while loop at line 9.

We have g(4, 9) = 8.05 < ĝ, so we update the incumbent Ŝ to 9 and search for
the corresponding optimal s. Since

g(4, 9) = 8.05 > g(5) = 6.59

in line 12, we leave s at 4 and set ŝ = 4 and ĝ = 8.05. We then increment S to 10
and return to line 9. Since g(10) = 4.39 < ĝ = 8.05, we continue the loop. Again
the new S is better than the old one since g(4, 10) = 8.04 < ĝ, so we update Ŝ = 10

and search for the corresponding optimal s. Again, we leave s as it is since

g(4, 10) = 8.04 > g(5) = 6.59,

and we set ŝ = 4, ĝ = 8.04, and S = 11. In line 9, g(11) = 5.17 < ĝ, so we continue
the loop, but the if in the next line fails, because g(4, 11) = 8.08 > ĝ. The while
condition holds but the if condition fails for S = 12, 13, 14, but g(15) = 9.00 > ĝ,
so the loop terminates with S = 15. The algorithm terminates with the optimal
parameters equal to (ŝ, Ŝ) = (4, 10) and optimal cost 8.04. �
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There are several heuristics to find near-optimal s and S values. One common approach
makes use of the relationship between (s, S) and (r,Q) policies that we discussed in
Section 4.4.1: We find the optimal r and Q, either exactly or heuristically—for example,
using one of the methods in Section 5.1—and then set

s = r

S = r +Q.

When optimizing the (r,Q) policy, the lead time should be set to L + 1 (where L is
the lead-time for the (s, S) policy) to account for the difference between continuous and
periodic review.

Another approximation involves expressing s and S as explicit functions of the param-
eters, as follows. Assume that the demand is normally distributed. Let µ and σ2 be the
mean and variance of the single-period demand, and let µL = µL and σ2

L = σ2L be those
of the lead-time demand. Let

Q = 1.30µ0.494

(
K

h

)0.506(
1 +

σ2
L

µ2

)0.116

(4.77)

z =

√
Q

σL

h

p
. (4.78)

Then set

s = 0.973µL + σL

(
0.183

z
+ 1.063− 2.192z

)
(4.79)

S = s+Q. (4.80)

This approximation is known as the power approximation and is due to Ehrhardt and Mosier
(1984). It was developed by solving a lot of (s, S) models and fitting regression models
for a particular functional form to determine the coefficients. It seems complicated, but it
makes some intuitive sense. First, roughly speaking, the parameter Q represents an order
quantity. For a moment, suppose σ = 0 (the demand is deterministic). Then we have

Q = 1.30µ0.494

(
K

h

)0.506

≈
√

2µ0.5

(
K

h

)0.5

=

√
2Kµ

h
,

in other words, the EOQ quantity! Even if σ > 0, Q is close to the EOQ quantity since
the coefficient of the last term in (4.77) has a small exponent. Note also that, since the
coefficient in (4.79) is close to 1 and z does not depend on µ, smoves in roughly one-to-one
correspondence with µ.

The power approximation performs quite well in practice and has the additional benefit
of providing insights into the structure of the optimal solution (such as those in the previous
paragraph) that are not obvious when the solution is found using an algorithm. The
performance is not as good whenQ/µ < 1.5, but a simple modification is available for this
case (Ehrhardt 1979).

� EXAMPLE 4.8
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Return to Example 4.4, using L = 0, and suppose that K = 2.5. Use the (r,Q)

approximation and the power approximation to find near-optimal s and S values.
First, the (r,Q) approximation. We can use Algorithm 5.2 to find the optimal

parameters; the demand per unit time isN(50, 82), and we set the lead time to L = 1

to convert to a periodic-review model, so the lead-time demand is alsoN(50, 82). This
gives (r,Q) = (41.29, 45.31). Then, we set s = r = 41.29 and S = r+Q = 86.60.

Alternately, we can use one of the approximate methods to find r and Q. For
example, the EOQ+SS approximation (Section 5.3.3) gives (r,Q) = (56.60, 37.27)

and (s, S) = (56.60, 93.87).
Now consider the power approximation. We have µ = µL = 41.29 and σ =

σL = 45.31, so

Q = 1.30
(
500.494

)( 2.5

0.18

)0.506(
1 +

82

502

)0.116

= 34.10

z =

√
34.10

8
· 0.18

0.70
= 1.0469

s = 0.973 · 50 + 8

(
0.183

1.0469
+ 1.063− 2.192 · 1.0469

)
= 40.20

S = 40.20 + 34.10 = 74.30.

We have not discussed an exact algorithm for problems in which the demand has
a continuous distribution, as it does in this example. However, we can discretize the
demand distribution and then use Algorithm 4.2 to find exact optimal (s, S) values
for the discretized problem. Doing so gives (s, S) = (45, 57).

How can we compare the performance of these solutions? We have also not
discussed an expected cost function like (4.76) for continuous demand distributions,
but again we can discretize the distribution, round the solution, and then apply (4.76)
to approximate the cost of a given solution. Doing so on the four solutions above
gives the following:

g(41, 87) = 8.08 ((r,Q) approximation with exact (r,Q))

g(57, 94) = 10.07 ((r,Q) approximation with approximate (r,Q))

g(40, 74) = 6.80 (power approximation)

g(45, 57) = 4.50 (optimal)

�

4.5 POLICY OPTIMALITY

Now that we know how to find the optimal S for a base-stock policy (Section 4.3) and the
optimal s and S for an (s, S) policy (Section 4.4), we prove that those policy types are in
fact optimal for their respective problems. In a way this is a lot to ask—we are trying to
show that no other policy, of any type, using any parameters, can outperform our chosen
policy type (provided we choose the optimal parameters) in the long run. Fortunately, we
do not need to prove this explicitly for every possible competing policy type. Rather, we
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will use the structure of the cost functions to prove that the optimal policy has the desired
form.

We will first consider the zero-fixed-cost case, then the fixed-cost case, in both cases
considering single-period, finite-horizon, and infinite-horizon cases separately. We will
use the same assumptions and notation as in Section 4.4, as well. We continue to assume
that the cost and demand parameters are stationary, but the results below still hold if these
vary from period to period (deterministically).

Let’s focus for a minute on finite-horizon problems with fixed costs. Recall from
Section 4.4.3 that θt(x), the optimal cost in periods t, . . . , T if we begin period t with an
inventory level of x, can be calculated recursively as

θt(x) = min
y≥x
{Kδ(y − x) + c(y − x) + g(y) + γED[θt+1(y −D)]}, (4.81)

where g(y) is given by (4.3) or (4.6). The zero-fixed-cost problem is a special case, obtained
by setting K = 0, and the single-period problem is also a special case, obtained by setting
T = 1. Note that (4.81) does not assume that any particular policy is being followed. It
simply determines the optimal action (order-up-to level) for each starting inventory level x
in each period t. Our goal throughout this section will be to use the structure of (4.81) to
show that the optimal actions follow the policies we have conjectured are optimal.

4.5.1 Zero Fixed Costs: Base-Stock Policies

We first consider the case in which K = 0 and prove that—regardless of the horizon
length—a base-stock policy is always optimal. These results date back to Karlin (1958a,
1960) and Veinott (1965), among others.

4.5.1.1 Single Period In this section, we’ll consider the special case in which T = 1

and K = 0. We’ll also assume that the terminal cost function (see Section 4.3.3) is equal
to 0. This assumption is not necessary—we could instead assume only that the terminal
cost function is convex—but it simplifies the analysis.

Under these assumptions, (4.81) reduces to

θ(x) = min
y≥x
{c(y − x) + g(y)}. (4.82)

Of course, we already know how to solve this problem: Theorem 4.1 gives the optimal
solution. But our goal here is not to find the optimal solution for a given instance, but rather
to prove that the optimal solution always has a certain structure—a base-stock policy.

It will be useful to keep the parts of (4.82) that depend on x separate from those that
don’t. To that end, we can rewrite θ(x) as

θ(x) = min
y≥x
{H(y)− cx}, (4.83)

where
H(y) = cy + g(y). (4.84)

Since we are calculating θ(x) for fixed x, from (4.83), we see that the optimal decision can
be found by minimizing H(y) over y ≥ x—that is, starting at y = x, we want to minimize
H(y) looking only “to the right” of x. The question is, does this strategy give rise to a
base-stock policy?
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Suppose H(y) has a shape similar to that pictured in Figure 4.7(a). In this example,
H(y) is minimized at y = S. If x < S, then the optimal strategy is to set y = S, while
if x ≥ S, the optimal strategy is to do nothing—to set y = x. In other words, the optimal
policy is a base-stock policy. This argument works for any convex functionH(y)—ifH(y)

is convex, then a base-stock policy is optimal. AndH(y) is convex because g(y) is convex,
so we have now sketched the proof of the following theorem.

S
y

H(y)

(a) H(y) convex; base-stock policy is optimal.

S s′ S′
y

H(y)

(b) H(y) nonconvex; base-stock policy is not op-
timal.

S
y

H(y)

(c) H(y) nonconvex; base-stock policy is still op-
timal.

Figure 4.7 Hypothetical shapes of the function H(y).

Theorem 4.10 A base-stock policy is optimal for the single-period problem with no fixed
costs.

What if H(y) is nonconvex? (This would happen if we chose some other single-period
expected cost function g(y).) For example, suppose H(y) has a shape similar to that
in Figure 4.7(b). Then a base-stock policy is not optimal since for x < S, we would set
y = S, while for x ∈ (s′, S′], we would set y = S′. On the other hand, there are nonconvex
functions for which a base-stock policy is still optimal—the function in Figure 4.7(c) is an
example. Even though the function has several local minima, it is still optimal to order up
to S if x < S and to do nothing otherwise.
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4.5.1.2 Finite Horizon It was simple to prove thatH(y) is convex, and therefore that
a base-stock policy is optimal, for the single-period problem. Our main goal in this section
will be to prove that the analogous functions (one per period) are also convex. This is a bit
trickier than in the single-period case.

The finite-horizon, zero-fixed-cost version of (4.81) is

θt(x) = min
y≥x
{c(y − x) + g(y) + γED[θt+1(y −D)]}. (4.85)

Here, we allow the terminal cost function θT+1(·) to be nonzero, and we’ll add the require-
ment that it is convex.

Again we rewrite θt(x) to separate the parts that depend on x from those that don’t:

θt(x) = min
y≥x
{Ht(y)− cx}, (4.86)

where
Ht(y) = cy + g(y) + γED[θt+1(y −D)]. (4.87)

It is simple to argue that, if Ht(y) is convex, then a base-stock policy is optimal in period
t. The tricky part is showing that Ht(y) is convex for every t. We’ll prove this recursively
in the next lemma, showing that if θt+1(x) is convex, then so are Ht(y) and θt(x). Then,
in Theorem 4.12, we’ll get the recursion started, implying that all the Ht(y) functions are
convex and that a base-stock policy is optimal in every period.

Lemma 4.11 If θt+1(x) is convex, then:

(a) Ht(y) is convex.

(b) A base-stock policy is optimal in period t, and any minimizer of Ht(y) is an optimal
base-stock level.

(c) θt(x) is convex.

Proof.

(a) Clearly cy is convex since it is linear, and we know from Section 4.3.2.3 that g(y)

is convex. The third term is convex because θt+1(x) is convex (by assumption)
and expectation preserves convexity.8 Therefore, Ht(y) is convex, since the sum of
convex functions is convex.

(b) From (a), we know thatHt(y) is convex. Let St be a minimizer ofHt(y). If x < St,
then the optimal y ≥ x is at y = St; if x ≥ St, then Ht is nondecreasing to the right
of x (by convexity), so the optimal y ≥ x is y = x. This is exactly the definition of
a base-stock policy.

(c) From (4.86), θt(x) is the minimum over y of Ht(y) (minus a constant). Since
minimization preserves convexity,9 the convexity of Ht(y) from (a) implies that of
θt(x).

8This is a well-known property of convex functions. It says that, if f(x) is a convex function and Y is a random
variable, then EY [f(x− Y )] is convex.
9Another well-known property of convex functions: If f(x, y) is convex and g(x) = miny{f(x, y)}, then g(x)
is convex (Boyd and Vandenberghe 2009, Section 3.2.5).
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We have done most of the heavy lifting, but we’re not done yet. All we have shown
is that a base-stock policy is optimal in period t if θt+1(x) is convex. The next theorem
establishes our main result—that a base-stock policy is optimal in every period—and the
convexity of θT+1(·) gets the recursion started.

Theorem 4.12 If the terminal cost function θT+1(x) is convex, then a base-stock policy is
optimal in each period of the finite-horizon problem with no fixed costs.

Proof. By assumption, θT+1(x) is convex. Therefore, by Lemma 4.11(b), a base-stock
policy is optimal in period T . Moreover, θT (x) is convex by Lemma 4.11(c). This implies
that a base-stock policy is optimal in period T − 1 and that θT−1(x) is convex. Continuing
this logic, a base-stock policy is optimal in every period.

This proof assumed that the single-period cost function, g(y), is convex. In fact, it is
sufficient to assume the slightly weaker condition that g(y) is quasiconvex, i.e., that−g(y)

is unimodal—in other words, that g(y) has a unique local (and therefore global) minimum.
For a proof, see Veinott (1966).

Of course, this analysis says nothing about how to find the optimal base-stock levels.
In general, we need to use the DP from Section 4.3.3 to find those. In most cases, the
base-stock levels will change over time, and the pattern depends on what happens at the
end of the horizon, i.e., the terminal cost function. For example, suppose backorders that
are outstanding at the end of the horizon must be cleared by, say, air-freighting inventory
from overseas at a very high cost. Then the base-stock levels will increase at the end of the
horizon to prevent these costly backorders. Conversely, suppose the product in question
is a hazardous material that must be disposed of at a very high cost if any remains at the
end of the horizon. Then the base-stock levels will decrease at the end of the horizon to
ensure that the inventory is sold. But if the terminal cost function is just right, the same
base-stock level will be optimal in every period. Moreover, in this special case, the optimal
base-stock levels can be found explicitly, without requiring an algorithm. This policy is
called a myopic policy because it optimizes only a single period at a time, ignoring the rest
of the horizon. In this special case, then, the myopic policy is optimal in every period.

The special case is defined by setting the terminal cost function to

θT+1(x) = −cx.

This terminal cost function would be applicable if, for instance, at the end of the horizon,
any excess inventory can be returned to the supplier for a full reimbursement of the order
cost c and any backorders must be cleared by purchasing a new item, again at a cost of c.

First consider period T , for which it is straightforward to find the optimal base-stock
level:

HT (y) = cy + g(y) + γED[θT+1(y −D)]

= cy + g(y) + γED[−c(y −D)]

= c(1− γ)y + g(y) + γcµ,

where µ = E[D]. The optimal base-stock level is a minimizer of HT (y), so we set
H ′T (y) = 0:

H ′T (y) = c(1− γ) + (h+ p)F (y)− p = 0
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(from (4.15)), or

F (y) =
p− (1− γ)c

h+ p
.

The optimal base-stock level in period T is therefore

S∗T = F−1

(
p− (1− γ)c

h+ p

)
. (4.88)

This is the same solution as the infinite-horizon newsvendor model in Theorem 4.4.
Now we know that (4.88) gives the optimal base-stock level in period T ; it remains to

show that the same base-stock level is optimal in the other periods. In period T , the solution
to the minimization in (4.86) is to set y = S∗T if x ≤ S∗T and y = x otherwise. Therefore,

θT (x) =

{
HT (S∗T )− cx, if x ≤ S∗T
HT (x)− cx, otherwise.

(4.89)

Now let’s compute HT−1(y) in order to derive the optimal base-stock level for period
T − 1. From (4.87),

HT−1(y) = cy + g(y) + γED[θT (y −D)]

=

{
cy + g(y) + γED[HT (S∗T )− c(y −D)], if y ≤ S∗T
[something else], if y > S∗T .

(4.90)

The first case holds because if y ≤ S∗T , then surely y −D ≤ S∗T , and therefore, the first
case in (4.89) holds. But the second case is harder because if y > S∗T , then the first case
in (4.89) will hold for some D, and the second case will hold for others. Fortunately, it
will turn out that we won’t need to write out an expression for the second case of (4.90): If
we can show that the derivative of HT−1(y) is 0 for some y ≤ S∗T , then by the convexity
of HT−1(y) (Lemma 4.11(a)), that y minimizes HT−1(y) and we can ignore the case in
which y > S∗T . So assume that y ≤ S∗T . Then

HT−1(y) = cy + g(y) + γED[HT (S∗T )− c(y −D)]

= c(1− γ)y + g(y) + γcµ+ γHT (S∗T ),

which differs from HT (y) only by an additive constant. Therefore, its derivative equals 0
for the same value of y, and we have the same optimal base-stock level. Continuing this
logic backwards, we get the following theorem:

Theorem 4.13 If θT+1(x) = −cx, then the myopic base-stock level, given by

S∗ = F−1

(
p− (1− γ)c

h+ p

)
,

is optimal in every period.

The optimal base-stock level in Theorem 4.13 is identical to the infinite-horizon base-stock
level from Theorem 4.4.
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4.5.1.3 Infinite Horizon Now suppose that T =∞. The main result is the following:

Theorem 4.14 A base-stock policy is optimal in each period of the infinite-horizon problem
with no fixed costs.

And we already know the optimal base-stock level, from Theorem 4.4. We will omit the
proof of Theorem 4.14. It uses many of the ideas from the earlier proofs and is not very
difficult (see, e.g., Zipkin 2000).

4.5.2 Nonzero Fixed Costs: (s, S) Policies

We now allow K 6= 0 and prove that an (s, S) policy is optimal. We will present formal
proofs for the single-period and finite-horizon cases but only state the result without proof
for the infinite-horizon case. In the single-period case, we will argue that an (s, S) policy
is optimal using the convexity of H(y), just as we used the convexity of this function to
prove that a base-stock policy is optimal for the zero-fixed-cost case. However, in the finite-
horizon problem, Ht(y) is no longer convex (except for t = T ). Fortunately, however, it
is close enough to convex (in a specific way to be made more precise later) to establish the
result.

4.5.2.1 Single Period Assume that T = 1 and (as in Section 4.5.1.1) that the terminal
cost function equals 0. Then (4.81) reduces to

θ(x) = min
y≥x
{Kδ(y − x) + c(y − x) + g(y)} (4.91)

= min
y≥x
{Kδ(y − x) +H(y)− cx}, (4.92)

where H(y) is the same as before, as defined in (4.84).
Let S∗ be the minimizer of H(y). Since H(y) is convex, we should definitely not order

if x > S∗. What if x ≤ S∗? We may not even wish to order in this case—it depends on
how much we save by ordering versus how much it costs to order. That is, we should order
up to S∗ if

H(x)−H(S∗) ≥ K (4.93)

and do nothing otherwise. Which values of x satisfy (4.93)? By the convexity of H(y),
there exists an s∗ such that all x ≤ s∗ satisfy (4.93). In particular, s∗ is the x such that
H(x) − H(S∗) = K. (There may be multiple such x if H(y) is not strictly convex.
However, if the demand cdf F (·) is strictly increasing, then g(y) and hence H(y) are
strictly convex.)

We have now proved the following result, initially due to Karlin (1958b):

Theorem 4.15 An (s, S) policy is optimal for the single-period problem with fixed costs.

And, as we argued in Section 4.4.2, S∗ is the minimizer of H(y) and s∗ ≤ S∗ satisfies
H(s∗)−H(S∗) = K.

4.5.2.2 Finite Horizon Recall the logic for proving that a base-stock policy is optimal
for the finite-horizon model with no fixed costs (Lemma 4.11 and Theorem 4.12): Since
θT+1(x) is convex, so is HT (y); therefore, a base-stock policy is optimal in period T and
θT (x) is convex; therefore,HT−1(y) is convex; therefore, a base-stock policy is optimal in
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Figure 4.8 Nonconvexity of θt(x).

period T − 1, and θT−1(x) is convex; and so on. Unfortunately, the convexity implications
break down when fixed costs are present. Let’s see why.

From (4.81),

θt(x) = min
y≥x
{Kδ(y − x) + c(y − x) + g(y) + γED[θt+1(y −D)]}

= min
y≥x
{Ht(y) +Kδ(y − x)− cx},

where Ht(y) is as defined in (4.87). Let’s assume that Ht(y) is convex. Is θt(x)? Since
Ht(y) is convex, an (s, S) policy is optimal in period t. This implies that

θt(x) = −cx+

{
Ht(S

∗
t ) +K, if x ≤ s∗t

Ht(x), if x > s∗t .
(4.94)

Figure 4.8 sketches θt(x) and its constituent parts. The piecewise nature of θt(x) makes
it nonconvex, even if Ht(y) is convex. Figure 4.9 plots θt(x) for t = 8, . . . , 11 for an
instance with T = 10 and c = 1, K = 100, h = hT = 1, p = pT = 5, γ = 1, µ = 100,
and σ = 10.

Fortunately, although we used convexity to prove optimality of an (s, S) policy in the
single-period case, convexity is not required—an (s, S) policy is still optimal under a
weaker condition.

Let f(x) be a real-valued function and let K ≥ 0. Then, f is K-convex if, for all x and
all a, b > 0,

f(x) + a · f(x)− f(x− b)
b

≤ f(x+ a) +K (4.95)
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Figure 4.9 θt(x) for t = 8, . . . , 11; c = 1, K = 100, h = hT = 1, p = pT = 5, γ = 1,
µ = 100, σ = 10, T = 10.

x− b

≤ K

x x+ a

f(x) + a f(x)−f(x−b)
b

f(x+ a)

Figure 4.10 K-convexity.

(Scarf 1960). This definition is identical to (one) definition of convexity, except for the
+K on the right-hand side. The term [f(x) − f(x − b)]/b is similar to a derivative at x
(think about b approaching 0). Then the left-hand side of (4.95) approximates f(x+ a) by
linearizing it using the “slope” of f between x− b and x. (See Figure 4.10.) Therefore,K-
convexity implies that this approximation doesn’t overestimate f(x+ a) by more than K.
(It may also underestimate it.) If f is convex, then the approximation on the left-hand side
of (4.95) always underestimates f(x + a). That is, (4.95) holds with K = 0. Therefore,
0-convexity is equivalent to convexity.

It is worth noting that, whereas some other convexity-like properties that you may be
familiar with—quasiconvexity, pseudoconvexity, and so on—are used outside of inventory
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S∗s∗

f(S∗)

f(s∗) = f(S∗) +K

Figure 4.11 Properties of K-convex functions from Lemma 4.16.

theory,K-convexity was developed specifically for proving the optimality of (s, S) policies
and (as far as we know) is not used outside of inventory theory.

Here is another important property of K-convexity:

Lemma 4.16 Let f be a continuous, K-convex function. Let S∗ be its smallest global
minimizer and let s∗ be the largest x ≤ S∗ such that f(x) = f(S∗) +K. Then:

(a) f is nonincreasing on (−∞, s∗].

(b) If s∗ < x ≤ S∗, then f(x) < f(s∗).

(c) Suppose S∗ < x1 < x2. Then f(x1)− f(x2) ≤ K.

Lemma 4.16 says that aK-convex function first decreases for a while, up to a point s∗; then,
after a different point S∗, if it ever decreases, it never decreases by more than K; and, in
between these two points, the function never rises above its value at s∗. (See Figure 4.11.)
This property will lead to the optimality of an (s, S) policy (as you may have suspected
from our choice of notation in the lemma).

Proof.

(a) Suppose (for a contradiction) that f is not nonincreasing on (−∞, s∗]. Then there
exists x1 < x2 < s∗ such that f(x1) < f(x2). We consider two cases.

Case 1: f(x2) ≥ f(s∗). (See Figure 4.12(a).)

Let b = x2 − x1 and a = S∗ − x2. Then,

f(x2) + a · f(x2)− f(x2 − b)
b

= f(x2) + (S∗ − x2)
f(x2)− f(x1)

b

> f(x2) (since f(x2)− f(x1) > 0)

≥ f(s∗) (by case 1 assumption)

= f(S∗) +K
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Figure 4.12 Proof of Lemma 4.16.

= f(x2 + a) +K.

This contradicts the K-convexity of f .

Case 2: f(x2) < f(s∗). (See Figure 4.12(b).)

Let b = s∗ − x2 and a = S∗ − s∗. Then

f(s∗) + a · f(s∗)− f(s∗ − b)
b

= f(s∗) + (S∗ − s∗)f(s∗)− f(x2)

b

> f(s∗) (since f(s∗)− f(x2) > 0)

= f(S∗) +K

= f(s∗ + a) +K.

This contradicts the K-convexity of f .

Since both cases lead to a contradiction, f must be nonincreasing on (−∞, s∗].

(b) Let s∗ < x ≤ S∗. Suppose (for a contradiction) that f(x) ≥ f(s∗). (See Fig-
ure 4.12(c).) Then, by the continuity of f(·), there is some y, x ≤ y < S∗, such
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that f(y) = f(s∗) = f(S∗) + K, which violates the definition of s∗ as the largest
x ≤ S∗ such that f(x) = f(S∗) +K. Therefore, f(x) < f(s∗).

(c) Suppose (for a contradiction) that there exists somex1 andx2 such thatS∗ < x1 < x2

but f(x1)− f(x2) > K. (See Figure 4.12(d).)

Let b be defined such that f(x1 − b) = f(x1). (We’ll assume such a b exists. It
does if limx→−∞ f(x) =∞, which is true of theK-convex functions we’ll consider
below.) Let a = x2 − x1. Then

f(x1) + a · f(x1)− f(x1 − b)
b

= f(x1) (since f(x1 − b) = f(x1))

> f(x2) +K (by assumption)

= f(x1 + a) +K.

This contradicts the K-convexity of f .

The following properties of K-convex functions will be important in the results that
follow. Parts (a)–(c) are generalizations of well-known results for convexity.

Lemma 4.17

(a) If f(x) is K-convex, then f(x+ ε) is K-convex for all constants ε.

(b) If f1(x) is K1-convex and f2(x) is K2-convex, then α1f1(x) +α2f2(x) is (α1K1 +
α2K2)-convex, for any α1, α2 > 0.

(c) If f(x) is K-convex and Y is a random variable, then EY [f(x− Y )] is K-convex.

(d) If f(x) is K1-convex and K2 > K1, then f(x) is K2-convex.

Proof. Omitted; see Problem 4.42.

Now we’re finally ready to prove the optimality of (s, S) policies for the finite-horizon
problem. The logic will be similar to the base-stock case: The K-convexity of θt+1(x)

implies the K-convexity of Ht(y), which implies the optimality of an (s, S) policy in
period t and the K-convexity of θt(x); and so on. The result was first proven by Scarf
(1960); we follow the basic outline of his proof but use different arguments for some of the
details.

Lemma 4.18 If θt+1(x) is continuous and K-convex, then:

(a) Ht(y) is continuous and K-convex.

(b) An (s, S) policy is optimal in period t, with S∗t equal to the smallest minimizer of
Ht(y) and s∗t equal to the largest x ≤ S∗t such that Ht(x)−Ht(S

∗
t ) = K.

(c) θt(x) is continuous and K-convex.

Proof.

(a) We know that
Ht(y) = cy + g(y) + γED[θt+1(y −D)].
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The first two terms are each convex (i.e., 0-convex). Since θt+1(x) is K-convex
(by assumption), ED[θt+1(y − D)] by Lemma 4.17(c), and γED[θt+1(y − D)] is
K-convex by Lemma 4.17(b) and (d) since γ ≤ 1. Therefore, Ht(y) is (0 + 0 +K)-
convex, or K-convex, by Lemma 4.17(b). Continuity follows from the continuity of
each of the three terms.

(b) First note that Lemma 4.16 applies to Ht(y) since it is K-convex and that the
definitions of S∗t and s∗t are identical to those of S∗ and s∗ in the lemma. We’ll
determine the optimal ordering action for each starting inventory level x. If x < s∗t ,
then by Lemma 4.16(a),Ht(x) ≥ Ht(s

∗
t ) = Ht(S

∗
t )+K, so it is cheaper to order up

to S∗t than not to order (and there is no better order-up-to level since S∗t minimizes
Ht(y)). If s∗t < x ≤ S∗t , then Ht(x) < Ht(s

∗
t ) by Lemma 4.16(b). Therefore,

Ht(x) < Ht(S
∗
t ) +K, so it is better to order nothing than to place an order. Finally,

if x > S∗t , then by Lemma 4.16(c), for any y > x, f(x) < f(y) +K, so it is better
to order nothing than to place an order. This is exactly the definition of an (s, S)

policy with parameters s∗t and S∗t .

(c) From (4.94), we know that

θt(x) = −cx+ ψt(x),

where

ψt(x) ≡

{
Ht(S

∗
t ) +K, if x ≤ s∗t

Ht(x), if x > s∗t .

Clearly, each of the pieces of ψt(x) is continuous, and at the breakpoint x = s∗t , we
have Ht(S

∗
t ) + K = Ht(x) by the definition of s∗t from part (b). Therefore, ψt(x)

is continuous, and so is θt(x).

To prove K-convexity, let x be any real number and let a, b > 0. Since −cx is
convex, it suffices to prove that ψt(x) is K-convex. (Refer to Figure 4.8.)

If x− b > s∗t , then ψt(y) = Ht(y) for y ∈ [x− b, x+ a], so the K-convexity of ψt
follows from that of Ht.

If x+ a ≤ s∗t , then ψt(y) = Ht(S
∗
t ) +K, a constant, for y ∈ [x− b, x+ a], so the

K-convexity of ψt is trivial.

Suppose x−b ≤ s∗t < x+a. We consider two cases. First, if ψt(x) ≤ Ht(S
∗
t )+K,

then

ψt(x) + a · ψt(x)− ψt(x− b)
b

≤ψt(x) (since ψt(x) ≤ Ht(S
∗
t ) +K = ψt(x− b))

≤Ht(S
∗
t ) +K

≤Ht(x+ a) +K (since S∗t minimizes Ht)

=ψt(x+ a) +K (since x+ a > s∗t ).

If, instead, ψt(x) > Ht(S
∗
t ) +K, then x > S∗t and so ψt(x) = Ht(x). Then

ψt(x) + a · ψt(x)− ψt(x− b)
b
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=Ht(x) + a · Ht(x)− (Ht(S
∗
t ) +K)

b

≤Ht(x) + a · Ht(x)−Ht(S
∗
t )

x− S∗t
(since K ≥ 0 and x− b ≤ s∗t ≤ S∗t )

≤Ht(x+ a) +K (by K-convexity of Ht, letting b′ = x− S∗t )

=ψt(x+ a) +K (since x+ a > s∗t ).

Therefore, ψt(x) is K-convex, and so is θt(x).

Theorem 4.19 If the terminal cost function θT+1(x) is continuous and convex, then an
(s, S) policy is optimal in each period of the finite-horizon problem with fixed costs.

Proof. By assumption, θT+1(x) is continuous and convex. Therefore, by Lemma 4.18(b),
an (s, S) policy is optimal in period T . Moreover, θT (x) is continuous and K-convex by
Lemma 4.18(c). This implies that an (s, S) policy is optimal in period T − 1 and that
θT−1(x) is continuous and K-convex. Continuing this logic, an (s, S) policy is optimal in
every period.

4.5.2.3 Infinite Horizon If T = ∞, it is still true that an (s, S) policy is optimal in
every period. And, echoing the infinite-horizon model with no fixed costs, the optimal s
and S are the same in every period. However, the proof of these facts is quite a bit more
difficult than the analogous proof in Section 4.5.1.3, and we omit it here. (See Zheng
(1991).)

4.6 LOST SALES

Throughout this chapter, we have assumed that unmet demands are backordered. In this
section, we assume instead that they are lost. The distinction is only important when T > 1.
(When T = 1, unmet demands can only be lost.)

4.6.1 Zero Lead Time

In this section, we assume that the lead time L = 0. First consider the case in which
K = 0. In the finite-horizon model, the DP recursion (4.36) changes only slightly:

θt(x) = min
y≥x
{c(y − x) + g(y) + γED[θt+1

(
(y −D)+

)
]}. (4.96)

The only change is in the last term, where we take the positive part of y −D to reflect the
fact that the inventory level cannot become negative. A base-stock policy is still optimal
(Problem 4.44), provided that the terminal cost function θT+1(x) is convex and nondecreas-
ing. (Under backorders, we required convexity but not monotonicity, but monotonicity is
usually not a restrictive assumption under lost sales. For example, one common terminal
cost function under backorders, θT+1(x) = hT+1x

+ + pT+1x
−, is not nondecreasing, but

under lost sales, x− = 0, and the resulting function, θT+1(x) = ht+1x
+ is nondecreasing.)

The DP algorithm, Algorithm 4.1, applies without modification.
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A base-stock policy is still optimal for the infinite-horizon model. Under the average-
cost criterion (γ = 1) with lost sales, it is no longer true that we order µ items per period, on
average, independent of the base-stock level; therefore, we must modify the expected cost
function (4.38) to account for the purchase cost. In particular, with probability 1− F (S),
we end the previous period with IL = 0 and must order S units at the start of the current
period; and otherwise, we must order the demand from the previous period. Therefore,

g(S) =c

(
(1− F (S))S +

∫ S

0

df(d)dd

)

+ h

∫ S

0

(S − d)f(d)dd+ p

∫ ∞
S

(d− S)f(d)dd

=cS + (h− c)
∫ S

0

(S − d)f(d)dd+ p

∫ ∞
S

(d− S)f(d)dd (4.97)

=cS + (h− c)n̄(S) + pn(S). (4.98)

The first-order condition yields

S∗ = F−1

(
p− c

h+ p− c

)
.

The solution changes only slightly under the discounted-cost criterion:

S∗ = F−1

(
p− c

h+ p− γc

)
. (4.99)

(In fact, (4.99) holds for the average-cost criterion, too, setting γ = 1.)
When K ≥ 0, an (s, S) policy is still optimal (Veinott 1966). In the single-period

problem, we set S∗ and s∗ as described in Section 4.4.2, unless s∗ would be negative, in
which case we set s∗ = 0. The finite-horizon model (Section 4.4.3) can be modified in a
manner similar to (4.96).

4.6.2 Nonzero Lead Time

Now we allow L ≥ 0. Recall from Section 4.3.4.1 that under backorders, the infinite-
horizon model with K = 0 extends easily to nonzero lead times. Unfortunately, the same
is not true under lost sales. The reason is that the logic behind the conservation-of-flow
equation (4.41) breaks down: We can no longer subtract the entire demand in periods
t, . . . , t+L because a given demand only reduces the inventory level in period t+L if the
inventory level was sufficient when the demand occurred. The problem can be formulated
as a DP, but with an L-dimensional state space. For reasonable values of L, the DP is
typically impossible to solve exactly due to the curse of dimensionality. Many heuristics
and approximations have been proposed; see, for example, Zipkin (2008a), Bijvank and
Vis (2011), or Goldberg et al. (2016) for reviews.

A base-stock policy is no longer optimal (Karlin and Scarf 1958) for the nonzero-lead-
time problem, and in fact the optimal policy form is unknown, aside from a few partial
results about its structure—for example, that the optimal order quantity is decreasing in
the on-hand inventory (Karlin and Scarf 1958) and that it is zero for certain vectors of
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on-order inventory (Morton 1969); Zipkin (2008b) proves these and other properties using
the concept of L\-convexity from discrete convex analysis.

On the other hand, Huh et al. (2009) prove that a base-stock policy is asymptotically
optimal as p/h→∞, and Goldberg et al. (2016) prove the asymptotic optimality asL→∞
of an even simpler policy in which we order the same quantity in every period. Moreover,
Levi et al. (2008) introduce a 2-approximation algorithm (i.e., a heuristic with a fixed
worst-case error bound of 2). Their heuristic uses a dual-balancing policy, which means
that it balances the expected marginal holding cost and the expected marginal stockout cost
in each period. Order quantities in the dual-balancing policy can be computed much more
efficiently than using DP. Chen et al. (2014) present a different approximation scheme, with
an (additive) error bound that can be as small as the modeler likes (but with a corresponding
increase in computational complexity).

Not surprisingly, when K > 0, the situation is even more complicated, and optimal
policies are unknown for this case, too; see, e.g., Nahmias (1979).

Lost-sales problems with nonzero lead times are still, in many respects, an open problem
and are an active area of research.

CASE STUDY 4.1 Optimization of Warranty Inventory at Hitachi

Hitachi is a global manufacturer of computer components, power grid equipment,
construction vehicles, defense systems, and a wide range of other high-tech and heavy-
duty products. In the early 2000s, they collaborated with researchers from Stanford
University to optimize the inventory used to service warranties for disk drives. Khawam
et al. (2007) discuss in detail the project, which we summarize here.

A customer who returns a defective drive may choose to receive a replacement or a
credit for the value of the drive. The drives sent as replacements are usually remanu-
factured drives that were previously returned, and this project focused on managing the
inventory of such remanufactured drives. When the inventory is depleted, the company
must either purchase brand-new drives (which are more expensive than remanufactured
ones) from the factory or make the customer endure excessive lead times. Although the
warranty claims for hard drives follow a lifecycle curve similar to that of the product’s
demands, e.g., a Bass diffusion process (Section 2.6), the researchers chose to focus on
the steady-state portion of a given product rather than the ramp-up or -down phases.

They modeled the warranty inventory system as a single-stage, periodic-review,
infinite-horizon inventory system with backorders. Hitachi promises that warranty claims
will be served within Lc periods. Their objective in this project was to determine the
minimum inventory levels required to satisfy a type-2 service level constraint that re-
quired the percentage of replacements that are completed within Lc periods to be at
least β. This ignores customers who prefer a credit instead of a replacement since
credits can be processed very quickly.

A fraction δ of drives that are returned to Hitachi are tested to determine whether
they are actually fully operational (called “no defects found,” or NDF); the remaining
1 − δ fraction are clearly defective and do not need testing. Of the drives sent for
NDF testing, a fraction γ pass the NDF test and can be added to inventory, whereas
the remaining 1 − γ of the drives are found to be defective. Defective drives (drives
that fail the NDF test as well as those that did not undergo NDF testing) are sent for
remanufacturing; a fraction θ of those are successfully remanufactured and added to
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Figure 4.13 Process for handling returned drives at Hitachi.

inventory, while the remaining 1− θ must be scrapped. Finally, the inventory manager
can order new products from the manufacturing process, which incurs a lead time of
Lm periods. The process is summarized in Figure 4.13.

Let ηn = γδ be the fraction of returned units that pass the NDF test, ηf = (1−γ)δθ

be the fraction that fail NDF but are successfully remanufactured, and ηr = (1 − δ)θ
be the fraction that are not NDF tested but are successfully remanufactured. The total
fraction of claims that cannot be satisfied from returns-based inventory and instead
must be ordered from the factory is (1 − α) − ηn − ηf − ηr, since α fraction of the
claims request a credit rather than replacement.

The inventory decisions that we must optimize are the replenishment orders placed
to the factory. A base-stock policy is not optimal for this system. However, as no
simple optimal policy is known, it is reasonable to assume the system uses a base-stock
policy for the replenishment orders.

The demand for warranty claims in a given period is assumed to be N(µ, σ2). The
number of replacement drives demanded in a period—the “positive” demand—is there-
fore

D+ ∼ N
(
(1− α)µ, (1− α)σ2

)
.

On the other hand, returned units that are successfully added to inventory in a period
can be considered as “negative” demand:

D− ∼ N

 ∑
i∈{n,f,r}

ηiµ,
∑

i∈{n,f,r}

ηiσ
2
i

 .

The net demand that must be satisfied from inventory in period t is the difference
between the two: Dn ∼ N(µn, σ

2
n), where

µn =

(1− α)−
∑

i∈{n,f,r}

ηi

µ
σ2
n =

(1− α)−
∑

i∈{n,f,r}

ηi

σ2.

(We assume the term inside the [·] is positive, otherwise the supply exceeds the demand.)
The Lc-period lead time that Hitachi promises its customers for replacement drives

in effect reduces the supply lead time of Lm periods. That is, the lead-time demand
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should be interpreted as the demand over Lm−Lc+1 periods rather than over Lm+1

periods. This is a net lead time, which we discuss in detail in Section 6.3; see also
Hariharan and Zipkin (1995). The net-lead-time demand is normally distributed with
mean (Lm − Lc + 1)µn and variance (Lm − Lc + 1)σ2

n.
We want to ensure a type-2 service level of β. Using B̂1 from (4.58), we have

nLm−Lc+1(S) = (1− β)(1− α)µ, (4.100)

where nLm−Lc+1(·) is the loss function for the net-lead-time demand. Equation (4.100)
can be solved numerically to find S.

The researchers also developed models with (1) random rather than deterministic
yields of the processes in Figure 4.13, using ideas similar to those in Section 9.3; (2)
random lead times in the remanufacturing process, using formulas similar to (5.24)
and (5.25); and (3) order batching, using a model similar to that in Section 13.2.4.
They embedded these models into a spreadsheet, into which planners could input the
weekly demand forecast (using a moving average) and other parameters. The model
outputs included the base-stock level and the resulting average inventory level, expressed
in terms of weeks of supply (inventory units divided by units demanded per week).
Interestingly, the optimal base-stock levels for different product families were very close
to each other when expressed in weeks of supply, even though the input parameters
differed considerably.

The research team rolled out the spreadsheet tool to planners, who used it as part of
the planning process for warranty servicing. The tool—and the process of developing
it—was also valuable to planners for learning more about the operation of the inventory
system.

PROBLEMS

4.1 (Inventory of Ski Jackets) A clothing company sells ski jackets every winter but
must decide in the summer how many jackets to produce. Each jacket costs $65 to produce
and ship and sells for $129 at retail stores. (For the sake of simplicity, assume the jacket
is sold in a single store.) Customers who wish to buy this jacket but find it out of stock
will buy a competitor’s jacket; in addition to the lost revenue, the company also incurs a
loss-of-goodwill cost of $15 for each lost sale. At the end of the winter, unsold jackets are
sold to a discount clothing store for $22 each.

a) First suppose that the demand for the ski jackets this winter will be distributed as
a normal random variable with mean 900 and standard deviation 60. What is the
optimal number of jackets to produce?

b) Now suppose that the demand is distributed as a Poisson random variable with
mean 900. What is the optimal number of jackets to produce?

4.2 (Dixie’s Stew) One of the specialties at Dixie’s Cafe is vegetable stew, which simmers
over a low flame all day. Since the cooking time is so long, Dixie must decide in the morning
how many servings of the stew to cook for that night’s dinner service. Moreover, the stew
cooked on a given day cannot be served the next day; it must be thrown away. Vegetable
stew is the highest-profit item on the menu at Dixie’s Cafe. It earns Dixie a profit of $8 per
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Table 4.3 Demand for in-flight meals for Problem 4.3.

Cumulative
d Probability f(d) Probability F (d)

40 0.01 0.01
41 0.03 0.04
42 0.04 0.08
43 0.05 0.13
44 0.08 0.21
45 0.09 0.3
46 0.12 0.42
47 0.13 0.55
48 0.17 0.72
49 0.12 0.84
50 0.08 0.92
51 0.03 0.95
52 0.02 0.97
53 0.02 0.99
54 0.01 1

serving, whereas all the other items earn a profit of $4. Customers who want stew but find
it out of stock will order one of these other items. The ingredients for one serving of stew
cost the Cafe $2.50.

a) First suppose that the demand for stew on a given evening is normally distributed
with a mean of 18 and a variance of 16. How many servings of stew should Dixie
prepare in the morning? (Fractional servings are OK.) What is the expected cost
(ingredients and lost profit) of the optimal solution?

b) Now suppose that the demand is distributed as an exponential random variable
with mean 18. How many servings should Dixie prepare?

4.3 (In-Flight Meals) Oceanic Airlines sells meals aboard their flights. Obviously, the
airline must decide how many meals to put on the airplane before the flight takes off, and it
cannot restock additional meals if it runs out during the flight. Each meal sells for $7 and
costs the airline $2.50. If there are meals left over at the end of the flight, the perishable
items must be thrown away, but nonperishable items (crackers, napkins, etc.) may be reused.
The value of the reusable items is estimated at $1.50. Assume there are no loss-of-goodwill
penalties for unmet demand, only the lost profit.

a) Suppose the demand for meals on today’s flight #815 has the distribution given
in Table 4.3. How many meals should Oceanic stock on the flight?

b) Suppose instead that the demand for meals on flight #815 has a normal distribution
with mean 50 and standard deviation 10. Now how many meals should Oceanic
stock?

c) Calculate the optimal expected profit for meals sold on flight #815, still assuming
demands are N(50, 102).

4.4 (Chemical Manufacturing) A chemical manufacturer produces a certain chemical
compound every Sunday, which it then sells to its customers on Monday through Saturday.
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The company earns a revenue of $80 per kg of the compound sold. Each kg manufactured
costs the company $40. If any of the compound goes unsold by Saturday night, it must
be destroyed safely, at a cost of $15 per kg. The total demand for the chemical compound
throughout the week has a normal distribution with a mean of 260 kg and a standard
deviation of 80 kg.

a) How much of the chemical compound should the company produce every Sunday?
b) What is the expected cost (including manufacturing cost, lost profit, and disposal

cost) per week?

4.5 (Cheesy Blasters) A restaurant sells a snack food called Cheesy Blasters. Cheesy
Blasters are essentially nonperishable, and since they are a specialty item, customers
who experience stockouts are willing to wait until a future day, i.e., their demands are
backordered. Daily demand for Cheesy Blasters is distributed as N(28.3, 7.12). The
restaurant orders the product from its supplier each morning. Unsold Blasters held in
inventory overnight incur a holding cost of $0.75 per item, and backorders incur a penalty
of $3.50 per item.

a) Calculate the optimal base-stock level and expected cost per day.
b) Assuming the restaurant uses the base-stock level from part (a), calculate its

type-1 and type-2 service levels. For type-2, calculate its exact service level, B,
and both approximate service levels, B̂1 and B̂2.

c) Repeat part (b) assuming that the restaurant uses a base-stock level of 30.
d) Now assume that the restaurant can only place a replenishment order once per

week (7 days), and that the supply lead time is 2 days. Calculate the optimal
base-stock level and expected cost per period.

e) Repeat part (b) for the system described in part (d), using the optimal base-stock
level.

4.6 (Electricity Generation) On day t, an electricity utility company must decide how
much generation capacity to prepare for the electricity it will generate on day t+ 1. Each
megawatt-hour (MWh) of capacity prepared costs the utility r. Let St+1 be the generation
capacity chosen on day t for generation on day t+ 1.

The demand for day t + 1, denoted Dt+1, is stochastic, with pdf f(·) and cdf F (·).
Dt+1 is not observed until day t+ 1, although for simplicity we will assume that the entire
day’s demand is revealed at the beginning of the day.

Once Dt+1 is observed, the utility generates min{Dt+1, St+1} MWh of electricity.
Each MWh of electricity actually generated incurs a cost of c per MWh (in addition to
the cost r already incurred to prepare the capacity). If Dt+1 > St+1, the utility must
purchase electricity on the spot market to make up the difference. (The spot market is a
marketplace in which the utility can purchase an unlimited quantity of electricity with no
advance notice required.) The price per MWh of electricity purchased on the spot market
is m, with m > r + c.

a) Write an expression for S∗t+1, the optimal number of MWh of capacity to prepare.
b) Suppose r = $5/MWh, c = $2/MWh,m = $20/MWh, andDt+1 ∼ N(150, 202)

MWh. What is S∗t+1?

4.7 (Newsvendor Applications #1) Each of the situations below can be interpreted as a
newsvendor problem. For each, indicate the holding and stockout costs, h and p, and use
the results of Section 4.3.2 to find S∗.
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Table 4.4 Probability distribution of TV show duration for Problem 4.7(b).

x P(show lasts for x seasons)

1 0.25
2 0.05
3 0.10
4 0.20
5 0.15
6 0.10
7 0.10
8 0.05

a) You are about to sign a 2-year contract for a mobile phone and you need to decide
how many minutes per month to commit to purchasing. You can purchase any
number S of minutes. (You are not restricted to rate plans specified by your
mobile phone company.) If you commit to purchasing S minutes per month,
you pay $0.05 for each of these S minutes (regardless of whether or not you use
them), plus $0.25 for each minute you use in excess of S.

(For example, if S = 100 and you use 120 minutes, you pay 100 × 0.05 +

20× 0.25 = 10.)
Your monthly usage of minutes has a normal distribution with mean 1000 and

standard deviation 220.
b) You are the producer of a new TV show and are about to negotiate a contract with

the star of the show. You need to decide how many seasons (years) to commit
to in the contract, but you are not sure how many seasons of the show will be
produced before it is canceled. For each season you commit to in the contract,
the star’s salary will be $1.5 million. If you commit to S years but the show lasts
for longer than that, you will have to pay the star $2.5 million per season (since
she will become more popular in the future and will demand a higher salary). If
you commit to S years but the show is canceled earlier than that, you do not need
to pay the star’s salary for seasons that were not produced; instead, you must pay
her a $500,000 contract-cancellation fee for each season committed to but not
produced.

(For example, if you commit to 3 seasons and the show is produced for 4
seasons, you will pay $1.5× 3 + $2.5× 1 = $7 million. If the show is produced
for 2 seasons, you will pay $1.5× 2 + $0.5× 1 = $3.5 million.)

Table 4.4 lists your estimates that the show will last for exactly x seasons, for
various values of x.

c) You are purchasing tickets for a group of students to attend a minor league baseball
game. Tickets cost $8 each when purchased in advance. The number of students
who will actually show up to the game is random and has a Poisson distribution
with mean 26. Suppose you purchase S tickets. If fewer than S students show
up for the game, you can return the extra tickets to the box office for half of their
original price. If more than S students show up for the game, you will need to
buy tickets from “scalpers” (people selling tickets outside the stadium) for $30
each.



144 STOCHASTIC INVENTORY MODELS: PERIODIC REVIEW

4.8 (Newsvendor Applications #2) Follow the instructions for Problem 4.7 for each of
the following situations.

a) You are the manager of an auto-repair shop at which every car requires the entire
day to repair. The shop does not accept appointments; customers arrive randomly.
All customers arrive exactly when the shop opens in the morning.

If the number of auto mechanics on duty on a given day, S, is at least as
large as the number of customers that arrive in the morning, all of the customers’
cars will be repaired. If the number of customers exceeds S, however, the extra
customers leave and get their car repaired at a competing shop across the street.

The number of customers arriving in a given day has a Poisson distribution
with a mean of 18. Each car that is repaired earns the shop a profit of $470, and
each mechanic on duty costs the shop $200 per day.

b) At the beginning of the academic year, you need to decide how many “dining
dollars” to put on your university ID card. Dining dollars earn you a 15%
discount on the food you buy on campus—so $100 in dining dollars buys you
100/0.85 = $117.65 in food. However, any dining dollars not spent by the end
of the academic year are lost. (Yes—you could just stock up on soda and potato
chips at the end of the year to spend your remaining dollars. But pretend that’s
not possible.) The (undiscounted) value of the food you buy in 1 year is given
by the random variable X , which has a lognormal distribution with parameters
µ = 6 and scale parameter σ = 0.3. (That is, lnX has a normal distribution with
mean 6 and standard deviation 0.3.)

c) A small cement manufacturer operates a single truck, which makes deliveries
throughout the day. The company must decide how much cement to load onto
the truck each morning, before knowing how much cement each customer will
request. It costs the company $20 per cubic yard loaded onto the truck, in
materials and labor costs. For each cubic yard of cement sold, the company earns
$65 in profit. The total demand for cement in a given day (summed over all
the firm’s customers) is normally distributed with a mean of 7 cubic yards and a
standard deviation of 3 cubic yards.

There is no opportunity to load more cement for the rest of the day. Any
unused cement at the end of the day must be discarded, with no salvage value—in
fact, it costs the company $35 per cubic yard in labor to clean out the dried-up
cement from the truck. Assume the truck’s capacity is large enough to hold any
desired amount of cement.

4.9 (Simulation of Mobile-Phone Contract) Simulate the system in Problem 4.7(a) for
1000 months in a spreadsheet program. For each month, generate a random variate from
the appropriate distribution and calculate the resulting cost. In your writeup, include the
first 10 rows of your spreadsheet and report the average total cost per month (including the
cost of the contracted minutes).

4.10 (Simulation of Dining Dollars) Simulate the system in Problem 4.8(b) for 1000
years in a spreadsheet program. For each year, generate a random variate from the appro-
priate distribution and calculate the resulting cost. In your writeup, include the first 10
rows of your spreadsheet and report the average total overage and underage cost per year.
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4.11 (Managing Blood Inventory) A hospital purchases blood from a local blood-
donation organization and uses it for patients during surgeries and emergency procedures.
The hospital pays $175 for each unit of blood purchased. Orders must be placed first thing
in the morning, and any blood not used by the end of the day must be discarded. There is
no salvage value or cost to discard a unit of blood. If the hospital needs more blood on a
given day than they purchased that morning, they must place an emergency order; blood
ordered this way costs $420 instead of $175. The number of units of blood that the hospital
uses on a given day is normally distributed, with a mean of 150 and a standard deviation of
40.

a) Interpret this problem as a newsvendor problem. What are the holding and
stockout costs, h and p?

b) What is the optimal number of units of blood for the hospital to purchase in the
morning? (Fractional answers are OK.)

c) On what fraction of days will the hospital need to order at least one emergency
unit of blood?

d) Suppose unused inventory costs the hospital money to dispose. Will the optimal
order quantity increase, decrease, or stay the same? Will the optimal expected
cost increase, decrease, or stay the same?

4.12 (Inventory Simulation) Using a spreadsheet software package of your choice,
simulate an infinite-horizon base-stock policy (Section 4.3.4). Your spreadsheet should
include columns for the starting and ending inventory level; the order quantity; the random
demand; and the total cost (as well as any other columns you wish to include). Use
the optimal base-stock level S (which should be calculated within your spreadsheet) and
assume that the system begins period 1 with S units on hand.

a) Assume that demands per period areN(100, 202) and that h = 3, p = 25, γ = 1,
and L = 0. Simulate the system for at least 1000 periods and include the first 10
rows of your spreadsheet in your report.

b) For each performance measure listed below, calculate the exact mean value (using
formulas contained in this chapter) and the mean value from the simulation, and
compare the two.
• Ending inventory level
• Order quantity
• Holding cost per period
• Stockout cost per period
• Total cost per period
• Type-1 service level
• Type-2 service level

4.13 (Inventory Simulation: Fixed Cost) Add a fixed ordering costK to your simulation
from Problem 4.12 and implement an (s, S) inventory policy. Calculate optimal, or near-
optimal, values of the policy parameters s and S in the spreadsheet and use those for
the simulation. Assume K = 1000. Report the simulated mean values for each of the
performance measure listed in Problem 4.12(b). (Make sure to include the fixed cost when
you report the total cost.)

4.14 (Inventory Simulation: Lead Time) Modify your simulation from Problem 4.12
to handle a nonzero lead time L. Calculate the optimal value of S in the spreadsheet and
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use it for the simulation. Assume L = 4. Report the simulated mean values for each of the
performance measures listed in Problem 4.12(b).

4.15 (Implicit vs. Explicit Newsvendor Cost Functions) Let h′ = h + c − v and
p′ = p + r − c. Prove that the (implicit) newsvendor cost function (4.12) under cost
parameters h′ and p′ is equal to the explicit newsvendor cost function (4.19) plus the
constant (r − c)µ, which represents the expected margin earned on the units sold.

4.16 (Discrete Newsvendor with Continuous Demands) Suppose that the newsvendor’s
demand has a continuous distribution but the newsvendor must choose integer values of
S. Prove (by giving examples) that S∗ can equal either S − 1 or S, where S is such that
F (S − 1) < p/(h+ p) < F (S).

4.17 (Alternate Fill Rate Formula) Silver and Bischak (2011) prove the following
formula for the type-2 service level under an infinite-horizon base-stock policy with lead
time L ≥ 0 and reorder interval R ≥ 1:

B = 1−

[√
L+R

R
CVL (z)−

√
L

R
CVL

(
R√
LCV

+ z

√
L+R

R

)]
, (4.101)

where CV = σ/µ is the coefficient of variation for the demand in one period and

z =
S − (L+R)µ√

L+Rσ
.

Prove that (4.101) is equivalent to (4.55).

4.18 (Newsvendor with Forecasting) Suppose that demands are normally distributed
and that the newsvendor does not know µ and σ, but he estimates them in each period, as
described in Section 4.3.2.7, using moving averages and standard deviations with N = 5.
The observed demands in periods t− 10, . . . , t− 1 are 99, 87, 125, 106, 100, 107, 93, 114,
87, and 85. The cost parameters are h = 2 and p = 15. What is the optimal order quantity
for the newsvendor in period t?

4.19 (Lognormal Newsvendor) Suppose the demand D has a lognormal distribution
with parameters µ and σ. (That is, lnD ∼ N(µ, σ2).) Prove that the optimal solution to
the newsvendor problem and its expected cost are given by

S∗ = eµ+zασ

g(S∗) = (h+ p)E[D]Φ(σ − zα)− hE[D],

where α = p/(h+ p).
Hint: The loss function for the lognormal distribution for x > 0 is

n(x) = eµ+σ2

2 Φ

(
µ+ σ2 − lnx

σ

)
− x

(
1− Φ

(
lnx− µ

σ

))
. (4.102)

4.20 (The Cooperative Newsvendor) Consider a newsvendor who purchases newspa-
pers from his supplier at a cost of c per newspaper and sells them at a price of r per
newspaper. If he has unsold newspapers at the end of the day, he can take them to the local



PROBLEMS 147

recycling center, which pays him a salvage value of v per newspaper. The daily demand
for newspapers has pdf f(x) and cdf F (x). Assume that F (x) is strictly increasing.

a) Write the newsvendor’s expected cost as a function of S, denoted gn(S). (Your
expression may include integrals.) Show that the order quantity that minimizes
gn(S) is

S∗n = F−1

(
r − c
r − v

)
.

b) Suppose the newsvendor’s supplier prints newspapers on demand; that is, she
observes the newsvendor’s order of S and then prints exactly S newspapers.
The supplier therefore faces no uncertainty. It costs the supplier b to print one
newspaper. Write the supplier’s expected net cost (i.e., cost minus revenue) as a
function of S, denoted gs(S). Then write the total supply chain expected cost as
a function of S, denoted gt(S)—that is, gt(S) = gn(S) + gs(S).

c) Find the order quantityS∗t that minimizes gt(S). (If the supplier and the newsven-
dor were both owned by a single firm that sought to minimize its total costs, this
is the order quantity it would pick.)

d) Prove that S∗n = S∗t if and only if c = b—that is, if and only if the supplier earns
zero profit on each newspaper she sells to the newsvendor.

e) Prove that gt(S∗n) = gt(S
∗
t ) if and only if c = b, and gt(S∗n) > gt(S

∗
t ) otherwise.

f) In a short paragraph, discuss the implications of the results you proved in this
problem. What does it mean for two supply chain partners that are each attempting
to minimize their own costs rather than minimizing the total supply chain cost?

4.21 (g(S∗) for Poisson Newsvendor) Suppose that in the newsvendor problem, the
demand per period, D, has a Poisson distribution with mean λ. Suppose further that there
exists an S∗ such that F (S) = p/(h+ p). Prove that

g(S∗) = (h+ p)f(S∗)λ.

4.22 (Non-Standard-Normal Loss Function) Prove equation (4.25) (also given in
(C.31)).

4.23 (Loss Function Derivatives) Prove equations (4.13) and (4.14) (also given in (C.15)
and (C.16)).

4.24 (Uniform Loss Functions) Derive expressions for the first- and second-order loss
and complementary loss functions for the continuous U [0, 1] distribution.

4.25 (A Simple Revenue Management Problem) An airplane has n seats in coach class.
Two types of travelers will purchase tickets for a certain flight on a certain date: leisure
travelers, who are willing to pay only the discounted fare rd, and business travelers, who
are willing to pay the full fare rf (rf > rd). The airline knows that the number of leisure
travelers requesting tickets for this flight will be greater than n for sure, while the number
of business travelers requesting tickets is a random variable X with a given cdf F (x).

Assume that the leisure travelers always purchase their tickets before the business
travelers do. (In practice, this is roughly true, which is why airfares increase as the flight
date gets closer.) The airline wishes to sell as many seats as possible to business travelers
since they are willing to pay more. However, since the number of such travelers is random
and these customers arrive near the date of the flight, a sensible strategy is for the airline to
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allocate a certain number of seats Q for full fares and the remainder, n − Q, for discount
fares.

The discount fares are sold first: The first n − Q customers requesting tickets will be
charged rd, and the remaining≤Q customers will be offered the full price rf . Some of the
customers being offered rf will be leisure travelers; these travelers will decline to buy a
ticket. Similarly, it is possible that some of the seats sold to leisure travelers for rd could
have been sold to business travelers who would have been willing to pay rf .

a) Show that the problem of finding the optimal number of full-fare seats, Q, is
equivalent to a newsvendor problem. What should be used in place of the holding
and stockout costs h and p? What is the critical ratio? What is the optimality
condition (analogous to (4.16))?

b) Suppose that demand for full-fare seats is normally distributed with a mean of
40 and a standard deviation of 18. There are n = 100 seats on the flight, and
the fares are rd = $189 and rf = $439. What is the optimal number of full-fare
seats? (Fractional solutions are OK.)

c) For each of the following situations, will the optimal Q increase, decrease, or
stay the same? Will the optimal cost increase, decrease, or stay the same? Briefly
explain your answers.

i. The full-fare tickets are fully refundable, and with some probability each
business traveler will cancel his or her ticket at the last minute, too late for
the airline to resell the newly vacant seat.

ii. A fraction of leisure travelers are willing to pay full fare if they arrive after
the discount seats are sold out.

iii. Unsold seats may be sold at the very last minute for a steeply discounted
price (for example, on a discount airfare website). These tickets are made
available after most (though not necessarily all) of the business travelers
have requested tickets.

4.26 (Allocating Parking Spots) You are the manager of a luxury apartment building
whose parking garage contains 300 parking spots. Residents may choose to purchase a
dedicated parking spot for $60,000 for 3 years. (Only 3-year contracts are available.) The
garage also has metered parking spots that require drivers to pay $4 per hour for parking.
The number of drivers wishing to park in metered spots in a given hour has a normal
distribution with a mean of 50 and a standard deviation of 10. Your goal is to choose how
to allocate the 300 spots between dedicated and metered spots.

To keep things simple, assume that (1) the demand for dedicated spots is greater than
300; (2) drivers who park in metered spots all park for exactly 1 hour, arriving and departing
on the hour (at 12:00, 1:00, etc.); and drivers who purchase dedicated spots never park in
metered spots, and vice-versa.

What is the optimal number of spots to designate as metered spots?

4.27 (Free Overage) Suppose that, in the newsvendor problem, we are allowed up to r
units of overage for free before incurring holding costs, where r ≥ 0 is a constant. That is,
the cost if we orderS units and have a demand of d is g(S, d) = h((S−r)−d)++p(d−S)+.

a) Write the optimality condition (analogous to (4.16)).
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b) Apply this to the “dining dollars” example in Problem 4.8(b), assuming that
r = $50.

4.28 (DP Walkthrough) The demand for a given product in each period equals 2 with
probability 0.2, 1 with probability 0.5, and 0 with probability 0.3. Holding and stockout
costs per period are given by h = 2 and p = 5. The purchase cost is c = 1, and there is
no fixed cost. The order-up-to level y in each period must be in {0, 1, 2}. The planning
horizon is T = 3 periods, and the terminal cost at the end of the horizon is given by
θ4(x) = 4x+ + 6x−. We begin period 1 with x = 2 units on hand. Using Algorithm 4.1,
determine yt(x) for t = 1, 2, 3 and for each feasible value of x. Also determine the
expected cost for the entire horizon (including the terminal cost), given that we begin the
horizon with x = 2. Work through the algorithm by hand and show your work.

4.29 (Implementing Base-Stock DP) Consider the finite-horizon model with no fixed
costs of Section 4.3.3.

a) Implement the DP model in any programming language you wish.
b) Suppose T = 10, c = 1, h = 0.5, p = 10, and γ = 0.98. Suppose the demand

per period is distributed as N(20, 52) and the terminal cost function is given by

θT+1(x) = hT+1x
+ + pT+1x

−,

where hT+1 = h and pT+1 = p. Using your DP, find yt(x) and θt(x) for
t = 1, . . . , 10 and x = −10, . . . , 40. Report these in two separate tables. Also
report the optimal base-stock level S∗t for periods t = 1, . . . , 10.

c) Plot yt(x) for t = 5.

4.30 (Implementing (s, S) DP) Consider the finite-horizon model with fixed costs of
Section 4.4.3.

a) Implement the DP model in any programming language you wish.
b) Suppose T = 10, c = 1, K = 40, h = 1, p = 25, and γ = 0.98. Suppose the

demand per period is distributed as N(18, 32) and the terminal cost function is
given by

θT+1(x) = hT+1x
+ + pT+1x

−,

where hT+1 = h and pT+1 = p. Using your DP, find yt(x) and θt(x) for
t = 1, . . . , 10 and x = −10, . . . , 40. Report these in two separate tables. Also
report the optimal parameters s∗t and S∗t for periods t = 1, . . . , 10.

c) Plot yt(x) for t = 5.

4.31 ((s, S) for Refrigerators) Weekly demand for refrigerators at an appliance store
has a Poisson distribution with a mean of 4. The holding and stockout cost for refrigerators
at the store are h = $40 and p = $125 per week, respectively. Replenishment orders for
refrigerators incur a fixed cost of K = $150.

a) Suppose we set (s, S) = (4, 10). What is the expected cost per week?
b) Using Algorithm 4.2, find the optimal parameters (s, S), and the corresponding

optimal cost.

4.32 (Approximate (s, S) Policies) Consider an infinite-horizon instance in which the
demand per period is normally distributed with a mean of 190 and a standard deviation
of 48, and in which the costs are given by K = 60, h = 2, and p = 36. Determine
approximate values for s and S:
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a) Using the (r,Q) approximation.
b) Using the power approximation.

4.33 (Ordering Capacities) Suppose that an ordering capacity of b units is imposed in
the finite-horizon model with no fixed costs of Section 4.3.3. Sketch a plot of yt(x) vs. x,
analogous to Figure 4.4. (The exact numbers are not important; what is important is the
shape of the curve.)

4.34 (DP for Ordering Capacities) Suppose that an ordering capacity of b units is
imposed in the finite-horizon model with fixed costs of Section 4.4.3.

a) Explain how to modify the DP from Section 4.4.3 to account for the ordering
capacity.

b) Implement your DP from part (a). Using your DP, find yt(x) and θt(x) for
t = 1, . . . , 10 and x = −10, . . . , 40 for the instance described in Problem 4.30(b)
using a capacity of b = 10. Report yt(x) and θt(x) in two separate tables.

4.35 (Nonoptimality of (s, S) Policies for Ordering Capacities) Suppose that an or-
dering capacity of b units is imposed in the finite-horizon model with fixed costs of Sec-
tion 4.4.3. Prove, by providing a counter-example, that an (s, S) policy is not necessarily
optimal in every period of the finite-horizon version of this problem. (The (s, S) policy
is modified in this case: If IP ≤ s, we order min{S − IP, b}, and otherwise, we order
nothing, where IP is the current inventory position.)

4.36 (K-Convexity Is Not a Necessary Condition) In Section 4.5.2.2, we proved that if
Ht(y) is continuous and K-convex, then an (s, S) policy is optimal in period t. However,
K-convexity is not a necessary condition: An (s, S) policy can still be optimal in period t
even ifHt(y) is notK-convex. Sketch a graph of a functionHt(y) that is notK-convex but
for which an (s, S) policy is optimal. Explain clearly (a) why the function is notK-convex
and (b) why an (s, S) policy is optimal.

4.37 (Other Policy Forms #1) Consider the single-period model with no fixed costs from
Section 4.5.1.1. We know that, for a given starting inventory level x, (4.83) determines the
optimal inventory position after ordering, y. We assumed a particular form for H(y) and
used the convexity of this function to prove the optimality of a base-stock policy. But in
principle H(y) can have any form, and other policies may be optimal for other functions.

a) Develop a function H(y) such that the optimal policy has three parameters, S1,
s2, and S2 (S1 < s2 < S2), and has the following form:

• If x ≤ S1, then order up to S1.
• If S1 < x ≤ s2, do nothing.
• If s2 < x < S2, order up to S2.
• If x ≥ S2, do nothing.

For the sake of simplicity, assume that c = 0. Sketch the function H(y) and
explain how to determine the optimal values of the parameters S1, s2, and S2.
(For example, “S1 is the largest maximizer of H(y).”)

b) Now suppose thatK > 0 so that the termKδ(y−x) is now added to the objective
function, as in (4.92). Develop a function H(y) such that the optimal policy has
four parameters, s1, S1, s2, and S2 (s1 < S1 < s2 < S2), and has the following
form:
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(a) K = 0, b =∞.

K

(b) K > 0, b =∞.

b

(c) K = 0, b <∞.

Figure 4.14 H(y) functions for Problem 4.38, with fixed cost K ≥ 0 and ordering capacity
b ≤ ∞.

• If x ≤ s1, then order up to S1.

• If s1 < x ≤ s2, do nothing.

• If s2 < x < S2, order up to S2.

• If x ≥ S2, do nothing.

Sketch the functionH(y) and explain how to determine the optimal values of the
parameters s1, S1, s2, and S2.

4.38 (Other Policy Forms #2) Describe the form of the optimal single-period inventory
policy for each of the functions H(y) depicted in Figure 4.14 (in a manner similar to
the descriptions in Problem 4.37). Explain how to determine the optimal values of the
parameters for your policy. Note that in part (c), there is a fixed cost of K, and in part (c),
there is an ordering capacity of b units. For all parts, assume that the per-unit cost c = 0.

4.39 (Other Policy Forms #3) Suppose that, in the single-period model with fixed costs
of Section 4.5.2.1, the function H(y) has a shape similar to the curve in Figure 4.15, with
K > 0.

a) Prove that H(y) is not K-convex.
b) Describe the form of the optimal inventory policy (in a manner similar to the

descriptions in Problem 4.37). Explain how to determine the optimal values of
the parameters for your policy.
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K

Figure 4.15 H(y) function for Problem 4.39, with fixed cost K > 0.

c) Write a set of conditions onH(y) that ensures that, if all of your conditions hold,
then the policy that you described in part (b) is optimal. Your conditions must be
sufficient but need not be necessary.

4.40 (Single-Period Control-Band Policies) Consider the single-period model without
fixed costs of Section 4.5.1.1, and suppose we begin the period with an inventory level of
x ≥ 0. Suppose further that we can return excess inventory to the supplier in each period.
That is, we can choose Q < 0, or equivalently, y < x.

For each unit we return, we earn a revenue of c′, so the total revenue earned whenQ < 0

is −c′Q. Normally c′ ≥ 0, but it’s also possible that c′ < 0, in which case we pay a cost to
make the return.

Consider the following policy: There are two parameters, S and U , with 0 ≤ S ≤ U .
Set

y =


S, if x < S

x, if S ≤ x ≤ U
U, if x > U.

The interval [S,U ] is called a control band, and the policy is called a control-band policy.
The idea is to order up to S if x is below the control band, to “return down to” U if x is
above the control band, and to do nothing if x is in the control band.

a) Prove that a control-band policy is optimal for the single-period problem.
b) Show how to calculate the optimal S∗ and U∗ for the single-period problem, and

prove that S∗ ≤ U∗.
c) Prove that, in the single-period problem, as c′ → −h (from above), U∗ →∞. In

a few sentences, explain why it is logical to require c′ ≥ −h.
d) Prove that, in the single-period problem, as c′ → c (from below), U∗ − S∗ → 0.

In a few sentences, explain why it is logical to require c′ ≤ c.
e) Suppose the demand per period is distributed as N(60, 122). Suppose h = 0.4,
p = 4.8, c = 3, and c′ = 1.7. Find S∗ and U∗ for the single-period problem.

4.41 (Finite-Horizon Control-Band Policies) Return to the setup in Problem 4.40, and
now consider the finite-horizon model. Prove that a control-band policy is optimal in every
period of the finite-horizon model. (The parameters of the control-band policy are now
indexed by time, St and Ut.)

4.42 (Properties of K-Convex Functions) Prove Lemma 4.17.



PROBLEMS 153

4.43 (Alternate Terminal Cost Function) Consider the finite-horizon base-stock model
described in Section 4.5.1.2. Suppose that the terminal cost function is given by

θT+1(x) =

{
−(h+ p)x, if x ≤ 0

0, if x > 0.
(4.103)

Suppose also that h > γc.
a) Write an expression for HT (y).
b) Derive the optimal base-stock level in period T , in the form

S∗T = F−1([some fraction]).

c) Write an expression for HT−1(y). (Note: Your expression may involve cases, as
in (4.90).)

d) Derive the optimal base-stock level in period T − 1, in the form

S∗T−1 = F−1([some fraction]).

e) Prove that S∗T−1 < S∗T .

4.44 (Finite-Horizon Base-Stock Policies under Lost Sales) Prove that, if the terminal
cost function θT+1(x) is convex and θ′T+1(x) ≥ −c, then a base-stock policy is optimal
in each period of the finite-horizon problem with no fixed costs under lost sales. (The
condition θ′T+1(x) ≥ −c essentially ensures that the condition p > c continues to hold
even in the terminal cost function.)

4.45 (Minimum Order Quantity) Consider the single-period model without fixed costs
from Sections 4.3.2 and 4.5.1. Suppose there is a constraint requiring the order quantity to
be either 0 or at least M , where M > 0 is a constant.

a) One plausible policy for this problem is a modified base-stock policy in which we
order max{S − x,M}, where x is the starting inventory level. Prove (by giving
a counterexample) that this policy is not optimal.

b) Another plausible policy is an (s, S) policy in which S−x ≥M . Prove that this
policy is not optimal either.

c) Make a conjecture as to the form of the optimal policy. (That is, describe a
decision rule, similar to how we described the policies in Section 4.1.)

d) Bonus: Specify the optimal parameters of the policy you described in part (c).
e) Double Bonus: Prove that the policy you described in parts (c) and (d) is optimal.

4.46 (Monotonic Safety Stock) Consider the infinite-horizon base-stock model with
service-level constraints given by (4.62)–(4.64).

a) Suppose we use a type-1 service-level constraint (4.63). Argue that the optimal
base-stock level and the optimal safety-stock level (given by the optimal base-
stock level minus the mean lead-time demand, S∗ − (L+ 1)µ) both increase as
the reorder interval R increases.

b) Suppose we use a type-2 service-level constraint (4.64) under approximation B̂1.
Argue that the optimal base-stock level increases as R increases, but show that
the optimal safety-stock level can decrease as R increases.
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4.47 (Derivatives of I(S) and B(S)) Assuming the demand is distributed N(µ, σ2),
prove that

∂I

∂σ
=
∂B

∂σ
= φ(z),

where I(S) and B(S) are as defined in Section 4.3.2.2 and z = (S − µ)/σ.

4.48 (DP for New and Used Items) A company manufactures and sells a laptop computer
that has a market both for new items and for used ones. In each period, the firm decides
how much to manufacture and then observes the demand for each type (new and used).
Demand is satisfied as much as possible, and then a portion of the unused new inventory
“expires” and is considered used. Unmet demand for new products is backordered but
unmet demand for used products is lost. Products cannot be substituted; that is, a customer
demanding a used item cannot be given a new item, and vice-versa.

Use subscript 1 to denote new items and subscript 2 to denote used items. Thus, the
holding and stockout costs per item per period for new items are given by h1 and p1,
respectively. For used items, the holding cost per item per period is given by h2, and
the stockout cost per item is given by p2. Assume that demands of type i (i = 1, 2) are
independent and normally distributed with pdf fi(d) and that the demand for each type in
a given period is independent of the demand for the other type. There is no fixed ordering
cost, and the discount factor is γ.

The sequence of events in each time period is as follows:

1. The inventory levels IL1 and IL2 of new and used items (respectively) are observed.
2. A manufacturing order for new items is placed and is ready instantaneously.
3. Demands d1 and d2 for new and used items (respectively) are observed. As much

demand as possible is satisfied from the two inventories. Unmet demands for new
items are backordered and unmet demands for used items are lost.

4. βIL′1 new items are transferred to the used inventory, where β is a constant (0 ≤
β ≤ 1) and IL′1 is the inventory level of new items after the manufacturing order is
received and the demand is subtracted, i.e., after step 3.

5. Holding and stockout costs are assessed based on the ending on-hand inventory
levels.

Let θt(x1, x2) be the optimal expected cost in periods t, t+ 1, . . . , T if we begin period
t with a new-item inventory level of x1 and a used-item inventory level of x2 (and act
optimally thereafter). Formulate a recursive (DP) expression for θt(x1, x2), analogous to
(4.36).

Your expression must use y, the order-up-to level for new items, as the decision variable
for the minimization. Do not write the expectation asE[·]. Instead, write out the expectation
using integrals. If you define any additional notation, define it clearly.



CHAPTER 5

STOCHASTIC INVENTORY MODELS:
CONTINUOUS REVIEW

5.1 (r,Q) POLICIES

In this chapter, we consider a setting similar to the economic order quantity (EOQ) model
(Section 3.2) but with stochastic demand. The mean demand per year is λ. The inventory
position is monitored continuously, and orders may be placed at any time. There is a
deterministic lead time L (≥ 0). Unmet demands are backordered.

If the demand has a continuous distribution, then the inventory level decreases smoothly
but randomly over time, with rate λ, as in Figure 5.1. (Think of liquid draining out of
a tank at a fluctuating rate.) This is the interpretation used in most of this chapter. Or
demands may occur at discrete points in time (as customers arrive), for example, if the
demand follows a Poisson process, as in Section 5.5.

We’ll assume the firm follows an (r,Q) policy: When the inventory position reaches a
certain point (call it r), we place an order of size Q. L years later, the order arrives. In the
intervening time, the inventory on hand may have been sufficient to meet demand, or we
may have stocked out. Note that the inventory level (solid line in Figure 5.1) and inventory
position (dashed line) differ from each other during lead times but coincide otherwise. An
(r,Q) policy is known to be optimal for the setting described here, although we will not
prove this.

Whereas the EOQ model has a single decision variable Q, an (r,Q) policy has two
decision variables: Q (the order quantity, sometimes called the batch size) and r (the

155Fundamentals of Supply Chain Theory, . Lawrence V. Snyder and Zuo-Jun Max Shen. 
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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Figure 5.1 Inventory level (solid line) and inventory position (dashed line) under (r,Q) policy.

reorder point). Our goal is to determine the optimal r and Q to minimize the expected cost
per year.

In a continuous-review setting, (r,Q) policies are equivalent to (s, S) policies (Sec-
tion 4.4) as long as the inventory position equals s exactly at some point in every inventory
cycle. This is guaranteed for continuous demand distributions (as in Sections 5.2–5.4) and
for discrete demands in which each customer demands a single unit (as in Section 5.5).
Recall that in an (s, S) policy, when the inventory position reaches s, we order up to S.
Therefore, a given (r,Q) policy is equivalent to an (s, S) policy in which s = r and
S = r + Q. On the other hand, this equivalence does not hold for “lumpy” demand pro-
cesses such as compound Poisson or for periodic-review systems, since in either case the
inventory position may fall strictly below the reorder point before a replenishment order is
placed.

In this chapter, we will focus first on the case in which the demands have a continuous
distribution. We will discuss an exact model for this problem in Section 5.2, then discuss
several common approximations in Section 5.3, and finally return to the exact model in
Section 5.4 to prove some important properties of the optimal solution and its relationship
to the economic order quantity with backorders (EOQB). Then, in Section 5.5, we discuss
an exact model with discrete demands.

5.2 EXACT (r,Q) PROBLEM WITH CONTINUOUS DEMAND DISTRIBUTION

In this section, we introduce an exact model for systems with continuous demand distribu-
tions. We first formulate the expected cost function and then derive optimality conditions
for it.

We continue to consider the usual costs: fixed costK ≥ 0, purchase cost c ≥ 0, holding
cost h > 0, and stockout cost p > 0. We’ll use D to represent the lead-time demand; D
is a random variable with mean µ, variance σ2, pdf f(d), and cdf F (d). It is important to
remember that D, µ, σ, etc. refer to lead-time demand, not to demand per year. Of course,
the two are closely related. If the demand per year has mean λ and standard deviation τ and
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the lead time is L years, then the lead-time demand has mean λL and standard deviation
τ
√
L, assuming independence of demand across time.

5.2.1 Expected Cost Function

Our first step is to derive an exact expression for the expected cost as a function of r andQ.
We place orders, on average, every Q/λ years (just as in the EOQ problem). Therefore,
the expected fixed cost is given by Kλ/Q. As in the EOQ, the annual purchase cost is
given by cλ. Since it’s independent of bothQ and r, we’ll ignore it in the cost calculations.
It remains to evaluate the expected holding and stockout costs, which we will refer to
collectively as the inventory cost. The inventory cost is incurred based on the inventory
level, IL, a random variable whose distribution is difficult to determine for the same reasons
as for periodic-review models with nonzero lead times; namely, that it depends on r and Q
and that inventory decisions made at time t do not have an effect on IL until time t+ L.

The solution to this problem is to use the conservation-of-flow concept discussed in
Section 4.3.4.1, in which we relate the inventory level at time t + L to the inventory
position at time t (whose probability distribution, as we will see, is easy) and to the demand
in the time interval (t, t + L] (whose probability distribution we know). In particular, if
the inventory position at time t is given by IP (t), then the inventory level at time t+ L is
given by

IL(t+ L) = IP (t)−D(t, t+ L], (5.1)

whereD(t, t+L] is the cumulative demand that occurs between t and t+L. The reasoning
is identical to that in Section 4.3.4.1, adjusted for continuous review: All of the items
included in IP (t)—including items on hand and on order—will have arrived by time t+L,
and no items ordered after time t will have arrived by time t+ L. Therefore, all items that
are on hand or on order at time twill be included in the inventory level at time t+L, except
for the D(t, t+ L] items that have since been demanded.

As in the periodic-review case, we can drop the time indices from (5.1) in steady state
and write

IL = IP −D, (5.2)

where D is the lead-time demand. Zipkin (1986b) shows that (5.2) also holds—and
therefore, so do many of the results in the rest of this section—under a range of stochastic
lead-time settings.

Once we determine the distribution of IP , the (unconditional) expected inventory cost
then follows from the law of total expectation. In particular, let ḡ(x) be the rate at which
the inventory cost accrues when IL = x:

ḡ(x) = hx+ + px−. (5.3)

(ḡ(·) is a rate because the inventory level is changing continuously over time, given in units
of money per year.) Then the expected inventory cost per year is

E[inventory cost] = EIL [ḡ(IL)]

= EIP
[
EIL|IP [ḡ(IL)]

]
= EIP [ED [ḡ(IP −D)]]

= EIP [g(IP )], (5.4)
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where
g(y) = hE[(y −D)+] + pE[(D − y)+] (5.5)

is the rate at which the expected inventory cost accrues at time t + L when the inventory
position at time t equals y. The expectation in (5.5) is over the lead-time demand. Note
that g(r,Q), with two arguments, is the expected total expected cost, whereas g(y), with
one argument, is the expected inventory cost.
g(y) is simply the newsvendor expected cost function (Section 4.3.2). Let S∗ be its

optimizer, given by (4.17).
It remains to determine the distribution of IP . By the definition of an (r,Q) policy,

we know that IP takes values only in [r, r + Q]. It turns out that IP has a very simple
distribution—it is uniform on [r, r + Q], under some mild conditions on the lead-time
demand distribution (Serfozo and Stidham 1978, Browne and Zipkin 1991). Therefore,
(5.4) implies that

E[inventory cost] =
1

Q

∫ r+Q

r

g(y)dy. (5.6)

Combining the expected inventory cost (5.6) and the expected fixed costKλ/Q, we get the
following expression for the expected total cost per year:

g(r,Q) =
Kλ+

∫ r+Q
r

g(y)dy

Q
. (5.7)

For early derivations of this equation, see, e.g., Hadley and Whitin (1963).
Zheng (1992) proves the following:

Lemma 5.1 g(r,Q) is jointly convex in r and Q.

Proof. Let

I(r,Q) =
1

Q

∫ r+Q

r

E[(y −D)+]dy

B(r,Q) =
1

Q

∫ r+Q

r

E[(D − y)+]dy

be the expected on-hand inventory and backorders, respectively, as functions of r and Q.
Then we can write

g(r,Q) =
Kλ

Q
+ hI(r,Q) + pB(r,Q).

Moreover,

I(r,Q) =
1

Q

∫ r+Q

r

E[(y −D) + (y −D)−]dy

=
1

Q

∫ r+Q

r

[y − E[D] + E[(D − y)+]]dy

=
1

Q

(
y2

2
− λLy

∣∣∣∣r+Q
r

+B(r,Q)

=
Q

2
+ r − λL+B(r,Q),
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r(Q) S∗ r(Q) +Q

g(r(Q)) =

g(r(Q) +Q)

g(y)

Figure 5.2 Inventory costs are equal at start and end of replenishment cycle.

so

g(r,Q) =
Kλ

Q
+ h

(
Q

2
+ r − λL

)
+ (h+ p)B(r,Q). (5.8)

The first and second terms are clearly convex; the joint convexity of B(r,Q) is proven by
Zipkin (1986a).

In what follows, we use the expected cost expression (5.7) to derive optimality conditions
for r and Q by first fixing Q and finding the optimal corresponding r, and then optimizing
overQ. Although these conditions tell us when a given solution is optimal, they do not give
us an algorithm for finding such solutions. Before developing such an algorithm, we first
discuss several common approximations for finding the optimal parameters for an (r,Q)

policy, in Section 5.3. We then return to the exact model in Section 5.4, proving properties
of these optimal solutions that we can use to develop an algorithm.

5.2.2 Optimality Conditions

We will optimize sequentially: minQ {minr g(r,Q)}. Let r(Q) be the optimal r for a
given Q.

Lemma 5.2 For any Q > 0, r = r(Q) if and only if

g(r) = g(r +Q). (5.9)

Proof. Follows immediately from the first-order condition:

∂g(r,Q)

∂r
=
g(r +Q)− g(r)

Q
= 0.

The inventory position equals r + Q at the start of a replenishment cycle (just after an
order is placed) and equals r at the end (just before the next order is placed). Therefore,
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Lemma 5.2 says that, for a given Q, the optimal r makes the inventory cost rates equal at
the start and end of the replenishment cycle. (See Figure 5.2.) In between, the inventory
costs are lower, due to the convexity of g(y).

The motivation behind this result is that, during one replenishment cycle, we need to
pass through all of the inventory positions in [r, r +Q], and we spend an equal amount of
time in each. For fixed Q, we minimize the total cost by choosing the r that keeps g(y)

as small as possible over those inventory positions. Since g(y) is convex, the r that keeps
g(y) as small as possible over [r, r +Q] is the r for which g(r) = g(r +Q).

This result can be visualized as follows. Imagine a two-dimensional bowl shaped like
the function g(y). For a givenQ, we can find the optimal value of r by dropping a horizontal
bar of lengthQ into the bowl; then r(Q) equals the height of the bar when it comes to rest.

We can now characterize the optimal (r,Q) pair.

Theorem 5.3 (r,Q) minimize g(r,Q) if and only if

g(r,Q) = g(r +Q) = g(r). (5.10)

Proof. From (5.7),

∂g

∂Q
=
Qg(r +Q)−

[
Kλ+

∫ r+Q
r

g(y)dy
]

Q2

=
g(r +Q)− g(r,Q)

Q
= 0

This proves the first equality. The second follows from Lemma 5.2.

� EXAMPLE 5.1

Recall Joe’s Corner Store from Example 3.1. Suppose now that the annual demand
for candy bars is normally distributed with a mean of 1300 and a standard deviation
of 150. Joe’s customers are fiercely loyal, both to Joe and to his brand of candy, so if
the store is out of stock, they are willing to wait for their candy. (That is, demands are
backordered, not lost.) However, each stockout costs $0.50 in lost profit and $7.00
in loss of goodwill per year. The lead time is L = 1/12 year. What are the optimal
r and Q?

We have K = 8, h = 0.225, and p = 7.5. The lead-time demand has parameters
µ = 1300/12 = 108.3 and σ = 150/

√
12 = 43.3.

Let Q = 328.5. Then r(Q) = 126.8 by Lemma 5.2 since

g(126.8) = g(126.8 + 328.5) = 78.1.

From (5.7),
g(126.8, 328.5) = 78.1,

confirming via Theorem 5.3 that (r,Q) = (126.8, 328.5) is optimal for this instance.
�
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Theorem 5.3 says that, surprisingly, not only are the inventory costs equal at the start and
end of the replenishment cycle, but these costs are also equal to the total cost per year. For
some very simple demand distributions, the simultaneous equations (5.10) can be solved
analytically. More commonly, though, (5.10) must be solved using an iterative algorithm.
In order to derive such an algorithm, we will need some additional properties of the model.
Before delving into those, however, we will shift our attention to approximate models.

5.3 APPROXIMATIONS FOR (r,Q) PROBLEM WITH CONTINUOUS
DISTRIBUTION

5.3.1 Expected-Inventory-Level Approximation

The first approximation we discuss is probably the best known and most widely covered
approximation to find r and Q. (Unfortunately, it is also one of the least accurate; see
Section 5.3.5.) It dates back to Whitin (1953) (whose book in fact contains one of the earliest
attempts to optimize r and Q simultaneously) as well as to subsequent developments by
Hadley and Whitin (1963). We call this the expected-inventory-level (EIL) approximation,
for reasons that will become clear shortly.

The approach relies on the following two simplifying assumptions to make the model
tractable:

• Simplifying Assumption 1 (SA1): We incur holding costs at a rate of h · IL per year,
where IL is the inventory level, whether IL is positive or negative.

• Simplifying Assumption 2 (SA2): The stockout cost is charged once per unit of unmet
demand, not per year.

Neither assumption is particularly realistic, but we make them for mathematical conve-
nience. SA1 is obviously untrue, since it suggests we earn a holding “credit” when
IL < 0, but it is not too inaccurate if the expected number of stockouts is small. SA2 is not
as outrageous, but it is not typical, either in practice or in other inventory models. (Actually,
SA1 would not be problematic at all if we didn’t also assume SA2. If the stockout cost
were charged per year, then we could simply replace the stockout cost p with p + h, thus
canceling the artificial “credit” of h for negative inventory.)

5.3.1.1 Expected Cost Function In this section, we will derive an expression for
the approximate expected cost per year as a function of the decision variables Q and r.

Holding Cost: Figure 5.3 contains a graph of the expected inventory over time. s is the
expected on-hand inventory when the order arrives:

s = r − λL.

In other words, s is the safety stock—the extra inventory held on hand to meet demand in
excess of the mean.

The average inventory level is

s+
Q

2
= r − λL+

Q

2
. (5.11)
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Figure 5.3 Expected inventory curve for (r,Q) policy.

By SA1, the expected holding cost per year is

h

(
r − λL+

Q

2

)
. (5.12)

Of course, this expression is only approximate. The essence of the approximation is that
we are calculating the expected holding cost as h · E[IL] = h · E[IL]+ (provided that
E[IL] > 0), whereas it actually equals h · E[IL+], and the two are not equal. That is
why we refer to this as the “expected-inventory-level” approximation. The problem is
more difficult without SA1 because of the nonlinearity introduced by the [·]+ operator. As
previously noted, the EIL approximation becomes less accurate as the expected number of
stockouts increases or, equivalently, as s decreases.

Fixed Cost: The expected fixed cost per year is given by K times the expected number of
orders per year. From Figure 5.3, we see that E[T ] = Q/λ. Therefore, the expected cost
per year is

Kλ

Q
. (5.13)

Stockout Cost: The expected number of stockouts per order cycle is given by

E[(D − r)+] =

∫ ∞
r

(d− r)f(d)dd = n(r), (5.14)

where n(r) is the loss function for the lead-time demand distribution. (See Section 4.3.2.2
or Section C.3.1.) The expected number of stockouts per year is n(r)/E[T ] = λn(r)/Q.
By SA2, the expected stockout cost per year is simply

pλn(r)

Q
. (5.15)

Note that we are assuming that r > 0, which is a reasonable assumption in practice. (The
reason we make simplifying assumption SA2 is that if the stockout cost were charged per
year, then the integrand in the expected stockout cost per year would contain (d − r)2 in
place of (d− r), and this would be significantly harder to analyze. See Problem 5.23.)
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Total Cost: Combining (5.12), (5.13), and (5.15), we get the total expected cost per year:

g(r,Q) = h

(
r − λL+

Q

2

)
+
Kλ

Q
+
pλn(r)

Q
. (5.16)

5.3.1.2 Solution As in the EOQ model, we will optimize by setting the first derivative
to 0. Since there are two decision variables, we must take partial derivatives with respect
to each and set them both to 0:

∂g

∂Q
=
h

2
− Kλ

Q2
− pλn(r)

Q2
= 0

⇐⇒ 1

Q2
[Kλ+ pλn(r)] =

h

2

⇐⇒ Q2 =
2[Kλ+ pλn(r)]

h

or

Q =

√
2λ[K + pn(r)]

h
. (5.17)

And:

∂g

∂r
= h+

pλn′(r)

Q
= 0

⇐⇒ h+
pλ(F (r)− 1)

Q
= 0

(using (C.15)), so

r = F−1

(
1− Qh

pλ

)
. (5.18)

Now we have two equations with two unknowns, but these equations cannot be solved
in closed form. The approach given in Algorithm 5.1 first setsQ equal to the EOQ quantity,
i.e., ignoring the demand randomness. It then proceeds iteratively, solving (5.18) to find r,
solving (5.17) to find Q, and so on. The algorithm terminates when one (or both) of the
parameters haven’t changed much since the last iteration. (ε is the convergence tolerance.)
Hadley and Whitin (1963) prove that this algorithm converges to the optimal r and Q for
(5.16)—though it’s important to keep in mind that (5.16) itself is only an approximate cost
function.

Typically, Q < λ and h < p, so that the argument to F−1 in (5.18) is between 0 and
1. In rarer cases, however, Qh may be larger than pλ, in which case the argument to F−1

is negative and there is no solution to (5.18). If this happens, we can simply set r to its
minimum allowable value (which we have assumed is 0).

� EXAMPLE 5.2

Let us apply the EIL approximation to Joe’s Corner Store from Example 5.1. Using
Algorithm 5.1, we first set Q equal to the EOQ quantity, which we know from
Example 3.1 to be 304.1. From (5.18), we have

r = F−1

(
1− 304.1 · 0.225

7.5 · 1300

)
= F−1(0.9930) = 214.7.
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Algorithm 5.1 Iterative algorithm for EIL approximation for (r,Q) policy

1: Q←
√

2Kλ/h . Initialization: use EOQ
2: r ←∞
3: repeat . Main loop
4: Qprev ← Q; rprev ← r . Remember previous values
5: r ← r that solves (5.18), or 0 if none . Solve for r using current Q
6: Q← Q that solves (5.17) . Solve for Q using current r
7: until |Q−Qprev| ≤ ε and/or |r − rprev| ≤ ε . Termination check
8: return (r,Q)

Now, to calculateQ, we’ll need to calculate n(r). We can calculate n(r) using L (z),
the standard normal loss function, via (C.31), where z = (r − µ)/σ. L (z), in turn,
can be calculated using (C.22).

If r = 214.7, then z = (r − µ)/σ = 2.456, L (z) = 0.002292, and n(r) =

0.002292 · 43.3 = 0.0993. Then, from (5.17), we have

Q =

√
2 · 1300[8 + 7.5 · 0.0993]

0.225
= 317.9.

Repeating this process:

r = F−1

(
1− 317.9 · 0.225

7.5 · 1300

)
= F−1(0.9927) = 214.0

=⇒ n(r) = 0.1042

Q =

√
2 · 1300[8 + 7.5 · 0.1042]

0.225
= 318.6

r = F−1

(
1− 318.6 · 0.225

7.5 · 1300

)
= F−1(0.9927) = 214.0

Because r did not change since the previous iteration, the process can terminate. We
set r = 214.0, Q = 318.6. The approximate annual expected cost of this solution,
using (5.16), is

g(r,Q) =0.225

(
214.0− 1300

12
+

318.6

2

)
+

8 · 1300

318.6

+
7.5 · 1300 · 0.1042

318.6

=95.45.

The exact expected cost, using (5.7), is 92.29, 18.2% larger than the optimal cost of
78.1 from Example 5.1. �

5.3.1.3 Service Levels One major limitation of (r,Q) policies as formulated above
is that p is very hard to estimate. But there is a close relationship between p and the service
level (see Section 4.3.4.2): As p increases, it’s more costly to stock out, so the service
level should increase. In practice, many firms would rather omit the stockout cost from the
objective function and add a constraint requiring the service level to be at least a certain
value.
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First suppose that we wish to impose a type-1 service level constraint. That is, we want
to require the probability that no stockouts occur in a given cycle to be at least α. Since
stockouts occur if and only if the lead-time demand is greater than r, this probability is
simply F (r). The expected cost function we wish to minimize is identical to (5.16) except
it no longer contains a term for the stockout cost. Therefore, we need to solve

minimize g(r,Q) = h

(
r − λL+

Q

2

)
+
Kλ

Q
(5.19)

subject to F (r) ≥ α (5.20)

At optimality, the constraint (5.20) will always hold as an equality. (Why?) Therefore,
the optimal reorder point is given by r = F−1(α). If the lead-time demand is normally
distributed, then the optimal reorder point is

r = µ+ zασ. (5.21)

As we know from Section 4.3.2, this is exactly the form of the optimal solution to the
newsvendor problem. As in the newsvendor problem, the first term of (5.21) represents
the cycle stock (to meet the expected demand during the lead time), while the second term
represents the safety stock (to meet excess demand during the lead time), since the safety
stock is given by s = r − µ.

What about Q? Well, once r is fixed, we can ignore the constraint, and the term
h(r − λL) in the objective function (5.19) is a constant. What’s left in (5.19) is exactly
equal to the EOQ cost function (3.3). Therefore, we set Q to the EOQ value.

The expected cost of this solution is given by

g(r,Q) = hzασ +
hQ

2
+
Kλ

Q

= hzασ +
√

2Kλh. (5.22)

(The first equality follows from the fact that µ, the mean lead-time demand, equals λL. The
second equality follows from (3.5).) This is an exact solution to the approximate model
with a type-1 service level constraint. This approach is often used as an approximation even
when p is known; see Section 5.3.3. It is important in other ways, as well; for example,
we will make use of it when we discuss the location model with risk pooling (LMRP) in
Section 12.2.

Now consider a type-2 service level constraint; we want to require the fill rate to be at
least β. We know that the average proportion of demands that stock out in each cycle is
n(r)/Q, so we need to replace (5.20) with

n(r)

Q
= 1− β. (5.23)

The resulting problem is significantly harder to solve: Since (5.23) contains both Q and
r, we can no longer solve first for r and then solve independently for Q. Nevertheless, a
reasonable approximation is simply to setQ = EOQ (as in the case of type-1) and compute
r using n(r) = Q(1− β). There is a more accurate method that involves a more complex
formula for Q that is solved simultaneously with (5.18); see Nahmias (2005) for details.
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� EXAMPLE 5.3

Return to Example 5.2 and suppose that Joe wishes to ensure a type-1 service level
of α = 0.98. What are the optimal r and Q? What about for a type-2 service level
of β = 0.98?

For the type-1 service level constraint, we have zα = Φ−1(0.98) = 2.0538 and

r = 108.3 + 2.0538 · 43.3 = 197.3

Q = EOQ = 304.1

Using the approximate approach for the type-2 constraint, we have Q = EOQ =

304.1. We need to solve

n(r) = 304.1(0.02) = 6.081.

You can confirm that this equation is satisfied by r = 139.1. �

5.3.2 EOQB Approximation

There are important connections between the EOQ problem with planned backorders
(EOQB; Section 3.5) and (r,Q) policies with continuous demand distributions. We explore
these connections further in Section 5.4. The EOQB approximation for finding near-optimal
r and Q makes use of the EOQB, setting Q using (3.27) and r using Lemma 5.2. This
approach has a fixed worst-case error bound of 1

8 that we will prove in Section 5.4, and an
even tighter bound of 11.8% (which we will not prove).

� EXAMPLE 5.4

If we use the EOQB approximation to solve the problem in Example 5.2, we get

Q =

√
2 · 8 · 1300(0.225 + 7.5)

0.225 · 7.5
= 308.6.

You can confirm that r = 128.6 solves

g(r) = g(r + 308.6).

The solution (r,Q) = (128.6, 308.6) has an expected annual cost of 78.2, only
0.26% larger than the optimal cost from Example 5.1 and much less than the worst-
case bound of 11.8%. It is also considerably better than the solution from the EIL
approximation in Example 5.2. �

5.3.3 EOQ+SS Approximation

Another common approximation for r and Q is to convert the inventory-cost parameters
into a service level and then to use the approach described in Section 5.3.1.3 for type-1
service level constraints. In particular,

Q =

√
2Kλ

h
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r = µ+ zασ,

where α = p/(p + h). The safety stock is given by s = r − µ = zασ. The expected
inventory process can be thought of as being decomposed into two parts, a “top” part that
looks like an EOQ curve and a “bottom” part that is flat, with a height of s, the safety stock.
We therefore refer to this as the EOQ+SS approximation.

The EOQ+SS approximation should not be confused with the EOQB approximation dis-
cussed in Section 5.3.2. Although both approaches use the EOQ(B) model to approximate
an (r,Q) policy, they do so in different ways. Importantly, the EOQ+SS approximation
does not have a fixed worst-case error bound (see Problem 5.18), although some authors
mistakenly apply Zheng’s (1992) worst-case bound of 1

8 to it. Nevertheless, it is a reason-
able approximation that performs well if α = p/(p + h) provides an acceptable service
level.

� EXAMPLE 5.5

The EOQ+SS approximation yields the following solution for the problem in Exam-
ple 5.2:

Q =

√
2 · 8 · 1300

0.225
= 304.1

r = 108.3 + 1.8938 · 43.3 = 190.3

since α = 0.9709 and zα = 1.8938. The solution (r,Q) = (190.3, 304.1) has an
expected annual cost of 87.1, or 11.5% worse than optimal. �

A similar approach can be used when the lead time itself is stochastic. Suppose the lead
time L has mean µL and standard deviation σL (in years). Then the lead-time demand has
mean and variance

µ = λµL (5.24)

σ2 = λ2σ2
L + µLτ

2, (5.25)

where, as usual, λ and τ2 are the mean and variance of the demand per year. (See
Problem 5.16.) Equations (5.21) and (5.22) still hold under these new definitions of µ and
σ. This approach is used in Case Study 5.1.

5.3.4 Loss-Function Approximation

From (5.8),

g(r,Q) =
Kλ

Q
+ h

(
Q

2
+ r − λL

)
+ (h+ p)B(r,Q),

where

B(r,Q) =
1

Q

∫ r+Q

r

E[(D − y)+]dy =
1

Q

∫ r+Q

r

n(y)dy

by (C.12). Let n(2)(x) be the second-order loss function for the lead-time demand distri-
bution (see Section C.3.1):

n(2)(x) =
1

2
E
[(

[X − x]+
)2]

=

∫ ∞
x

n(y)dy. (5.26)



168 STOCHASTIC INVENTORY MODELS: CONTINUOUS REVIEW

Then we can rewrite B(r,Q) as

B(r,Q) =
1

Q

[
n(2)(r)− n(2)(r +Q)

]
.

Therefore,

g(r,Q) =
Kλ

Q
+ h

(
Q

2
+ r − λL

)
+
h+ p

Q

[
n(2)(r)− n(2)(r +Q)

]
. (5.27)

Let’s consider the n(2)(r + Q) term. We typically set r so that stockouts are unlikely
during the lead time, i.e., so that the lead-time demand is unlikely to exceed r. It is
therefore even less likely to exceed r+Q. Since n(2)(r+Q) equals the expected value of
the square of the amount by which the lead-time demand exceeds r+Q, it, too, is likely to
be small. For example, using the parameters in Example 5.2 and (r,Q) = (126.8, 328.5)

from Example 5.1, n(2)(r +Q) is less than 10−13.
Therefore, Hadley and Whitin (1963) propose assuming n(2)(r + Q) ≈ 0 and then

approximating g(r,Q) as

g(r,Q) =
Kλ

Q
+ h

(
Q

2
+ r − λL

)
+
h+ p

Q
n(2)(r).

Taking partial derivatives, we get

∂g

∂Q
= −Kλ

Q2
+
h

2
− (h+ p)n(2)(r)

Q2
= 0

Q =

√
2
[
Kλ+ (h+ p)n(2)(r)

]
h

(5.28)

and

∂g

∂r
= h− (h+ p)n(r)

Q
= 0

=⇒ n(r) =
hQ

h+ p
(5.29)

using the fact that d
dxn

(2)(x) = −n(x) (see (C.20)). Equations (5.28) and (5.29) can be
solved for r and Q using an iterative method similar to that for the EIL approximation in
Algorithm 5.1.

In fact, a similar approach can be used directly on (5.27), iteratively solving two op-
timality equations analogous to (5.28) and (5.29). This approach provides an exact (not
heuristic) solution to find the optimal parameters for an (r,Q) policy (Farvid and Rosling
2014).

� EXAMPLE 5.6

We will use the loss-function approximation for the problem in Example 5.2. We
first set Q equal to the EOQ quantity, 304.1. Setting r = 129.1 satisfies (5.29) since

n(129.1) = 8.8557 =
0.225 · 304.1

0.225 + 7.5
.



APPROXIMATIONS FOR (r,Q) PROBLEM WITH CONTINUOUS DISTRIBUTION 169

Then n(2)(129.1) = 204.6487. Therefore, from (5.28),

Q =

√
2 [8 · 1300 + (0.225 + 7.5) · 204.6487]

0.225
= 326.3.

Repeating this process:

n(127.1) = 9.5050 =
0.225 · 326.3

0.225 + 7.5

=⇒ r = 127.1, n(2)(r) = 223.0154

Q =

√
2 [8 · 1300 + (0.225 + 7.5) · 223.0154]

0.225
= 328.3

n(126.9) = 9.5611 =
0.225 · 328.3

0.225 + 7.5

=⇒ r = 126.9, n(2)(r) = 224.6196

Q =

√
2 [8 · 1300 + (0.225 + 7.5) · 224.6196]

0.225
= 328.4

n(126.9) = 9.5611 =
0.225 · 328.4

0.225 + 7.5

=⇒ r = 126.9

Because r did not change since the previous iteration, the process can terminate. We
have r = 126.9, Q = 328.4. This is the optimal solution (within rounding error), as
found in Example 5.1. �

5.3.5 Performance of Approximations

Figure 5.4(a) plots the relative error of each of the four approximations described above
on 20 randomly generated instances. The relative error is calculated as (g(r,Q) −
g(r∗, Q∗))/g(r∗, Q∗), where (r,Q) is the solution returned by the approximation, (r∗, Q∗)

is the optimal solution, and g(·, ·) is the exact cost function, given by (5.7). The mean
and maximum relative error are given in the first set of columns in Table 5.1. Despite the
fact that they are perhaps the two most commonly taught and used approaches, the EIL
and EOQ+SS approximations perform the worst, with mean relative errors of over 30%
and 14%, respectively. The other two approximations perform much better, with mean
errors below 2%. On the other hand, they are more difficult to implement, since they re-
quire solving (5.9) (in the EOQB approximation) or computing n(2)(·) (in the loss-function
approximation).

In Theorem 5.7, we will show that the (r,Q) cost is relatively insensitive to errors in
Q. This suggests that the poor performance of the EIL and EOQ+SS is largely driven by
their poor choices of r, rather than of Q. Indeed, if we alter each of the approximations
to discard r at the end and instead set r = r(Q), the performance is much better, with
mean errors below 2% for all four approximations; see Figure 5.4(b) and the second set of
columns in Table 5.1. (Note that the performance of the EOQB approximation is the same
in both experiments, since that approximation already sets r = r(Q).)
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(b) Approximations with r set to r(Q).

Figure 5.4 Relative error of (r,Q) approximations.

Table 5.1 Mean and maximum error of (r,Q) approximations.

Original With r(Q)

Approximation Mean Max Mean Max

EIL 0.320 0.662 0.003 0.013
EOQB 0.017 0.044 0.017 0.044
EOQ+SS 0.147 0.311 0.015 0.072
Loss-function 0.003 0.024 0.002 0.020

5.4 EXACT (r,Q) PROBLEM WITH CONTINUOUS DISTRIBUTION:
PROPERTIES OF OPTIMAL r AND Q

We now return to the exact model from Section 5.2. We have two main goals in this
section. First, we will analyze the properties of optimal solutions (and their costs) for
(r,Q) policies, by deriving optimality conditions for r and Q and then proving properties
of the resulting optimal solutions. Second, we will compare (r,Q) policies to the EOQB
model and prove that, if the EOQB model is used as a heuristic for optimizing r and Q, as
discussed in Section 5.3.2, the resulting error has a fixed bound. We do this by treating the
EOQB as a deterministic (r,Q) policy, a reasonable interpretation since the two models
include the same costs and both allow backorders. Our analysis in this section is based
primarily on the work of Zheng (1992).

LetG(Q) equal the expected cost per year as a function ofQ, assuming r is set optimally
for that Q—that is,

G(Q) = g(r(Q), Q). (5.30)

Let H(Q) be the value of g(y) at y = r(Q) or, equivalently, at r(Q) +Q:

H(Q) = g(r(Q)) = g(r(Q) +Q). (5.31)

One can show (see Problem 5.8) that∫ r(Q)+Q

r(Q)

g(y)dy =

∫ Q

0

H(y)dy. (5.32)
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r(Q) S∗ r(Q) +Q

H(Q)

g(y)

A(Q)

Figure 5.5 A(Q) and H(Q).

Therefore, from (5.7), we can write

G(Q) =
Kλ+

∫ Q
0
H(y)dy

Q
, (5.33)

which expresses the expected total cost as a function of Q only, not r. One can show that
G(Q) is convex. Finally, let

A(Q) = QH(Q)−
∫ Q

0

H(y)dy (5.34)

be the area between g(y) and the line at height H(Q); see Figure 5.5.
The following theorem provides a surprisingly simple condition under which Q min-

imizes G(Q) (and therefore (r(Q), Q) minimizes g(r,Q)). We’ll use Q∗ to denote the
minimizer of G(Q).

Theorem 5.4 Q minimizes G(Q), i.e., Q = Q∗, if and only if

A(Q) = Kλ. (5.35)

Proof. From (5.34),

A(Q) = Qg(r(Q) +Q)−
∫ Q

0

H(y)dy

= Qg(r(Q) +Q)− [Qg(r(Q), Q)−Kλ]

by (5.30) and (5.33). At optimality, this equals

Qg(r(Q) +Q)− [Qg(r(Q) +Q)−Kλ] = Kλ

by Theorem 5.3.
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Therefore, the optimal length of the bar to drop into the g(y) “bowl” is the Q such
that the area between the bar and the bowl equals Kλ. Unfortunately, we can’t generally
determine Q∗ in closed form, since A(Q) depends on H(Q), which in turn depends on
r(Q), which also cannot be found in closed form. However, Q∗ can be found through a
straightforward search; see Section 5.4.1.

� EXAMPLE 5.7

Recall from Example 5.1 that the optimal parameters for Joe’s Corner Store are
r = 126.8, Q = 328.5. We already know that g(126.8) = g(126.8 + 328.5) = 78.1,
which means that H(Q) also equals 78.1. Via numerical integration, we have∫ Q

0

H(Q) = 15,246.2,

so
A(Q) = 328.5 · 78.1− 15,246.2 = 10,410,

which equals Kλ within rounding error. (More digits of precision in Q and r(Q)

would result near-exact equality.) This provides an alternate confirmation, via The-
orem 5.4, that (r,Q) = (126.8, 328.5) are the optimal parameters. �

5.4.1 Optimization of r andQ

Algorithm 5.2 uses Theorem 5.4 to find the exact optimal values of r andQ for a continuous-
review (r,Q) policy with continuously distributed demand. The algorithm is basically a
bisection search over Q, with an inner step that finds r(Q) for each candidate value of Q.
The bounds in the initialization step come from Theorem 5.5, below. In the termination
criterion, ε is the desired tolerance.

Algorithm 5.2 Exact algorithm for continuous-review (r,Q) policy with continuous de-
mand distribution

1: Q← Q∗d; Q← Q0 from Theorem 5.5 . Initialization
2: repeat . Main loop
3: Q← (Q+Q)/2 . Candidate value for Q
4: r ← r(Q), where r(Q) satisfies (5.9) . Optimal r for Q
5: A← A(Q) . A(Q)

6: if A > Kλ then Q← Q . Update bounds on Q
7: else if A < Kλ then Q← Q

8: end if
9: until |A−Kλ| ≤ ε . Termination check via Theorem 5.4

10: return (r,Q)

5.4.2 Noncontrollable and Controllable Costs

Recall that S∗ is the minimizer of g(y). Let

H0(Q) = H(Q)− g(S∗). (5.36)



EXACT (r,Q) PROBLEM WITH CONTINUOUS DISTRIBUTION: PROPERTIES OF OPTIMAL r ANDQ 173

Then we can rewrite the cost function as

G(Q) = g(S∗) +G0(Q), (5.37)

where

G0(Q) =
Kλ+

∫ Q
0
H0(y)dy

Q
.

The first term in (5.37), g(S∗), represents the noncontrollable cost in the (r,Q) policy.
Even if we could keep the inventory position at S∗ at all times, by constantly placing orders,
we could not avoid the cost g(S∗)—it is a consequence of the randomness in the demand.
Of course, we cannot constantly place orders (since there is a fixed cost for each order),
so the inventory position will deviate from the ideal level S∗, and the inventory costs will
increase from g(S∗). By varying the order quantity Q, we adjust the trade-off between
fixed and inventory costs. The increase in cost over and above g(S∗) is the controllable
cost, and this is captured by G0(Q), the second term of (5.37).

5.4.3 Relationship to EOQB

As we know from Section 5.3.2, the EOQB (Section 3.5) provides an approximation of an
(r,Q) policy. In fact, we can view the EOQB as a special case of an (r,Q) policy obtained
by assuming the lead-time demand is deterministic, i.e., thatD = λL. In this section, we’ll
use this relationship to compare the optimal (r,Q) parameters and their resulting expected
cost to those of the EOQB model, and then to prove a bound on the worst-case error that
can result from the EOQB approximation. Throughout this section, a subscript d denotes
the deterministic model, i.e., the EOQB.

Since D = λL, the inventory cost rate (5.5) simplifies to

gd(y) = h(y − λL)+ + p(λL− y)+. (5.38)

gd(y) is minimized by S∗d = λL and gd(S∗d) = 0. This is not surprising: If the demand
is deterministic, the inventory cost (i.e., the noncontrollable cost) equals 0 if the inventory
position is kept equal to the lead-time demand. The functions gd(y) and g(y), and their
minimizers, are plotted in Figure 5.6.

Note that
gd(y) ≤ g(y) (5.39)

for all y > 0 (Problem 5.9). Moreover, g(y) approaches gd(y) asymptotically as y → ±∞:
As y → +∞, each additional unit of inventory position (y) will almost certainly not be
demanded and will therefore result in an additional unit of on-hand inventory, at a cost of
h. Similarly, as y → −∞, each reduction of one unit in y will almost certainly lead to one
additional stockout, at a cost of p.

Let gd(r,Q), rd(Q), Gd(Q) = gd(rd(Q), Q), and Hd(Q) be the deterministic-model
versions of g(r,Q), r(Q),G(Q), andH(Q), respectively; that is, they are defined by (5.7),
(5.9), (5.30), and (5.31) but with gd(Q) substituted for g(Q). (See Figure 5.7.) We have

rd(Q) = λL− h

h+ p
Q (5.40)

Hd(Q) = gd(rd(Q)) =
hp

h+ p
Q. (5.41)
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λL S∗

g(y)

gd(y)

p h

Figure 5.6 g(Q) and gd(Q).

Let (r∗d, Q
∗
d) minimize gd(r,Q); from Theorem 3.5, we know that

r∗d = λL− h

h+ p
Q∗d (5.42)

Q∗d =

√
2Kλ(h+ p)

hp
. (5.43)

In fact, one can derive (5.43) and the other two equations in Theorem 3.5 using the analysis
given so far in this section, treating the EOQB explicitly as a special case of an (r,Q)

policy. (See Problem 5.14.)

Theorem 5.5 Q∗d ≤ Q∗ ≤ Q0, where Q0 is the Q that satisfies QH0(Q) = 2Kλ.

Proof. Let Ad(Q) be the deterministic-model version of A(Q). One can show (see
Problem 5.10) thatA(Q) ≤ Ad(Q) for anyQ > 0. In particular, this holds forQ = Q∗d, so

A(Q∗d) ≤ Ad(Q∗d) = Kλ = A(Q∗),

where the two equalities follow from Theorem 5.4. SinceA(Q) is monotonically increasing
(this can be proven rigorously but is clear from Figure 5.7), Q∗d ≤ Q∗.

We omit the proof of the upper bound on Q∗; see Problem 5.11.

The fact that Q∗d ≤ Q∗ is also evident from Figure 5.7. The upper bound of Q0 does
not provide much intuition but does provide a useful upper bound for an iterative search
for Q∗, as in Algorithm 5.2.

Let G∗ = G(Q∗) be the optimal cost in the stochastic model, G∗0 = G0(Q∗) be the
optimal controllable cost in the stochastic model, and G∗d = Gd(Q

∗
d) be the optimal cost

in the deterministic model. The following theorem sheds light on the relationships among
these costs. The last inequality of the theorem is especially impressive, since it succinctly
relates the optimal costs and solutions of the three most fundamental inventory models: the
EOQ(B), the newsvendor problem, and an (r,Q) policy!
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rd(Q) λL S∗ rd(Q) +Q

H(Q)
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Figure 5.7 A(Q) and Ad(Q).

Theorem 5.6
Q∗

Q∗d
G∗0 ≤ G∗d ≤ G∗ ≤ g(S∗) +

Q∗d
Q∗

G∗d

Proof. First note that

g(r(Q∗), Q∗) = g(r(Q∗)) (by Theorem 5.3)

=⇒ G(Q∗) = H(Q∗) (by definitions of G(·), H(·))

=⇒ G0(Q∗) = H0(Q∗) (by (5.37) and (5.36))

=⇒ G∗0 = H0(Q∗) (by definition of G∗) (5.44)

In addition, since QH0(Q) is monotonically increasing and by Theorem 5.5,

Q∗H0(Q∗) ≤ 2Kλ. (5.45)

We prove the first inequality first:

Q∗G∗0 = Q∗H0(Q∗) (by (5.44))

≤ 2Kλ (by (5.45))

=

√
2Kλ(h+ p)

hp
× hp

h+ p

√
2Kλ(h+ p)

hp

= Q∗dHd(Q
∗
d) (by Theorem 3.5)

= Q∗dG
∗
d (by (5.44))

=⇒ Q∗

Q∗d
G∗0 ≤ G∗d.

Next, we prove the remaining two inequalities:

G∗d = gd(rd(Q
∗
d), Q

∗
d) (by definition of G∗d)
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≤ gd(r(Q∗), Q∗) (since (rd(Q
∗
d), Q

∗
d) are optimal for gd(r,Q))

=
Kλ+

∫ r(Q∗)+Q∗
r(Q∗)

gd(y)dy

Q∗
(by definition of gd(r,Q))

≤
Kλ+

∫ r(Q∗)+Q∗
r(Q∗)

g(y)dy

Q∗
(by (5.39))

= G∗ (by definition of G∗)

= g(S∗) +G∗0 (by (5.37))

≤ g(S∗) +
Q∗d
Q∗

G∗d (by first ≤ in theorem).

The sensitivity analysis result for the EOQ model (Theorem 3.2) also applies to the
EOQB (see Problem 3.14); converted to the notation in this section, we get

Gd(Q)

G∗d
=

1

2

(
Q∗d
Q

+
Q

Q∗d

)
.

The cost function turns out to be even flatter (with respect to Q) for (r,Q) policies:

Theorem 5.7 For any Q > 0,

G(Q)

G∗
≤ 1

2

(
Q∗

Q
+

Q

Q∗

)
.

Proof. Omitted; see Zheng (1992).

The question now is, how accurate is the EOQB approximation? Zheng (1992) proves
a fixed worst-case bound of 1

8 = 12.5% on the error that results from using the EOQB
solution:

Theorem 5.8
G(Q∗d)−G∗

G∗
≤ 1

8
− 1

2

(
1

2
− Q∗d
Q∗

)2

≤ 1

8

Proof. Since Q∗d ≤ Q∗ (Theorem 5.5), and H(·) is an increasing function,

1

Q∗d

∫ Q∗d

0

H(y)dy ≤ 1

Q∗

∫ Q∗

0

H(y)dy.

Therefore,

G(Q∗d)−G∗ =
Kλ+

∫ Q∗d
0

H(y)dy

Q∗d
−
Kλ+

∫ Q∗
0

H(y)dy

Q∗

≤ Kλ
(

1

Q∗d
− 1

Q∗

)
=

1

2

hp

h+ p
(Q∗d)

2

(
1

Q∗d
− 1

Q∗

)
. (5.46)
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On the other hand,

G∗ = H(Q∗) ≥ Hd(Q
∗) =

hp

h+ p
Q∗, (5.47)

where the first equality follows from Theorem 5.3, the inequality is proven in Problem 5.15,
and the second equality follows from (5.41). Combining (5.46) and (5.47), we have

G(Q∗d)−G∗

G∗
≤

1
2
hp
h+p (Q∗d)

2
(

1
Q∗d
− 1

Q∗

)
hp
h+pQ

∗

=
1

2

(Q∗d)
2

Q∗

(
1

Q∗d
− 1

Q∗

)
=

1

2

(
Q∗d
Q∗
−
(
Q∗d
Q∗

)2
)

=
1

8
− 1

2

(
1

2
− Q∗d
Q∗

)2

≤ 1

8
.

Like many worst-case error bounds, the bound in Theorem 5.8 overestimates the actual
error bound obtained in practice. Zheng (1992) reports that, in computational results, the
actual gap was less than 1% for 80.0% of the instances tested and less than 2% for 96.3%,
with a maximum gap of only 2.9%. Table 5.1 reports similar results.

This raises the question of whether 1
8 is the best possible bound. The answer is no:

Axsäter (1996) proves that the error is no more than (
√

5− 2)/2, or 11.8%. This bound is
tight, in the sense that there are instances whose error comes arbitrarily close to (

√
5−2)/2,

but these instances use pathological demand distributions that do not resemble real inventory
systems.

5.5 EXACT (r,Q) PROBLEM WITH DISCRETE DISTRIBUTION

Suppose now that the demand is discrete: Individual customers arrive randomly, each
demanding one unit of the product. The number of demands in 1 year has a Poisson
distribution with rate λ. Consequently, the lead-time demand D has a Poisson distribution
with rate λL; the random variable D has pmf f and cdf F .

Since an order is placed immediately when IP reaches r, IP ∈ {r+1, r+2, . . . , r+Q}
at any time. As in the model with continuous demands in Section 5.2, the inventory position
spends equal time in each of these states: IP has a discrete uniform distribution on the
integers r + 1, . . . , r +Q, so P(IP = y) = 1/Q for all y = r + 1, . . . , r +Q. (See, e.g.,
Zipkin (2000) for a proof.) A discrete version of the conservation-of-flow equations (4.41)
and (4.43) hold, so when IP (t) = y, inventory (holding and stockout) costs accumulate at
a rate of g(y), given by (5.5) using the discrete distribution for D. Therefore, the expected
total cost per year is given by

g(r,Q) =
Kλ+

∑r+Q
y=r+1 g(y)

Q
, (5.48)

which is the discrete analogue of (5.7). As before, the function g(r,Q) is jointly convex in
Q and r.
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r r + 1 r +Q
y

g(y)

(a) r(Q+ 1) = r(Q)− 1.

r + 1 r +Q r +Q+ 1
y

g(y)

(b) r(Q+ 1) = r(Q).

Figure 5.8 Determining which Q+ 1 y-values are optimal given r(Q).

Suppose we fix Q and we want to find r(Q), the best r for that Q. To do this,
we need to choose r so that g(r + 1), . . . , g(r + Q) are as small as possible. In other
words, we want to find the Q best inventory positions {r + 1, . . . , r +Q} to minimize the
sum in (5.48). Since g(y) is convex, these Q best inventory positions are nested, in the
sense that, if {r + 1, . . . , r + Q} is optimal for Q, then either {r, r + 1, . . . , r + Q} or
{r + 1, . . . , r +Q, r +Q+ 1} is optimal for Q+ 1.

Figure 5.8 depicts these nested inventory positions. The solid vertical lines represent
the inventory positions r + 1, . . . , r + Q that are optimal for Q, while the dashed lines
represent possible inventory positions to add forQ+ 1. The question is, which is the better
inventory position to add, r(Q) (as in Figure 5.8(a)) or r(Q) + Q + 1 (Figure 5.8(b))? If
g(r) < g(r +Q+ 1), then we set r(Q+ 1) = r(Q)− 1; otherwise, r(Q+ 1) = r(Q).

Note that if Q = 1, then (5.48) simplifies to

g(r, 1) = Kλ+ g(r + 1). (5.49)

The first term is a constant, so g(r, 1) is optimized by optimizing g(r + 1). From Theo-
rem 4.3, S∗, the minimizer of g(·), is the smallest S such that

F (S) ≥ p

p+ h
, (5.50)

and the optimal r is given by
r = S∗ − 1.

In other words, whenever the inventory position falls to S∗ − 1 or smaller, we order up
to S∗. This is exactly a base-stock policy under discrete demand. Thus, under discrete
demand and continuous review, a base-stock policy is a special case of an (r,Q) policy.

We can find the optimal Q and r recursively, as follows. We start with Q = 1 and set
r(Q) = S∗ − 1, where S∗ optimizes g(S − 1, 1) = Kλ + g(S) from (5.49), i.e., where
S∗ is the smallest S satisfying (5.50). We then iterate through consecutive integer values
of Q, determining r(Q+ 1) using r(Q) as described above. Since g(r,Q) is convex in Q,
we can stop as soon as we find that g(r(Q+ 1), Q+ 1) > g(r(Q), Q). This algorithm was
introduced by Federgruen and Zheng (1992). Pseudocode is given in Algorithm 5.3.
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Algorithm 5.3 Exact algorithm for continuous-review (r,Q) policy with discrete demand
distribution (Federgruen and Zheng 1992)

1: Q← 1; r(Q)← S∗ − 1, where S∗ minimizes g(y) . Initialization
2: Calculate g(r(Q), Q) from (5.48)
3: done← FALSE

4: while not done do . Main loop
5: if g(r(Q)) < g(r(Q) +Q+ 1) then . Choose r(Q+ 1)

6: r(Q+ 1)← r(Q)− 1

7: else
8: r(Q+ 1)← r(Q)

9: end if
10: Calculate g(r(Q+ 1), Q+ 1) from (5.48)
11: if g(r(Q+ 1), Q+ 1) > g(r(Q), Q) then . Termination check
12: done← TRUE

13: else
14: Q← Q+ 1 . Increment Q
15: end if
16: end while
17: return (r(Q), Q) . Q is optimal

� EXAMPLE 5.8

Horton’s Horns sells trumpets and other brass instruments. Customers arrive accord-
ing to a Poisson process with a mean of 1.5 per week. Each customer demands exactly
one trumpet. Horton’s accountants estimate that each trumpet held in inventory costs
the store $20 per week in holding costs, and each stockout costs $150 in penalty costs.
Each order placed to the supplier incurs a fixed cost of $100, and shipments arrive
exactly 2 weeks after they are ordered. Find the optimal parameters for Horton’s
(r,Q) policy.

First, we have h = 20, p = 150, K = 100, λ = 1.5, and L = 2. The lead-time
demand has a Poisson distribution with mean 1.5 ·2 = 3. Therefore, g(y) is given by

g(y) = 20n̄(y) + 150n(y),

where n(·) and n̄(·) are the Poisson loss function and complementary loss function,
respectively, with mean 3. (See (4.33)–(4.34).) Table 5.2 lists F (y) and g(y) for a
range of values of y, using (C.41)–(C.42).

From (5.50), the S∗ that minimizes g(S) (and therefore g(S−1, 1)) is the smallest
S such that

F (S) ≥ 150

150 + 20
= 0.8824.

Since F (4) = 0.8153 and F (5) = 0.9161, S∗ = 5. (You can also confirm that this
S is optimal from Table 5.2.) Therefore, we set r(1) = S∗ − 1 = 4. From (5.48),
g(4, 1) = 1 · 1.5 + g(5) = 212.89.

Now, g(r(Q)) = 74.29 and g(r(Q)+Q+1) = 68.62, so we set r(2) = r(1) = 4.
From (5.48), g(4, 2) = (1 ·1.5 +g(5) +g(6))/2 = 140.75. The cost has gone down,
so we set Q = 2 and continue.
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Table 5.2 F (y) and g(y) for Poisson(3) demand with h = 0.2, p = 1.5.

y F (y) g(y)

0 0.0498 450.00
1 0.1991 308.46
2 0.4232 192.32
3 0.6472 114.26
4 0.8153 74.29
5 0.9161 62.89
6 0.9665 68.62
7 0.9881 82.92
8 0.9962 100.90
9 0.9989 120.25

10 0.9997 140.07

Next, g(r(Q)) = 74.29 and g(r(Q)+Q+1) = 82.92, so we set r(3) = r(2)−1 =

3. From (5.48), g(3, 3) = (1 · 1.5 + g(4) + g(5) + g(6))/3 = 118.60. The cost
has gone down again, so we set Q = 3. Continuing in this manner, we find that
r(4) = r(3) = 3 with a cost of g(3, 4) = 109.68, r(5) = r(4) = 3 with a cost of
g(3, 5) = 107.92, and r(6) = r(5) − 1 = 2 with a cost of g(2, 6) = 108.98. Since
the cost for Q = 6 is greater than that for Q = 5, (r,Q) = (3, 5) is optimal, with a
cost of $107.92. �

CASE STUDY 5.1 (r,Q) Inventory Optimization at Dell

In 2004, Dell had the largest market share of any computer-systems company and
was one of the fastest growing. Dell allowed its US customers to customize their
computer configurations online or over the phone; it then assembled the customized
machines quickly from components at a plant in Austin, Texas, aiming to ship them
to the customer within 5 days. To keep costs down, Dell held very little inventory of
the components needed to assemble the finished products—typically, only a few hours’
worth of inventory. However, the components were mostly manufactured in Asia, with
lead times of roughly 30 days. Obviously, it is impractical to receive shipments every
few hours when the shipments originate overseas. Dell’s solution to this problem was
to require its suppliers to hold inventory in warehouses located a few miles away from
the assembly plant, which could then make deliveries to the plant several times per day.
These warehouses are called revolvers, short for “revolving inventory.”

The inventory in the revolvers was owned and managed by the suppliers, and the
suppliers decided when to replenish the inventory and in what quantities. Dell was con-
cerned that the suppliers were holding too much inventory in the revolvers, even given
the frequent deliveries and high service levels required. Holding costs for component
inventory was high because of the components’ high value as well as its high obsoles-
cence rate: Some computer components lose up to 2% of their value per week. The
inventory in the revolvers was owned by the suppliers, so Dell did not have to bear this
cost directly. But excess costs anywhere in the supply chain will eventually make their
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way to the consumer, which is a direct concern for Dell. Moreover, Dell’s agreements
with the suppliers allowed it to control the safety-stock levels at the revolvers.

Therefore, Dell partnered with the Tauber Manufacturing Institute (TMI) at the Uni-
versity of Michigan to study ways to reduce revolver inventory and to build a spreadsheet
to perform the inventory calculations. Their project is described by Kapuscinski et al.
(2004); we refer the reader to their paper for further details. Their pilot project focused
on one component, given the nickname XDX.

The researchers chose to model the inventory process for XDX as a continuous-
review (r,Q) policy with continuous demands. They assumed that the suppliers would
continue to use the same order size Q they had been using (since Dell did not have
direct control over Q) and focused on optimizing r. They assumed that the lead time
(from the suppliers’ manufacturing facilities in Asia to the revolvers in Texas) followed a
normal distribution, as did the forecast error of the demand. (If available, the standard
deviation of the forecast error is a better measure than the standard deviation of the
demand when setting safety stocks; see Section 4.3.2.7.)

Since Q is known, the optimal reorder point is the r that satisfies g(r) = g(r+Q), by
Lemma 5.2. Of course, the model in Section 5.2 assumes deterministic lead times, but
it can, in some circumstances, be applied to systems with stochastic lead times (Zipkin
1986b). However, solving g(r) = g(r + Q) is not straightforward in a spreadsheet,
whether the lead times are stochastic or deterministic. Therefore, the team opted
instead to use a type-1 service level constraint. From (5.21) and (5.25), the optimal
reorder point is given by

r = µLλ+ zα

√
λ2σ2

L + µLσ2
e , (5.51)

where µL and σL are the mean and standard deviation of the lead time, λ is the mean
forecasted demand per day during the upcoming lead time, σe is the standard deviation
of the daily forecast error during the upcoming lead time, and α is the desired type-1
service level. The first term of (5.51) is the cycle stock (most of which represents
in-transit inventory from the supplier overseas) and the second is the safety stock. The
parameters µL, σL, λ, and σe can be updated daily based on new observed data and
forecasts of the near future, resulting in new calculations of r.

The key remaining question is how to determine α. The researchers chose to set
it equal to the critical ratio: α = p/(p + h), where p and h are the the stockout
and holding costs per unit per day. These parameters, in turn, were estimated using a
combination of historical data and subjective opinions. The stockout cost p included
estimates of lost profit from a canceled order and expedited shipping costs, as well as the
probability that each unmet demand would result in either cancellation or expediting.
The holding cost h included estimates of the supplier’s cost of capital, price erosion
due to obsolescence, and physical storage costs at the revolver.

The team built a user-friendly spreadsheet to manage and process the data and to
perform the inventory calculations. The spreadsheet also provided charts showing the
inventory levels, service levels, and so on, for the historical data for both the current and
recommended inventory policies. The optimal inventory levels turned out to be fairly
close to the current levels on average, but the team found that the current policies
generated widely fluctuating inventory levels. For example, during one period, the
system had nearly twice as much inventory as was required (resulting in excess costs),
while during another period, the system had only about two-thirds of the required



182 STOCHASTIC INVENTORY MODELS: CONTINUOUS REVIEW

amount (resulting in excess stockout risk). Overall, the team estimated that Dell could
reduce its inventory of XDX by roughly 38%, which would result in a savings of over
$40 million over the life of the component.

PROBLEMS

5.1 (Exact and Approximate r and Q: Continuous Demand) Consider an (r,Q)

policy for continuous demands. Suppose the annual demand is distributed N(800, 402),
the fixed cost is K = 50, and the holding and stockout costs are h = 3.1 and p = 45,
respectively, per item per year. The lead time is 4 days. Find r and Q using each of the
methods below.

a) The EIL approximation.
b) The EOQB approximation.
c) The EOQ+SS approximation.
d) The loss-function approximation.
e) Algorithm 5.2 for exact optimal values of r and Q.

For each method, report the values of r and Q you found, as well as the corresponding
expected annual cost from (5.7).

5.2 (Exact and Approximate r and Q: Discrete Demand) Consider an (r,Q) policy
for discrete demands. Suppose the demand has a Poisson distribution with a mean of
λ = 12 units/month, the fixed cost is K = 4, and the holding and stockout costs are h = 4

and p = 28, respectively, per item per month. The lead-time is 0.5 months.
a) Find approximate values for r andQ by using the EOQB approximation described

in Section 5.3.2, replacing g(y) with (4.32) when solving (5.9).
b) Find exact optimal values for r and Q using Algorithm 5.3.

For each method, report the values of r and Q you found, as well as the corresponding
expected cost per week from (5.48).

5.3 ((r,Q) for Automobile Components) Return to the automobile manufacturing plant
from Problem 3.5. Suppose now that the rate at which the plant uses power-lock mechanisms
is stochastic and normally distributed, with a mean of 192 per day (8 per hour) and a standard
deviation of 17.4 per day. Replenishment orders for power-lock mechanisms incur a lead
time of 3 days. If the plant runs out of power locks, it must expedite them from the supplier
at a cost of $40 each. Using the EIL approximation for (r,Q) policies in Section 5.3.1,
find approximate values for r and Q. Also report the expected total cost per week, using
equation (5.7).

a) The EIL approximation.
b) The EOQB approximation.
c) The EOQ+SS approximation.
d) The loss-function approximation.
e) Algorithm 5.2 for exact optimal values of r and Q.
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5.4 (Lackluster Video) Lackluster Video needs to decide how may DVD copies of the
new hit movie The Supply Chain’s Weakest Link to stock in its stores. The company expects
demand for DVD rentals for the movie over the next 90 days to be Poisson with a mean of
λ per day. The length of time each renter keeps a DVD before returning it is exponential
with a mean of 1/µ days (i.e., exponential with a rate of µ).

Each copy purchased by the store costs c. Demands are backordered, in the sense that a
customer wanting to rent the movie but finding that it is out of stock will return on another
day to try again. Since this movie has been designated as a “guaranteed in stock” title, each
backordered demand incurs a stockout cost of g, the cost of providing a free rental to the
customer.

Assuming that backordered customers check back frequently to see whether the movie is
in stock and rent it quickly when it is available, this system can be modeled as an M/M/S

queue, where S is the number of copies of the DVD owned by the store. It can be shown
that the probability of a stockout in an M/M/S queue is approximately

P [stockout] ≈ 1− Φ

(
S − ρ− 1

2√
ρ

)
,

where Φ is the standard normal cdf and ρ = λ/µ (in queuing terminology, the “offered
load”).

a) Determine the optimal number of copies to purchase (S) to minimize the purchase
cost and the expected stockout cost over the next 90 days using the approximation
given above. (Assume that the demand after 90 days will be negligible.) Your
answer should be in closed form; that is, S = [some expression].

b) Compute the optimal S assuming that λ = 22, µ = 1
4 , c = 9, and g = 4.5.

c) Suppose the video store is worried about loss-of-goodwill costs as well as free
rental costs when a demand is backordered, but it is uncomfortable estimating
these costs. Instead, it would prefer to choose S so that demands are met with
probability α. Prove that the smallest such S is given by

S ≈ ρ+ zα
√
ρ.

d) In two or three sentences, interpret the result from part (c) in terms of cycle and
safety stock.

5.5 (Heating Oil Replenishments) Henry’s Heating Oil company delivers oil to its
customers’ homes. If a customer signs up for Henry’s “auto-fill” plan, the company
delivers oil to the customer’s home on a regular schedule based on historical oil-usage data
for that customer. Suppose a given customer has an oil tank that holds C liters of oil. For
each delivery to this customer, Henry’s incurs a fixed cost of K, representing the cost of
the truck, driver, and fuel required to make the delivery. Henry’s will make a delivery to
this customer every T days, where T is a decision variable, and at each delivery, it will
deliver enough oil to fill the tank. The number of days required for the customer to use C
liters of oil is a random variable, denoted X , whose pdf and cdf are f and F , respectively.
If the customer uses all C liters of oil before the next delivery, Henry’s must make an
emergency delivery to refill the tank. For these emergency deliveries, the regular fixed cost
of K does not apply, but instead Henry’s incurs a penalty cost of pT . (The penalty cost
is proportional to T because the more infrequent the deliveries, the more disruptive it is to
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Henry’s delivery schedule to add an emergency delivery.) After the emergency delivery,
the regular schedule resumes; that is, the next delivery will be T days after the last regular
delivery. Assume the customer never needs more than one emergency shipment between
two regular shipments.

a) Write the expected cost per day as a function of T .
b) Find an optimality condition for the delivery interval, T . You may assume that

X is normally distributed and that T < E[X].
c) Suppose C = 500, K =$175, p =$25, and X ∼ N(22, 82). What is T ∗, and

what is the corresponding expected cost per day?

5.6 (Stockout-Constrained Service Level) Consider the EIL approximation in Sec-
tion 5.3.1. Define a new type of service level as follows: SL(a) is the percentage of order
cycles during which there are at most a stockouts, for constant a ≥ 0. Suppose that we
wish to enforce a service level constraint that says SL(a) ≥ γ, for fixed 0 ≤ γ < 1. What
are the optimal values of r and Q for the problem with this service level constraint?

5.7 (Properties of r(Q)) For the exact continuous (r,Q) model in Section 5.2, prove
that, for any Q > 0:

a) r(Q) < S∗ < r(Q) +Q

b) −1 < r′(Q) < 0; r(Q) is decreasing; and r(Q) +Q is increasing
c) limQ→∞ r(Q) = −∞ and limQ→∞ r(Q) +Q =∞

5.8 (Proof of (5.32)) Prove equation (5.32).

5.9 (Deterministic vs. Stochastic Inventory Cost Rate) Prove that gd(y) ≤ g(y) for all
y > 0, where gd(y) is defined in (5.38) and g(y) is defined in (5.5).

5.10 (Deterministic vs. Stochastic A(Q)) Prove that, for any Q > 0, A(Q) ≤ Ad(Q),
where A(Q) is defined in (5.34) and Ad(Q) is its deterministic-model analogue.

5.11 (Proof of Upper Bound on Q∗) Complete the proof of Theorem 5.5 by proving
that Q∗ ≤ Q0.

5.12 (Range of Q∗ Bounds as K Changes) By Theorem 5.5, Q∗ is contained in the
interval [Q∗d, Q0], where Q0 satisfies QH0(Q) = 2Kλ. In this problem, you will prove
that the width of this interval is bounded by a constant for all K > 0. (On the other hand,
the constant will change as the other cost parameters change.)

a) Let Q1 be the Q that satisfies H0(Q) = Hd(Q
∗
d). Prove that Q0 ≤ Q1.

b) Prove that H ′(Q) > 0 for all Q > 0 and that limQ→∞H ′(Q) = hp/(h+ p).
c) Prove that Q1 − Q∗d is an increasing function of K and converges to a constant

as K →∞.
Hint: Argue that it is sufficient to prove the result with respect to increases in

Q∗d rather than K.
d) Prove that Q0 −Q∗d is bounded by a constant for all K > 0.

You may use the properties in Problem 5.7 without proof.

5.13 (EOQB Error Vanishes as K → ∞) Using the analysis in Section 5.4.3, prove
that (G(Q∗d)−G∗)/G∗ → 0 as K →∞.
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5.14 (EOQB as Special Case of (r,Q)) Prove Theorem 3.5 by treating the EOQB as a
special case of an (r,Q) policy, using the analysis in Section 5.4.3.

5.15 (H(Q) vs. Hd(Q)) Using the analysis in Section 5.4.3, prove that Hd(Q) ≤ H(Q)

for all Q > 0.

5.16 (Lead-Time Demand under Stochastic Lead Times) Prove equations (5.24) and
(5.25).

5.17 (No Fixed Bound for r∗d) In the exact (r,Q) model, suppose we set Q = Q∗d as in
Section 5.2, but we set r = r∗d instead of r = r(Q∗d). Prove that there is no fixed worst-case
bound for this approach.

5.18 (No Fixed Bound for EOQ+SS Approximation) Prove that there is no fixed
worst-case error bound for the EOQ+SS approximation for the optimal (r,Q) policy.

5.19 (Joe’s Corner Store with Poisson Demand) Suppose that Joe’s Corner Store from
Example 5.2 faces Poisson annual demand with a mean of 1300. Using Algorithm 5.3, find
r∗, Q∗, and g(r∗, Q∗).

5.20 ((r,Q) with Minimum Order Quantity) Suppose that K = 0 but there is a
minimum order quantity constraint that requires that Q ≥ Qmin for some constant Qmin.
Assume the demand has a discrete distribution. Explain how to modify Algorithm 5.3 to
handle this case.

5.21 (Solution in Terms of Standard Normal) In this problem, you will investigate
what happens to (r∗, Q∗) and g(r∗, Q∗) in the exact model (Section 5.2) as the lead-time
demand parameters µ and σ change. In particular, you will investigate the relationship
between the solution under N(µ, σ2) demand and that under N(0, 1) demand.

Assume that σ2 = λ/λ0 for some constant λ0 but that µ can vary independently of σ2

and λ.
Let g0(r,Q) be the expected cost function of the exact model under N(0, 1) lead-time

demand. Let (r0, Q0) be the optimal parameters for this system and g∗0 be the optimal cost;
that is,

g∗0 = g0(r0, Q0) = min
r,Q

g0(r,Q).

Similarly, let (r∗, Q∗) be the optimal parameters for the system with N(µ, σ2) lead-time
demand, and let g∗ = g(r∗, Q∗).

Prove that

r∗ = µ+ r0σ (5.52)

Q∗ = Q0σ (5.53)

g∗ = g∗0σ. (5.54)

5.22 (Bound on Q∗) Let Q∗ be the optimal order quantity for the exact model with
continuous demands in Sections 5.2 and 5.4, and let Q∗d be the optimal order quantity for
the EOQB. Let

Qσ = g(S∗)
h+ p

hp
.
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(Qσ does not have a precise interpretation. But it is, in a sense, a quantity for the newsvendor
model that is analogous toQk for the EOQB, since in the EOQB, the optimal order quantity
equals the optimal cost times (h+ p)/hp.)

Prove that
Q∗ ≤ Qσ +Q∗d.

Hint: First prove that

H(Q) ≥ hp

h+ p
Q

for all Q > 0. (You may use the result of Problem 5.15 without proof.) Then use this to
prove the result.

5.23 (Stockout Cost without SA2) Suppose we do not assume SA2. Show that the
expected stockout cost per year under the EIL approximation has (d− r)2 in the integrand
instead of (d− r).

5.24 (EIL Approximation with One-Time Stockout Cost) Consider an inventory sys-
tem that functions almost exactly like the system described in Section 5.3.1 on the EIL
approximation for the (r,Q) problem. The only difference is that, when we run out of
inventory, the stockout cost p is incurred immediately, and only once, regardless of how
many demands occur before the replenishment order arrives from the supplier.

a) Formulate the objective function g(r,Q), analogous to (5.16).
b) Identify optimality conditions forQ and r, similar to equations (5.17) and (5.18).

Your optimality conditions do not need to be in closed form, i.e., they do not need
to look like Q = · · · or r = · · · .



CHAPTER 6

MULTIECHELON INVENTORY MODELS

6.1 INTRODUCTION

In this chapter, we study inventory optimization models for multiechelon (or multistage)
systems with shipments made among the stages. There are two common ways to interpret
the stages or nodes in a multiechelon system:

1. Stages represent locations in a supply chain network, and links among the stages
represent physical shipments of goods. For example, the stages in Figure 6.1(a)
may represent the following physical locations: a supplier in China, a factory in
California, a warehouse in Chicago, and a retailer in Detroit (respectively).

2. Stages represent processes that the product must undergo during manufacturing,
assembly, and/or distribution. Links among the stages represent transitions between
steps in the process. For example, the stages in Figure 6.1(a) may represent the
following processes: manufacturing, assembly, testing, and packaging. These four
functions may take place in four different locations or all within the same building—
it is largely irrelevant from the perspective of the model. We sometimes refer to
the stages as different “products,” even if they really represent different phases of
producing a single product.

Either interpretation is acceptable for the models that we discuss, although some models
are more naturally interpreted in one way than the other. In the discussion that follows,
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(a) Serial system. (b) Assembly system.

(c) Distribution system. (d) Tree system.

(e) General system.

Figure 6.1 Multiechelon network topologies.

we will use terms such as “shipped” or “transferred” under either interpretation to mean
“moved from one stage to the next.”

6.1.1 Multiechelon Network Topologies

Multiechelon networks can be structured in a number of ways, and the network’s topology
plays a large role in determining how the system is analyzed and optimized. The simplest
multiechelon topology is a serial system (or series system), in which each echelon contains
exactly one stage. Put another way, every stage has exactly one predecessor and exactly
one successor, except for two stages, one of which has exactly one successor and no
predecessors, and the other of which has exactly one predecessor and no successors. (A
predecessor of stage j is another stage that ships product to j, and a successor of j is
another stage that j ships to.) See Figure 6.1(a) for an example of a serial system.

In an assembly system, each stage has at most one successor; see Figure 6.1(b). Interpre-
tation (2) is most common for assembly systems: The network represents a bill-of-materials
structure that describes how a final product is assembled from raw materials and interme-
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diate products. In this case, the links in the network indicate “and” relationships: To make
one unit of the product at stage j, we need one (or more) unit of each of j’s predecessors.
Assembly systems can also be viewed under interpretation (1), with links denoting the
geographic flow of materials. If stage j has three predecessors, then there are three stages
that make the product and ship it to stage j. Here, too, links represent “and” relationships
since all three upstream stages ship product to stage j. An alternate, but less common,
way to use interpretation (1) is that the links represent “or” relationships, and stage j’s
predecessors are multiple alternate suppliers from which stage j can order. In a given order
cycle, it may order from one, more than one, or all of its predecessors, depending on their
capacities, the observed demands, and so on. Under any of these interpretations, assembly
systems are commonly used to model upstream portions of supply chains whose purpose
is to consolidate products or locations into a few stages.

A distribution system (Figure 6.1(c)) is the opposite of an assembly system: Each
stage has at most one predecessor. Interpretation (1) is most common for distribution
systems, which are often used to model downstream portions of supply chains—the portion
that moves material from a few centralized locations to a set of retailers or customers
distributed throughout a large geographical region.

Tree systems (Figure 6.1(d)) are hybrids of assembly and distribution systems—each
stage may have multiple predecessors and successors—but tree systems may contain no
undirected cycles. (A cycle, in graph theory, is a portion of the graph whose links allow one
to move from a starting node, through a sequence of other nodes, and back to the starting
node, without repeating any other nodes links. An undirected cycle is a cycle in the graph
that results from removing all of the arrows from the links so that movement can go in either
direction.) Finally, general systems allow any number of successors and predecessors and
have no restrictions on undirected cycles. Figure 6.1(e) shows an example. General systems
are the most flexible topology but are also the most difficult to analyze and optimize.

6.1.2 Stochastic vs. Guaranteed Service

The most challenging aspect of multiechelon inventory models is that a given stage j
provides stochastic lead times to its successors, even if the transportation lead time is
deterministic, due to occasional stockouts at stage j, and the optimal inventory parameters
at stage j’s successors depend on the probability distributions of these stochastic lead times.
We have discussed some results for optimizing single-stage systems with stochastic lead
times (see, e.g., Section 5.3.3), but in those models, we assume the lead-time distributions
are known and that the lead times are iid. In contrast, the probability distributions of
the lead times in multiechelon systems are very complex and difficult to characterize, the
lead times are not iid, and moreover, the distributions depend on the upstream inventory
parameters. Even for single-stage systems, the distributions of the lead times generated by
the stage are quite complex (Higa et al. 1975, Sherbrooke 1975).

Two primary types of models have been developed to handle these complexities in
multiechelon base-stock systems: stochastic-service models and guaranteed-service mod-
els (Graves and Willems 2003a). In stochastic-service models, each stage i sets a base-stock
level Si and meets demand from stock whenever possible using this base-stock level. The
actual lead time seen by downstream stages is stochastic since some demands will be back-
ordered. This is the approach taken in the seminal model of Clark and Scarf (1960) and
related works, discussed in Section 6.2.
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(a) Stochastic-service models.
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(b) Guaranteed-service models.

Figure 6.2 Interpretation of stockout penalties.

In guaranteed-service models, stage i sets a “committed service time” (CST), denoted
Si, within which it is required to satisfy every demand.1 For example, if Si =5 periods,
then every demand must be satisfied in no more than 5 periods. To make this guarantee,
guaranteed-service models require the demand to be bounded above. The guaranteed-
service assumption provides the strategic safety stock placement problem (SSSPP), de-
scribed in Section 6.3, its tractability. There is a close relationship between the CST and
the base-stock level, since a larger base-stock level allows the stage to quote a shorter CST.
In fact, any given set of CSTs implies a certain set of base-stock levels, and the base-stock
levels, not the CSTs, are usually the main quantities of interest.

One way to view the difference between these two approaches is that guaranteed-service
models allow a CST of S > 0 but require a service level of α = 1 while stochastic-service
models assume a service time of S = 0 but allow a less restrictive service level of α < 1.
Another interpretation is that stockouts in stochastic-service models incur a penalty that is
proportional to the time the unit is backordered, whereas in guaranteed-service models, no
penalty is incurred until the backorder has lasted S periods, and after that the penalty is
∞. (See Figure 6.2.) In fact, in guaranteed-service models, a backorder isn’t really even
considered a backorder until it has lasted S periods.

It is important to remember that these are both merely mathematical models, two different
ways to describe the mechanics and the optimization problem underlying a multiechelon
inventory system. The end result of either approach is a set of base-stock levels, even
though the decision variables in the guaranteed-service model are the CSTs rather than
base-stock levels. Thus, the guaranteed-service model can be used even when stages do
not actually quote CSTs to one another. Either modeling approach can be used to model
a given system, and the choice of approach is a modeling decision with pros and cons just
like any other.

In Section 6.2, we first discuss stochastic-service models, describing an optimal and
a heuristic approach for optimizing base-stock levels in serial systems and then briefly
discussing the extent to which these methods can be extended to solve assembly and dis-

1Unfortunately, the literature on stochastic-service models and that on guaranteed-service models have both laid
claim to the notation S, but they use it to mean very different things. In stochastic-service models, S denotes
the base-stock level, whereas in guaranteed-service models, S denotes the CST. We have opted to use S for both
purposes to remain consistent with these two bodies of literature, at the risk of confusing the reader. It is safe to
assume that S denotes a base-stock level in Section 6.2 and a CST in Section 6.3.
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N N − 1 · · · 1

Figure 6.3 N -stage serial system in stochastic-service model.

tribution systems. Then, in Section 6.3, we discuss guaranteed-service models, beginning
with an analysis of single-stage systems and working our way up to tree systems.

See van Houtum et al. (1996) and Graves and Willems (2003a) (among others) for
further reviews of the literature on stochastic- and guaranteed-service models, respectively.

6.2 STOCHASTIC-SERVICE MODELS

6.2.1 Serial Systems

Consider an N -stage serial system, with the stages labeled as in Figure 6.3. Stage 1 is
farthest downstream. It faces stochastic external customer demand and places replenish-
ment orders to stage 2, which places replenishment orders to stage 3, and so on up the line
to stage N . Stage N , in turn, places replenishment orders to an external supplier that is
assumed to have infinite supply.

We consider a continuous-review, infinite-horizon system, though nearly all of the
results described below hold (with slight modifications) for periodic-review systems, as
well. Orders placed by stage j incur a transportation lead time of Lj ; that is, the order is
received Lj time units later if stage j+1 had sufficient stock to ship the order immediately,
and more thanLj time units later otherwise. Stage j incurs a holding cost of h′j per item per
time unit, which is charged on the on-hand inventory at stage j as well as on the inventory
in transit to stage j − 1. (One can show that the expected number of units in transit is a
constant, and therefore the in-transit holding cost does not affect the optimization.) Unmet
demands are backordered at all stages, but only stage 1 incurs a stockout cost, given by p
per item per time unit. There are no fixed costs, and we will ignore any per-unit ordering
costs.

In multiechelon inventory theory, the echelon of stage j (or just “echelon j”) is defined
as the set of stages {j, j − 1, . . . , 1}; that is, the set that includes j and all downstream
stages. Note that this is a particular inventory-theoretic use of the term “echelon” and is
different from the way we defined it in Chapter 1. Stage j’s echelon inventory is the total
inventory in echelon j, and its local inventory is the inventory at stage j only. It turns out to
be more convenient to optimize stage j’s echelon inventory rather than its local inventory.

Stage j’s local on-hand inventory, denoted I ′j , includes items on hand at stage j only,
whereas stage j’s echelon on-hand inventory, denoted Ij , includes all of the on-hand
inventory in echelon j, plus all of the in-transit inventory among these stages:

Ij =

j∑
i=1

(I ′i + ITi−1), (6.1)

where ITi−1 is the inventory in transit from i to i − 1, and IT0 ≡ 0. Stage j’s local and
echelon inventory levels, denoted IL′j and ILj , respectively, are given by

IL′j = I ′j −B′j (6.2)
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ILj = Ij −B′1, (6.3)

where B′1 is the (local) backorders at stage 1. Note that the local inventory level at stage
j subtracts the backorders at stage j while the echelon inventory level subtracts those at
stage 1; upstream backorders are not counted in ILj , and therefore the echelon inventory
level does not equal the sum of the local quantities.

The holding cost h′j is called a local holding cost, and it is charged based on the number
of items in stage j’s local inventory plus the number of items in transit from stage j to
j − 1, ITj−1. We will mostly work with stage j’s echelon holding cost, denoted hj and
defined as

hj = h′j − h′j+1 (6.4)

(with h′N+1 ≡ 0). Typically, local holding costs increase as we move downstream in the
supply chain since value is added to the product at each stage. Therefore, hj represents the
holding cost corresponding to the value added at stage j. It turns out that we can calculate
total holding costs using either echelon or local quantities:

Proposition 6.1
N∑
j=1

hjIj =

N∑
j=1

h′j
(
I ′j + ITj−1

)
, (6.5)

where IT0 ≡ 0.

Proof. Omitted; see Problem 6.4.

The following theorem establishes the form of the optimal inventory policy for serial
systems. It was proved for finite-horizon problems in the seminal paper of Clark and Scarf
(1960) and for infinite-horizon problems by Federgruen and Zipkin (1984).

Theorem 6.2 An echelon base-stock policy is optimal at each stage of a serial system with
no fixed costs.

In an echelon base-stock policy, each stage j has a fixed level Sj , called the echelon
base-stock level, and it places an order as needed to bring its echelon inventory position
(defined as stage j’s echelon inventory level, ILj , plus any items on-order from stage j+1)
equal to Sj . An echelon base-stock policy is essentially the same as the base-stock policies
we are already familiar with except that it is the echelon inventory, rather than the local
inventory, that we compare to the base-stock level when making ordering decisions. We
use S = (Sj)

N
j=1 to denote the vector of echelon base-stock levels, one for each stage.

We will discuss approaches for finding optimal or near-optimal echelon base-stock
levels. Local base-stock levels (denoted S′j) can be obtained from the echelon base-stock
levels by setting

S′j = Sj − Sj−1, (6.6)

defining S0 ≡ 0. (This assumes that Sj ≥ Sj−1. If not, we let S−j = mini≥j{Si} and set
S′j = S−j − S

−
j−1, again setting S−0 ≡ 0.) And echelon base-stock levels can be obtained

from local ones as follows:

Sj =

j∑
i=1

S′i. (6.7)
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Let Dj be a random variable representing the lead-time demand at stage j. Since stage
j’s demands are ultimately generated by the external customer (via orders placed to stage
1, then to stage 2, and so on), stage j’s demand per time unit has the same distribution as
the customer’s demand, but the distribution of stage j’s lead-time demand Dj depends on
Lj . Let Fj(·) be the cdf of Dj .

Table 6.1 summarizes the notation for the stochastic-service model.

Table 6.1 Stochastic-service model notation summary.

Quantity Echelon Local

Holding cost hj = h′j − h′j+1 h′j =
∑N
i=j hi

Stockout cost p p

Inbound lead time Lj Lj
On-hand inventory Ij I ′j
Backorders — B′j
Inventory level ILj = Ij −B′1 IL′j = I ′j −B′j
On-order items OOj OOj
Inventory position IPj = ILj +OOj IP ′j = IL′j +OOj
Inbound in-transit inventory ITj ITj
Inventory–transit position ITPj = ILj + ITj —
Base-stock level† Sj =

∑j
i=1 S

′
i S′j = Sj − Sj−1

Vector of base-stock levels S = (Sj)
N
j=1 S′ = (S′j)

N
j=1

Lead-time demand Dj Dj

cdf of lead-time demand Fj(·) Fj(·)
†Formula for S′j assumes Sj ≥ Sj−1; see page 192.

6.2.2 Exact Approach for Serial Systems

For a given set of base-stock levels, the expected cost of the system can be expressed using
either local or echelon quantities:

g′(S′) = E

 N∑
j=1

h′j
(
I ′j + ITj−1

)
+ pB′1

 (6.8)

g(S) = E

 N∑
j=1

hjILj + (p+ h′1)IL−1

 . (6.9)

(Note that the prime in g′(·) indicates local quantities, not a derivative.) These two
expressions are equivalent (see Problem 6.5), but (6.9) will be more convenient for us to
work with.

We wish to choose S to minimize g(S). g(S) is a messy function of S because the
inventory levels on the right-hand side depend on S in messy ways. In fact, since Sj
affects the inventory levels at all stages downstream from j, it would seem that we need
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to jointly optimize all of the Sj simultaneously. Fortunately, a much simpler and more
elegant procedure suffices.

Let ITPj be the echelon inventory–transit position at stage j, which equals the echelon
inventory level at j plus all items in transit from stage j + 1:

ITPj = ILj + ITj (6.10)

= IPj − (IL′j+1)−. (6.11)

That is, IPj includes all items that have been ordered from j + 1 but not yet received,
whereas ITPj only includes items that have been shipped. The difference between the two
equals the number of backorders at j + 1 (i.e., (IL′j+1)−), and they are equal if there are
no backorders at j + 1.

The conservation-of-flow argument from Section 4.3.4.1 can be applied here to show
that

ILj(t+ Lj) = ITPj(t)−Dj , (6.12)

since all items that were shipped from j + 1 at or before period t have arrived by period
t + Lj , no items that were shipped after t have arrived, and the intervening demand is
Dj . This equation is similar to (4.41), except that the inventory position is replaced by the
inventory–transit position.2 In the single-stage models in Chapters 4 and 5, the supplier
never has stockouts, so ITP and IP are equal.

One can show that
ITPj(t) = min{Sj , ILj+1(t)}. (6.13)

Intuitively, (6.13) says that the inventory at or en route to echelon j equals the echelon
base-stock level at j, unless the upstream inventory is insufficient to attain the base-stock
level, in which case it equals the upstream inventory level. For a more rigorous proof, see
Problem 6.14.

In addition, note that at stage N ,

IPN (t) = ITPN (t) = SN (6.14)

for all t, since the upstream supplier to stage N never has stockouts.
In steady state, we can rewrite (6.12), (6.13), and (6.14) as

ITPN = SN (6.15)

ILj = ITPj −Dj (6.16)

ITPj−1 = min{Sj−1, ILj}. (6.17)

Equations (6.15)–(6.17) provide a recursion that expresses ITPj−1 in terms of ILj , ILj
in terms of ITPj , and so on, until we reach ITPN , which equals a constant.

We next introduce three auxiliary functions that condition the expected cost of the system
on the state variables in the recursion. These functions will allow us to develop a recursion
for the (unconditional) expected cost for a given vector S of base-stock levels, and then to
find the optimal base-stock vector.

ĝj(x|S) = E

[
j∑
i=1

hiILi + (p+ h′1)IL−1

∣∣∣∣∣ ILj = x

]
(6.18)

2The notation is slightly different. Here, we indicate the time index in parentheses rather than as subscripts, as is
common for continuous-review systems.
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gj(y|S) = E

[
j∑
i=1

hiILi + (p+ h′1)IL−1

∣∣∣∣∣ ITPj = y

]
(6.19)

g
j
(x|S) = E

[
j∑
i=1

hiILi + (p+ h′1)IL−1

∣∣∣∣∣ ILj+1 = x

]
(6.20)

Each auxiliary function fixes one of the recursion variables—ILj , ITPj , or ILj+1—and
then calculates the expected cost in stages 1, . . . , j using that value as the starting point.
For example, suppose we have a 4-stage system with base-stock vector S and we know that
IL3 = x. Then the expected cost for stages 1 and 2 is given by g

2
(x|S). Similarly, the

expected cost in stages 1 and 2 is g2(y|S) if we know that ITP2 = y and is ĝ2(x|S) if we
know that IL2 = x.

We can write (6.18)–(6.20) recursively. First let

g
0
(x|S) = (p+ h′1)x−.

Then

ĝ1(x|S) = E
[
h1IL1 + (p+ h′1)IL−1 |IL1 = x

]
= h1x+ g

0
(x|S).

Similarly,

g1(y|S) = E
[
h1IL1 + (p+ h′1)IL−1 |ITP1 = y

]
= ED1

[
E
[
h1IL1 + (p+ h′1)IL−1 |IL1 = y −D1

]]
= E [ĝ1(y −D1|S)] ,

where the expectation is over D1. (The second equality follows from (6.16).) And,

g
1
(x|S) = E

[
h1IL1 + (p+ h′1)IL−1 |IL2 = x

]
= E

[
h1IL1 + (p+ h′1)IL−1 |ITP1 = min{S1, x}

]
= g1(min{S1, x}|S),

where the second equality follows from (6.17). Continuing this process, we get

ĝ2(x|S) = E
[
h1IL1 + h2IL2 + (p+ h′1)IL−1 |IL2 = x

]
= h2x+ g

1
(x|S),

and so on.
In general, for j = 1, . . . , N , given g

j−1
, we have:

ĝj(x|S) = hjx+ g
j−1

(x|S) (6.21)

gj(y|S) = E [ĝj(y −Dj |S)] (6.22)

g
j
(x|S) = gj(min{Sj , x}|S). (6.23)

So for any base-stock vector S and any known value of ILj , ITPj , or ILj+1, we can
calculate the expected cost in stages 1, . . . , j. What’s more, we know ITPj for j = N—it
equals SN . Therefore, the expected cost of the entire system, g(S), is given by gN (SN |S).
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This gives us a way to calculate the expected cost recursively for a given S. We are only
a short leap from finding the optimal S. Since the recursion for stages 1, . . . , j − 1 does
not depend on Sj , we don’t need to choose Sj until we reach g

j
(·) in the recursion. At that

point, we can simply set Sj to the y that minimizes gj(·). This idea is made concrete in
the next theorem. Note that the functions in the theorem omit “|S” since we are choosing
S rather than evaluating the cost for a given S.

Theorem 6.3 Let g
0
(x) = (p+ h′1)x−. For j = 1, . . . , N , let

ĝj(x) =hjx+ g
j−1

(x) (6.24)

gj(y) =E [ĝj(y −Dj)] (6.25)

S∗j =argmin{gj(y)} (6.26)

g
j
(x) =gj(min{S∗j , x}). (6.27)

Then S∗ = (S∗j )Nj=1 is the optimal base-stock vector and gN (S∗N ) is the corresponding
optimal cost.

Theorem 6.3 is the result of the groundwork laid by Clark and Scarf (1960) and subsequent
refinements by Chen and Zheng (1994). It says that, rather than simultaneously optimizing
all of the base-stock levels, we can optimize them sequentially, beginning with stage 1
and working upstream, one stage at a time. Moreover, gj(y) is known to be convex, so at
each iteration we only need to minimize a single-variable, convex function. This theorem
underlies much of the theory of multiechelon stochastic-service models. (Zipkin (2000)
even goes so far as to call (6.24)–(6.27) the “fundamental equation[s] of supply-chain
theory.”)

The arguments above imply that, to evaluate the cost of a given (not necessarily optimal)
base-stock vector S, we simply skip the optimization step (6.26) and evaluate the functions
using S instead of S∗.

Consider the optimization problem at stage 1. We have:

ĝ1(x) =h1x+ (p+ h′1)x− (6.28)

g1(y) =E [ĝ1(y −D1)]

=E
[
h1(y −D1) + (p+ h′1)(y −D1)−

]
=E

[
h1[(y −D1)+ − (y −D1)−] + (p+ h′1)(y −D1)−

]
=E

[
h1(y −D1)+ + (p+ h′1 − h1)(y −D1)−

]
=E

[
h1(y −D1)+ + (p+ h′2)(D1 − y)+

]
(6.29)

This function is identical in form to the newsvendor objective function (4.3), with p replaced
by p+ h′2. Therefore, from (4.17), g1(y) is minimized by

S∗1 = F−1
1

(
p+ h′2

h1 + p+ h′2

)
= F−1

1

(
p+

∑N
i=2 hi

p+
∑N
i=1 hi

)
. (6.30)

At upstream stages, the functions gj(y) become more complicated and cannot be minimized
in closed form. In fact, the expectation in gj(y) must be evaluated numerically for every
candidate value y. Therefore, although (6.26) is a convex minimization problem, it is
somewhat computationally expensive to execute, as well as cumbersome to implement.
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2 1 1

Figure 6.4 3-Stage serial system for Example 6.1.

The function ĝj(x) is similar to a deterministic cost function, analogous to (4.1) or
(5.3)—if we know that ILj = x at a given time, then the cost rate at that time for stages
1, . . . , j is ĝj(x). For j = 1, (6.28) shows that the form of ĝj(x) is exactly the same as that
of (4.1) or (5.3) since

h1x+ (p+ h′1)x− = h1x
+ + (p+ h′2)x−.

For j > 1, g
j
(x) replaces the stockout penalty term. In fact, g

j
(x) is sometimes called the

implicit penalty function. It captures the downstream implications of upstream stockouts.

� EXAMPLE 6.1

Consider the 3-stage serial system in Figure 6.4. Demand at stage 1 is distributed
as N(5, 12) per unit time. The lead times are L1 = L2 = 1 and L3 = 2. Local
holding costs are given by (h′1, h

′
2, h
′
3) = (7, 4, 2), so that the echelon holding costs

are (h1, h2, h3) = (3, 2, 2). The stockout cost at stage 1 is p = 37.12 per unit
time. We will use Theorem 6.3 to find the optimal echelon base-stock levels and the
corresponding expected cost.

First, we have g
0
(x) = (37.12 + 7)x−, ĝ1(x) = 3x+ (37.12 + 7)x−, and

g1(y) = E[ĝ1(y −D1)] = E[3(y −D1)+ + (37.12 + 4)(D1 − y)+]

from (6.29). We can solve this numerically, but (6.30) gives us an analytical solution:

S∗1 = F−1
1

(
37.12 + 4

37.12 + 7

)
= 6.49,

with g1(S∗1 ) = 5.79. Figure 6.5(b) plots g
0
(x), g1(y), and S∗1 .

From g1(y) and S∗1 , we get g
1
(x) (Figure 6.5(c)), then ĝ2(x) (Figure 6.5(d)),

and then g2(y) (Figure 6.5(e)). Optimizing numerically, we get S∗2 = 12.02 and
C2(S∗2 ) = 20.82.

Continuing in this way, we get g
2
(x) (Figure 6.5(f)), ĝ3(x) (Figure 6.5(g)), and

g3(y) (Figure 6.5(h)). This function is optimized by S∗3 = 22.71, with expected cost
C3(S∗3 ) = 47.65. By Theorem 6.3, the optimal echelon base-stock levels for this
system are S∗ = (6.49, 12.02, 22.71), with optimal expected cost 47.65.

�

6.2.3 Heuristic Approach for Serial Systems

Suppose we have found S∗1 , . . . , S
∗
j−1, and we now need to find S∗j . Theorem 6.3 tells us

that S∗j does not depend on the base-stock levels at stages j + 1, . . . , N , although it does
indirectly depend on the echelon holding costs at those stages (because gj(y) includes h′1).
Suppose we truncate the system at stage j (i.e., remove all stages upstream from j), leave
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ĝ2(x)

(d) g
1
→ ĝ2.
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the echelon holding costs at the remaining stages intact, and replace p with p+h′j+1. Then
the S∗j that is optimal for stage j in this truncated system is also optimal for stage j in the
original system (Shang and Song 2003). In other words, the y that minimizes

gj(y) = E

[
j∑
i=1

(
j∑
k=i

hk

)
(I ′i(y) + ITi−1(y)) +

(
p+ h′j+1

)
B′1(y)

]
(6.31)

also minimizes gj(y) in (6.26). (In (6.31) we have emphasized that IL and IT are functions
of y, and we have truncated the system at j; otherwise, it is identical to (6.8).) We obtained
a similar result for stage 1 in (6.29).

Why is this true? Well, in the truncated system, each unit sold reduces the holding
cost by

∑j
i=1 hi, but the true cost reduction, for the original system, is

∑N
i=1 hi = h′1.

Therefore, there is an extra h′1 −
∑j
i=1 hi = h′j+1 in “perceived benefit” for each sale that

is not reflected in the holding costs of the truncated system. Similarly, each demand that
cannot be satisfied immediately increases the cost by this amount. We therefore model this
by adding the perceived benefit, h′j+1, to the original stockout cost, p.

Now, (6.31) is no easier to solve than (6.26)—except for one special case. Suppose
that h′1 = · · · = h′j = h′, for some fixed h′. (Or, equivalently, h1 = · · · = hj−1 = 0

and hj = h′.) Then it is optimal to hold all of the inventory at stage 1, because upstream
inventory is not cheaper, and it requires a longer lead time to reach the customer. We can
therefore replace this j-stage system with a single-stage system with a holding cost of h′,
a stockout cost of p+ h′j+1, and a lead time of

∑j
i=1 Li.

This would make the problem easy to solve, but would the solution help us? It turns
out that, if we choose good values for h′, the resulting cost functions provide bounds on
the actual cost function, and the resulting base-stock levels provide bounds on the optimal
base-stock levels. Moreover, these bounds can be used to compute heuristic values for S∗j ,
which turn out to be remarkably accurate. This approximation was proposed by Shang and
Song (2003).

We consider two different values for h′. Let glj(y) be the cost function (6.31) with h′i
replaced by hj for all i, and let guj (y) be the same function with h′i replaced by

∑j
k=1 hk

for all i. Let D̃j be the lead-time demand for a single-stage system with lead time
∑j
i=1 Li,

i.e.,

D̃j =

j∑
i=1

Di,

and let F̃j(·) be its cdf.
Then the functions glj(y) and guj (y) are minimized by

Suj = F̃−1
j

(
p+

∑N
i=j+1 hi

hj + p+
∑N
i=j+1 hi

)
= F̃−1

j

(
p+

∑N
i=j+1 hi

p+
∑N
i=j hi

)

and

Slj = F̃−1
j

(
p+

∑N
i=j+1 hi∑j

k=1 hk + p+
∑N
i=j+1 hi

)
= F̃−1

j

(
p+

∑N
i=j+1 hi

p+
∑N
i=1 hi

)
,

respectively.
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Theorem 6.4 (Shang and Song (2003)) For any j and y:

(a) glj(y) ≤ gj(y) ≤ guj (y)

(b) Slj ≤ S∗j ≤ Suj
The theorem suggests that we can approximate S∗j , for each j, using a weighted average

of Slj and Suj . In fact, Shang and Song (2003) suggest using a simple average, that is,

S̃j =
1

2

[
F̃−1
j

(
p+

∑N
i=j+1 hi

p+
∑N
i=j hi

)
+ F̃−1

j

(
p+

∑N
i=j+1 hi

p+
∑N
i=1 hi

)]
. (6.32)

If local base-stock levels are desired, we can compute S̃′j from S̃j as described in Sec-
tion 6.2.1.

This approximation performs quite well: Shang and Song (2003) report an average error
of 0.24% and a maximum error of less than 1.5% on their test instances, where the errors are
computed by comparing the heuristic solutions with the exact solutions from Theorem 6.3.

This heuristic can be used for periodic-review systems as well. However, in this case,
the lead-times must each be inflated by one unit, assuming the system uses the sequence of
events on page 90. See Shang and Song (2003) for details.

� EXAMPLE 6.2

Return to the serial system in Example 6.1. We will use the Shang–Song heuristic to
find approximate values for S∗.

Recall that D̃j is the lead-time demand for a single-stage system with lead time∑j
i=1 Li; then:

D̃1 ∼ N(5 · 1, 12 · 1) = N(5, 1)

D̃2 ∼ N(5 · 2, 12 · 2) = N(10, 2)

D̃3 ∼ N(5 · 4, 12 · 4) = N(20, 4).

We have (h1, h2, h3) = (3, 2, 2). Therefore:

Su1 = F̃−1
1

(
37.12 + 4

37.12 + 7

)
= 6.49 Sl1 = F̃−1

1

(
37.12 + 4

37.12 + 7

)
= 6.49

Su2 = F̃−1
2

(
37.12 + 2

37.12 + 4

)
= 12.35 Sl2 = F̃−1

2

(
37.12 + 2

37.12 + 7

)
= 11.71

Su3 = F̃−1
3

(
37.12 + 0

37.12 + 2

)
= 23.27 Sl3 = F̃−1

3

(
37.12 + 0

37.12 + 7

)
= 22.00.

Using (6.32), we have

S̃1 = 1
2 (6.49 + 6.49) = 6.49

S̃2 = 1
2 (12.35 + 11.71) = 12.03

S̃3 = 1
2 (23.27 + 22.00) = 22.63.

These values are very close to S∗ given in Example 6.1, and indeed their costs are
very similar: g(S̃) = 47.66, compared to g(S∗) = 47.65.

�
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6.2.4 Other Network Topologies

Assembly Systems: Assembly systems turn out to be easy to solve—or, at least, no harder
than serial systems. Rosling (1989) proves that every assembly system can be transformed
to an equivalent serial system. That serial system can be solved using any method available
for such systems (for example, the exact method in Section 6.2.2 or the heuristic one in
Section 6.2.3). The resulting solution can then be transformed back to a solution for the
assembly system. The equivalence between the two systems is exact, meaning that if we
solve the serial system optimally, then the transformed solution will be optimal for the
assembly system.

Distribution Systems: Unfortunately, distribution systems are much more difficult. In part,
the difficulty stems from the fact that, if a given stage has insufficient inventory to meet the
orders placed by its successors, it must decide how to allocate the inventory that it does have
among them. For example, it may assign items first-come, first-served, or randomly, or
based on some priority system. Therefore, in addition to choosing a replenishment policy
at each node, we must also choose an allocation policy. Under stochastic demands, even
the optimal form of these policies is unknown, let alone the optimal parameters for the
policies. Usually, we simply choose a plausible ordering policy (e.g., a base-stock policy)
and a plausible allocation policy (e.g., a first-come, first-served policy) and then optimize
the parameters under those assumptions.

The simplest type of distribution system is the one-warehouse, multiple-retailer (OWMR)
system, a two-echelon system with one upstream stage (the “warehouse”) and several down-
stream stages (the “retailers”). The best known exact algorithm for OWMR systems is the
projection algorithm (Graves 1985, Axsäter 1990), which involves iterating over the pos-
sible values for S0 (the warehouse base-stock level). For each possible value of S0, we
can find the corresponding optimal Sj for the retailers by solving a single-variable, convex
optimization problem for each j. However, the total cost is not a convex function of S0,
which means that we must perform an exhaustive search to find S∗0 . Moreover, each eval-
uation of the objective function requires numerical convolution, a computationally costly
calculation.

Several heuristics have been proposed for OWMR and more general distribution systems.
Sherbrooke (1968) proposed the so-called “METRIC” model; his method approximates the
stochastic lead times generated by the warehouse for the retailers by replacing them with
their means. Graves (1985) proposes a two-moment approximation in which a messy
distribution necessary to evaluate the cost is replaced by a simpler distribution with the
same mean and variance. This approach can also be used to approximate serial systems.
Gallego et al. (2007) propose the “restriction–decomposition” heuristic, which involves
solving three subheuristics, each of which makes some simplifying assumption to render
the model tractable, and then taking the best of the three resulting solutions. Özer and Xiong
(2008) propose a heuristic in which the distribution system is decomposed into multiple
serial systems, each of which is solved independently, and then the solutions from the serial
systems are summed to obtain a solution for the distribution system. A similar approach
is used in the “decomposition–aggregation” heuristic by Rong et al. (2017a), which uses a
procedure they call “backorder matching” to convert the base-stock levels from the serial
system into those for the distribution system. They also propose a more accurate, but more
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Figure 6.6 Digital camera supply chain network. Reprinted by permission, Graves and Willems,
Optimizing strategic safety stock placement in supply chains, Manufacturing and Service Operations
Management, 2(1), 2000, 68–83. ©2000, the Institute for Operations Research and the Management
Sciences (INFORMS), 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA.

computationally intensive, procedure, called the “recursive optimization” heuristic, which
is inspired by Theorem 6.3.

Tree and General Systems: Given the difficulty of solving distribution systems, these
more general systems have received little attention in the literature. See, for example,
de Kok and Visschers (1999) and de Kok and Fransoo (2003).

6.3 GUARANTEED-SERVICE MODELS

6.3.1 Introduction

Figure 6.6 depicts the supply chain for a digital camera made by Kodak. Each stage
represents an activity (as in interpretation (2) from Section 6.1): either a processing activity
such as packaging or testing, or an assembly activity such as combining a wafer and an
“imager base” to construct an “imager assembly.” These activities may occur at different
locations or together at the same location. Each stage functions as an autonomous unit that
can hold safety stock, place orders to upstream stages, and so on.

The question of interest here is, which stages should hold safety stock, and how much?
It may not be necessary for all stages to hold safety stock, but only a few. These stages
serve as buffers to absorb all of the demand uncertainty in the supply chain. This problem
is a strategic one, since the location of safety stock is a design problem that is costly to
change frequently. This problem is therefore known as the strategic safety stock placement
problem (SSSPP).

The supply chain operates in an infinite-horizon, periodic-review setting, and each stage
follows a base-stock policy. Each stage quotes a lead time, or committed service time
(CST), to its downstream stage(s) within which it promises to deliver each order. As we
will see, there is a direct relationship between the CST and the safety stock (and base-stock
level) required at each stage. The goal of the strategic safety stock placement model is to
choose the CST (and, therefore, the safety stock and base-stock level) at each stage in order
to minimize the expected holding cost in each period.
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Each stage is required to provide 100% service to its downstream stage(s). In other
words, each stage is obligated to deliver every order within the CST regardless of the size
of the order. In order to enforce this restriction, we will have to assume that the demand is
bounded. We will discuss this assumption further in Section 6.3.2.

The guaranteed-service assumption was first used by Kimball in 1955 (later reprinted as
Kimball 1988). Simpson (1958) applied it to serial systems and Graves (1988) discussed
how to solve the resulting safety stock optimization problem. Inderfurth (1991), Minner
(1997), and Inderfurth and Minner (1998) discuss dynamic programming (DP) approaches
for distribution and assembly systems. Graves and Willems (2000) extend this to tree
systems, and Magnanti et al. (2006) and Humair and Willems (2011) allow general networks
that include (undirected) cycles.

We will build gradually to tree networks similar to the one pictured in Figure 6.6,
considering first the single-stage case, then serial systems, and finally tree networks. First,
we will discuss the demand process.

Throughout Section 6.3, hi will be used to represent the local holding cost at stage i.
(In Section 6.2, it represented the echelon holding cost.)

6.3.2 Demand

We assume that the demand in any interval of time is bounded. In practice, this is not
a terribly realistic assumption (unless the bound is very large), but it is necessary in this
model to guarantee 100% service. One way to model the demand is simply to truncate the
right tail of the demand distribution. That is, if demand is normally distributed, we simply
ignore any demands greater than, say, zα standard deviations above the mean, for some
constant α. This is the approach we will take throughout.

In particular, consider a stage that faces external demand (as opposed to serving other
downstream stages). Suppose the demand per period is distributedN(µ, σ2). Then we will
assume that the total demand in any τ periods is bounded by

D(τ) = µτ + zασ
√
τ (6.33)

for some constant α. In other words, we assume that the demand in τ consecutive periods
is no more than zα standard deviations above its mean, since the mean demand in τ periods
is µτ and the standard deviation is σ

√
τ . This implies that the demand in a single period

is bounded by µ + zασ. The reverse implication, however, is not true: Assuming the
single-period demand is bounded by µ+ zασ implies that the τ -period demand is bounded
by µτ + zαστ ; it does not imply the stronger bound of µτ + zασ

√
τ .

If, in actuality, the demand in a given τ -period interval exceedsD(τ), the excess demands
are assumed to be handled in some other manner—say, by outsourcing, scheduling overtime
shifts, or by some other method not captured in the model. This allows us to ignore the
demands in the tail and pretend the demand never exceeds its bound.

We will use the demand bound in (6.33), but any other bound D(τ) is acceptable, with
suitable changes to the derivations below.

6.3.3 Single-Stage Network

Consider a single stage that quotes a CST of S periods to an external customer. (Recall
that S denotes a CST in this section, but a base-stock level in Section 6.2.) The stage
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receives raw materials from an external supplier, which promises an inbound CST of SI
periods. Finally, the stage itself requires a processing time of T periods to perform its
function. Items that have been ordered from the supplier but not yet received are referred
to as on-order inventory; those that have been received from the supplier and are currently
being processed are referred to as work-in-progress (WIP) inventory; and those that have
completed their processing are referred to as finished-goods inventory. (See Figure 6.7.)
SI and T are both constants (parameters). S is the decision variable. Our goal in this
section is to determine the amount of safety stock required if the stage quotes a CST of S
periods.

The inventory position equals the finished-goods inventory, plus the on-order and WIP
inventory, minus demands that have occurred but have not yet been satisfied. These
unmet demands would be considered backorders in the stochastic-service model, but in
the guaranteed-service model, they are acceptable as long as they are satisfied within S
periods. Thus, they are subtracted from the inventory position just as backorders are, but
they are not penalized in the objective function.

The sequence of events in period t in the guaranteed-service model is as follows:

1. The inventory position, IPt, is calculated.

2. The demand, dt, is observed.

3. A replenishment order of size y − (IPt − dt) is placed, where y is the base-stock
level.

4. Items that were ordered from the supplier SI periods ago are added to WIP inventory.

5. Items that entered WIP inventoryT periods ago are added to finished-goods inventory.

6. Items that were demanded S periods ago are removed from finished-goods inventory.

7. Holding costs are assessed based on the ending inventory level.

Note that this sequence of events assumes that the demand is observed before the order
is placed, whereas the stochastic-service, periodic-review models in Chapter 4 assume
the demand is observed after. Actually, the two are mathematically equivalent since we
can simply add 1 to a stochastic-service lead time and then apply the guaranteed-service
sequence of events, or subtract 1 from a guaranteed-service lead time and then apply the
stochastic-service sequence of events.3

Other differences between the sequences of events in the stochastic- and guaranteed-
service models are more cosmetic. For example, the guaranteed-service sequence includes
WIP inventory in the inventory position and subtracts items that have been demanded but
not yet satisfied. One can consider the same as happening in the stochastic-service model,
in which both of these quantities equal 0.
S is similar to a “demand lead time”—i.e., an advance warning of demands that must

be met in the future. Conversely, SI and T both contribute to the supply lead time, since
SI + T periods elapse between when the stage places an order and when the products
are ready to be delivered to the stage’s customer. Each unit increase in demand lead time

3If L = 0 in the guaranteed-service model, this means we use a lead time of −1 in the stochastic-service model.
This doesn’t make sense for actual lead times but it is acceptable mathematically.
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Figure 6.7 Single-stage network.

is equivalent to a unit decrease in the supply lead time. (This claim should make sense
intuitively; see Hariharan and Zipkin (1995) for a rigorous proof in a somewhat different
context.) Therefore, this system is equivalent to a system with no demand lead time and
with SI + T − S periods of supply lead time. The quantity SI + T − S is called the net
lead time (NLT).

The local base-stock level required at the stage is equal to the demand bound:

y = µ(SI + T − S) + zασ
√
SI + T − S. (6.34)

(If the demand bound D(τ) takes a form other than that given in (6.33), we simply replace
the right-hand side with the appropriate bound.) This expression is analogous to (4.46),
with the net lead time SI + T −S replacing the lead time L. (The “+1” in (4.46) does not
appear here because of the difference in the sequence of events, discussed above.)

If the base-stock level is set according to (6.34), then the stage will always be able to
meet any demand within S periods. This is a result of the conservation of flow argument
that we made in Section 4.3.4.1: In period t, we place an order to bring the inventory
position up to the base-stock level, y. By period t + (SI + T ), all of these units will
have arrived, been processed, and been added to inventory. In other words, if no additional
demands occur between period t+ 1 and t+ (SI +T ), the on-hand inventory at the end of
period t+ (SI + T ) will equal y. This quantity needs to be sufficient to meet all demands
that are due before period t+(SI+T ), in other words, demands occurring between period
t+ 1 and t+ (SI+T −S). The demand in these SI+T −S periods will be no more than
µ(SI + T − S) + zασ

√
SI + T − S, so we should set y equal to this value, as in (6.34).

Note that this argument ignores the units that were demanded during periods t− S + 1
through t. These demands also must be satisfied out of the items that are on-order at time
t. But these items are subtracted from the inventory position in period t. Therefore, the
on-order items include items to meet these demands, in addition to the y items that are
available in period t+ (SI + T ).

Given the base-stock level in (6.34), the safety stock is approximately equal to

zασ
√
SI + T − S (6.35)

(since base stock = cycle stock + safety stock). The reason this expression is only approxi-
mate lies in the way we truncate the normal distribution. We have truncated the distribution
zα standard deviations above the mean, and at 0. The truncation is therefore not symmetric,
and so the mean of the revised distribution no longer equals µ. Therefore, the mean demand
over the NLT is not exactly equal to µ(SI+T −S), so the safety stock is not exactly equal
to the expression given in (6.35). (The true safety stock level is greater.) As zα increases,
the approximation improves. To take an extreme example, if α < 0.5, then zα < 0, so
the approximate safety stock is negative, even though the true safety stock may not be.
The same situation can also cause the expected holding cost per period, given below, to be
negative. Therefore, in what follows, we will require α > 0.5 and will assume that it is
large enough that we can treat (6.35) as though it were exact.



GUARANTEED-SERVICE MODELS 207

N

TN

N − 1

TN−1

· · · 1

T1

SIN SN SIN−1 SN−1 SI1 S1

Figure 6.8 N -stage serial system in guaranteed-service model.

From (6.35), as the CST increases, the safety stock level decreases. At one extreme,
the stage can quote a CST of S = SI + T , in which case every time the stage receives an
order, it can place an order to its supplier, wait for it to arrive, process it, and deliver it in
time—it has to hold 0 safety stock since

√
SI + T − (SI + T ) = 0. At the other extreme,

the stage can quote a CST of S = 0, in which case delivery is required immediately, so
the stage must hold the maximum possible safety stock: zασ

√
SI + T . Or the stage can

quote some CST strictly between 0 and SI + T and hold safety stock strictly between
zασ
√
SI + T and 0.

If the holding cost is h per unit per time period (charged on ending inventory, as usual),
then the expected holding cost per period is

hzασ
√
SI + T − S (6.36)

since the expected ending inventory is equal to the safety stock. From now on, we will
focus on the safety stock level rather than the base-stock level since optimizing one is
equivalent to optimizing the other.

6.3.4 Serial Systems

Now consider a serial supply chain network such as the one pictured in Figure 6.8. Each
stage follows the same sequence of events as in Section 6.3.3. The notation from that
section will now include subscripts i to refer to a given stage. Note that SIN−1 = SN
(stage N − 1’s inbound time is equal to stage N ’s outbound time), SIN−2 = SN−1, and
so on. And stage N ’s inbound time is from an external supplier rather than from another
stage.

The expected holding cost per period is

g(S) =

N∑
i=1

hizασ
√
SIi + Ti − Si, (6.37)

where S = (S1, . . . , SN ) and hi is the local holding cost at stage i. Note that the same σ
is used at all stages, since each stage places an order equal to the order that it received.

Obviously, with no constraints on the CST to the external customer (downstream from
stage 1), the optimal solution would be to set Si = SIi + Ti for all i; this solution has 0
holding cost because no safety stock is held. Therefore, we will assume that the CST to
the external customer is already set to some constant s1, and we require S1 ≤ s1. But it
will never be to our advantage to set S1 < s1, so in general, we can assume S1 = s1. Only
S2, . . . , SN , then, are really decision variables.

For each i = 2, . . . , N , g is concave in Si since

∂g

∂Si
= −1

2
hizασ(SIi + Ti − Si)−

1
2 +

1

2
hi−1zασ(Si + Ti−1 − Si−1)−

1
2
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Figure 6.9 Feasible region for two-stage system.

∂2g

∂S2
i

= −1

4
hizασ(SIi + Ti − Si)−

3
2 − 1

4
hi−1zασ(Si + Ti−1 − Si−1)−

3
2 < 0.

Therefore, the optimal solution occurs at the extreme points—each Si is set to its minimum
or maximum feasible value. What are the minimum and maximum? Well, Si ≤ SIi + Ti,
otherwise the quantity under the square root for i in (6.37) is negative. Similarly, Si ≥
Si−1 − Ti−1, otherwise the quantity under the square root for i − 1 is negative. But we
also know that Si ≥ 0. Therefore, the limits of Si are max{0, Si−1− Ti−1} and SIi + Ti;
the optimal solution has S∗i taking on one of these two values.

To illustrate this graphically, suppose N = 2. In effect, we are trying to solve the
following IP:

minimize h2zασ
√
SI2 + T2 − S2 + h1zασ

√
S2 + T1 − S1 (6.38)

subject to SI2 + T2 − S2 ≥ 0 (6.39)

S2 + T1 − S1 ≥ 0 (6.40)

S1 ≤ s1 (6.41)

S1, S2 ≥ 0 and integer (6.42)

The feasible region for this IP is pictured in Figure 6.9; part (a) assumes that s1 − T1 ≥ 0

while part (b) assumes that s1 − T1 < 0. If we assume that S1 = s1, then only the
right-hand edge of the feasible region is relevant; the extreme points on this edge are
S = (s1, SI2 + T2) and S = (s1, s1 − T1), as expected.

This logic can be used to prove the following:

Theorem 6.5 Suppose s1 = 0 (immediate service is required to the customer). Then for
all i = 2, . . . , N , either S∗i = 0 or S∗i = S∗i+1 + Ti.

Proof. Omitted; see Problem 6.6.

In other words, each stage follows an “all-or-nothing” inventory policy: either it holds
0 safety stock and quotes the maximum possible CST, or it holds the maximum possible
safety stock and quotes 0 CST. We will see shortly that this property does not hold for the
tree systems considered in Section 6.3.5.
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Figure 6.10 Example network for SSSPP DP algorithm for serial systems.

The mathematical program (6.38)–(6.42) is not usually solved directly. Instead, we can
solve this problem using DP (see Inderfurth 1991). Let θk(SI) equal the optimal cost in
stages 1, . . . , k if stage k receives an inbound CST of SI . Then θk(SI) can be computed
recursively as follows:

θ1(SI) = h1zασ
√
SI + T1 − s1 (6.43)

θk(SI) = min
0≤S≤SI+Tk

{
hkzασ

√
SI + Tk − S + θk−1(S)

}
(6.44)

Equation (6.43) initializes the recursion: At stage 1, for any inbound CST SI , the NLT
is SI + T1 − s1 since the outbound CST is fixed at s1. Then (6.44) calculates θk(SI)

recursively: If stage k receives an inbound CST of SI and we choose an outbound CST
of S, the cost at stage k is hkzασ

√
SI + Tk − S, and the cost at stages 1, . . . , k − 1 is

θk−1(S) since stage k− 1 will receive an inbound CST of S. The right-hand side of (6.44)
chooses the S that minimizes this cost, subject to the constraint that 0 ≤ S ≤ SI + Tk to
ensure that S and the NLT are both nonnegative.

The recursive equations (6.43)–(6.44) must be evaluated for each stage k and for each
possible SI . We therefore need to determine which values SI can take on at stage k.
Clearly, SI ≥ 0. Furthermore, if, at stage k, SI > SIN +

∑N
j=k+1 Tj , then the NLT

will be negative at some stage. Therefore, at stage k, we can restrict our attention to
0 ≤ SI ≤ SIN +

∑N
j=k+1 Tj .

In the next section, we will generalize this approach to solve tree systems.

� EXAMPLE 6.3

Consider the network pictured in Figure 6.10. The numbers below the stages are
the processing times Ti. The number on the inbound arrow to stage 3 indicates that
SI3 = 1, while the outbound number from stage 1 indicates that the fixed CST
s1 = 1. The holding costs at stages 1, 2, and 3 are 7, 4, and 2, respectively, and are
noted above each stage. Assume zα = σi = 1 at all stages.

First note that SIN +
∑N
j=k+1 Tj = 2 at stages 1 and 2. (SI is fixed to 1 at stage

3.) These are the maximum SI values that we must consider at each stage.
We consider stage k = 1 first. From (6.43), θ1(SI) = 7

√
SI for all SI:

θ1(0) = 0

θ1(1) = 7

θ1(2) = 7
√

2 = 9.90.

Next, at stage 2, we use (6.44):

θ2(0) = min
S=0
{4
√

0 + 0− S + θ1(S)} = 0
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θ2(1) = min
0≤S≤1

{4
√

1 + 0− S + θ1(S)}

= min{4 + 0, 0 + 7} = 4

θ2(2) = min
0≤S≤2

{4
√

2 + 0− S + θ1(S)}

= min{4
√

2 + 0, 4 + 7, 0 + 7
√

2} = 4
√

2 = 5.6.

Finally, at stage 3, we have only one SI value to consider since SI3 is fixed at 1:

θ3(1) = min
0≤S≤2

{2
√

1 + 1− S + θ2(S)}

= min{2
√

2 + 0, 2 + 4, 0 + 5.6}

= 2
√

2 = 2.83.

Since S = 0 solved the minimization for θ3(1), we have S∗3 = 0. Therefore,
SI = 0 at stage 2, and S = 0 solved the minimization for θ2(0) as well. Finally,
s1 = 1. Therefore, the optimal CSTs are S∗ = (0, 0, 1). These CSTs imply that the
NLTs at stages 1, 2, and 3 are 0, 0, and 2, respectively. Therefore, the optimal safety
stock levels are as follows:

SS1 =
√

0 = 0.00

SS2 =
√

0 = 0.00

SS3 =
√

2 = 1.41

�

6.3.5 Tree Systems

At this point, we will turn our attention to tree systems. The model and algorithm described
here were introduced by Graves and Willems (2000). (See also Graves and Willems (2003b)
for an erratum.) Their algorithm runs in pseudopolynomial time. Lesnaia (2004) provides
a polynomial-time implementation that runs in O(N3) time, where N is the number of
stages in the network. For general systems, which may include (undirected) cycles, the
problem is NP-hard (Chu and Shen 2003, Lesnaia 2004). See Magnanti et al. (2006) for a
solution method based on integer programming techniques and Humair and Willems (2011)
for exact and heuristic algorithms that extend the DP algorithm by Graves and Willems
(2000) to general systems. Humair et al. (2013) extend the approach to allow stochastic
lead times, and Graves and Schoenmeyr (2016) consider capacity constraints.

Let A be the set of (directed) arcs in the network; then stage i is a predecessor to stage j
if and only if (i, j) ∈ A. A demand stage is a stage that faces external demand. We assume
that a stage is a demand stage if and only if it has no successors. It is possible for a tree
network to have more than one demand stage. The CST Si for any demand stage i is set
equal to si ≥ 0, a constant, as in Section 6.3.4. Similarly, stages with no predecessors are
called supply stages. If i is a supply stage, then i receives product from an external supplier
with CST SIi ≥ 0. It is possible that a nondemand stage could have an external customer
in addition to its successors, or that a nonsupply stage could have an external supplier in
addition to its predecessors, but we will rule out this possibility to keep things simpler.
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Each demand stage i sees periodic demand distributed asN(µi, σ
2
i ). Nondemand stages

see demand that is derived from the stages they serve, and their safety stock levels must be
set using the standard deviation of that demand. The standard deviation of demand at stage
i (a nondemand stage) is

σi =

√ ∑
(i,j)∈A

σ2
j (6.45)

since its variance is the sum of the variances of the downstream demands (derived or actual).
The amount of safety stock required at stage i is therefore

zασi
√
SIi + Ti − Si (6.46)

and the expected holding cost at i is

hizασi
√
SIi + Ti − Si (6.47)

whether i is a supply stage, a demand stage, or neither. (Again, hi is the local holding cost.)
If stage i has more than one successor, we will assume that it quotes the same CST to

all downstream neighbors. Now, suppose stage i has more than one predecessor. Stage
i cannot begin its processing until all of the raw materials have arrived. Therefore, if
the upstream neighbors quote different CSTs, the effective inbound time at stage i is the
maximum of the CSTs of the upstream neighbors. That is,

SIi = max
(j,i)∈A

{Sj}. (6.48)

All of this will be important in the algorithm we use to solve this problem.
Since the objective function is concave in every Si, the optimal solution occurs at

the extreme points, as in the serial-system case. But the “all-or-nothing” result from
Theorem 6.5 does not hold, even if si = 0 for every demand stage. That is, it is not
necessarily true that every stage either quotes 0 CST or holds 0 safety stock. An example is
pictured in Figure 6.11. The processing time Ti is listed below each stage, and the holding
cost hi is listed above. The inbound CST at the supply stages 3 and 4 is 0, as is the outbound
CST at the demand stages 1 and 2. Stage 4 has a very large holding cost, which means it
is optimal to hold no safety stock there; therefore, S∗4 = 4. We will show that S∗3 = 4 as
well, even though this means stage 3 quotes a positive CST and holds positive safety stock.
First suppose S∗3 < 4. Then the safety stock level at 3 increases, but there is no decrease in
safety stock at stage 1 since stage 4 quotes an inbound time of 4 and SI1 = max{S4, S3}.
Now suppose S3 > 4. This increases the safety stock required at stage 1, which is quite
expensive; the cost more than offsets any savings in holding cost at stage 3. Therefore,
S∗3 = 4.

6.3.6 Solution Method

We will solve the SSSPP on a tree system using DP. In principle, the approach is similar
to the DP for the serial system in Section 6.3.4, but it is more complicated for two main
reasons. First, computing the cost of a given decision is trickier than in the serial system.
Second, in the serial system, it is clear which stage follows a given stage, and hence, how
the DP recursion should be structured. In this problem, this is less clear, since each stage
may have more than one upstream and/or downstream neighbor.
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Figure 6.11 A counterexample to the “all-or-nothing” claim for tree systems.
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Figure 6.12 Relabeling the network.

6.3.6.1 Labeling the Stages We will address the second issue first. The DP algo-
rithm requires us to relabel the stages so that each stage (other than stage N ) has exactly
one adjacent stage with a higher index. When we describe the algorithm, it will be clear
why this is required. The relabeling is performed using Algorithm 6.1. In the algorithm,
L represents the set of stages that have been labeled so far and U represents the set of
unlabeled stages.

Algorithm 6.1 Relabel stages
1: L← ∅, U ← {1, . . . , N} . Initialization
2: for k = 1, . . . , N do . Labeling stages
3: choose i ∈ U such that i is adjacent to at most one other stage in U
4: label i with index k
5: L← L ∪ {i}, U ← U \ {i}
6: end for
7: return labels

� EXAMPLE 6.4

Consider the network pictured in Figure 6.12(a). Applying the procedure to this
network yields the renumbered network in Figure 6.12(b). Note that in this network,
every stage has exactly one neighbor (either upstream or downstream) with a higher
index, other than stage 7. �
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6.3.6.2 Functional Equations Next, we describe how to evaluate the cost of a
decision at a given stage. We had one recursive function, θk, in Section 6.3.4. In this
section, we will need two. Each stage will use one function or the other based on whether
the DP has already evaluated the stage’s successor or its predecessor.

Let Mk be the maximum possible CST at stage k: Mk is equal to the length of the
longest path through the network up to stage k, assuming each stage quotes the maximum
possible CST of SI + T .

For a given stage k, k = 1, . . . , N − 1, let pk be the stage adjacent to k with the
higher index in the relabeled network. Also, let Nk be the set of nodes in {1, 2, . . . , k}
that are connected (not necessarily adjacent) to k in the undirected subgraph with node set
{1, 2, . . . , k}. That is,

Nk = {k} ∪
⋃

(i,k)∈A
i<k

Ni ∪
⋃

(k,j)∈A
j<k

Nj . (6.49)

For example, in Figure 6.12(b),

N3 = {1, 2, 3}
N4 = {4}
N5 = {5}.

In the course of the DP, decisions made at stage k affect only those stages in Nk. The
type of decision made depends on whether pk is downstream or upstream from k:

• If pk is downstream from k, then the decision to be made is the outbound CST S

from stage k. The expected holding cost in Nk if k has an outbound CST of S is
denoted θok(S). (The superscript o stands for “outbound.”)

• If pk is upstream from k, then the decision to be made is the inbound CST SI to
stage k. The expected holding cost in Nk if k has an inbound CST of SI is denoted
θik(SI). (The superscript i stands for “inbound.”)

θok(S) and θik(SI) are the functional equations for the DP algorithm.
To compute θok(S) and θik(SI), we first compute the expected holding cost for Nk as a

function of both the inbound and outbound CSTs at node k:

ck(S, SI) =hkzασk
√
SI + Tk − S

+
∑

(i,k)∈A
i<k

min
0≤x≤SI

{θoi (x)}+
∑

(k,j)∈A
j<k

min
S≤y≤Mj−Tj

{θij(y)}. (6.50)

The first term is simply the expected holding cost at node k. The second term is the cost
at nodes in Nk that are upstream from k. For a stage i that is immediately upstream from
k, if k’s inbound CST is SI then i’s outbound CST is at most SI . Why “at most” instead
of “equal to”? Remember that at node k, SI is the maximum of the S’s from all upstream
neighbors. Forcing S to equal SI for all upstream neighbors is probably not optimal.
Similarly, the third term is the cost at nodes in Nk that are downstream from k. For a stage
j that is immediately downstream from k, if k’s outbound CST is S then j’s inbound CST
is at least S. It’s not necessarily equal to S since j might have other upstream neighbors
that quote CSTs longer than S.
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At stage k in the DP, we know θoi (S) for i < k and θij(SI) for j < k because we have
already visited all stages with smaller indices than k. At those stages, we have computed
θoi (S) for all possible values of S and θij(SI) for all possible values of SI .

To compute θok(S) for a given S, we set

θok(S) = min
SI
{ck(S, SI)}. (6.51)

In other words, if we want to set k’s outbound CST to S, we determine the cheapest possible
inbound CST given that the outbound CST is S. What should the minimum be taken over
(that is, what values of SI are legal)? If k is a supply node (no upstream neighbors), then
there is only one possible value for SI: SIk, a constant. But if k is not a supply node, then
SI could be anywhere between max{0, S − Tk} (to ensure the quantity under the square
root is positive) and Mk − Tk, where Mk is as defined above.

Similarly, to compute θik(SI) for a given SI , we set

θik(SI) = min
S
{ck(S, SI)}. (6.52)

What are the limits of S? If k is a demand stage (no downstream neighbors), then we have
to set S = sk. Otherwise, S can be anywhere between 0 and SI + Tk.

6.3.6.3 Dynamic Programming Algorithm Algorithm 6.2 gives the pseudocode
for the DP algorithm.

Algorithm 6.2 DP algorithm for tree SSSPP
1: for k = 1, . . . , N − 1 do
2: if pk is downstream from k then
3: calculate θok(S) for S = 0, 1, . . . ,Mk

4: else
5: calculate θik(SI) for SI = 0, 1, . . . ,Mk − Tk
6: end if
7: end for
8: SI∗ ← argminSI=0,1,...,MN−TN θ

i
N (SI)

9: return θiN (SI∗)

The algorithm returns the optimal objective value, which is equal to the minimum value
of θiN (SI) found in line 8. The optimal solution is found by “backtracking,” similar to the
Wagner–Whitin algorithm.

Here’s why the algorithm works. Suppose we’re at stage k < N in step 1. We know that
k has exactly one neighbor with higher index, called pk. If pk is downstream from k, then
we compute the cost of setting k’s outbound CST S to each possible value. Computing the
cost for a given value, θok(S), requires knowing ck(S, SI), which in turn requires knowing
θoi (x) for all stages i that are immediately upstream and θij(y) for all stages j that are
immediately downstream from k, for all appropriate values of x and y. We know that for
every upstream i, we computed θoi (·) in step 1(a), not θii(·) in step 1(b), because i’s neighbor
with a higher index is k, which is downstream from it. Similarly, for every downstream j,
we computed θij(·), not θoi (·), because pj = k and k is upstream from j. If, instead, pk is
upstream from k, the logic is similar.
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Figure 6.13 Example network for SSSPP DP algorithm for tree systems.

� EXAMPLE 6.5

We will illustrate the algorithm on the network pictured in Figure 6.13. The numbers
below the stages are the processing times Ti. The number on the inbound arrow to
stage 1 indicates that SI1 = 1, while the outbound numbers from stages 2 and 4
indicate the fixed CSTs si. The holding costs are noted above each stage and are
equal to 1 at the first echelon (stage 1), 2 at the second echelon (stage 3), and 3 at the
third echelon (stages 2 and 4). Assume zα = 1 at all stages and σ2 = σ4 = 1; then
σ1 = σ3 =

√
2. Note that the stages have already been relabeled so that each stage

has exactly one neighbor with a higher index. Examining the longest path to each
node, we get M1 = 3, M2 = 5, M3 = 4, M4 = 5.

Since p1 = 3 is downstream from 1, we first compute θo1(S) for S = 0, . . . ,M1 =
3. Since 1 is a supply stage, the minimum over SI only considers SI = 1.

θo1(0) = min
SI=1
{c1(0, SI)} = c1(0, 1) = 1

√
2
√

1 + 2− 0 = 2.45

θo1(1) = min
SI=1
{c1(1, SI)} = c1(1, 1) = 1

√
2
√

1 + 2− 1 = 2.00

θo1(2) = min
SI=1
{c1(2, SI)} = c1(2, 1) = 1

√
2
√

1 + 2− 2 = 1.41

θo1(3) = min
SI=1
{c1(3, SI)} = c1(3, 1) = 1

√
2
√

1 + 2− 3 = 0.00

Next, we compute θi2(SI) since p2 = 3 is upstream from 2; we need to consider
SI = 0, . . . ,M2 − T2 = 4. Since 2 is a demand stage, the minimum over S only
considers S = 0.

θi2(0) = min
S=0
{c2(S, 0)} = c2(0, 0) = 3

√
0 + 1− 0 = 3.00

θi2(1) = min
S=0
{c2(S, 1)} = c2(0, 1) = 3

√
1 + 1− 0 = 4.24

θi2(2) = min
S=0
{c2(S, 2)} = c2(0, 2) = 3

√
2 + 1− 0 = 5.20

θi2(3) = min
S=0
{c2(S, 3)} = c2(0, 3) = 3

√
3 + 1− 0 = 6.00

θi2(4) = min
S=0
{c2(S, 4)} = c2(0, 4) = 3

√
4 + 1− 0 = 6.71

Now comes the interesting case: stage 3. We need to compute θo3(S) for S =

0, . . . ,M3 = 4. The minimum over SI ranges from max{0, S − T3} to 4− 1 = 3.
Note that θo1(x) is decreasing in x and θi2(y) is increasing in y for this network.
Therefore, in (6.50),

min
0≤x≤SI

{θo1(x)} = θo1(SI)
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and
min

S≤y≤M2−T2

{θi2(y)} = θi2(S)

for all SI and S, and we have:

θo3(0) = min
0≤SI≤3

{c3(0, SI)} = 8.28

c3(0, 0) = 2
√

2
√

0 + 1− 0 + θo1(0) + θi2(0) = 2.83 + 2.45 + 3.00 = 8.28

c3(0, 1) = 2
√

2
√

1 + 1− 0 + θo1(1) + θi2(0) = 4.00 + 2.00 + 3.00 = 9.00

c3(0, 2) = 2
√

2
√

2 + 1− 0 + θo1(2) + θi2(0) = 4.90 + 1.41 + 3.00 = 9.31

c3(0, 3) = 2
√

2
√

3 + 1− 0 + θo1(3) + θi2(0) = 5.66 + 0.00 + 3.00 = 8.66

θo3(1) = min
0≤SI≤3

{c3(1, SI)} = 6.69

c3(1, 0) = 2
√

2
√

0 + 1− 1 + θo1(0) + θi2(1) = 0.00 + 2.45 + 4.24 = 6.69

c3(1, 1) = 2
√

2
√

1 + 1− 1 + θo1(1) + θi2(1) = 2.83 + 2.00 + 4.24 = 9.06

c3(1, 2) = 2
√

2
√

2 + 1− 1 + θo1(2) + θi2(1) = 4.00 + 1.41 + 4.24 = 9.65

c3(1, 3) = 2
√

2
√

3 + 1− 1 + θo1(3) + θi2(1) = 4.90 + 0.00 + 4.24 = 9.14

θo3(2) = min
1≤SI≤3

{c3(2, SI)} = 7.20

c3(2, 1) = 2
√

2
√

1 + 1− 2 + θo1(1) + θi2(2) = 0.00 + 2.00 + 5.20 = 7.20

c3(2, 2) = 2
√

2
√

2 + 1− 2 + θo1(2) + θi2(2) = 2.83 + 1.41 + 5.20 = 9.44

c3(2, 3) = 2
√

2
√

3 + 1− 2 + θo1(3) + θi2(2) = 4.00 + 0.00 + 5.20 = 9.20

θo3(3) = min
2≤SI≤3

{c3(3, SI)} = 7.41

c3(3, 2) = 2
√

2
√

2 + 1− 3 + θo1(2) + θi2(3) = 0.00 + 1.41 + 6.00 = 7.41

c3(3, 3) = 2
√

2
√

3 + 1− 3 + θo1(3) + θi2(3) = 2.83 + 0.00 + 6.00 = 8.83

θo3(4) = min
3≤SI≤3

{c3(4, SI)} = 6.71

c3(4, 3) = 2
√

2
√

3 + 1− 4 + θo1(3) + θi2(4) = 0.00 + 0.00 + 6.71 = 6.71

Finally, we compute θi4(SI) for SI = 0, . . . ,M4−T4 = 4. Again, 4 is a demand
stage, so the minimum ranges only over S = 1. However, we need to take greater
care with the minimization in (6.50) since θo3(x) is not monotonic in x.

θi4(0) = min
S=1
{c4(S, 0)} = c4(1, 0) = 3

√
0 + 1− 1 + min

0≤x≤0
{θo3(x)}

= 0.00 + θo3(0) = 0.00 + 8.28 = 8.28

θi4(1) = min
S=1
{c4(S, 1)} = c4(1, 1) = 3

√
1 + 1− 1 + min

0≤x≤1
{θo3(x)}

= 3.00 + θo3(1) = 3.00 + 6.69 = 9.69

θi4(2) = min
S=1
{c4(S, 2)} = c4(1, 2) = 3

√
2 + 1− 1 + min

0≤x≤2
{θo3(x)}

= 4.24 + θo3(1) = 4.24 + 6.69 = 10.93

θi4(3) = min
S=1
{c4(S, 3)} = c4(1, 3) = 3

√
3 + 1− 1 + min

0≤x≤3
{θo3(x)}

= 5.20 + θo3(1) = 5.20 + 6.69 = 11.89

θi4(4) = min
S=1
{c4(S, 4)} = c4(1, 4) = 3

√
4 + 1− 1 + min

0≤x≤4
{θo3(x)}

= 6.00 + θo3(1) = 6.00 + 6.69 = 12.69
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The minimum value is θi4(0) = 8.28, so 8.28 is the optimal cost. The optimal
solution has an inbound time of 0 to stage 4, which means S∗3 = 0. Since θo3(0)

is minimized when SI = 0, the inbound time to stage 3 is 0, hence S∗1 = 0. The
optimal solution is therefore S∗ = (0, 0, 0, 1). The safety stock at each stage is

SS1 =
√

2
√

1 + 2− 0 = 2.45

SS2 =
√

0 + 1− 0 = 1.00

SS3 =
√

2
√

0 + 1− 0 = 1.41

SS4 =
√

0 + 1− 1 = 0.00

Note that the safety stock is pushed upstream as far as possible: Stage 2 needs to hold
some safety stock since its processing time is 1 and its CST is 0. Since the holding
cost at stages 2 and 4 is high, it is important for stage 3 to quote a CST of 0, so it, too,
must hold safety stock. But the bulk of the safety stock is held at stage 1 since the
holding cost is smallest there. Stage 1, then, absorbs most of the demand uncertainty
by serving as the supply chain’s main buffer. �

6.4 CLOSING THOUGHTS

As we discussed at the start of this chapter, one can view the stochastic- and guaranteed-
service models as two approaches for optimizing base-stock levels in the same system—two
algorithms for the same problem. On the other hand, the two models treat backorders in
very different ways: The stochastic-service model expects the system to provide instant
service to the end-customer and imposes a stockout cost at a rate of p per unit, starting as
soon as the customer arrives and finds the product out of stock and continuing as long as is
required to clear the backorder. The guaranteed-service model, on the other hand, allows
backorders to occur, for free, for up to S time periods and then disallows them entirely after
that. (See Figure 6.2.)

This difference causes the guaranteed-service approach to generate solutions in which
only a few stages hold inventory, absorbing the uncertainty on behalf of the entire supply
chain. The stages that hold inventory act as push (or make-to-stock) systems, while those
that hold no inventory operate as pull (or make-to-order) systems. In a push system,
inventory is produced based on a demand forecast, in anticipation of actual demands. In a
pull system, in contrast, production does not begin until a demand triggers, or “pulls,” the
production process; a pull system holds little or no inventory.

To see this play out in the SSSPP model, let’s return to the Kodak supply chain pictured
in Figure 6.6. In Figure 6.14, we have indicated hypothetical processing times, Ti, below
each stage and holding costs, hi, (in cents) above. Assume the demand standard deviation
is σ = 10 and α = 0.95. Each time period lasts 1 week. The CST for the final stage
(Build/test/pack) is a constant, s = 2.

The optimal CSTs for this system, obtained using Algorithm 6.2, are noted on the arcs
in Figure 6.15. The buckets above each node depict the inventory level at that node. The
final stage (Build/test/pack) holds no inventory: It receives inbound CSTs of SI = 0 from
its suppliers, has a processing time of T = 2, and gives its customer a CST of S = 2, for
an NLT of 0. The stages immediately upstream from Build/test/pack hold inventory so that
they can provide inventory on demand to Build/test/pack. The stages farther upstream also
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hold no inventory: Each quotes an outbound lead time equal to the sum of its inbound lead
time and its processing time. The exception is the Raw material stage, which again holds
inventory so it can provide quick service.

The Camera, Ship to final assembly, Circuit board, and Other parts stages serve as the
push–pull boundary in this system. Upstream from this boundary, the system operates as a
push system, producing inventory to hold in anticipation of future demands. Downstream
from the boundary is a pull system, in which no production is undertaken until an actual
demand has been realized.

The push–pull boundary will change as the system parameters change. For example,
suppose the CST promised to the end customer is 8 instead of 2. This gives the downstream
portion of the supply chain more time to react to demands, allowing inventory to be stored
further upstream, where it is cheaper. (See Figure 6.16.) This also moves the push–pull
boundary upstream.

Figure 6.17 plots the expected holding cost as a function of the end-customer CST, s1.
The sharper jumps in the curve (for example, at s1 = 2 and 8) correspond to changes
in safety stock locations, while the smoother movements along the curve correspond to
changes in safety stock levels. One can view this as a trade-off curve that allows the
decision maker to navigate the two competing objectives of service and cost. Note that
when s1 ≥ 14, the entire supply chain can operate as a pull system, holding no inventory
and incurring no costs.

The guaranteed-service model is particularly adept at deciding whether stages should
operate in push or pull mode since it tends to generate solutions in which only a subset of
the stages hold inventory. For instance, suppose we reduce the CST of the Imager assembly
stage in Figure 6.15 so that Ship to final assembly holds less inventory and Imager assembly
begins to hold some. This means increasing the NLT at Imager assembly and decreasing
it at Ship to final assembly. Since the safety stock is a concave function of the NLT,
increasing the NLT at Imager assembly has a larger impact on the objective function than
does decreasing the NLT at Ship to Final assembly from 10. This makes it unlikely to be a
cost-effective change, unless the holding cost is much cheaper at Imager assembly.

In contrast, the objective of the stochastic-service model is a convex function of the
base-stock level of each stage (see Section 6.2.2), encouraging the inventory to be more
evenly distributed throughout the system.

Although the stochastic- and guaranteed-service models describe the system in different
ways and produce different sets of base-stock levels, it is important to note that these are
modeling differences rather than operational ones. That is, once we set the base-stock
levels, the system operates the same, whether those base-stock levels were set using the
stochastic- or guaranteed-service approach. In the guaranteed-service model, there is no
need to impose an operational rule requiring orders to be shipped within S periods; the
CSTs will automatically be satisfied as a result of the base-stock levels and the demand
bound. (See Problem 6.12.) And in the stochastic-service model, there is no need to require
demands to be satisfied from stock whenever possible; that, too, will happen as a result of
the base-stock levels.

Which model we choose depends on how accurately each one models the particular
features of the real-world system and how tractable each one is. In our experience,
stochastic-service models tend to be a more natural way to describe most real-world supply
chains (since managers are more accustomed to thinking in terms of inventory levels than
in terms of CSTs). On the other hand, guaranteed-service models are typically much more
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tractable and have therefore been implemented in more commercial software packages for
multiechelon inventory optimization than stochastic-service models have.

CASE STUDY 6.1 Multiechelon Inventory Optimization at Procter & Gamble

Procter & Gamble (P&G) is one of the world’s largest consumer products companies,
with annual sales of nearly $80 billion. Their 200 brands include many household names
such as Tide laundry detergent, Crest toothpaste, and Gillette razors. P&G is often
ranked as one of the best-managed supply chains in the world; for example, in 2016
Gartner named P&G as one of only two companies (along with Apple) in its “Masters”
category, for companies whose supply chains are in its top-5 rankings for multiple
years (Gartner, Inc. 2016). This is all the more impressive given that the company
operates roughly 500 supply chains, consisting of several hundred locations owned both
by P&G and by third-party partners.

One of the primary tools that P&G uses to ensure supply chain efficiency is inventory
optimization, including both single-stage models, such as those in Chapters 4 and 5,
and multiechelon models, especially the SSSPP discussed in Section 6.3. Farasyn et al.
(2011) discuss the implementation of both types of models at P&G; we discuss the
latter here. (For more information on P&G’s single-stage models, see also Farasyn
et al. (2008).)

The SSSPP model implemented at P&G has several additional factors that make
it more complicated than the model discussed in this chapter. Most significantly, the
presence of reorder intervals (see Section 4.3.4.1) and batch production processes de-
stroys the concavity of the safety stock level as a function of the inbound and outbound
CSTs (e.g., in (6.46)), and therefore of the objective function. In addition, the Beauty
and Grooming supply chains contain (undirected) cycles, so the algorithm for tree net-
works in Section 6.3.5 does not apply. Instead, P&G used the algorithm of Humair and
Willems (2011), which is based on the DP for trees but can solve general systems with
nonconcave objective functions to optimality.

A typical Beauty and Grooming SSSPP network (modeling one product family) has
4,000–5,000 stages (representing both locations and processing activities) and 6,000–
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10,000 arcs. The 500 or so demand stages in such a network represent multiple finished
goods SKUs within the same product family—for example, multiple flavors, sizes, and
packaging types for a toothpaste brand. This proliferation of SKUs is the result of
a significant push at P&G for postponement (see Section 7.3). A product family
discussed by Farasyn et al. (2011) uses a service level (α) of 99.5%, has inbound CSTs
(SI) from suppliers of 7 days to 8 weeks, and has production times (T ) of 1–2 days
and transportation lead times (also modeled using T ) of 1–7 days. The demand mean
and standard deviation were estimated using the previous 13 weeks of historical data
and demand forecasts for the coming 13 weeks.

The multiechelon inventory optimization process resulted in changes to both the
locations and quantities of safety stocks in P&G’s supply chains. Safety stock levels
for raw materials and finished goods decreased, while those for intermediate stages
increased. However, the increased cost of intermediate inventory was more than offset
by cost reductions for the other inventory types, for a net savings of 17% for the supply
chain discussed by Farasyn et al. (2011), and of 7% for the entire North America
cosmetics supply chain. This savings is on top of significant savings that had already
been achieved through single-stage inventory optimization. And, since it is built into
the SSSPP model, the service level to the end customer remained at its target level of
99.5%.

PROBLEMS

6.1 (Exact Algorithm for Serial Systems) Using the exact algorithm for serial systems
with stochastic service in Section 6.2.2, find optimal base-stock levels for the following
instance: N = 2, p = 15, L1 = L2 = 1, h1 = h2 = 1, and the demand per unit time is
distributed N(100, 152). Report both echelon and local base-stock levels (S∗j and (S′)∗j ).

6.2 (Shang–Song Heuristic) Using the Shang–Song heuristic discussed in Section 6.2.3,
find near-optimal base-stock levels for the following instance: N = 5, p = 24, L1 = · · · =
L5 = 0.5, h1 = h2 = 2, and h3 = h4 = h5 = 1.

a) Assume the demand per unit time is normally distributed with a mean of 64 and
a standard deviation of 8.

b) Assume the demand per unit time has a Poisson distribution with λ = 64.
Report both echelon and local base-stock levels (S̃j and S̃′j).

6.3 (Comparison of Exact and Heuristic Approaches) Find optimal and near-optimal
base-stock levels for the following serial system using both the exact approach from
Section 6.2.2 and the Shang–Song heuristic from Section 6.2.3: N = 4, p = 80,
L1 = · · · = L4 = 1, hj = 5 − j for all j, and the demand per unit time is distributed
N(20, 42). Report the echelon base-stock levels and the expected cost of each solution.

6.4 (Proof of Proposition 6.1) Prove Proposition 6.1.

6.5 (Equivalence of Local- and Echelon-Based Total Costs) Prove that g′(S′) in (6.8)
equals g(S) in (6.9).

6.6 (Proof of “All-or-Nothing” Theorem) Prove Theorem 6.5.
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Note: You may use the fact that there exists an optimal solution in which, for all i, either
Si = Si+1 + Ti or Si = max{0, Si−1 − Ti−1}.

6.7 (Safety Stock for Ceramic Plates) A manufacturer of ceramic plates and other
tableware divides the manufacturing process into three major steps: forming, firing, and
glazing. In the first step, the plates are formed out of clay; in the second, the plates are
heated in a kiln, and in the third, the plates are painted. Forming and firing each take 1
day, while glazing takes 2 days. Clay is procured from an external vendor, which delivers
orders exactly 1 day after they are placed. The daily demand for plates, as measured in
cases, is distributed N(45, 102). The company promises its customers that finished (i.e.,
glazed) plates will always be on-hand provided that the demand on a given day is no more
than 4 standard deviations above its mean. (That is, s1 = 0 and zα = 4.) Inventory may
be held at any stage of the process. The holding cost of one case of plates (or its precursor
products) is $2 per day for plates that have been formed but not fired, $3 for plates that
have been fired but not glazed, and $4 for glazed plates. Find the optimal CST, base-stock
level, and safety-stock level at each stage, as well as the optimal expected cost per day.

6.8 (Implementing Serial SSSPP DP) The file serial10.xlsx contains the holding
costs and processing times for a 10-stage serial system. The demand per period is distributed
N(89.0, 15.82). Use α = 0.98 in the demand bound. There is an inbound service time of 7
periods at stage 10, and stage 1 has a CST of 3 to the customer. Implement the DP algorithm
from Section 6.3.4 and use it to find the optimal CST, base-stock level, and safety-stock
level at each stage, as well as the optimal expected cost per period.

6.9 (Safety Stock for Baseball Hats) Figure 6.18 depicts the supply chain for a firm that
manufactures baseball hats for college baseball fans. There are two end products. Product
1 is a Lehigh University hat, for which the firm sees a daily demand that is normally
distributed with a mean of 22.0 cases and a standard deviation of 4.1 cases. Product 2 is
a Lafayette College hat, whose demand is also normally distributed, with a mean of 15.3
cases and a standard deviation of 6.2 cases.

Stage 3 represents assembling the hats from two subassemblies: the cap (the part that
sits on your head) and the visor (the part that sticks out in front). This generic product
is then differentiated at stages 1 and 2 by dyeing the fabric and embroidering the team
logos. Stage 4 represents the visor subassembly, while stage 5 represents sewing the cap
subassembly out of fabric; the fabric is represented by stage 6.

Figure 6.18 indicates the processing time below each stage and, above it, the value of
one case’s worth of the product. The firm is committed to providing a CST of 3 days to its
customers (such as college bookstores). It has also set CSTs for the upstream stages, which
are indicated on the links in the figure, but you suspect that these are not the optimal CSTs.

a) Calculate the base-stock level and safety-stock level required at each stage for
the solution in the figure, as well as the total expected holding cost. Assume
that demands are truncated 4 standard deviations above their means; i.e., zα = 4

in (6.33). Also assume that holding costs are calculated as 20% of the product
value, per year. (Make sure to translate into days.)

b) Develop a solution to the SSSPP that still gives CSTs of 3 days to the end
customers but is cheaper than the solution depicted in Figure 6.18. Your solution
does not need to be optimal, only better than the one in Figure 6.18. For each
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Figure 6.18 Baseball-hat supply chain for Problem 6.9.

stage, report the CST, base-stock level, and safety-stock level, as well as the total
expected holding cost per period for the whole system.

6.10 (Implementing Tree SSSPP DP) Implement Algorithm 6.2 and use it to find the
optimal solution for the instance introduced in Problem 6.9. Report the optimal CST,
base-stock level, and safety-stock level at each stage, as well as the optimal expected cost
per period.

6.11 (Two-Stage SSSPP) Consider a two-stage serial supply chain with guaranteed
service as defined in Section 6.3.4. Assume that 0 < h2 < h1. The inbound CST to stage
2, SI2, is a constant, as is the outbound CST from stage 1, s1. Therefore, the only decision
variable is S2. For simplicity, assume that zα = σ = 1. Then the objective function is
given by

g(S2) = h2

√
SI2 + T2 − S2 + h1

√
S2 + T1 − s1.

a) Prove that, in the optimal solution to the SSSPP for the two-stage supply chain
defined above:

i. Stage 1 holds safety stock if and only if s1 < T1.
ii. If stage 1 holds safety stock, then stage 2 also holds safety stock if and only if

h2

√
SI2 + T2 + h1

√
T1 − s1 < h1

√
SI2 + T2 + T1 − s1.

b) Now consider an N -stage serial supply chain, with SIN and s1 constants, as
usual. Assume that 0 < hN < · · · < h1. Prove that if

k∑
i=1

Ti < s1,

then stages 1, 2, . . . , k hold no safety stock.

6.12 (CSTs are Satisfied) Simulate a single-stage system under the guaranteed-service
model in a programming language or spreadsheet program of your choice. AssumeSI = 4,
T = 2, and S = 3. Assume the demand per period is distributed as N(50, 102) and use
zα = 1.5 to truncate the demand. Use the appropriate base-stock level y for these settings
and assume the system begins period 1 with y units on hand. Assume that demands are
satisfied first-come, first-served. Simulate the system for at least 1000 periods and verify
that, as claimed in Section 6.4, the CST is always satisfied, even though your simulation
does not contain explicit logic to ensure it.
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Hint: Include columns or variables that keep track of the number of unsatisfied demands
that were placed 0, 1, 2, 3, and 4 or more periods ago.

6.13 (Limits of ĝj Function) In the exact algorithm for serial systems described in
Section 6.2.2, prove that, for all j = 1, . . . , N :

lim
x→−∞

ĝj(x) =

j∑
i=1

hi

(
x−

j−1∑
k=i

E[Dk]

)
− (p+ h′1)

(
x−

j−1∑
k=1

E[Dk]

)
(6.53)

lim
x→+∞

ĝj(x) =

{
hjx+ gj−1(S∗j−1), if j > 1

hjx, if j = 1
(6.54)

where
∑b
k=a[anything] ≡ 0 if a > b. What types of functions are these (quadratic, linear,

concave, etc.)?

6.14 (Proof of (6.13)) In this problem you will prove (6.13). Throughout this problem,
you may use any of the results up until (6.12), but nothing that comes later.

a) Prove that
IL′j(t) = ILj(t)− IPj−1(t).

b) Use part (a) to prove that

ITPj(t) = min{Sj , ILj+1(t)}.

6.15 (Approximate Two-Stage SSM Model) Consider a 2-stage serial system following
an echelon base-stock policy under the SSM model. The costs, demand rate, and lead times
are as given in Section 6.2.1. Assume the demand per unit time is distributed as N(µ, σ2),
so the lead-time demand for stage j has a mean of µj ≡ µLj and a standard deviation of
σj ≡ σ

√
Lj .

In this problem, you will develop an approximate method for computing the cost of
a given echelon base-stock policy. This method is much easier to implement than the
Clark–Scarf recursion in Theorem 6.3.

From (6.9), the expected cost for a given echelon base-stock policy S = (S1, S2) can
be written

g(S) = E[h1IL1 + h2IL2 + (p+ h′1)IL−1 ].

This expression has three random variables; you’ll use exact expressions for the expectations
of the first two and develop an approximation for the third.

From (6.30),

S∗1 = µ1 + σ1Φ−1

(
p+ h2

p+ h′1

)
. (6.55)

At stage 2, ITP2 = IP2 = S2 since stage 2’s supplier never has stockouts. Therefore,
from (6.16),

E[IL2] = S2 − µ2 (6.56)

E[IL1] = E[ITP1]− µ1. (6.57)

a) Prove that

E[ITP1] = S1 − σ2L

(
S2 − S1 − µ2

σ2

)
, (6.58)
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where L (·) is the standard normal loss function. You may assume S2 ≥ S1.
b) From (6.16), IL1 = ITP1 − D1. To calculate E[IL−1 ] exactly, therefore, we

need to use the distribution of ITP1. Unfortunately, this distribution is fairly
complicated. The approximation we are proposing instead is to replace the
stochastic ITP1 with its mean, E[ITP1]. (We are not suggesting this is a very
good approximation. In general, replacing a random variable with its mean can
lead to significant inaccuracy. But it makes the problem more tractable, so we
will try it.)

Prove that, under this approximation,

E[IL−1 ] = σ1L

(
E[ITP1]− µ1

σ1

)
. (6.59)

c) Do you think the approximation in part (b) will underestimate or overestimate
E[IL−1 ]? Explain your answer in one or two sentences.

6.16 (Implementing Approximate Two-Stage SSM Model) Implement the approxima-
tion from Problem 6.15 in MATLAB to compute the expected cost using the optimal S1

and a given value for S2.
(Hint: To double-check that your calculations are correct, we’ll tell you the following:

If h1 = h2 = 1, p = 10, L1 = L2 = 2, µ = 10, σ = 3, S1 = 10, S2 = 25, then
g(S) = 172.7378.)

a) Compute the optimal S for a system with h1 = 5, h2 = 2, p = 24, L1 = 8,
L2 = 3, µ = 20, and σ = 4. Use (6.55) to find S∗1 , then find S∗2 in MATLAB
using a method of your choosing: trial and error; MATLAB’s fminunc function;
etc. Report S∗1 , S∗2 , and g∗. Include a printout of all MATLAB code, including a
transcript of the session in which you found S∗2 .

b) Compute values for the following quantities assuming S is set to the optimal
values from part (a). (Hint: You should not have to evaluate any more integrals.)

• The expected on-hand inventory at stage 1, E[IL+
1 ].

• The expected backorders at stage 1, E[IL−1 ].
• The expected inventory level at stage 1, E[IL1].
• The expected local on-hand inventory at stage 2, E[(IL′2)+].
• The expected local backorders at stage 2, E[(IL′2)−].
• The expected echelon inventory level at stage 2, E[IL2].
• The expected number of units in transit from stage 2 to stage 1, E[IT1].
• The expected holding, stockout, and total costs per period.



CHAPTER 7

POOLING AND FLEXIBILITY

7.1 INTRODUCTION

The stochastic inventory models in Chapters 4–6 assume that inventory is the only tool
for mitigating uncertainty. In contrast, this chapter examines uncertainty mitigation using
other means. In all of the strategies covered here, the idea is to “pool” multiple demand
streams in some way, and to share some resource—inventory or capacity—among them.
Because not all of the demand streams will need all of the resources at all times, there is
no need to dedicate whole resources to each stream. By pooling them, we can reduce the
amount of safety stock required to meet a given service level (or increase the service level
attained by a given level of safety stock).

Section 7.2 deals with risk pooling, in which we physically combine the inventories
used to satisfy multiple demand streams, by storing them together in the same warehouse.
Section 7.3 discusses a strategy called postponement, in which we differentiate products
later in their manufacturing process. This allows a reduction in inventory since multiple de-
mand streams (from different end products) are sharing inventory of the the undifferentiated
product. The cost savings from postponement is due to the risk pooling effect.

Another way that inventory can be pooled is by allowing transshipments—“lateral”
transfers of inventory from one retailer to another when one has extra inventory and the
other has a shortage. In Section 7.4, we discuss a model for deciding how much inventory
to hold at a given retailer, anticipating that transshipments either to or from that retailer
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(a) Decentralized system.

√
Nzασ N(Nµ,Nσ2)

(b) Centralized system.

Figure 7.1 The risk-pooling effect with identical retailers.

may occur later in the period. The benefit from transshipments is similar to that from risk
pooling, although there is no physical pooling of inventory.

Similarly, when multiple products are sold, and each product is manufactured by a
dedicated plant, it is sometimes beneficial for one plant to make multiple products so that
when one product has very high demand (exceeding the capacity of a plant that makes the
product), other plants can help produce more units of the product to meet the demand. In
this case, we have “lateral” transfers of production capacity, in a strategy known as process
flexibility. We can think of process flexibility as a type of pooling that occurs when the
product is manufactured, rather than when it is stored. We discuss process flexibility in
Section 7.5.

7.2 THE RISK-POOLING EFFECT

7.2.1 Overview

Consider a network consisting of N distribution centers (DCs) or other facilities, each of
which faces random demand for a single product. The DCs each hold inventory of this
product. In fact, they act like N independent newsvendors, each facing N(µ, σ2) demand
per period. If the DCs each wish to meet a type-1 service level of α (that is, they wish to
stock out in no more than 100(1−α)% of the periods on average), they must each hold an
amount of safety stock equal to zασ (from (4.24)). The total safety stock in this system is
therefore Nzασ. (See Figure 7.1(a).)

Now suppose that all N DCs are merged into a single DC. What are the inventory
implications of this consolidation? (We’re ignoring the possible increase in transportation
cost, lead time, and hassle the consolidation may cause.) The new DC’s demand process is
equal to the sum of all of the original DCs’ demands. This process has a mean demand of
Nµ and a standard deviation of

√
Nσ. Therefore, to meet the same service level (α), the

new DC needs to hold
√
Nzασ of safety stock (see Figure 7.1(b)), which is less than the

safety stock required when N DCs each hold inventory.
This phenomenon is known as the risk-pooling effect (Eppen 1979). The basic idea is

that by pooling demand streams, we can reduce the amount of safety stock required to meet
a given service level, and hence, we can reduce the holding cost.
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We next discuss the risk-pooling effect in greater generality. Our analysis is adapted
from that of Eppen (1979).

7.2.2 Problem Statement

We’ll assume that each DC follows a base-stock inventory policy under periodic review,
with Si the base-stock level for DC i. The lead time isL = 0 at every DC. Excess inventory
may be stored from period to period (with a holding cost of h per unit per period), and
excess demand is backordered (with a penalty cost of p per unit per period). We assume
p > h. Note that h and p are the same at every DC.

The demand per period seen by DC i is represented by the random variable Di, with
Di ∼ N(µi, σ

2
i ). Let fi and Fi be the pdf and cdf, respectively, of Di. Demands may be

correlated among DCs. The covariance of Di and Dj is given by σij and the correlation
coefficient by ρij ; then σij = σiσjρij . (Corbett and Rajaram (2006) extend these results
to general probability distributions and dependence structures.)

For each DC, the sequence of events in each period is the same as in Section 4.3.

7.2.3 Decentralized System

We will refer to the N -DC system as the decentralized system since each DC operates
independently of the others. Si is the base-stock level at DC i; this is a decision variable.
The expected cost per period at DC i can be expressed as a function of Si as follows:

gi(Si) = h

∫ Si

0

(Si − d)fi(d)dd+ p

∫ ∞
Si

(d− Si)fi(d)dd.

This formula is identical to the formula for the newsvendor cost (4.3) except for the
subscripts i. Therefore, from Theorems 4.1 and 4.2, the optimal solution is

S∗i = F−1
i

(
p

h+ p

)
= µi + zασi,

where α = p/(p+h) and zα is the αth fractile of the standard normal distribution, and the
optimal cost at DC i is

gi(S
∗
i ) = (p+ h)φ(zα)σi.

(Recall that φ(·) is the pdf of the standard normal distribution.) Defining η = (p+h)φ(zα)

for convenience, the optimal total expected cost (at all DCs) in the decentralized system,
denoted g∗D, is

g∗D =

N∑
i=1

gi(S
∗
i ) = η

N∑
i=1

σi. (7.1)

7.2.4 Centralized System

Now imagine that the DCs are consolidated into a single DC, denoted with index 0, that
serves all of the demand. We will refer to this as the centralized system. Let D0 be the
total demand seen by this super-DC. Its mean and standard deviation are

µ0 =

N∑
i=1

µi
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σ0 =

√√√√ N∑
i=1

N∑
j=1

σij .

(Note that by definition, σii = σ2
i .) Similar logic as above shows that the optimal base-stock

level for the centralized system is

S∗0 = µ0 + zασ0

with optimal expected cost

g∗C = ησ0 = η

√√√√ N∑
i=1

N∑
j=1

σij . (7.2)

7.2.5 Comparison

Now let’s compare the centralized and decentralized systems. The next theorem says that
the centralized system is no more expensive than the decentralized system. This is the
risk-pooling effect.

Theorem 7.1 For the decentralized, N -DC system and the centralized, single-DC system
formed by merging the DCs, g∗C ≤ g∗D.

Proof.

g∗C = η

√√√√ N∑
i=1

σ2
i + 2

N−1∑
i=1

N∑
j=i+1

σiσjρij

≤ η

√√√√ N∑
i=1

σ2
i + 2

N−1∑
i=1

N∑
j=i+1

σiσj (since ρij ≤ 1)

= η

√√√√( N∑
i=1

σi

)2

= g∗D.

One interpretation of the risk-pooling effect is that pooling inventory allows the firm to
take advantage of random fluctuations in demand. If one DC sees unusually high demand
in a given time period, it’s possible that another DC sees unusually low demand. In the
centralized system, the excess inventory at the low-demand DC can be used to make up the
shortfall at the high-demand DC. In the decentralized system, there is no opportunity for
this supply–demand matching.

A more mathematical explanation is that risk pooling occurs because the centralized
system takes advantage of the concave nature of safety stock requirements. The amount
of safety stock required is proportional to the standard deviation of demand. The standard
deviation of demand at the centralized site is smaller than the sum of the standard deviations
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Table 7.1 Demand mean and standard deviation at DCs in Example 7.1.

i µi σi

1 32,500 6200
2 18,200 1100
3 21,000 5900
4 11,400 1400
5 29,300 4200

of the individual sites in the decentralized system since variances, not standard deviations,
are additive.

Somewhat surprisingly, the variances of the costs of the centralized and decentralized
systems are equal at optimality; that is,

Var [ĝD(S∗1 , . . . , S
∗
N )] = Var [ĝC(S∗0 )] ,

where

ĝD(S1, . . . , SN ) =

N∑
i=1

[
h(Si −Di)

+ + p(Di − Si)+
]

ĝC(S0) = h(S0 −D0)+ + p(D0 − S0)+

are the costs in the decentralized and centralized systems, respectively, for given (random)
values of the demands.

� EXAMPLE 7.1

Gauss & Poisson manufactures household cleaners, beauty products, facial tissues,
and other consumer packaged goods (CPG). G&P currently operates five DCs. The
mean and standard deviation of the demand served by each DC per month, expressed
in thousands of pallets, is listed in Table 7.1. The demands at the five DCs are
normally distributed and are independent of one another. Each pallet of inventory
incurs a holding cost of $1.30 per month, and each pallet of backordered demand
incurs a stockout cost of $17.50 per month. What is the optimal total expected cost
at the DCs? Suppose G&P decides to merge the five DCs into a single DC. What is
the new optimal expected cost?

We have α = p/(p + h) = 0.9309 and zα = 1.4822. Therefore, η = (17.5 +

1.3)φ(1.4822) = 2.5006. Under the decentralized system (five DCs), the total
expected cost, from (7.1), is

g∗D = 2.5004 · (6200 + 1100 + 5900 + 1400 + 4200) = 47,010.78.

If the five DCs are merged, the resulting standard deviation of demand is

σ0 =
√

62002 + 11002 + 59002 + 14002 + 42002 = 9698.4535,

so the new expected cost, from (7.2), is

g∗C = 2.5004 · 9698.4534 = 24,251.69,

significantly smaller than g∗D. �
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7.2.6 Magnitude of Risk-Pooling Effect

Let’s try to get a handle on the magnitude of the risk-pooling effect. Let

v = 2

N−1∑
i=1

N∑
j=i+1

σiσjρij .

Note that

g∗C = η

√√√√ N∑
i=1

σ2
i + v.

Uncorrelated Demands: First assume that the demands are uncorrelated, i.e., ρij = 0 for
all i, j, so v = 0. Then

g∗C = η

√√√√ N∑
i=1

σ2
i + v = η

√√√√ N∑
i=1

σ2
i ≤ η

√√√√( N∑
i=1

σi

)2

= g∗D.

The magnitude of the difference between g∗C and g∗D depends on the magnitude between√∑
σ2
i and

∑
σi.

Positively Correlated Demands: Next suppose that demands are positively correlated. In
fact, consider the extreme case in which ρij = 1 for all i, j. Then

g∗C = η

√√√√ N∑
i=1

σ2
i + v = η

√√√√ N∑
i=1

σ2
i + 2

N−1∑
i=1

N∑
j=i+1

σiσj

= η

√√√√( N∑
i=1

σi

)2

= η

N∑
i=1

σi = g∗D,

so there is no risk-pooling effect at all (in the extreme case of perfect correlation).

Negatively Correlated Demands: Finally, assume that demands are negatively correlated.
It’s difficult to identify the extreme case since ρij can’t equal −1 for all i, j. (Why?) But
we can say that v ≥ −

∑N
i=1 σ

2
i since

N∑
i=1

σ2
i + v = σ2

C ≥ 0.

So let’s assume as an extreme scenario that v = −
∑N
i=1 σ

2
i . Then

g∗C = η

√√√√ N∑
i=1

σ2
i −

N∑
i=1

σ2
i = 0.

The centralized cost is 0, while the decentralized cost is not.
So the risk-pooling effect is very pronounced when demands are negatively correlated,

smaller when demands are uncorrelated, and smaller still, or even non-existent, when
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demands are positively correlated. Why? Recall the explanation given in Section 7.2.5:
The risk-pooling effect occurs because excess inventory at one DC can be used to meet
excess demand at another. If demands are negatively correlated, there is a lot of opportunity
to do this since demands will be very disparate at different locations. On the other hand, if
demands are positively correlated, they tend to be all high or all low at the same time, so
there is little opportunity for supply–demand rebalancing.

� EXAMPLE 7.2

In Example 7.1, we assumed that G&P’s demands are independent. Suppose instead
that the demands are positively correlated, with correlation matrix

ρρρ =


1.0 0.3 0.9 0.7 0.7

0.3 1.0 0.5 0.3 0.3

0.9 0.5 1.0 0.8 0.7

0.7 0.3 0.8 1.0 0.7

0.7 0.3 0.7 0.7 1.0

 ,
or that some of the demands are negatively correlated, with correlation matrix

ρρρ =


1.0 −0.3 0.0 0.0 −0.7
−0.3 1.0 0.0 0.0 0.5

0.0 0.0 1.0 −0.6 0.0

0.0 0.0 −0.6 1.0 0.0

−0.7 0.5 0.0 0.0 1.0

 .
How does the magnitude of the risk-pooling effect compare among these three cases?

From Example 7.1, we have g∗D = 47,010.78 in all three cases and g∗C = 24,251.69

for the independent-demand case.
In the case of positive correlation, we have v = 1.8487× 108, so

g∗C = 2.5006
√

9.4060× 107 + 1.8487× 108 = 41,762.57.

And in the case of negative correlation, v = −4.5840× 107, so

g∗C = 2.5006
√

9.4060× 107 − 4.5840× 107 = 17,364.14.

Thus, as expected, the risk-pooling effect is greatest when the demands are negatively
correlated, smallest when they are negatively correlated, and in between when they
are independent. �

7.2.7 Closing Thoughts

The analysis above only considers holding and stockout costs; it does not consider fixed
costs (to build and operate DCs) or transportation costs. Clearly, as DCs are consolidated,
the fixed cost will decrease. But the transportation cost will increase, since retailers (or
other downstream facilities) will be served from more distant DCs. In many cases, the
magnitude of the risk-pooling effect may be far outweighed by the increases or decreases
in fixed and transportation cost. Any analysis of a potential consolidation of DCs must
include all factors, not just risk pooling. The location model with risk pooling (LMRP),
discussed in Section 12.2, attempts to incorporate all of these factors when choosing facility
locations.
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7.3 POSTPONEMENT

Many firms have product lines containing closely related products. In many cases, multiple
end products are made from a single generic product. For example, the clothing retailer
Benetton sells many colors of sweater, each of which comes from the same white sweater
that’s dyed multiple colors (Heskett and Signorelli 1984). Hewlett-Packard sells the same
printer in dozens of countries, with a different power supply module, manual, and labels
in each (Feitzinger and Lee 1997, Lee and Billington 1993). IBM builds individualized
computers by building partially finished products called “vanilla boxes” and customizing
them to order (Swaminathan and Tayur 1998).

A key question in the design of the manufacturing process for each of these products
is: When should the end products be differentiated? For example, consider a manufacturer
of mobile phones that sells phones in many countries. The company programs each phone
with a given language at the factory—the phone is “localized” when it is manufactured.
The number of phones to be programmed in each language is determined based on a
forecast of the demand in each country. The phones are then shipped to regional DCs,
approximately one on each continent. The regional DCs store the phones until they are
required by retailers, at which point they are shipped to individual countries. If the demand
forecasts were wrong, and demand for phones in, say, Thailand was higher than expected
while demand in Holland was lower than expected, the company would have to correct this
discrepancy by reprogramming some of the Dutch phones into Thai phones, then shipping
them from the Europe DC to the Asia DC—a costly and time-consuming proposition.

Now suppose that generic phones are shipped to the regional DCs, and languages are
programmed at the DCs once the phones are requested by retailers. Since the phones are
localized on demand, there is much less risk of having too many phones of one language
and too few of another. In addition, the firm holds inventory of generic phones, not
localized phones, which means that fewer phones need to be held in safety stock due to the
risk-pooling effect, as we will see below.

This strategy is called postponement or delayed differentiation. The idea is to delay, as
much as possible, the point in the manufacturing process at which end products are differ-
entiated from one another. Of course, designing a postponement strategy may be extremely
complicated, since it may require the redesign of the product and the manufacturing and
distribution processes. In the mobile phone example, the regional DCs would have to be
outfitted with language-programming equipment.

To take the Benetton example to an extreme, postponement might mean that sweaters
are dyed in the retail stores once they are demanded by a customer. You would request, say,
a red sweater, and it would be dyed for you on demand; stores would never be out of stock
of the sweater you wanted. This seems silly, since the costs of implementing such a system
would probably far outweigh the benefits. But some products are actually sold this way.
For example, paint is mixed to order from generic white paint at your hardware store, giving
you access to an enormous range of colors that would be prohibitively expensive to keep
in stock. (See Lee (1996) for a discussion of the benefits and challenges of postponement.)

The cost savings from postponement is due to the risk-pooling effect: Generic products
represent pooled inventory, while end products represent decentralized inventory. Suppose
there are N end products. If the products are differentiated at the beginning of the man-
ufacturing process (so that separate inventory is held of each end product), then the total



TRANSSHIPMENTS 237

safety stock required is

zα

N∑
i=1

σi,

which is proportional to the safety stock required in the decentralized system in our discus-
sion of risk pooling. Similarly, if the products are differentiated at the end (so that only a
single inventory pile is required), the total safety stock is

zα

√√√√ N∑
i=1

σ2
i ,

which is proportional to the safety stock in the centralized system.

7.4 TRANSSHIPMENTS

7.4.1 Introduction

When multiple retailers stock the same product, it is sometimes advantageous for one
retailer to ship items to another if the former has a surplus and the latter has a shortage.
Such “lateral” transfers are called transshipments. Transshipments are a mechanism for
improving service levels since they allow demands to be satisfied in the current period when
they might otherwise be lost or backordered until the following period. In that regard, the
benefit from transshipments is very similar to that from risk pooling, since transshipments
use one retailer’s surplus to reduce another retailer’s shortfall. In this case, however,
there is no physical pooling of inventory, though the strategy is sometimes referred to as
“information pooling.” Of course, transshipments come at a cost: Transshipments are often
more expensive than replenishments from the DC because they are smaller and therefore
lack the economies of scale from larger shipments.

In this section, we will discuss a model for setting base-stock levels in a system with
two retailers that may transship to one another. This model is adapted from Tagaras (1989).
For models with more than two retailers, see Krishnan and Rao (1965), Tagaras (1999), or
Herer et al. (2006).

This model will assume that transshipments occur after the demand has been realized but
before it must be satisfied. Therefore, these transshipments are reactive since they are made
in reaction to realized demands. In contrast, one might consider proactive transshipments
that are made in anticipation of demand shortages. Proactive transshipments are of interest
when demands must be met instantaneously, since there is no opportunity for transshipping
between demand realization and satisfaction. On the other hand, proactive transshipments
are more complex to model, so we will focus only on reactive transshipments. We will
develop an analytical expression for the expected cost function, but the expected cost can
only be minimized using numerical methods (rather than using differentiation). We will
also discuss the improvement in service levels due to transshipments.

7.4.2 Problem Statement

Consider a system with two retailers served by a single DC. The retailers receive replen-
ishment shipments from the DC and are permitted to transship goods to each other. As
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previously stated, transshipment occurs after the demand has been realized but before it
must be satisfied. This is a periodic-review model with an infinite horizon. There is no
fixed cost and no lead time, either for replenishments or transshipments. Each retailer i
(i = 1, 2) follows a base-stock policy, with base-stock level Si. The demand at retailer i is
a random variable Di with pdf fi and cdf Fi. If there are excess demands at a retailer after
transshipments have been made, they are backordered. The costs are as follows:

ci = ordering cost per unit at retailer i, for i = 1, 2

hi = holding cost per unit per period at retailer i, for i = 1, 2

pi = backorder cost per unit per period at retailer i, for i = 1, 2

cij = cost per unit to transship from i to j, for i = 1, 2, i 6= j

We will assume that
ci − cj + cij ≥ 0. (7.3)

In other words, it is cheaper to ship directly to j than to ship to i and then transship to j.
This is sometimes referred to as a triangle inequality. We will also make the following
assumptions:

(a) hi + pj − cij − (ci − cj) ≥ 0 (i.e., if there is a shortage at j and a surplus at i, it is
better to transship than not to, since the cost to transship is cij , while the cost to do
nothing is hi + pj + cj − ci (since we would incur the holding cost at i, the penalty
cost at j, and then next period we’d order one more unit at j and one fewer at i))

(b) cij + (ci − cj) − (hi − hj) ≥ 0 (i.e., don’t transship if there is a surplus at both
retailers)

(c) cij + (ci − cj) + (pi − pj) ≥ 0 (i.e., don’t transship if there is a shortage at both
retailers)

These three assumptions imply that complete pooling is optimal: Transship if one retailer
has a surplus while the other has a shortage, but if both have surpluses or both have shortages
don’t transship—one retailer’s demand is not “more valuable” than the other’s.

The sequence of events in each period is as follows:

1. Retailers observe their inventory levels.

2. Each retailer i places a replenishment order of size Qi to the DC and receives it
instantaneously.

3. Demand is observed.

4. Transshipment decisions are made. Transshipments are sent and arrive instanta-
neously.

5. Demand is satisfied to the extent possible, and excess demands are backordered.

6. Holding and stockout costs are assessed.

We will make use of the following random variables:

Qi = replenishment order quantity at retailer i, for i = 1, 2

Yij = amount transshipped from i to j, for i = 1, 2, i 6= j
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Figure 7.2 Possible realizations of transshipment and ending inventories. Adapted with
permission from Tagaras, Effects of pooling on the optimization and service levels of two-
location inventory systems, IIE Transactions, 21, 1989, 250–257. ©1989, Taylor & Francis, Ltd.,
http://www.informaworld.com.

ILi = inventory level at retailer i after step 5, for i = 1, 2

IL+
i = on-hand inventory at retailer i after step 5, for i = 1, 2

IL−i = backorders at retailer i after step 5, for i = 1, 2

Then
ILi = IL+

i − IL
−
i . (7.4)

Note that these are all random variables—they are not decision variables. The decision
variables are Si, the base-stock levels for i = 1, 2. We will compute expectations of the
random variables once the base-stock levels are set, in order to compute the expected cost.

The complete pooling policy can be stated formally as follows:

(a) If Di ≤ Si for i = 1, 2, then Yij = Yji = 0

(b) If Di ≥ Si for i = 1, 2, then Yij = Yji = 0

(c) If Di < Si and Dj > Sj , then

Yij = min{Si −Di, Dj − Sj}
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Yji = 0.

This policy is represented graphically in Figure 7.2, which indicates the transshipment
quantities and ending inventory levels for all possible realizations of the demand.

7.4.3 Expected Cost

The expected cost per period will be denoted g(S), where S = (S1, S2) is the vector of
base-stock levels. g(S) is given by

g(S) =

2∑
i=1

ciE[Qi] +

2∑
j=1
j 6=i

cijE[Yij ] + hiE[IL+
i ] + piE[IL−i ]

 . (7.5)

In order to minimize g(S), we need to compute E[Qi], E[Yij ], E[IL+
i ], and E[IL−i ]. First

note that

E[Qi] = Si − E[ILi] (7.6)

E[ILi] = E[IL+
i ]− E[IL−i ]. (7.7)

(7.6) follows from the fact that the order quantity is the difference between the target level
and the ending inventory in the previous period, while (7.7) follows from (7.4).

The transshipment policy states that Yij > 0 if and only if Dj > Sj and Di < Si. If
this condition holds, the amount shipped is min{Si − Di, Dj − Sj}. Therefore, we can
write

E[Yij ] =EDi
[
EDj [Yij |Di]

]
=

∫ Si

di=0

[∫ Si+Sj−di

dj=Sj

(dj − Sj)fj(dj)ddj

+

∫ ∞
dj=Si+Sj−di

(Si − di)fj(dj)ddj

]
fi(di)ddi.

It can be shown that

E[Yij ] =

∫ Si

di=0

Fi(di)[1− Fj(Si + Sj − di)]ddi. (7.8)

Figure 7.2 suggests that the ending inventory level is positive at retailer i if and only if
Di < Si and Dj < Sj or Sj < Dj ≤ Si + Sj and Di < Si + Sj −Dj . Therefore,

E[IL+
i ] =

∫ Sj

dj=0

∫ Si

di=0

(Si − di)fi(di)fj(dj)ddiddj

+

∫ Si+Sj

dj=Sj

∫ Si+Sj−dj

di=0

(Si + Sj − di − dj)fi(di)fj(dj)ddiddj

=

∫ Si

di=0

Fi(di)Fj(Si + Sj − di)ddi. (7.9)
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Similarly, the ending inventory level is negative at retailer i if and only if Di > Si and
Dj > Sj or Dj < Sj and Di > Si + Sj −Dj . Therefore,

E[IL−i ] =

∫ ∞
dj=Sj

∫ ∞
di=Si

(di − Si)fi(di)fj(dj)ddiddj

+

∫ Sj

dj=0

∫ ∞
di=Si+Sj−dj

(di + dj − Si − Sj)fi(di)fj(dj)ddiddj

=E[Di]− Si +

∫ Si

di=0

Fi(di)ddi −
∫ Sj

dj=0

Fj(dj)ddj

+

∫ Si+Sj

di=Si

Fi(di)Fj(Si + Sj − di)ddi. (7.10)

Combining (7.7) with (7.9) and (7.10), we get

E[ILi] = Si − E[Di]−
∫ Si

di=0

Fi(di)ddi +

∫ Sj

dj=0

Fj(dj)ddj

+

∫ Si

di=0

Fi(di)Fj(Si + Sj − di)ddi

−
∫ Si+Sj

di=Si

Fi(di)Fj(Si + Sj − di)ddi. (7.11)

This gives us E[Qi] using (7.6), so we now have all the components we need to compute
g(S). We won’t write out g(S) in its entirety since it’s a long formula, but it’s straightforward
to do so using (7.5). As in several of the inventory optimization models we have seen so
far, g(S) cannot be optimized in closed form. In other words, we can’t set the derivative to
0 and solve for S in the form S∗1 = [something] and S∗2 = [something]. Instead, we must
use numerical methods—general-purpose nonlinear programming algorithms—to solve the
problem.

7.4.4 Benefits of Transshipments

Transshipments are beneficial both by reducing costs and by improving service levels. The
cost reduction is evident from assumption (a) on page 238—transshipments are less costly
than holding and stockouts. Put another way, the transshipment model can be obtained
from a “no-transshipment” model by relaxing a constraint—therefore, the optimal cost can
only improve (or stay the same).

We will next examine the effect of transshipments on both type-1 and type-2 service
levels. (See Section 5.3.1.3 for definitions.) Let

α0
i (S) =type-1 service level at retailer i if transshipments are not allowed

and base-stock levels are set to S

αi(S) =type-1 service level at retailer i if transshipments are allowed

and base-stock levels are set to S

β0
i (S) =type-2 service level at retailer i if transshipments are not allowed

and base-stock levels are set to S
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βi(S) =type-2 service level at retailer i if transshipments are allowed

and base-stock levels are set to S

We will show that transshipments improve both types of service levels. In fact, we
will quantify the improvement. We will prove that transshipments improve the service
levels for a given base-stock level, but this, in turn, implies that the optimal solution with
transshipments has a higher service level than the optimal solution without transshipments.
(Why?)

Theorem 7.2 Transshipments increase the type-1 service level by the marginal decrease
in the expected transshipment quantity for a unit increase in the base-stock level; that is,

αi(S) = α0
i (S) +

∣∣∣∣∂E[Yji]

∂Si

∣∣∣∣
for i = 1, 2.

Proof. Since α0
i (S) is the probability that no stockout occurs in a given period with no

transshipments,
α0
i (S) = Fi(Si). (7.12)

Now, no stockouts occur at retailer i in the system with transshipments if eitherDi ≤ Si or
Di > Si and retailer j has sufficient excess inventory to meet i’s excess demand. Therefore,

αi(S) = P(Di ≤ Si) + P(Dj < Sj and Si < Di < Si + Sj −Dj)

= Fi(Si) +

∫ Sj

dj=0

[∫ Si+Sj−dj

di=Si

fi(di)ddi

]
fj(dj)ddj

= Fi(Si) +

∫ Sj

dj=0

[Fi(Si + Sj − dj)− Fi(Si)]fj(dj)ddj

= Fi(Si) +

∫ Sj

dj=0

Fi(Si + Sj − dj)fj(dj)ddj − Fi(Si)Fj(Sj) (7.13)

Differentiating (7.8) with respect to Si using Leibniz’s rule (C.49) gives

∂E[Yji]

∂Si
= Fi(Si)Fj(Sj)−

∫ Sj

dj=0

Fi(Si + Sj − dj)fj(dj)ddj . (7.14)

Therefore,

αi = α0
i −

∂E[Yji]

∂Si
, (7.15)

but since
∂E[Yji]

∂Si
= −

∫ Sj

dj=0

[∫ Si+Sj−dj

di=Si

fi(di)ddi

]
fj(dj)ddj < 0,

(from (7.13) and (7.14)), we can write (7.15) as

αi = α0
i +

∣∣∣∣∂E[Yji]

∂Si

∣∣∣∣ , (7.16)

as desired.
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Theorem 7.3 Transshipments increase the type-2 service level at retailer i by the ratio of
the expected transshipment quantity from j to i to the expected demand at i; that is,

βi(S) = β0
i (S) +

E[Yji]

E[Di]

for i = 1, 2.

Proof. Omitted; see Problem 7.7.

As you might expect, the larger the base-stock levels are, the better the post-transshipment
service levels are:

Theorem 7.4 The type-1 and type-2 service levels (with transshipments) at both i and j
are nondecreasing with Si.

Proof. Omitted.

With more than two retailers, transshipment problems become much harder to analyze.
It is often true that a base-stock replenishment policy is still optimal in this case (Robinson
1990). In general, it is difficult to determine the optimal transshipment policy, so some
authors use heuristic policies such as “grouping” policies in which retailers are divided
into groups using some logical rules, and then transshipments are allowed only within
groups. Models with a small number of retailers, say 3, usually assume complete pooling,
even though this policy may not be strictly optimal. Other transshipment policies are
possible, of course—for example, Tagaras (1999) compares complete pooling to a random
transshipment policy (in which, for example, we choose randomly between two retailers
with positive inventory to ship to a retailer with negative inventory) and a risk-balancing
policy (which tries to account for the risk of stockout in at least the next period). Lien
et al. (2011) propose a “chaining” structure in which all retailers are connected in a single
loop; they show that this structure, while suboptimal, outperforms others. Fortunately,
it is usually true that a base-stock replenishment policy is optimal even if a nonoptimal
transshipment policy is used.

Often, these models are so complex that even the expected cost cannot be calculated using
formulas, and instead must be estimated using simulation. In this case, an optimization-
by-simulation procedure, such as infinitesimal perturbation analysis (IPA), is used to find
the optimal base-stock levels (Herer et al. 2006). One insight to come from these papers
is that a small increase in the flexibility with which transshipments are allowed can lead to
large decreases in cost. Therefore, more flexible transshipment policies may be preferable,
even if they are more difficult to analyze and implement.

7.5 PROCESS FLEXIBILITY

7.5.1 Introduction

Manufacturers in most industries today face increasingly demanding customers and in-
creasingly fierce competition. These factors have led to a huge proliferation in product
varieties offered by manufacturers of everything from breakfast cereals to automobiles. For
example, the number of car and light truck models for sale in the United States rose from



244 POOLING AND FLEXIBILITY

195 in 1984 to 282 in 2004 (Van Biesebroeck 2007). This so-called product proliferation
leads to increased diversity and unpredictability of demand. At the same time, firms are
under increasing financial pressure to keep capacity as tight as possible, which makes it
crucial for manufacturing facilities to have the flexibility to produce a range of products.

The importance of flexibility can be demonstrated by some examples from the automotive
industry:

• BMW designs its factory to build cars with the specific colors, features, and options
requested by customers. (In contrast, many other auto manufacturers offer a more
limited range of combinations, which are ordered by dealers, not by individual
customers.) A customer can even change the specifications of his or her car as late
as 5 days before the car is built (Henry 2009).

• In 2000–2001, Chrysler saw an unexpectedly large demand for its new PT Cruiser
model, while the demand for another car, the Neon, was lower than forecast. As
a result, there was a shortage of the PT Cruiser while a manufacturing plant in
Belvidere, IL that built only Neons—which have many similar parts as the PT
Cruiser—had excess capacity. Chrysler’s lack of flexibility to reassign PT Cruiser
production to the Belvidere plant cost the company nearly $500 million in lost
profit (Biller et al. 2006).

• Learning from this mistake, Chrysler invested heavily in the mid-2000s to ensure
that its factories are more flexible and can each make more than one type of vehicle.
The Belvidere plant began to make three additional models, and it produced roughly
twice as many vehicles in 2006 as it did in 2005. Chrysler Group’s CEO, Thomas
LaSorda, said that the extra flexibility “gives us a wider margin of error” (Boudette
2006).

• Ford Motor Company invested $485 million to retool two Canadian engine plants
with flexible systems. The redesigned plants can produce multiple types of engines
and, just as importantly, can switch production from one to another in a matter of
hours or days, rather than months. Chris Bolen, the manager of one of the plants,
said that “the initial investment is slightly higher, but long-term costs are lower in
multiples.” The company also had a plan to convert the systems at most of its other
engine and transmission plants all over the world to flexible ones (Phelan 2002).

• In the late 1990s, Honda invested $400 million to make its three plants in Ohio flex-
ible. The increased flexibility allowed the company to keep its production closely in
line with demand patterns that changed rapidly during the 2000s due to wide fluctu-
ations in gasoline prices and to the global recession. Because most Honda vehicles
are designed to be assembled using a similar process, plants can be flexible and can
change production from one product to another in as little as five minutes (Linebaugh
2008).

Flexibility can provide a firm with a competitive advantage by allowing it to react
quickly to changing demand patterns and supply conditions. It is becoming an increasingly
prevalent practice in a wide range of industries, including apparel (DesMarteau 1999) and
semiconductors and electronics (McCutcheon 2004). Greater flexibility entails a greater
up-front investment, however, and this trade-off must be carefully considered.
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In this chapter, we discuss models for evaluating the effectiveness of, and optimizing,
process flexibility, by which we mean the ability to manufacture a variety of products at the
same facility, the ability to manufacture a given product at multiple facilities, or both.

7.5.2 Flexibility Design Guidelines

One of the most important questions in designing a flexible supply chain is, “How much
flexibility is enough?” If there is no flexibility, then each plant is assigned to a unique
product. If the demand for one product is unexpectedly high while that for another product
is low, the firm will stock out of the high-demand product and have excess capacity at
the plant that makes the low-demand one. At the other extreme, every plant can produce
every product, leaving the firm much better able to reconfigure production in response to
demands. Jordan and Graves (1995) describe a simple simulation model that shows that,
for a particular set of assumptions, the full-flexibility structure resulted in approximately a
12% increase in sales and capacity utilization. On the other hand, this additional flexibility
requires additional capital investments. Is full flexibility really required, or would some
in-between strategy be sufficient? As we will see below, it is often possible to choose a
partial-flexibility strategy that achieves most of the benefit of the full-flexibility structure
with a much smaller resource requirement.

It is common to model process flexibility problems using bipartite graphs (i.e., graphs
whose nodes are partitioned into two sets such that no edge has both endpoints in the same
set). One set of nodes represents the plants, while the other represents the products. If a
plant node and a product node are connected by an edge in the network, then the plant is
capable of manufacturing the product. Greater flexibility therefore means more edges in
the graph. For example, if there are n plants and n products, then in the dedicated (i.e.,
no-flexibility) system, there are n edges in the graph, whereas in the full-flexibility system,
there are n2. (See Figures 7.3(a) and 7.3(b).)

Products Plants

1

2

3

1

2

3

(a) Dedicated system.

1

2

3

1

2

3

(b) Full flexibility.

1

2

3

1

2

3

(c) Chaining structure.

Figure 7.3 Examples of flexibility configurations.

We would like to evaluate the effectiveness of a given flexibility structure (i.e., a given
set of edges connecting plants and products). There are many possible ways to define and
measure this effectiveness. Typically, we assume that, once the demands for each product
in a given period are known, the firm assigns production to the various plants, following the
plant–product capabilities implied by the edges and satisfying a fixed capacity constraint at
each. One of the most popular ways to measure the effectiveness of a flexibility structure is
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to evaluate the total shortfall (i.e., stockouts) that occurs after the production is optimized
and demands are satisfied.

The problem of optimizing production to minimize the shortfall (or, equivalently, max-
imize the sales) when the demands are known can be formulated as follows (Jordan and
Graves 1995). Let G = (V1, V2, E) be a bipartite graph consisting of a set V1 of products,
a set V2 of plants, and an edge set E. Every edge in E has one endpoint in V1 and one
in V2, indicating a plant–product capability. For example, the full-flexibility structure has
edge set E = {(i, j)|i ∈ V1, j ∈ V2}. Let di be the observed demand realization for
product i ∈ V1, and let Cj be the capacity of plant j ∈ V2. Let si be the shortfall, i.e.,
the unsatisfied demand, for product i, and let yij be the number of units of product i
produced at plant j, for all (i, j) ∈ E. (s and y are decision variables.) Then, given an
observed realization of demand, the production allocation decisions can be optimized, and
the minimum total shortfall of a flexibility structure E can be determined by solving the
following optimization problem.

minimize
∑
i∈V1

si (7.17)

subject to
∑

i∈V1:(i,j)∈E

yij ≤ Cj ∀j ∈ V2 (7.18)

∑
j∈V2:(i,j)∈E

yij + si = di ∀i ∈ V1 (7.19)

yij ≥ 0 ∀(i, j) ∈ E (7.20)

si ≥ 0 ∀i ∈ V1 (7.21)

The objective function (7.17) calculates the total shortfall over all products. (Alternately, we
could weight the shortfalls differently, if some products are more important than others.)
Constraints (7.18) enforce the capacity restriction at each plant, and constraints (7.19)
require the shortfall variable si to equal the difference between the demand for product i and
the total amount of it produced. Constraints (7.20) and (7.21) are nonnegativity constraints.
This problem can be generalized to handle multiechelon supply chains; see Graves and
Tomlin (2003) and Chou et al. (2008).

This problem is equivalent to a maximum-flow problem and can therefore be solved
efficiently. However, we are interested in evaluating the performance of a given flexibility
guideline under random demandsDi rather than deterministic demands di. (After all, if we
knew the demands, we would not need flexibility.) Therefore, we need to solve a stochastic
version of the problem, in which we minimize the expected total shortfall over all possible
demand realizations. Unfortunately, this problem has a complicated combinatorial and
stochastic structure, and finding an optimal solution is challenging. Therefore, researchers
have developed intuitive flexibility guidelines that can yield shortfalls that are nearly as
low as the shortfall generated by the full-flexibility structure. Moreover, they use far fewer
edges and are therefore much less costly to implement. We discuss two of these guidelines
next.

Chaining Guideline: Perhaps the best-known flexibility guideline is the chaining guideline
proposed by Jordan and Graves (1995). (See Figure 7.3(c).) Assume first that |V1| = |V2| =
n. Then the chaining guideline is defined as follows:
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• Plant 1 makes products 1 and 2

• Plant 2 makes products 2 and 3

• · · ·

• Plant j makes products j and j + 1

• · · ·

• Plant n makes products n and 1.

This structure uses 2n edges. Jordan and Graves (1995) report that chaining can achieve
well above 90% of the benefits of the full-flexibility configuration, while using only a
fraction of that configuration’s n2 edges. This intuitive result is believed to be true in a
wide variety of settings, both analytically and in practice, and has been applied successfully
in many industries.

The number of edges is not the only consideration when determining the effectiveness
of a chaining guideline. Consider the two flexibility structures in Figure 7.4. Both are
chaining structures, both have 12 edges, and in both, every plant makes two products and
every product is made at two plants. The structure in Figure 7.4(a) uses a single chain
for all products and plants, while that in Figure 7.4(b) partitions the system into three
separate chains. The single-chain structure is much more effective, though, achieving
nearly twice the benefits (in terms of expected sales) as the three-chain structure in a
simulation discussed by Jordan and Graves (1995). (In fact, we prove the optimality of
the single-chain structure among all chain-type structures in Section 7.5.3.) The reason is
that the single-chain structure allows a greater degree of flexibility in reassigning products
to plants than the three-chain structure. For example, if the demand for product 1 is very
high and plant 5 has excess capacity, the single-chain structure can take advantage of the
discrepancy while the three-chain structure cannot.
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(a) One chain.
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(b) Three chains.

Figure 7.4 Two chaining structures.

Lim et al. (2012) examine the chaining guideline for systems with random supply
disruptions that can affect either nodes (representing a disruption of an entire plant) or
edges (representing disruptions for particular plant–product pair). For node disruptions,
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they confirm Jordan and Graves’s intuition that longer chains are better, but they find that
short chains are preferable when edge failures are the issue.

The discussion so far assumes that the number of products and plants is the same; that
the products are identical, as are the plants; and that any plant can be configured to make
any product. Real-life situations do not follow this idealized model. Jordan and Graves
(1995) outline three guidelines for adding flexibility to chains in more realistic situations:

1. All products should be made by roughly the same number of plants; more precisely,
the total capacity of the plants making each product should be roughly the same.

2. All plants should make roughly the same number of products; more precisely, the
total expected demand of the products made at each plant should be roughly the
same.

3. Longer chains are better than shorter ones.

Node-Expansion Guideline: A more connected guideline is inherently more flexible.
With this in mind, Chou et al. (2011) propose the node-expansion guideline. The guideline
is used to augment a given flexibility structure by adding links iteratively to improve the
node-expansion ratio. The node-expansion ratio of product i ∈ V1 is the total capacity of
the plants capable of making product i divided by the expected demand for i:

δi =

∑
j∈V2:(i,j)∈E Cj

E[Di]

Similarly, the node-expansion ratio of plant j ∈ V2 is the total expected demand of the
products that can be made at plant j divided by the capacity of plant j:

δj =

∑
i∈V1:(i,j)∈E E[Dj ]

Cj

Smaller node-expansion ratios suggest products or plants that do not have enough flexibility.
The node-expansion guideline says that, at each iteration, we add an edge that is not yet in
E in order to increase all node-expansion ratios as much as possible; that is, to increase

δ = min

{
min
i∈V1

δi,min
j∈V2

δj

}
as much as possible. One heuristic for doing this is to add, at each iteration, an edge
connecting the product and the plant with the lowest node-expansion ratios, skipping any
edges that have already been added. This procedure repeats until the number of edges
reaches a predetermined limit.

7.5.3 Optimality of the Chaining Structure

In Section 7.5.2, we remarked that long flexibility chains tend to perform very well, attaining
more than 90% of the benefit of a fully connected flexibility graph and performing better
than multiple smaller chains (Jordan and Graves 1995). But why is this so? Simchi-Levi
and Wei (2012) address that question by proving analytically that a single long chain is
optimal among all 2-flexibility designs for certain types of systems. A 2-flexibility design
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is one in which each plant can produce exactly two products and each product can be
produced by exactly two plants, but the process does not necessarily form a single chain.
For example, both structures in Figure 7.4 are 2-flexibility designs. In this section, we will
discuss Simchi-Levi and Wei’s proof.

We begin with a few definitions. A balanced system is one that has an equal number of
plants and products and in which all of the plants have the same capacity. In a balanced
system of size n (i.e., with n plants and n products), we say the demandD is exchangeable
if the joint probability distribution ofD is the same no matter what order we put the products
in.

As before, we will describe a flexibility structure by the set E of edges it contains. We
also assign specific notation to certain structures:

• Dedicated design: Dn = {(i, i)|i = 1, 2, ..., n}

• Long-chain design: Cn = Dn ∪ {(i+ 1, i)|i = 1, 2, ..., n− 1} ∪ {(n, 1)}

• Full-flexibility design: Fn = {(i, j)|i, j = 1, 2, .., n}

• Open chain: Lk = Dk ∪ {(i+ 1, i)|i = 1, ..., k − 1}, for k ≥ 0

An open chain Lk is obtained from a single (closed) chain on nodes 1, . . . , k by removing
edge (1, k). We call an edge (i, j) a dedicated edge if i = j and a flexible edge otherwise.

Formulation (7.17)–(7.21) minimizes the total demand shortfall. It will be more conve-
nient for us to work with an equivalent model that instead maximizes the performance, i.e.,
the sales that result from a particular realization d of the demand and a given flexibility
structure E:

P (d, E) = maximize
∑

(i,j)∈E

yij (7.22)

subject to
∑

i∈V1:(i,j)∈E

yij ≤ Cj ∀j ∈ V2 (7.23)

∑
j∈V2:(i,j)∈E

yij ≤ di ∀i ∈ V1 (7.24)

yij ≥ 0 ∀(i, j) ∈ E (7.25)

yij = 0 ∀(i, j) 6∈ E (7.26)

As in (7.17)–(7.21), here yij is the number of units of product i produced at plant j. In
(7.22)–(7.26), we omit the shortfall variable s and instead maximize the total sales.

Lemma 7.5 Let E be a flexibility design for a balanced system of size n, with E ⊆ Cn.
Let α and β be two flexible edges in E. Then

P (d, E) + P (d, E \ {α, β}) ≥ P (d, E \ {α}) + P (d, E \ {β}). (7.27)

Proof. Omitted; see Simchi-Levi and Wei (2012).

In other words, Lemma 7.5 says that if we start with E minus two edges, as we
add those two edges back into E, we get more marginal benefit from the second edge
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Figure 7.5 Lnk structure for k = 4 and n = 6.

(P (d, E)−P (d, E \{β})) than we did from the first (P (d, E \{α})−P (d, E \{α, β})).
Because Lemma 7.5 holds for any demand realization, it must also hold in expectation. For
the sake of brevity, for a given edge set E, let [E] ≡ E[P (D, E)], where the expectation is
over the random demand vector D. Then we have:

Corollary 7.6 Let E be a flexibility design for a balanced system of size n, with E ⊆ Cn.
Let α and β be two flexible edges in E. Then

[E] + [E \ {α, β}] ≥ [E \ {α}] + [E \ {β}]. (7.28)

Therefore, any two flexible arcs in the long-chain design complement each other, in the
sense that having one flexible edge in the system increases the marginal benefit that can be
gained when another flexible edge is added.

Our goal is to prove that among all 2-flexibility designs, the long-chain structure maxi-
mizes the expected performance, E[P (D, E)]. We will do that by first showing that as we
add edges to the dedicated system to build up to a long chain, each new edge brings more
benefit than the previous edge did. Next, we will express the expected performance of the
long chain in terms of open chains, and finally, we will prove the optimality of long chains.

Define Ln1 = Dn and Lnk = Lk ∪{(i, i)|i = k+1, . . . , n} for 2 ≤ k ≤ n. In words, Lnk
consists of the open chain from plant 1 through product k, plus the dedicated edges between
product/plant pairs k + 1, . . . , n. (See Figure 7.5.) Note that Lnn is simply Ln. The next
lemma shows that the incremental benefit of each additional flexible edge is nondecreasing
as the long chain is constructed.

Lemma 7.7 For any balanced system of size n with exchangeable demand,

[Ln2 ]− [Ln1 ] ≤ [Ln3 ]− [Ln2 ]

...

≤ [Lnn]− [Lnn−1]

≤ [Cn]− [Lnn].
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Proof. For any fixed 2 ≤ k ≤ n − 1, let α = (2, 1) and β = (k + 1, k). Note that
α, β ∈ Lnk+1. By Corollary 7.6 (treating E as Lnk+1), we have

[Lnk+1] + [Lnk+1 \ {α, β}] ≥ [Lnk+1 \ {α}] + [Lnk+1 \ {β}]. (7.29)

Now, if we remove β from Lnk+1, we simply get Lnk . If we remove α, then by rearranging
the product/node pairs so that pair 1 moves to the end (which we are allowed to do since
the demands are exchangeable), we again obtain Lnk . Similarly, if we remove both α and
β, we obtain Lnk−1. Therefore, (7.29) becomes

[Lnk+1] + [Lnk−1] ≥ [Lnk ] + [Lnk ],

or
[Lnk ]− [Lnk−1] ≤ [Lnk+1]− [Lnk ].

Since this holds for all k = 2, . . . , n− 1, we have now proven all of the inequalities in the
lemma except the final one.

To prove the final inequality, let α = (2, 1) and β = (1, n). Using similar logic as
above, we have Cn \ {α} = Cn \ {β} = Lnn and Cn \ {α, β} = Lnn−1. Therefore, by
Corollary 7.6 (treating E as Cn), we have

[Cn] + [Lnn−1] ≥ [Lnn] + [Lnn],

or
[Lnn]− [Lnn−1] ≤ [Cn]− [Lnn],

completing the proof.

The result in Lemma 7.5 holds for any demand realization, which allowed us to prove the
same result in expectation in Corollary 7.6. In contrast, Lemma 7.7 holds in expectation,
but the same result does not hold for every individual demand instance. (See Problem 7.15.)

Next, we characterize the performance of the long-chain design using the performance
of open chains.

Lemma 7.8 For any balanced system of size n with exchangeable demand, we have

[Cn] = n([Ln]− [Ln−1]).

Proof. For any demand realization d, one can show (Simchi-Levi and Wei 2012, Theorem
3) that

P (d, Cn) =

n∑
i=1

(P (d, Cn \{(i+1, i)})−P (d, Cn \{(i, i−1), (i, i), (i+1, i)})). (7.30)

For any 1 ≤ i ≤ n,

Cn \ {(i+ 1, i)} = Ln
Cn \ {(i, i− 1), (i, i), (i+ 1, i)} = Ln−1

since the demand is exchangeable. (Imagine removing one diagonal edge, or two consecu-
tive diagonal edges and the horizontal edge between them, and then rearranging the nodes
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to obtain an open chain.) Taking the expectation of both sides of (7.30), we obtain the
desired result.

Lemma 7.8 expresses the performance of a long-chain design in terms of the performance
of open chains, which are much easier to compute and analyze using a greedy heuristic
(see Chou et al. 2010b).

Finally, we are ready to prove the optimality of the single-chain structure (i.e., the
long-chain design) among all 2-flexibility designs.

Theorem 7.9 Let F2 be the set of all 2-flexibility designs of the system. Then,

Cn ∈ argmax
A∈F2

{[A]}.

Proof. Let A ∈ F2 be any 2-flexibility design. It suffices to show that [A] ≤ [Cn].
By the definition of a 2-flexibility design, A must consist of one or more closed chains.

If it consists of only a single chain, then A = Cn, so [A] ≤ [Cn] trivially. Suppose instead
that A consists of m ≥ 2 disjoint closed chains, and let nj be the number of products and
plants in the jth closed chain, for 1 ≤ j ≤ m. Then:

[A] =

m∑
j=1

[Cnj ] =

m∑
j=1

nj([Lnj ]− [Lnj−1]).

The first equality follows from the fact that A consists of m chains, each of length nj . The
second equality follows from Lemma 7.8. Since Lnnj equals Lnj plus n−nj disjoint edges
and Lnnj−1 equals Lnj−1 plus n− nj + 1 disjoint edges,

[Lnj ]− [Lnj−1] = [Lnnj ]− [Lnnj−1] + E[min{C1, D1}], (7.31)

whereE[min{C1, D1}] is the expected sales of the “extra” edge inLnnj−1 (which we assume
is for plant and product 1, without loss of generality due to the exchangeable demand).
Therefore,

[A] =

m∑
j=1

nj([Lnnj ]− [Lnnj−1] + E[min{1, D1}])

≤
m∑
j=1

nj([Lnn]− [Lnn−1] + E[min{1, D1}])

=

m∑
j=1

nj([Ln]− [Ln−1])

= n([Ln]− [Ln−1])

= [Cn],

where the inequality follows from Lemma 7.7, the second equality follows the same logic
as (7.31), the third follows from the fact that

∑m
j=1 nj = n, and the last follows from

Lemma 7.8.
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7.6 A PROCESS FLEXIBILITY OPTIMIZATION MODEL

So far we have discussed flexibility guidelines for symmetric networks, in which all plants
have the same capacity and all products have independent, identical demand distributions.
However, real systems are much more complex. Jordan and Graves’s (1995) three rules
of thumb listed on page 248 provide some guidance, but it would be helpful to have a
more rigorous, optimization-based approach to design flexibility structures. In addition,
the models we have discussed so far ignore the possibility that the investment and operating
costs of different flexible resources can be different. For example, it is generally cheaper
for a plant to produce two similar products than two very different products.

In addition, some flexible plants are designed for one primary product (or product
family), and when it is called upon to produce a different product, production costs may
increase—for example, due to additional costs for training workers to produce the new
product, or to the change-over time required to switch products on an assembly line. These
“recourse” costs are ignored in many process flexibility models. One exception is Chou
et al. (2010a), who assume that it costs more for a plant to manufacture products other than
those it is primarily designed for. Their results show that chaining can be less beneficial
relative to full flexibility when recourse costs are taken into consideration, but that chaining
still yields significant benefits over the no-flexibility structure.

Another paper that accounts for recourse costs, as well as nonhomogeneous products
and plants, is that of Mak and Shen (2009), which optimizes the flexibility structure to
maximize the firm’s expected profit, accounting for the costs to invest in process flexibility.
We discuss their model in this section.

7.6.1 Formulation

As in earlier parts of this chapter, we consider a set V1 of products, indexed by i, and a set
V2 of plants, indexed by j, each with n elements.1 Demands for the products are random.

This is a two-stage stochastic optimization model. In the first stage, we decide which
edges (i, j) ∈ E to construct, i.e., which plants should be made capable of producing
which products. There is a fixed investment cost of aij to add edge (i, j), representing
the cost of retooling the manufacturing process or purchasing a flexible technology. At the
beginning of the second stage, we observe the random demands and then choose production
levels for each product at each plant, subject to the flexibility structure chosen in the first
stage. There is a production cost of cij for each unit of plant j’s capacity that is used to
produce product i and a selling price of pi for each unit of product i sold. The objective is
to maximize the profit, which equals the sales revenue minus the costs of production and
flexibility investments.

We model the random product demands using scenarios: The demand for product i in
scenario s is given by dis, and the probability that scenario s occurs is qs.2

We summarize the notation as follows:

Sets

1To be consistent with the literature, we assume that |V1| = |V2| = n. However, it is trivial to allow these
numbers to be different; see Mak and Shen (2009).
2Mak and Shen (2009) consider a much more general multivariate demand model. We consider the scenario-based
approach here for the sake of simplicity.
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V1 = set of products
V2 = set of plants
S = set of scenarios

Parameters
aij = cost to invest in technology that allows plant j to produce product i
cij = cost to produce one unit of product i at plant j
pi = revenue from selling one unit of product i
Cj = capacity of plant j
dis = demand for product i in scenario s
qs = probability that scenario s occurs

Decision Variables
xij = 1 if plant j is configured to produce product i, 0 otherwise
yijs = the number of units of product i produced at plant j in scenario s

We formulate the model for optimizing process flexibility as follows:

maximize
∑
i∈V1

∑
j∈V2

[
−aijxij +

∑
s∈S

qs(pi − cij)yijs

]
(7.32)

subject to
∑
i∈V1

yijs ≤ Cj ∀j ∈ V2,∀s ∈ S (7.33)

∑
j∈V2

yijs ≤ dis ∀i ∈ V1,∀s ∈ S (7.34)

yijs ≤ disxij ∀i ∈ V1,∀j ∈ V2,∀s ∈ S (7.35)

xij ∈ {0, 1} ∀i ∈ V1,∀j ∈ V2 (7.36)

yijs ≥ 0 ∀i ∈ V1,∀j ∈ V2,∀s ∈ S (7.37)

The objective function (7.32) calculates the expected profit—the expected sales revenue
minus investment costs and expected production costs. Constraints (7.33) enforce the
capacity limit at each plant in each scenario. Constraints (7.34) require the amount of
product i produced in scenario s to be less than or equal to the demand. Without these
constraints, the model might choose to produce more than the demand in order to increase
the profit. Note, however, that the formulation does not require the demand to be met in
full. A product’s demand may not be met in full, or at all, if there is insufficient capacity or
if it is not profitable to meet the demand. Constraints (7.35) allow production of product i
at plant j in scenario s only if that capability was established in the first stage. Constraints
(7.36) and (7.37) require the x variables to be binary and the y variables to be nonnegative.

The second stage of this problem (i.e., the problem in the y variables) is similar to the
deterministic model (7.17)–(7.21) except that (1) the goal is to maximize profit rather than
minimize shortfall and (2) the plant–product capabilities are first-stage decisions rather
than exogenous factors.

7.6.2 Lagrangian Relaxation

We now describe a Lagrangian relaxation algorithm to solve the process flexibility de-
sign model. (Lagrangian relaxation is covered in more detail in Section 8.2.3 and in
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Appendix D.1.) We relax constraints (7.34) and (7.35) with Lagrange multipliers τ and
η, respectively. Since we are relaxing ≤ constraints in a maximization problem, τ and
η are both restricted to be nonnegative (see Section D.1.5). The Lagrangian subproblem
becomes:

maximize
∑
i∈V1

∑
j∈V2

[
−aijxij +

∑
s∈S

qs(pi − cij)yijs

]

+
∑
i∈V1

∑
s∈S

τis
dis −∑

j∈V2

yijs

+
∑
j∈V2

ηijs (disxij − yijs)


=
∑
i∈V1

∑
j∈V2

(
−aij +

∑
s∈S

ηijsdis

)
xij

+
∑
i∈V1

∑
j∈V2

∑
s∈S

[qs(pi − cij)− τis − ηijs]yijs +
∑
i∈V1

∑
s∈S

τisdis (7.38)

subject to
∑
i∈V1

yijs ≤ Cj ∀j ∈ V2,∀s ∈ S (7.39)

xij ∈ {0, 1} ∀i ∈ V1,∀j ∈ V2 (7.40)

yijs ≥ 0 ∀i ∈ V1,∀j ∈ V2,∀s ∈ S (7.41)

This problem decouples into two subproblems, one involving only x and one involving
only y. The x-problem is trivial to solve: We simply set xij = 1 if

−aij +
∑
s∈S

ηijsdis > 0

and set xij = 0 otherwise. Solving the y-problem amounts to solving the following
problem for each j and s:

(Pjs) maximize
∑
i∈V1

aiyi (7.42)

subject to
∑
i∈V1

yi ≤ Cj (7.43)

yi ≥ 0 ∀i ∈ V1 (7.44)

where

ai = qs(pi − cij)− τis − ηijs
yi = yijs.

This problem, too, is easy: We simply set yi = Cj for the i that has the largest ai and
yi = 0 for all other i. (If ai ≤ 0 for all i, then we set yi = 0 for all i.) The problem could
be strengthened somewhat by adding a constraint

yijs ≤ dis ∀i ∈ V1,∀j ∈ V2,∀s ∈ S

to the original problem. This constraint is redundant in the original problem but strengthens
the y-problem by reducing its optimal objective value (or leaving it the same), thereby
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Figure 7.6 Examples of different chaining structures for nonhomogeneous demand case.

tightening the Lagrangian upper bound. If we do this, the y-problem becomes a continuous
knapsack problem, which is still easy to solve.

In Mak and Shen’s (2009) formulation of this problem, the demands are modeled using
a continuous, multivariate distribution, rather than the discrete scenarios used here. In
effect, this means that there are an infinite number of demand scenarios, and hence, we
must relax an infinite number of constraints of type (7.34) and (7.35). To handle this issue,
Mak and Shen propose the use of scenario-independent Lagrange multipliers; that is, to
omit the subscript s from τ and η and to use the same multipliers for all scenarios. This
results in a weaker upper bound from the Lagrangian subproblem than if the multipliers
depend on the scenario, but it also leads to a more tractable Lagrangian dual problem.
In general, the quality of the bound is better if the demand variability is relatively small.
(See, for example, Kunnumkal and Topaloglu (2008) for a discussion.) This approach has
been used successfully in stochastic network flow and stochastic dynamic programming
problems (Cheung and Powell 1996, Topaloglu 2009).

Feasible solutions to the original problem can be obtained from solutions to the La-
grangian subproblem in order to obtain lower bounds. To do this, we set the first-stage
(x) variables to their values from the subproblem. Once these variables are fixed, the y
variables can be determined by solving a network flow problem for each scenario s. (For
the continuous-demand case in Mak and Shen (2009), the y variables must be determined
by solving a stochastic linear program.)

Mak and Shen (2009) compare the solutions obtained from this flexibility optimization
model with the simple chaining structure. When the products are identical in terms of
demand distribution and production cost, the two approaches produce solutions with similar
expected profit. For nonhomogenous products, the performance of the chaining strategy
can be sensitive to the sequences of the products and plants. For example, if there are two
high-demand products and two low-demand products, then the solutions will be different if
we number the high-demand products as i = 1, 2 than if we number them as i = 1, 3. (See
Figure 7.6.) Therefore, the performance of the straightforward chaining structure, in which
plant j produces products i = j and j + 1, may depend on how the products happen to be
indexed. On the other hand, the process flexibility design model discussed in this section
accounts for these nonhomogeneities explicitly. As a result, this approach outperforms the
simple chaining approach considerably for some problem instances.
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CASE STUDY 7.1 Risk Pooling and Inventory Management at Yedioth Group

Yedioth Group is the largest media group in Israel. The group sells magazines and
other publications through thousands of independent retailers, which receive merchan-
dise at the beginning of each week (for weekly magazines) or each day (for daily news-
papers). The retailers cannot order additional stock if they run out during the period,
and unused inventory is collected at the end of the period and scrapped. Therefore,
the retailers function exactly as in the newsvendor problem (in addition to being actual
newsvendors).

Demand for magazines and newspapers is typically highly variable. At the same time,
the lost-sales penalty is considered to be very high because unmet demands mean lost
advertising revenue. Yedioth reimburses the retailers in full for any unused inventory,
which means the retailers incur no overage risk, and therefore, their optimal base-stock
level would be infinite. Therefore, Yedioth chooses delivery quantities directly for the
retailers, based on demand forecasts. Inventory is stored at each of the retailers, and
the retailers cannot transship to one another. Therefore, under this setting, there is no
risk pooling, either physical pooling or information pooling.

Yedioth suspected this was not an ideal distribution strategy, so they partnered
with researchers from the Technion—Israel Institute of Technology and from the Mas-
sachusetts Institute of Technology (MIT) to develop a better approach. Their research
is described by Avrahami et al. (2014).

The key idea behind the new approach is to make two deliveries per week. Demand
during the first part of the week is used to choose delivery quantities for the second
delivery, which can be used to restock the retailers whose inventory is low. Groups of
about 80–100 retailers are each handled by a single sales agent, and their model makes
decisions for one retailer group at a time. The model makes three sets of decisions: (1)
how many copies to print at the beginning of the week (printing more copies during the
week is prohibitively expensive, so there is only one print run); (2) how many copies to
deliver to each retailer in the group at the beginning of the week; and (3) how many
copies to deliver to the retailers in the middle of the week. The first two decisions
must be made before observing any demand information for the week, while the third
decision can exploit the observed demands in the first part of the week.

Avrahami et al. (2014) formulate this problem as a two-stage stochastic optimization
model that makes decisions for the n retailers assigned to a given group. The model
has two subperiods, denoted t = 1, 2; subperiods 1 and 2 correspond to the portions
of the week before and after the second delivery, respectively. Dt

i is a random variable
representing the demand at retailer i in subperiod t; its distribution is estimated using
historical data. The relevant costs are c, the production cost per unit; h, the overage
cost per unit not sold by the end of subperiod 2 (h represents a disposal cost, i.e., a
negative salvage value); and p, the stockout cost per unit of unmet demand in either
subperiod. There is no distribution cost.

The model has the following decision variables: yti is the on-hand inventory at retailer
i after items are delivered in subperiod t; Q1 is the number of units not delivered in
subperiod 1; and xi is the inventory level (positive or negative) at retailer i at the end
of subperiod 1.
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At the beginning of the week, we must choose y1
i and Q1, accounting for the random

demand in the first subperiod and the subsequent (random) deliveries that will be made
in the second subperiod. That is, we wish to solve

minimize c

(
n∑
i=1

y1
i +Q1

)
+ E

[
P2(Q1, y1

1 −D1
1, . . . , y

1
n −D1

n)
]

(7.45)

subject to y1
i ≥ 0 ∀i = 1, . . . , n (7.46)

Q1 ≥ 0, (7.47)

where P2(Q1, x1, . . . , xn) is the expected cost in subperiod 2, given that subperiod 1
ends with Q1 undelivered units and an inventory level of xi at retailer i. That is:

P2(Q1, x1, . . . , xn) = minimize E

[
n∑
i=1

[
h(y2

i −D2
i )

+ + p(D2
i − y2

i )+
]]

(7.48)

subject to y2
i = xi +Q2

i ∀i = 1, . . . , n (7.49)
n∑
i=1

Q2
i = Q1 (7.50)

Q2
i ≥ 0 ∀i = 1, . . . , n (7.51)

Note that the stockout cost is not incurred until the end of the second subperiod,
since first-subperiod stockouts are passed along to the second subperiod via the term
y1
i −D1

i .
The expectations are taken over the first- and second-subperiod demands (respec-

tively), whose distributions are discretized so that the expectations are sums rather
than integrals. This allows the resulting objective functions to be linearized, but it also
makes the scenario space huge; for example, if there are 50 retailers and each can have
high, medium, or low demand in each subperiod, we have (350)2 ≈ 5.2× 1047 scenar-
ios. Therefore, Avrahami et al. (2014) use sampling to estimate the expectations. They
show that the objective function is convex and use this property to develop a stochastic
subgradient-based optimization algorithm. The algorithm executes very quickly, solving
each retailer group in a few seconds.

This model looks very different from the risk-pooling models discussed in Section 7.2,
but the principle is very similar. By adding a second delivery in each week, Yedioth can
maintain a centralized inventory for part of the week, which allows it to exploit the risk-
pooling effect across the retailers. Alternately, we can interpret this as a postponement
strategy in which the differentiation refers to the delivery to retailers (rather than
customization of the product).

Yedioth initially implemented the new approach for only one product, the weekly
magazine La’Isha, and for only 50 retailers. This pilot project was very successful, so
the company expanded it to more publications and many more retailers. The initial
results showed a 9% reduction in production levels (without a decrease in sales) and a
35% reduction in product returns. The company estimates savings of $1,000,000 per
year in printing costs when the new approach is rolled out to all 8,000 of its retailers.
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PROBLEMS

7.1 (Risk-Pooling Example) Three distribution centers (DCs) each face normally dis-
tributed demands, with D1 ∼ N(22, 82), D2 ∼ N(19, 42), and D3 ∼ N(17, 32). All
three DCs have a holding cost of h = 1 and p = 15, and all three follow a periodic-review
base-stock policy using their optimal base-stock levels.

a) Calculate the expected cost of the decentralized system.
b) Suppose demands are uncorrelated among the three DCs: ρ12 = ρ13 = ρ23 = 0.

Calculate the expected cost of the centralized system.
c) Suppose ρ12 = ρ13 = ρ23 = 0.75. Calculate the expected cost of the centralized

system.
d) Suppose ρ12 = 0.75, ρ13 = ρ23 = −0.75. Calculate the expected cost of the

centralized system.

7.2 (No Soup for You) A certain New York City soup vendor sells 15 varieties of soup.
The number of customers who come to the soup store on a given day has a Poisson
distribution with a mean of 250. A given customer has an equal probability of choosing
each of the 15 varieties of soup, and if his or her chosen variety of soup is out of stock (no
pun intended), he or she will leave without buying any soup.

You may assume (although it is not necessarily a good assumption) that the demands
for different varieties of soup are independent; that is, if the demand for variety i is high
on a given day, that doesn’t indicate anything about the demand for variety j.

Every type of soup sells for $5 per bowl, and the ingredients for each bowl of soup cost
the soup vendor $1. Any soups (or ingredients) that are unsold at the end of the day must
be thrown away.

a) How many ingredients of each variety of soup should the soup vendor buy? What
is the restaurant’s total expected underage and overage cost for the day?

b) What is the probability that the vendor stocks out of a given variety of soup?
c) Now suppose that the soup vendor wishes to streamline his offerings by reducing

the selection to 8 varieties of soup. Assume that the total demand distribution
does not change, but now the total demand is divided among 8 soup varieties
instead of 15. As before, assume that a customer finding his or her choice of soup
unavailable will leave without purchasing anything. Now how many ingredients
of each variety of soup should the vendor buy? What is the restaurant’s total
expected underage and overage cost for the day?

d) In a short paragraph, explain how this problem relates to risk pooling.
Note: You may use the normal approximation to the Poisson distribution, but make sure to
specify the parameters you are using.

7.3 (In-Flight Trash) On a certain airline, the flight attendants collect trash during flights
and deposit it all into a single receptacle. Airline management is thinking about instituting
an on-board recycling program in which waste would be divided by the flight attendants
and placed into three separate receptacles: one for paper, one for cans and bottles, and one
for other trash.

The volume of each of the three types of waste on a given flight is normally distributed.
The airline would maintain a sufficient amount of trash-receptacle space on each flight so
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that the probability that a given receptacle becomes full under the new system is the same
as the probability that the single receptacle becomes full under the old system.

Would the new policy require the same amount of space, more space, or less space for
trash storage on each flight? Explain your answer in a short paragraph.

7.4 (Days-of-Supply Policies) Rather than setting safety stock levels using base-stock
or (r,Q) policies, some companies set their safety stock by requiring a certain number of
“days of supply” to be on hand at any given time. For example, if the daily demand has a
mean of 100 units, the company might aim to keep an extra 7 days of supply, or 700 units,
in inventory. This policy uses µ instead of σ to set safety stock levels.

Consider theN -DC system described in Section 7.2.1, with independent demands across
DCs (ρij = 0 for i 6= j). You may assume that all DCs are identical: µi = µ and σi = σ

for all i. Assume that µ and σ refer to weekly demands, and that orders are placed by the
DCs once per week. Finally, assume that each DC follows a days-of-supply policy with k
days of supply required to be on hand as safety stock; each DC’s order-up-to level is then

S = µ+
k

7
µ.

a) Prove that the centralized and decentralized systems have the same amount of
total inventory.

b) Derive expressions for g∗D and g∗C , the total expected costs of the decentralized
and centralized systems. Your expressions may not involve integrals; they may
involve the standard normal loss function, L (·).

Hint: Since the DCs are not following the optimal stocking policy, the cost is
analogous to (4.29), not to (4.30).

c) Prove that g∗C < g∗D.
d) Explain in words how to reconcile parts (a) and (c)—how can the centralized cost

be smaller even though the two systems have the same amount of inventory?

7.5 (Negative Safety Stock) Consider theN -DC system described in Section 7.2.1, with
independent demands across DCs (ρij = 0). Suppose that the holding cost is greater than
the stockout cost: h > p.

a) Prove that negative safety stock is required at DC i—that the base-stock level is
less than the mean demand.

b) Prove that the total inventory (cycle stock and safety stock) required in the
decentralized system (each DC operating independently) is less than the total
inventory required in the centralized system (all DCs pooled into one). (This is
the opposite of the result in Section 7.2.)

c) Prove that, despite the result from part (b), the total expected cost of the centralized
system is less than that of the decentralized system (g∗C < g∗D).

d) Explain in words how to reconcile parts (b) and (c)—how can it be less expensive
to hold more inventory?

7.6 (Rationalizing DVR Models) A certain brand of digital video recorder (DVR) is
available in three models, one that holds 40 hours of TV programming, one that holds 80
hours, and one that holds 120 hours. The lifecycle for a given DVR model is short, roughly
1 year. Because of long manufacturing lead times, the company must manufacture all of
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Table 7.2 DVR parameters for Problem 7.6.

Storage Manufacturing Selling Goodwill Mean Annual SD of Annual
Space Cost (ci) Price (ri) Cost (gi) Demand (µi) Demand (σi)

40 80 120 150 40,000 12,000
80 90 150 150 55,000 15,000

120 100 250 150 25,000 8,000

the units it intends to sell before the DVRs go on the market, and it will not have another
opportunity to manufacture more before the end of the products’ 1-year life cycles.

Demand for DVRs is highly volatile, and customers are very picky. A customer who
wants a given model but finds that it’s out of stock will almost never change to a different
model—instead, he or she will buy a competitor’s product. In this case, the firm incurs
both the lost profit and a loss-of-goodwill cost. Moreover, any DVRs that are unsold at the
end of the year are taken off the market and destroyed, with no salvage value (or cost).

The cost, revenue, and demand parameters for the three models of DVR are given in
Table 7.2. Demands are normally distributed with the parameters specified in the table.
Moreover, demands for the 80- and 120-hour models are negatively correlated, with a
correlation coefficient of ρ80,120 = −0.4. (Demands for the 40-hour model are independent
of those for the other two models.)

The company is currently designing its three models for next year, and a very smart
supply chain manager noticed that although the models sell for different prices, they
cost nearly the same amount to manufacture. The manager thus proposed that the firm
manufacture only a single model, containing 120 hours of storage space. When customers
purchase a DVR, they specify how much storage space they’d like it to have (either 40, 80,
or 120 hours) and pay the corresponding price, and the unit is activated with that much
space. If the customer asks for 40 or 80 hours, the remaining storage space simply goes
unused. This change can be made with software rather than hardware and therefore costs
very little to make.

a) Let Qi be the quantity of model i manufactured, i = 1, . . . , 3, if the supply chain
manager’s proposal is not followed. Write the firm’s expected profit for model i
as a function of Qi.

b) Find the optimal order quantitiesQ∗i and the corresponding total optimal expected
profit (for all three models).

c) LetQ be the quantity of the single model manufactured if the manager’s proposal
is followed. Write the firm’s total expected profit as a function of Q. Although it
is not entirely accurate to do so, you may assume that the expected selling price
for the single model is given by a weighted average of the ri, with weights given
by the µi.

d) Find the optimal order quantityQ and the corresponding optimal expected profit.
Based on this analysis, should the firm follow the manager’s suggestion?

e) What other factors should the firm consider before deciding whether to implement
the manager’s proposal?

7.7 (Proof of Theorem 7.3) Prove Theorem 7.3.
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7.8 (Transhipment Simulation) Build a spreadsheet simulation model for the two-
retailer transshipment problem from Section 7.4. Your spreadsheet should include columns
for the demand at each location; the inventory at each location at the start of the period,
before transshipments, and after transshipments; the amount transshipped; and the costs
for the period. Assume that demands are Poisson with mean λi per period and that

λ1 = 30 λ2 = 20

c1 = 1.2 c2 = 1.7

h1 = 0.6 h2 = 0.8

p1 = 8.0 p2 = 8.0

c12 = 3.0 c21 = 3.0.

Use S1 = 33 and S2 = 22 as the base-stock levels, and assume that both retailers begin
the simulation with Si − λi units on-hand (that is, at the start of period 1, retailer i needs
to order λi units to bring its inventory position to Si).

a) Simulate the system for 500 periods and include the first 10 rows of your spread-
sheet in your report.

b) Compute the average ordering, transshipment, holding, and penalty costs per
period from your simulation.

c) Compute the expected transshipment quantity from retailer 1 to retailer 2 (E[Y12])
and the expected ending inventory at retailer 1 (E[IL+

1 ]) using (7.8) and (7.9). To
compute these quantities, you will need to evaluate some integrals numerically.

d) Compare the results from parts (a) and (c). How closely do the simulated and
actual quantities match?

e) By trial and error, try to find the values of S1 and S2 that minimize the simulated
cost. What are the optimal values, and what is the optimal expected cost?

7.9 (Binary Transshipments) Consider the transshipment model from Section 7.4, ex-
cept now suppose the demands are binary. That is, the demands can only equal 0 or 1, and
they are governed by a Bernoulli distribution: Di = 1 with probability qi and Di = 0 with
probability 1− qi, for i = 1, 2. All of the remaining assumptions from Section 7.4.2 hold.

Your goal in this problem will be to formulate the expected cost and evaluate several
feasible values for the base-stock levels (S1, S2). Assume that Si must be an integer.

a) Explain why S∗1 + S∗2 ≤ 2.
b) For each possible solution (S1, S2) below, write the expected values of the state

variables Qi, Yij , IL+
i , and IL−i , and then write the expected cost g(S1, S2).

1. (S1, S2) = (0, 0)
2. (S1, S2) = (1, 1)
3. (S1, S2) = (1, 0)
4. (S1, S2) = (2, 0)

(The cases in which (S1, S2) = (0, 1) or (0, 2) are similar to the cases above, so
we’ll skip them.)

Hint 1: If Si = 0, that does not mean that stage i never orders!
Hint 2: To check your cost functions, we’ll tell you the following: If ci =

hi = pi = 1, cij = 3, and qi = 0.5 for all i = 1, 2, then g(0, 0) = 2, g(1, 1) = 2,
g(1, 0) = 2.25, and g(2, 0) = 3.5. Note, however, that these parameters do not
satisfy the assumptions on page 238.
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Figure 7.7 Three-stage flexibility structure for Problem 7.10.

c) Find an instance for which (S∗1 , S
∗
2 ) = (1, 1). Your instance must satisfy the

assumptions on page 238.
d) Find a symmetric instance for which (S∗1 , S

∗
2 ) = (1, 0). Your instance must

satisfy the assumptions on page 238. A symmetric instance is one for which the
parameters for the two retailers are identical (c1 = c2, h1 = h2, etc.). (It’s a little
surprising that a symmetric instance can produce a nonsymmetric solution, but it
can.)

e) Prove or disprove the following claim: g(2, 0) ≥ g(1, 1) for all instances that
satisfy the assumptions on page 238.

7.10 (Three-Stage Flexibility) Consider the three-stage supply chain flexibility design
problem pictured in Figure 7.7.

There are n1 products, n2 plants, and n3 suppliers. In the full-flexibility structure, each
product can be produced at any plant using raw materials sourced from any supplier. We
assume that each unit of product consumes one unit of material from each supplier and
uses one unit of capacity at each plant. We assume further that the production capacities at
the plants are Cj , j = 1, . . . , n2, and that the suppliers have a limited amount Bk of raw
materials, k = 1, . . . , n3. The demand for each product is random and is denoted by the
random variable Di, i = 1, . . . , n1.

a) Derive an expression for the expected sales in the full-flexibility structure.
b) Let yijk be a decision variable representing the amount of raw materials from

supplier k used to produce product i at plant j. Formulate the flexibility design
problem for this three-stage supply chain.

7.11 (Capacity Investment) Recall the formulation of the flexibility design problem
(7.32)–(7.37). Suppose now that the capacity is also a decision, to be made jointly with the
network design problem. In particular, the capacities Cj are first-stage decision variables,
together with the flexibility investment variables xij . We assume a linear investment cost
function for the capacity, with constant marginal investment cost vj per unit.

a) Write the new objective function after adding the capacity-investment cost term.
b) Discuss a method for solving this new problem.

7.12 (Auto Repair) A small car repair shop has four certified technicians, Irene, Larry,
Max, and Suzanne. The shop specializes in four types of vehicles, labeled A, B, C, and
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D. Each technician has been trained to repair one type of vehicle. On average, the repair
of each type of vehicle takes 4 hours. It is estimated that the number of customers who
want a type-A vehicle fixed during a given week is equally likely to be 8, 10, or 12. That
is, the probability is 1

3 for each of the possible outcomes, 8, 10, or 12 customers. Each of
the other three vehicle types has the same demand distribution for repairs. Furthermore,
the demands are iid across time and type. Each technician has a nominal work week of 40
hours at $55 per hour and will be paid for 40 hours even if he or she works fewer than 40
hours in the week. But if a technician works more than 40 hours, then the overtime rate is
150% of the normal pay. The overtime rate applies only to the hours in excess of 40.

a) Calculate the expected yearly cost of the dedicated system (in which Irene, Larry,
Max, and Suzanne can only service vehicles of type A, B, C, and D, respectively).

b) After reading this chapter, the repair shop’s manager decides to try a flexible
system. Suppose first that the manager uses a chaining structure in which Irene
will also be trained to repair type-B vehicles, Larry to repair type-C vehicles,
Max to repair type-D vehicles, and Suzanne to repair type-A vehicles. Calculate
the expected yearly cost of overtime for this system.

Note: Given the assumptions made in this problem, for each realization of
the random demands, it is possible to calculate the total overtime cost based
on the total hours required without determining the assignments of vehicles to
technicians.

c) Suppose instead that the manager chooses a full-flexibility system in which every
technician is trained to repair all four vehicle models. Calculate the expected
yearly cost of overtime for this system.

d) Determine the optimal assignment of vehicles to technicians under both the
chaining and full flexibility structures if the demands are 12, 8, 10, and 12 for
vehicles of types A–D, respectively.

e) Suppose the cost of training one technician to repair one new vehicle type is
$10,000. What is the expected number of years until the shop recoups the
investment cost to convert the dedicated system to the partial flexibility system
with the chaining structure? What about the full flexibility system?

7.13 (Auto Repair, Part 2) Consider again the auto repair shop in Problem 7.12. Suppose
that the number of repairs of type-A vehicles in a given week has a normal distribution
with a mean of 22 and a standard deviation of 3, while the number of repairs of vehicles
of types B–D is deterministic and equal to 6 for each type. Calculate the expected yearly
cost of overtime for both the chaining structure (as described in Problem 7.12(b)) and the
full flexibility system.

Note: Unlike in Problem 7.12, in this problem you must determine the optimal assign-
ment of vehicles to technicians for each realization of the demand in order to calculate the
expected overtime cost for the chaining system.

7.14 (Max-Flow Formulation) The production-allocation problem (7.17)–(7.21) can
also be formulated using a max-flow formulation.

a) Formulate the problem as a max-flow problem, using the notation already defined
in the chapter.

b) Research has shown that when demands are independent, chaining can achieve
most (roughly 97%) of the benefits of full flexibility as the number of nodes n
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approaches∞. Show that if the demands are correlated, the situation can be very
different.

7.15 (Lemma 7.7 Only Holds in Expectation) Develop a counterexample to show that,
although Lemma 7.7 holds in expectation, the result does not hold for every individual
demand instance.



CHAPTER 8

FACILITY LOCATION MODELS

8.1 INTRODUCTION

One of the major strategic decisions faced by firms is the number and locations of factories,
warehouses, retailers, or other physical facilities. This is the purview of a large class of
models known as facility location problems. The key trade-off in most facility location
problems is between the facility cost and customer service. If we open a lot of facilities
(Figure 8.1(a)), we incur high facility costs (to build and maintain them), but we can provide
good service since most customers are close to a facility. On the other hand, if we open
few facilities (Figure 8.1(b)), we reduce our facility costs but must travel farther to reach
our customers (or they to reach us).

Most (but not all) location problems make two related sets of decisions: (1) where to
locate, and (2) which customers are assigned or allocated to which facilities. Therefore,
facility location problems are also sometimes known as location–allocation problems.

A huge range of approaches has been considered for modeling facility location decisions.
These differ in terms of how they model facility costs (for example, some include the costs
explicitly, while others impose a constraint on the number of facilities to be opened) and
how they model customer service (for example, some include a transportation cost, while
others require all or most facilities to be covered—that is, served by a facility that is within
some specified distance). Facility location problems come in a great variety of flavors based
on what types of facilities are to be located, whether the facilities are capacitated, which
(if any) elements of the problem are stochastic, what topology the facilities may be located

267Fundamentals of Supply Chain Theory, . Lawrence V. Snyder and Zuo-Jun Max Shen. 
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(a) Many facilities open.

(b) Few facilities open.

Figure 8.1 Facility location configurations. Squares represent facilities; circles represent
customers.
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on (e.g., on the plane, in a network, or at discrete points), how distances or transportation
costs are measured, and so on. Several excellent textbooks provide additional material for
the interested reader; for example, see Mirchandani and Francis (1990), Drezner (1995a),
Drezner and Hamacher (2002), or Daskin (2013). For an annotated bibliography of papers
on facility location problems, see ReVelle et al. (2008b). The book by Eiselt and Marianov
(2011) contains chapters on a number of seminal papers in facility location, each describing
the original contribution as well as later extensions.

In addition to supply chain facilities such as plants and warehouses, location models
have been applied to public sector facilities such as bus depots and fire stations, as well
as to telecommunications hubs, satellite orbits, bank accounts, and other items that are not
really “facilities” at all. In addition, many operations research problems can be formulated
as facility location problems or have subproblems that resemble them. Facility location
problems are often easy to state and formulate but are difficult to solve; this makes them a
popular testing ground for new optimization tools. For all of these reasons, facility location
problems are an important topic in operations research, and in supply chain management
in particular, in both theoretical and applied work.

In this chapter, we will begin by discussing a classical facility location model, the
uncapacitated fixed-charge location problem (UFLP), in Section 8.2. The UFLP and its
descendants have been deployed more widely in supply chain management than perhaps
any other location model. One reason for this is that the UFLP is very flexible and, although
it is NP-hard, lends itself to a variety of effective solution methods. Another reason is that
the UFLP includes explicit costs for both key elements of the problem—facilities and
customer service—and is therefore well suited to supply chain applications.

In Section 8.3, we discuss other so-called minisum models (in particular, the p-median
problem and a capacitated version of the UFLP), and in Section 8.4, we discuss cover-
ing models (including the p-center, set covering, and maximal covering problems). We
briefly discuss a variety of other deterministic facility location problems in Section 8.5. In
Section 8.6, we introduce stochastic and robust models for facility location under uncer-
tainty. We then discuss models for network design—a close cousin of facility location—in
Section 8.7.

8.2 THE UNCAPACITATED FIXED-CHARGE LOCATION PROBLEM

8.2.1 Problem Statement

The uncapacitated fixed-charge location problem (UFLP) chooses facility locations in
order to minimize the total cost of building the facilities and transporting goods from
facilities to customers. The UFLP makes location decisions for a single echelon, and the
facilities in that echelon are assumed to serve facilities in a downstream echelon, all of
whose locations are fixed. We will tend to refer to the facilities in the upstream echelon
as distribution centers (DCs) or warehouses and to those in the downstream echelons as
customers. However, the model is generic, and the two echelons may instead contain other
types of facilities—for example, factories and warehouses, or regional and local DCs, or
even fire stations and homes. Sometimes it’s also useful to think of an upstream echelon,
again with fixed location(s), that serves the DCs.

Each potential DC location has a fixed cost that represents building (or leasing) the
facility; the fixed cost is independent of the volume that passes through the DC. There is
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a transportation cost per unit of product shipped from a DC to each customer. There is
a single product. The DCs have no capacity restrictions—any amount of product can be
handled by any DC. (We’ll relax this assumption in Section 8.3.1.) The problem is to choose
facility locations to minimize the fixed cost of building facilities plus the transportation
cost to transport product from DCs to customers, subject to constraints requiring every
customer to be served by some open DC.

As noted above, the key trade-off in the UFLP is between fixed and transportation costs.
If too few facilities are open, the fixed cost is small, but the transportation cost is large
because many customers will be far from their assigned facility. On the other hand, if too
many facilities are open, the fixed cost is large, but the transportation cost is small. The
UFLP tries to find the right balance, and to optimize not only the number of facilities, but
also their locations.

8.2.2 Formulation

Define the following notation:

Sets
I = set of customers
J = set of potential facility locations

Parameters
hi = annual demand of customer i ∈ I
cij = cost to transport one unit of demand from facility j ∈ J to customer i ∈ I
fj = fixed annual cost to open a facility at site j ∈ J

Decision Variables
xj = 1 if facility j is opened, 0 otherwise
yij = the fraction of customer i’s demand that is served by facility j

The transportation costs cij might be of the form k × distance for some constant k (if
the shipping company charges k per mile per unit) or may be more arbitrary (for example,
based on airline ticket prices, which are not linearly related to distance). In the former case,
distances may be computed in a number of ways:

• Euclidean distance: The distance between (a1, b1) and (a2, b2) is given by√
(a1 − a2)2 + (b1 − b2)2.

The Euclidean distance metric is also known as the `2 norm. This is an intuitive
measure of distance but is not usually applicable in supply chain contexts because
Cartesian coordinates are not useful for describing real-world locations.

• Manhattan or rectilinear metric: The distance is given by

|a1 − a2|+ |b1 − b2|.

This metric assumes that travel is only possible parallel to the x- or y-axis, e.g., travel
along city streets. It is also known as the `1 norm.

• Great circle: This method for calculating distances takes into account the curvature of
the earth and, more importantly, takes latitudes and longitudes as inputs and returns
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distances in miles or kilometers. Great circle distances assume that travel occurs
over a great circle, the shortest route over the surface of a sphere. Let (α1, β1) and
(α2, β2) be the latitude and longitude of two points in radians, and let ∆α ≡ α1−α2

and ∆β ≡ β1 − β2 be the differences in the latitude and longitude (respectively).
Then the great circle distance between the two points is given by

2r arcsin

(√
sin2

(
∆α

2

)
+ cosα1 cosα2 sin2

(
∆β

2

))
, (8.1)

where r is the radius of the Earth, approximately 3958.76 miles or 6371.01 km (on
average), and the trigonometric functions are assumed to use radians.

A simpler formula, known as the spherical law of cosines, sets the distance equal to

r arccos (sinα1 sinα2 + cosα1 cosα2 cos (∆β)) (8.2)

and is nearly as accurate as (8.1) except when the distance between the two points is
very small. (See Problem 8.44.)

• Highway/network: The distance is computed as the shortest path within a network,
for example, the US highway network. This is usually the most accurate method for
calculating distances in a supply chain context. However, since they require data on
the entire road network, they must be obtained from geographic information systems
(GIS) or from online services such as Mapquest or Google Maps. (In contrast, the
distance measures above can be calculated from simple formulas using only the
coordinates of the facilities and customers.)

• Matrix: Sometimes a matrix containing the distance between every pair of points is
given explicitly. This is the most general measure, since all others can be considered
a special case. It is also the only possible measure when the cost structure exhibits
no particular pattern—for example, when they are based on airline ticket prices.

In general, we won’t be concerned with how transportation costs are computed—we’ll
assume they are given to us already as the parameters cij .

The UFLP is formulated as follows:

(UFLP) minimize
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

hicijyij (8.3)

subject to
∑
j∈J

yij = 1 ∀i ∈ I (8.4)

yij ≤ xj ∀i ∈ I, ∀j ∈ J (8.5)

xj ∈ {0, 1} ∀j ∈ J (8.6)

yij ≥ 0 ∀i ∈ I, ∀j ∈ J (8.7)

Formulations very similar to this were originally proposed by Manne (1964) and Balinski
(1965). The objective function (8.3) computes the total (fixed plus transportation) cost. In
the discussion that follows, we’ll use z∗ to denote the optimal objective value of (UFLP).
Constraints (8.4) require the full amount of every customer’s demand to be assigned, to
one or more facilities. These are often called assignment constraints. Constraints (8.5)
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prohibit a customer from being assigned to a facility that has not been opened. These are
often called linking constraints. Constraints (8.6) require the location (x) variables to be
binary, and constraints (8.7) require the assignment (y) variables to be nonnegative.

Constraints (8.4) and (8.7) together ensure that 0 ≤ yij ≤ 1. In fact, it is always optimal
to assign each customer solely to its nearest open facility. (Why?) Therefore, there always
exists an optimal solution in which yij ∈ {0, 1} for all i ∈ I, j ∈ J . It is therefore
appropriate to think of the yij as binary variables and to talk about “the facility to which
customer i is assigned.”

Another way to write constraints (8.5) is∑
i∈I

yij ≤ |I|xj ∀j ∈ J. (8.8)

If xj = 1, then yij can be 1 for any or all i ∈ I , while if xj = 0, then yij must be 0 for all
i. These constraints are equivalent to (8.5) for the IP. But the LP relaxation is weaker (i.e.,
it provides a weaker bound) if constraints (8.8) are used instead of (8.5). This is because
there are solutions that are feasible for the LP relaxation with (8.8) that are not feasible
for the LP relaxation with (8.5). To take a trivial example, suppose there are 2 facilities
and 10 customers with equal demand, and suppose each facility serves 5 customers in a
given solution. Then it is feasible to set x1 = x2 = 1

2 for the problem with (8.8) but not
with (8.5). Since the feasible region for the problem with (8.8) is larger than that for the
problem with (8.5), its objective value is no greater. It is important to understand that the
IPs have the same optimal objective value, but the LPs have different values—one provides
a weaker LP bound than the other.

The UFLP is NP-hard (Garey and Johnson 1979). A large number of solution methods
have been proposed in the literature over the past several decades, both exact algorithms
and heuristics. Some of the earliest exact algorithms involve simply solving the IP using
branch-and-bound. Today, this would mean solving (UFLP) as-is using CPLEX, Gurobi,
or another off-the-shelf IP solver, although such general-purpose solvers did not exist when
the UFLP was first formulated. This approach works quite well using modern solvers,
in part because the LP relaxation of (UFLP) is usually extremely tight, and in fact it
often results in all-integer solutions “for free” (Morris 1978). (ReVelle and Swain (1970)
discuss this property in the context of a related problem, the p-median problem.) Current
versions of CPLEX or Gurobi can solve instances of the UFLP with thousands of potential
facility sites in a matter of minutes. However, when it was first proposed that branch-
and-bound be used to solve the UFLP (by Efroymson and Ray (1966)), IP technology
was much less advanced, and this approach could only be used to solve problems of
modest size. Therefore, a number of other optimal approaches were developed. Two of
these—Lagrangian relaxation and a dual-ascent method called DUALOC—are discussed
in Sections 8.2.3 and 8.2.4, respectively. Many other IP techniques, such as Dantzig–Wolfe
or Benders decomposition, have also been successfully applied to the UFLP (e.g., Balinski
(1965) and Swain (1974)). We discuss heuristic methods for the UFLP in Section 8.2.5.

8.2.3 Lagrangian Relaxation

8.2.3.1 Introduction One of the methods that has proven to be most effective for
the UFLP and other location problems is Lagrangian relaxation, a standard technique for
integer programming (as well as other types of optimization problems). The basic idea
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behind Lagrangian relaxation is to remove a set of constraints to create a problem that’s
easier to solve than the original. But instead of just removing the constraints, we include
them in the objective function by adding a term that penalizes solutions for violating the
constraints. This process gives a lower bound on the optimal objective value of the UFLP,
but it does not necessarily give a feasible solution. Feasible solutions must be found using
some other method (to be described below); each feasible solution provides an upper bound
on the optimal objective value. When the upper and lower bounds are close (say, within
1%), we know that the feasible solution we have found is close to optimal.

For more details on Lagrangian relaxation, see Appendix D.1. See also Fisher (1981,
1985) for excellent overviews. Lagrangian relaxation was proposed as a method for solving
a UFLP-like problem by Cornuejols et al. (1977).

We want to use Lagrangian relaxation on the UFLP formulation given in Section 8.2.2.
The question is, which constraints should we relax? There are only two options: (8.4)
and (8.5). (Constraints (8.6) and (8.7) can’t be relaxed using Lagrangian relaxation.)
Relaxing either (8.4) or (8.5) results in a problem that is quite easy to solve, and both
relaxations produce the same bound (for reasons discussed below). But relaxing (8.4)
involves relaxing fewer constraints, which is generally preferable (also for reasons that will
be discussed below). Therefore, we will relax constraints (8.4), although in Section 8.2.3.8
we will briefly discuss what happens when constraints (8.5) are relaxed.

8.2.3.2 Relaxation We relax constraints (8.4), removing them from the problem and
adding a penalty term to the objective function:

∑
i∈I

λi

1−
∑
j∈J

yij


The λi are called Lagrange multipliers. There is one for each relaxed constraint. Their
purpose is to ensure that violations in the constraints are penalized by just the right amount—
more on this later. We’ll use λ to represent the vector of λi values.

For now, assume λ is fixed. Relaxing constraints (8.4) gives us the following problem,
known as the Lagrangian subproblem:

(UFLP-LRλ) minimize
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

hicijyij +
∑
i∈I

λi

1−
∑
j∈J

yij


=
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

(hicij − λi)yij +
∑
i∈I

λi (8.9)

subject to yij ≤ xj ∀i ∈ I, ∀j ∈ J (8.10)

xj ∈ {0, 1} ∀j ∈ J (8.11)

yij ≥ 0 ∀i ∈ I, ∀j ∈ J (8.12)

(The subscript λ on the problem name reminds us that this problem depends on λ as a
parameter.) Since the λi are all constants, the last term of (8.9) can be ignored during the
optimization.

How can we solve this problem? It turns out that the problem is quite easy to solve
by inspection—we don’t need to use an IP solver or any sort of complicated algorithm.
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Suppose that we set xj = 1 for a given facility j. By constraints (8.10), setting xj = 1

allows yij to be set to 1 for any i ∈ I . For which i would yij be set to 1 in an optimal
solution to the problem? Since this is a minimization problem, yij would be set to 1 for
all i such that hicij − λi < 0. So if xj were set to 1, the benefit (or contribution to the
objective function) would be

βj =
∑
i∈I

min{0, hicij − λi}. (8.13)

Now the question is, which xj should be set to 1? It’s optimal to set xj = 1 if and only
if βj + fj < 0; that is, if the benefit of opening the facility outweighs its fixed cost.
Theorem 8.1 summarizes these conclusions.

Theorem 8.1 Let

x̄j =

{
1, if βj + fj < 0

0, otherwise
(8.14)

ȳij =

{
1, if x̄j = 1 and hicij − λi < 0

0, otherwise.
(8.15)

Then (x̄, ȳ) is an optimal solution for (UFLP-LRλ), and it has an objective value of

zLR(λ) =
∑
j∈J

min{0, βj + fj}+
∑
i∈I

λi.

Notice that in optimal solutions to (UFLP-LRλ), customers may be assigned to 0 or
more than 1 facility since the constraints requiring exactly one facility per customer have
been relaxed.

Why is this problem so much easier to solve than the original problem? The answer
is that (UFLP-LRλ) decomposes by j, in the sense that we can focus on each j ∈ J

individually since there are no constraints tying them together. In the original problem,
constraints (8.4) tied the js together—we could not make a decision about yij without also
making a decision about yik since i had to be assigned to exactly one facility.

The method for solving (UFLP-LRλ) is summarized in Algorithm 8.1.

8.2.3.3 Lower Bound We’ve now solved (UFLP-LRλ) for given λi. How does this
help us? Well, from Theorem D.1, we know that, for any λ, the optimal objective value of
(UFLP-LRλ) is a lower bound on the optimal objective value for the original problem:

zLR(λ) ≤ z∗. (8.16)

The point of Lagrangian relaxation is not to generate feasible solutions, since the solutions
to (UFLP-LRλ) will generally be infeasible for (UFLP). Instead, the point is to generate
good (i.e., high) lower bounds in order to prove that a feasible solution we’ve found
some other way is good. For example, if we’ve found a feasible solution for the UFLP
(using any method at all) whose objective value is 1005 and we’ve also found a λ so that
zLR(λ) = 1000, then we know our solution is no more than (1005 − 1000)/1000 = 0.5%
away from optimal. (It may in fact be exactly optimal, but given these two bounds, we can
only say it’s within 0.5%.)
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Algorithm 8.1 Solve (UFLP-LRλ)

1: input Lagrange multipliers λ
2: for all j ∈ J do . Main loop
3: βj ←

∑
i∈I min{0, hicij − λi} . Calculate benefit

4: if βj + fj < 0 then . Check benefit vs. fixed cost
5: x̄j ← 1 . Open j
6: for all i ∈ I do
7: if hicij − λi < 0 then ȳij ← 1 else ȳij ← 0 end if
8: end for
9: else

10: x̄j ← 0 . Do not open j
11: for all i ∈ I do
12: ȳij ← 0

13: end for
14: end if
15: end for
16: zLR(λ)←

∑
j∈J min{0, βj + fj}+

∑
i∈I λi . Calculate objective function

17: return x̄, ȳ, zLR(λ)

Now, if we pick λ at random, we’re not likely to get a particularly good bound—that is,
zLR(λ) won’t be close to z∗. We have to choose λ cleverly so that we get the best possible
bound—so that zLR(λ) is as large as possible. That is, we want to solve problem (LR)
given in (D.8), which, for the UFLP, can be written as follows:

(LR) max
λ


minx,y

∑
j∈J fjxj +

∑
i∈I(hicij − λi)yij +

∑
i∈I λi

s.t. yij ≤ xj ∀i ∈ I, ∀j ∈ J
xj ∈ {0, 1} ∀j ∈ J

yij ≥ 0 ∀i ∈ I, ∀j ∈ J

 (8.17)

We’ll talk more later about how to solve this problem. For now, let’s assume we know the
optimal λ∗ and that the optimal objective value is zLR ≡ zLR(λ∗). How large can zLR be?
Theorem D.1 tells us it cannot be larger than z∗, but how close can it get? The answer turns
out to be related to the LP relaxation of the problem. From Theorem D.2, we have

zLP ≤ zLR, (8.18)

where zLP is the optimal objective value of the LP relaxation of (UFLP) and zLR is the
optimal objective value of (LR).

Combining (8.16) and (8.18), we now know that

zLP ≤ zLR ≤ z∗. (8.19)

For most problems, zLP � z∗, so where in the gap does zLR fall? An IP is said to have the
integrality property if its LP relaxation naturally has an all-integer optimal solution. You
should be able to convince yourself that (UFLP-LRλ) has the integrality property for all
λ since it is never better to set x and y to fractional values. Therefore, the following is a
corollary to Lemma D.3:
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Corollary 8.2 For the UFLP, zLP = zLR.

Combining (8.19) and Corollary 8.2, we have

zLR = zLP ≤ z∗.

This means that if the LP relaxation bound from the UFLP is not very tight, the Lagrangian
relaxation bound won’t be very tight either. Fortunately, as noted in Section 8.2.2, the
UFLP tends to have very tight LP relaxation bounds. This raises the question of why we’d
want to use Lagrangian relaxation at all since the LP bound is just as tight.

There are several possible answers to this question. The first is that when Lagrangian
relaxation was first applied to the UFLP, computer implementations of the simplex method
were quite inefficient, and even the LP relaxation of the UFLP could take a long time to solve,
whereas the Lagrangian subproblem could be solved quite quickly. Recent implementations
of the simplex method, however (for example, recent versions of CPLEX), are much more
efficient and are able to solve reasonably large instances of the UFLP—LP or IP—pretty
quickly. Nevertheless, Lagrangian relaxation is still an important tool for solving the UFLP.
One advantage of this method is that it can often be modified to solve extensions of the
UFLP that IP solvers can’t solve—for example, nonlinear, nonconvex problems like the
location model with risk pooling (LMRP), which we discuss in Section 12.2.

It is important to distinguish between zLR (the best possible lower bound achievable by
Lagrangian relaxation) and zLR(λ) (the lower bound achieved at a given iteration of the
procedure). At any given iteration, we have

zLR(λ) ≤ zLR = zLP ≤ z∗ ≤ z(x, y), (8.20)

where zLR(λ) is the objective value of the Lagrangian subproblem for the particular λ at
the current iteration, and z(x, y) is the objective value of the particular feasible solution
(x, y) found at the current iteration.

8.2.3.4 Upper Bound Now that we’ve obtained a lower bound on the optimal objec-
tive of (UFLP) using (UFLP-LRλ), we need to find an upper bound. Upper bounds come
from feasible solutions to (UFLP). How can we build good feasible solutions? One way
would be using construction and/or improvement heuristics like those described in Section
8.2.5. But we’d like to take advantage of the information contained in the solutions to
(UFLP-LRλ); that is, we’d like to convert a solution to (UFLP-LRλ) into one for (UFLP).
Remember that solutions to (UFLP-LRλ) consist of a set of facility locations (identified by
the x variables) and a set of assignments (identified by the y variables). It is the y variables
that make the solution infeasible for (UFLP), since customers might be assigned to 0 or
more than 1 facility. (If every customer happens to be assigned to exactly 1 facility, the
solution is also feasible for (UFLP). In fact, it is optimal for (UFLP) since it has the same
objective value for both (UFLP-LRλ), which provides a lower bound, and (UFLP), which
provides an upper bound. But we can’t expect this to happen in general.)

Generating a feasible solution for (UFLP) is easy: We just open the facilities that are
open in the solution to (UFLP-LRλ) and then assign each customer to its nearest open
facility. (See Algorithm 8.2.) The resulting solution is feasible and provides an upper
bound on the optimal objective value of (UFLP). Sometimes an improvement heuristic
(like the swap or neighborhood search heuristics discussed in Section 8.3.2.3) is applied to
each feasible solution found, but this is optional.
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Algorithm 8.2 Get feasible solution for UFLP from solution to (UFLP-LRλ)

1: input location vector x̄ for (UFLP-LRλ)

2: x← x̄ . Open facilities in lower bound solution
3: for all i ∈ I do . Main loop
4: j∗ ← argminx̄j=1{cij} . Find nearest open facility to i
5: yij∗ ← 1 . Assign i to j∗

6: for all j ∈ J , j 6= j∗ do
7: yij ← 0

8: end for
9: end for

10: z(x, y)←
∑
j∈J fjxj +

∑
i∈I
∑
j∈J hicijyij . Calculate obj. function

11: return x, y, z(x, y)

8.2.3.5 Updating the Multipliers Each λ gives a single lower bound and (using
the method in Section 8.2.3.4) a single upper bound. The Lagrangian relaxation process
involves many iterations, each using a different value of λ, in the hopes of tightening the
bounds. It would be impractical to try every possible value of λ; we want to choose λ
cleverly.

Using the logic of Section D.1.3, if λi is too small, there’s no real incentive to set the
yij variables to 1 since the penalty will be small. On the other hand, if λi is too large, there
will be an incentive to set lots of yij variables to 1, making the term inside the parentheses
negative and the overall penalty large and negative. (Remember that (UFLP-LRλ) is a
minimization problem.) By changing λi, we’ll encourage fewer or more yij variables to
be 1.

So:

• If
∑
j∈J yij = 0, then λi is too small; it should be increased.

• If
∑
j∈J yij > 1, then λi is too large; it should be decreased.

• If
∑
j∈J yij = 1, then λi is just right; it should not be changed.

Here’s another way to see the effect of changing λi. Remember that if xj = 1 in the
solution to (UFLP-LRλ), yij will be set to 1 if

hicij − λi < 0.

Increasing λi makes this hold for more facilities j, while decreasing it makes it hold for
fewer.

There are several ways to make these adjustments to λ. Perhaps the most common
is subgradient optimization, discussed in Section D.1.3. For the UFLP, the step size at
iteration t (denoted ∆t) is given by

∆t =
αt(UB− zLR(λt))∑
i∈I

(
1−

∑
j∈J yij

)2 , (8.21)

where zLR(λt) is the lower bound found at iteration t, UB is the best upper bound found
(i.e., the objective value of the best feasible solution found so far), and αt is a constant
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that is generally set to 2 at iteration 1 and divided by 2 after a given number (say 20)
of consecutive iterations have passed during which the best known lower bound has not
improved. The step direction for iteration i is simply given by

1−
∑
j∈J

yij

(the violation in the constraint).
To obtain the new multipliers (call them λt+1) from the old ones (λt), we set

λt+1
i = λti + ∆t

1−
∑
j∈J

yij

 . (8.22)

Note that since ∆t > 0, this follows the rules given above: If
∑
j∈J yij = 0, then λi

increases; if
∑
j∈J yij > 1, then λi decreases; and if

∑
j∈J yij = 1, then λi stays the

same.
The process of solving (UFLP-LRλ), finding a feasible solution, and updating λ is

continued until some of criteria are met. (See Section D.1.4.)
At the first iteration, λ can be initialized using a variety of ways: For example, set

λi = 0 for all i, set it to some random number, or set it according to some other ad-hoc
rule.

If the Lagrangian procedure stops before the upper and lower bounds are sufficiently
close to each other, we can use branch-and-bound to close the optimality gap; see Sec-
tion D.1.6. The Lagrangian procedure is summarized in Section D.1.7.

8.2.3.6 Summary The Lagrangian relaxation method for the UFLP is summarized in
the pseudocode in Algorithm 8.3. In the pseudocode, (x̄, ȳ) represents an optimal solution
to (UFLP-LRλ) , (x, y) represents a feasible solution to (UFLP), and (xUB, yUB) represents
the current best solution for (UFLP). Note that in step 29, other termination criteria can be
used, instead or in addition.

� EXAMPLE 8.1

The instance pictured in Figure 8.1 is the 88-node instance from Daskin (1995). It
consists of the capitals of the 48 continental United States, plus Washington, DC,
plus the 50 largest cities in the 1990 US census, minus duplicates. In this instance,
I = J : Every node is both a customer and a potential facility site. Demands hi are
set equal to the city populations divided by 1000; fixed costs fj are set equal to the
median home value; and transportation costs cij are set equal to 0.5 times the great
circle distance between i and j. (The full data set, along with other related data sets,
are available on the book’s companion web site.)

The optimal solution locates five facilities, in Houston, TX; Philadelphia, PA;
Detroit, MI; Fresno, CA; and Topeka, KS. The total cost of this solution is $783,813,
with fixed and transportation costs of $521,713 and $262,100, respectively. We
obtained this solution using the Lagrangian relaxation algorithm discussed in this
section, implemented in MATLAB, with a total CPU time of less than 2 seconds on
a laptop computer.

In case you’re curious: The 9-facility solution shown in Figure 8.1(a) has a total
cost of $1,480,059 ($954,600 fixed cost plus $525,459 transportation cost), while the
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Algorithm 8.3 Lagrangian relaxation algorithm for UFLP
1: input initial multipliers λ1, initial constant α0, α-halving constant γ, optimality toler-

ance κ, iteration limit ζ
2: t← 1, LB← −∞, UB←∞, NonImprCtr← 0 . Initialization
3: repeat . Main loop
4: solve (UFLP-LRλ) using Algorithm 8.1 with input λt . Lower bound
5: (x̄, ȳ), zLR(λt)← output of Algorithm 8.1
6: if zLR(λt) > LB then . Compare to best-known lower bound
7: LB← zLR(λt)

8: NonImprCtr← 0 . Reset non-improvement counter
9: else

10: NonImprCtr← NonImprCtr + 1 . Increment non-impr. counter
11: if NonImprCtr = γ then . Check whether to halve α
12: αt ← αt−1/2

13: NonImprCtr← 0

14: else
15: αt ← αt−1

16: end if
17: end if
18: get feasible solution from Algorithm 8.2 with input x̄ . Upper bound
19: x, y, z(x, y)← output of Algorithm 8.2
20: if z(x, y) < UB then . Compare to best-known upper bound
21: UB← z(x, y)

22: (xUB, yUB)← (x, y)

23: end if
24: ∆t ← αt(UB− zLR(λt))/

∑
i∈I

(
1−

∑
j∈J ȳij

)2

. Update multipliers
25: for all i ∈ I do
26: λt+1

i ← λti + ∆t
(

1−
∑
j∈J ȳij

)
27: end for
28: t← t+ 1 . Increment t
29: until UB− zLR(λt) ≤ κ or t > ζ . Check for termination
30: return xUB, yUB, UB
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Figure 8.2 Optimal solution to 88-node UFLP instance. Total cost = $783,813.

3-facility solution in Figure 8.1(b) has a total cost of $1,238,911 ($512,800 fixed cost
plus $726,111 transportation cost).

�

8.2.3.7 Variable Fixing Sometimes the Lagrangian relaxation procedure terminates
with the lower and upper bounds farther apart than we’d like. Before executing branch-
and-bound to close the gap, we may be able to fix some of the xj variables to 0 or 1 based
on the facility benefits and the current bounds. The variables can be fixed permanently,
throughout the entire branch-and-bound tree. The more variables we can fix, the faster the
branch-and-bound procedure is likely to run. Essentially, the method works by “peeking”
down a branch of the tree and running a quick check to determine whether the next node
down the branch would be fathomed.

Theorem 8.3 Let UB be the best upper bound found during the Lagrangian procedure, let
λ be a given set of Lagrange multipliers that were used during the procedure, let βj be the
facility benefits (8.13) under λ, and let zLR(λ) be the lower bound (the optimal objective
value of (UFLP-LRλ)) under λ. If xj = 0 in the solution to (UFLP-LRλ) and

zLR(λ) + βj + fj > UB, (8.23)

then xj = 0 in every optimal solution to (UFLP). If xj = 1 in the solution to (UFLP-LRλ)

and
zLR(λ)− (βj + fj) > UB, (8.24)

then xj = 1 in every optimal solution to (UFLP).

Proof. Suppose we were to branch on xj , setting xj = 0 for one child node and xj = 1

for the other, and suppose we use λ as the initial multipliers for the Lagrangian procedure
at each child node.
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At the “xj = 1” node, the same facilities would be open as in the root-node solution,
except that now facility j is also open. The cost of this solution for (UFLP-LRλ) is the cost
of the original solution, zLR(λ), plus βj +fj . Therefore, we would obtain zLR(λ)+βj +fj
as a lower bound at this node. Since this lower bound is greater than the best-known upper
bound, we would fathom the tree at this node, and the optimal solution would be contained
in the other half of the tree—the “xj = 0” half.

A similar argument applies to the second case. At the “xj = 0” node, we obtain a lower
bound of zLR(λ) − (βj + fj), and if this is greater than UB, we fathom the tree at this
node.

Note that, in the second part of the theorem, if xj = 1 then, by (8.14), βj + fj < 0,
which is why the left-hand side of (8.24) might be greater than UB.

This trick has been applied successfully to a variety of facility location problems; see,
e.g., Daskin et al. (2002) and Snyder and Daskin (2005). Typically, the conditions in
Theorem 8.3 are checked twice after processing has terminated at the root node, once using
the most recent multipliers λ and once using the multipliers that produced the best-known
lower bound. The time required to check these conditions for every j is negligible.

8.2.3.8 Alternate Relaxation As stated above, we could have chosen instead to relax
constraints (8.5). In this case, the Lagrangian subproblem becomes

(UFLP-LRλ) minimize
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

hicijyij +
∑
i∈I

∑
j∈J

λij (xj − yij)

=
∑
j∈J

(∑
i∈I

λij + fj

)
xj +

∑
i∈I

∑
j∈J

(hicij − λij)yij (8.25)

subject to
∑
j∈J

yij = 1 ∀i ∈ I (8.26)

xj ∈ {0, 1} ∀j ∈ J (8.27)

yij ≥ 0 ∀i ∈ I, ∀j ∈ J (8.28)

Now every customer must be assigned to a single facility, but that facility need not be open.
There are no constraints linking the x and y variables, so the problem can be written as two
separate problems:

(x-problem) minimize
∑
j∈J

(∑
i∈I

λij + fj

)
xj (8.29)

subject to xj ∈ {0, 1} ∀j ∈ J (8.30)

(y-problem) minimize
∑
i∈I

∑
j∈J

(hicij − λij)yij (8.31)

subject to
∑
j∈J

yij = 1 ∀i ∈ I (8.32)

yij ≥ 0 ∀i ∈ I, ∀j ∈ J (8.33)
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To solve the x-problem, we simply set xj = 1 for all j such that
∑
i∈I λij + fj < 0. (Note

that since the constraints relaxed are ≤ constraints, λ ≤ 0; see Section D.1.5.1.) To solve
the y-problem, for each i, we set yij = 1 for the j that minimizes hicij − λij . The rest of
the procedure is similar, except that the step-size calculation becomes

∆t =
αt(UB− zLR(λt))∑
i∈I
∑
j∈J(xj − yij)2

(8.34)

and the multiplier-updating formula becomes

λt+1
ij = λtij + ∆t(xj − yij). (8.35)

In practice, relaxing the assignment constraints (8.4) tends to work better than relaxing
the linking constraints (8.5). One reason for this is that the former relaxation involves
relaxing fewer constraints, which generally makes it easier to find good multipliers using
subgradient optimization. Another reason is that since yij will be 0 for many j that are
open, there will be many constraints such that yij < xj . It is often difficult to get good
results when relaxing inequality constraints if many of them have slack.

8.2.4 The DUALOC Algorithm

The DUALOC algorithm was proposed by Erlenkotter (1978). It is a dual-ascent or primal–
dual algorithm that constructs good feasible solutions for the dual of the LP relaxation of
(UFLP) and then uses these to develop good (often optimal) integer solutions for the primal,
i.e., for (UFLP) itself.

We form the LP relaxation of (UFLP), denoted (UFLP-P), by replacing constraints (8.6)
with

xj ≥ 0 ∀j ∈ J. (8.36)

Let vi andwij be the dual variables for constraints (8.4) and (8.5), respectively. In addition,
for notational convenience, let ĉij ≡ hicij . Then the LP dual is given by

(UFLP-D) maximize
∑
i∈I

vi (8.37)

subject to
∑
i∈I

wij ≤ fj ∀j ∈ J (8.38)

vi − wij ≤ ĉij ∀i ∈ I, ∀j ∈ J (8.39)

wij ≥ 0 ∀i ∈ I, ∀j ∈ J (8.40)

The complementary slackness conditions for (UFLP-P) and (UFLP-D) are given by

x∗j

(
fj −

∑
i∈I

w∗ij

)
= 0 (8.41)

y∗ij
[
ĉij − (v∗i − w∗ij)

]
= 0 (8.42)

v∗i

1−
∑
j∈J

y∗ij

 = 0 (8.43)
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w∗ij
(
y∗ij − x∗j

)
= 0 (8.44)

Suppose we are given arbitrary values of the variables vi. Then either it is feasible to
set wij as small as possible, i.e.,

wij = max{0, vi − ĉij} (8.45)

for all i and j, or there are no feasible wij values (for the given vi values). Moreover,
since wij does not appear in the objective function, any feasible wij (for fixed vi) is
acceptable. Thus, we assume that (8.45) holds and substitute this relationship into (UFLP-
D). Constraints (8.39) and (8.40) are automatically satisfied when (8.45) holds; therefore,
we obtain the following condensed dual, which uses only vi and not wij :

(UFLP-CD) maximize
∑
i∈I

vi (8.46)

subject to
∑
i∈I

max{0, vi − ĉij} ≤ fj ∀j ∈ J (8.47)

Substituting (8.45) into the complementary slackness conditions (8.41)–(8.44), we obtain

x∗j

(
fj −

∑
i∈I

max{0, v∗i − ĉij}

)
= 0 (8.48)

y∗ij [ĉij − (v∗i −max{0, v∗i − ĉij})] = 0 (8.49)

v∗i

1−
∑
j∈J

y∗ij

 = 0 (8.50)

max{0, v∗i − ĉij}
(
y∗ij − x∗j

)
= 0 (8.51)

Note that (UFLP-CD) is not an LP, since the max{·} function is nonlinear. One could
develop a customized simplex-type algorithm to solve it—an approach like this is proposed
by Schrage (1978) for the p-median problem, among others—but instead, the DUALOC
approach exploits the structure of (UFLP-CD) to find near-optimal solutions directly.

The DUALOC algorithm consists of two main procedures. The first is a dual-ascent
procedure that generates feasible dual solutions for (UFLP-CD) and corresponding primal
integer solutions for (UFLP). The second is a dual-adjustment procedure that attempts to
reduce complementary slackness violations (thereby improving the primal or dual solutions,
or both) by adjusting the dual solution iteratively and calling the dual-ascent procedure as
a subroutine. If these procedures terminate without an optimal integer solution to (UFLP),
branch-and-bound is used to close the optimality gap.

8.2.4.1 Primal–Dual Relationships The dual-ascent procedure generates both a
dual solution v+ for (UFLP-CD) and a set J+ ⊆ J of facility locations such that the
following properties hold:

• Primal–Dual Property 1 (PDP1):
∑
i∈I max{0, v+

i − ĉij} = fj for all j ∈ J+

• Primal–Dual Property 2 (PDP2): For each i ∈ I , there exists at least one j ∈ J+

such that ĉij ≤ v+
i
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Such a solution can easily be converted to an integer primal solution: The set J+ provides
the x variables for (UFLP), and, as in the Lagrangian relaxation procedure (Section 8.2.3.4),
the y variables can be set by assigning each customer to its nearest open facility. That is,
an integer primal solution for (UFLP) can be obtained from J+ as follows:

x+
j =

{
1, if j ∈ J+

0, otherwise
(8.52)

y+
ij =

{
1, if j = j+(i)

0, otherwise,
(8.53)

where j+(i) ≡ argmink∈J+{ĉik}.
The primal–dual solution (x+, y+, v+) satisfies three of the four complementary slack-

ness conditions: (8.48) is satisfied because of PDP1, and (8.50) is satisfied because each i
is assigned to exactly one j in (8.53). To see why (8.49) is satisfied, suppose y+

ij = 1, i.e.,
j = j+(i). By PDP2, ĉij ≤ v+

i for some j ∈ J+ and ĉi,j+(i) ≤ ĉij by the definition of
j+(i), so

y+
i,j+(i)

[
ĉi,j+(i) −

(
v+
i −max{0, v+

i − ĉi,j+(i)}
)]

=ĉi,j+(i) −
(
v+
i − (v+

i − ĉi,j+(i))
)

=0.

Thus, (x+, y+) and v+ are optimal for (UFLP-P) and (UFLP-CD), respectively, if and only
if (8.51) holds. Moreover, since (x+, y+) is integer, if it is optimal for (UFLP-P), then it is
also optimal for (UFLP). (It may seem strange to hope that the integer solution (x+, y+) is
optimal for the LP relaxation (UFLP-P). But remember that (UFLP-P) often has all-integer
solutions “for free” (see page 272), and is usually very tight when it is not all-integer so
that good integer solutions to (UFLP-P) are likely to be good also for (UFLP).)

Condition (8.51) may be violated when ĉij < v+
i for some j 6= j+(i), since in that

case y+
ij = 0 but x+

j = 1. This suggests that complementary slackness violations can be
reduced by focusing on the v+

i − ĉij terms for j 6= j+(i), and indeed those terms directly
affect the duality gap, as the next lemma attests.

Lemma 8.4 Let z+
P be the objective function value of (UFLP-P) under the solution

(x+, y+), and let z+
D be the objective function value of (UFLP-CD) under the solution

v+. Then
z+
P − z

+
D =

∑
i∈I

∑
j∈J+

j 6=j+(i)

max{0, v+
i − ĉij}.

Proof. Omitted; see Problem 8.40.

The dual-ascent procedure (Section 8.2.4.2) generates v+ and J+. The dual-adjustment
procedure (Section 8.2.4.3) then attempts to improve the solutions by reducing v+

i − ĉij
terms for j 6= j+(i).

8.2.4.2 The Dual-Ascent Procedure The dual-ascent procedure constructs a dual
solution v+ and a facility set J+ such that properties PDP1 and PDP2 hold for v+ and J+.
The procedure begins by constructing an easy feasible solution in which the vi variables
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are small (in order to ensure feasibility with respect to (8.47)) and then increasing the vi
one by one (in order to improve the objective (8.46)).

For each i ∈ I , sort the costs ĉij in nondecreasing order and let ĉki be the kth of these
costs, for k = 1, . . . , |J |. Define ĉ|J|+1

i ≡ ∞. Then an initial solution can be generated
by setting vi = ĉ1i for all i ∈ I; this solution is feasible for (UFLP-CD). (Why?) Actually,
any initial feasible solution will work, but this one is easy to obtain.

The dual-ascent procedure is given in Algorithm 8.4. In line 1, we initialize vi to
ĉ1i and initialize the index ki to 2. Throughout the algorithm, ki equals the smallest
k such that vi � ĉki ; as the vi increase in the algorithm, so do the ki. In line 2, sj
represents the slack in constraint (8.47) for facility j; since vi equals the smallest ĉij ,
sj = fj −

∑
i∈I max{0, vi − ĉij} = fj . The algorithm loops through the customers; for

each customer i, we would like to set vi to the next larger value of ĉij , i.e., to ĉkii . However,
increasing vi increases the left-hand side of (8.47) for all j such that vi − ĉij ≥ 0. (These
j are the facilities whose costs are ĉ1i , . . . , ĉ

ki−1
i .) Therefore, line 6 calculates the largest

allowable increase in vi without violating (8.47) for any j. Note that we only consider
j such that vi − ĉij ≥ 0; for the other j, the left-hand sides of (8.47) will not increase
because we will not increase vi past ĉkii , as enforced by lines 7–8. Lines (9)–(10) update
the IMPROVED flag and the index ki. (The IMPROVED flag is only set to TRUE if we were
able to increase vi all the way to ĉkii for some i, not for smaller increases.) Lines 12–14
adjust the slack for all facilities whose left-hand sides of (8.47) will change, and line 15
performs the update to vi. The process repeats until vi cannot be increased to ĉkii for any
customer. Line 18 sets v+ equal to the final value of v and builds the set J+, and the
algorithm returns both these values.

Algorithm 8.4 Dual-ascent procedure for DUALOC algorithm
1: vi ← ĉ1i , ki ← 2 ∀i ∈ I . Initialization
2: sj ← fj ∀j ∈ J
3: repeat . Improvement
4: IMPROVED← FALSE

5: for all i ∈ I do
6: ∆i ← minj∈J:vi−ĉij≥0{sj} . Calculate allowable increase in vi
7: if ∆i ≥ ĉkii − vi then . Did we get all the way to ĉkii ?
8: ∆i ← ĉkii − vi
9: IMPROVED← TRUE

10: ki ← ki + 1

11: end if
12: for all j ∈ J s.t. vi − ĉij ≥ 0 do
13: sj ← sj −∆i . Adjust slack
14: end for
15: vi ← vi + ∆i . Adjust vi
16: end for
17: until not IMPROVED . Stop when no improvement
18: v+ ← v, J+ ← {j ∈ J |sj = 0} . Build solutions to return
19: return v+, J+

Proposition 8.5 The v+ and J+ returned by Algorithm 8.4 satisfy PDP1 and PDP2.
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Proof. PDP1: It suffices to show that, throughout the progression of the algorithm,
sj = fj −

∑
i∈I max{0, vi − ĉij}. (We use v to refer to the values set during the course

of the algorithm, and v+ to refer to the final values returned by the algorithm.) Clearly,
this holds after line 2. In the main loop, each time vi increases by ∆i for any i, then
either vi − ĉij ≥ 0, in which case we reduce sj by ∆i; or vi − ĉij < 0, in which case
we increase vi to at most ĉij (in line 8), so fj − max{0, vi − ĉij} does not change,
and neither does sj . In other words, at the end of each iteration through the main loop,
sj = fj −

∑
i∈I max{0, vi − ĉij}.

PDP2: Suppose, for a contradiction, that there exists an i ∈ I such that ĉij > v+
i for

all j ∈ J+. This means that sj > 0 for all j such that v+
i − ĉij ≥ 0. Then at line 6, ∆i

would have been set to a positive number, and at line 15, vi would have been increased by
∆i. This contradicts our assumption that v+ is the solution returned by the algorithm.

If there is a strict subset of J+ that still satisfies PDP1 and PDP2, it is better to use that
subset. To see why, suppose there is a facility j′ with sj′ = 0 that is not included in J+.
PDP1 does not prohibit this situation; it prohibits the converse. Would it be better to add j′

to J+? Lemma 8.4 suggests the answer is no: For each i ∈ I , either ĉij′ < ĉi,j+(i) (so j′

becomes the new closest facility to i), in which case z+
P increases by v+

i − ĉi,j+(i) > 0; or
ĉij′ ≥ ĉi,j+(i), in which case z+

P increases by max{0, vi − ĉij′} ≥ 0. Therefore, we want
J+ to be minimal in the sense that no facility can be removed from it without violating
PDP2. Of course, finding a minimal J+ is itself a combinatorial problem. Erlenkotter
(1978) suggests a simple heuristic for finding such a set, but to keep things simple, we’ll
just assume that J+ contains all j for which sj = 0.

You might be wondering why we limit ∆i to ĉkii − vi in line 8, since we want vi to be as
large as possible, and we can leave ∆i at the value set in line 6 while maintaining feasibility.
Recall that the complementary slackness condition (8.51) is violated when ĉij < vi and j
is open but i is not assigned to j. There tend to be fewer of these violations when we spread
the ĉij < vi among the customers i rather than having a few customers with very large vi
values.

Once we have J+, we can generate an integer primal solution (x+, y+) using (8.52) and
(8.53). If (x+, y+, v+) satisfies (8.51) for all i and j, then the complementary slackness
conditions are all satisfied and (x+, y+) is optimal. If, instead, (8.51) is violated for some
i and j, then we attempt to reduce these violations using the dual-adjustment procedure,
described in the next section.

� EXAMPLE 8.2

Figure 8.3 depicts an instance of the UFLP with four customers (marked as circles)
and three potential facility sites (marked as squares). Fixed costs fj are marked next
to each facility. Each customer has a demand of hi = 1, and transportation costs are
equal to the Manhattan-metric distance between the facility and customer. We will
use DUALOC’s dual-ascent procedure (Algorithm 8.4) to find a feasible solution for
this instance.

First, we sort the transportation costs for each customer. In Figure 8.4, for each
customer, each facility is positioned based on its distance from the customer. The
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Figure 8.3 Customer and facility layout for Example 8.2.
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Figure 8.4 Sorted facility positions for Example 8.2.
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algorithm begins by setting vi ← ĉ1i and ki = 2 for all i, and sj ← fj for all j:

v1 = ĉ1A = 2 k1 = 2 sA = 5

v2 = ĉ2C = 1 k2 = 2 sB = 4

v3 = ĉ3B = 4 k3 = 2 sC = 7

v4 = ĉ4B = 3 k4 = 2

(You can imagine vi as being positioned at the relevant spot in Figure 8.4.) Next the
algorithm searches for vi values to increase. One could choose to loop through the
customers in any order; we’ll go in increasing order to keep things simple. For i = 1,
facility A is the only j for which v1 − ĉ1j ≥ 0, so we have ∆1 ← sA = 5. Since
∆1 > ĉ1B − v1 = 3, we set ∆1 ← 3, k1 ← 3, sA ← 2, and v1 ← 5. Similarly, for
i = 2, ∆2 ← sC = 7; since ∆2 > ĉ2C − v2 = 5, we set ∆2 ← 5, k2 ← 3, sC ← 2,
and v2 ← 6. For i = 3: ∆3 ← 2, k3 ← 3, sB ← 2, and v3 ← 6. Finally, for i = 4:
∆4 ← 1, k4 ← 3, sB ← 1, and v4 ← 4. At the end of this iteration, we have:

v1 = 5 k1 = 3 sA = 2

v2 = 6 k2 = 3 sB = 1

v3 = 6 k3 = 3 sC = 2

v4 = 4 k4 = 3

Since ∆i reached ĉkii − vi for at least one i (actually, for all of them), we repeat for
another iteration. For i = 1: ∆1 ← min{sA, sB} = 1 since v1 − ĉ1j ≥ 0 for both
j = A and B. Since ∆1 < ĉk1

1 − v1, we leave ∆1 and k1 where they are, and then set
sA ← 1, sB ← 0, and v1 ← 6. For i = 2: ∆2 ← min{sA, sC} = 1 since v2 − ĉ2j
for both j = A and C. Since ∆2 = ĉk2

2 − v2, we set k2 ← 4, sA ← 0, sC ← 1, and
v2 ← 7. For i = 3 and 4, we have ∆3, ∆4 ← 0 (since sB = 0), so there is nothing
to do. At the end of this iteration, we have:

v1 = 6 k1 = 3 sA = 0

v2 = 7 k2 = 4 sB = 0

v3 = 6 k3 = 3 sC = 1

v4 = 4 k4 = 3

Since ∆2 reached ĉk2
2 −v2, we repeat for another iteration. However, at this iteration,

we cannot increase vi for any i since sA = sB = 0, so the repeat · · · until loop
terminates.

The algorithm returns v+ = (6, 7, 6, 4) and J+ = {A,B}. The feasible primal
solution obtained from (8.52)–(8.53) is x+ = (1, 1, 0) and y+

1A = y+
2A = y+

3B =

y+
4B = 1. The dual solution v+ has objective value z+

D = 23 and the primal solution
has objective value z+

P = 24. The fact that there is a duality gap indicates that either
we have not found an optimal solution to the dual LP, or we have not found an optimal
solution to the primal IP, or there is an integrality gap, i.e., the LP relaxation has a
fractional optimum.

We can’t tell which—yet. To resolve this question, we would run the dual-
adjustment procedure. For this instance, the dual-adjustment procedure would yield
no improvement to the solution above. We would then use branch-and-bound to close
the duality gap, and we would find that there is an optimal integer solution in which
we locate only at facility B and to assign all customers to it, for a total cost of 23.
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Therefore, the dual solution found by the dual-ascent procedure was optimal, but the
corresponding primal solution was not. �

8.2.4.3 The Dual-Adjustment Procedure The dual-adjustment procedure identi-
fies customers and facilities that violate the complementary slackness condition (8.51) and
reduces these violations by decreasing the dual variable vi for some i ∈ I . Doing so frees
up slack on some of the binding constraints (8.47), which allows us to increase vi′ for other
i′ ∈ I . Each unit of decrease in vi allows one unit of increase in vi′ (since the coefficients in
(8.51) equal 1). The dual objective value will increase if more than one vi′ can be increased
in this way and will stay the same if only one can be increased. In either case, we may
obtain a new (potentially better) primal solution since the set J+ might change.

We face three questions: (1) Which dual variables vi are candidates for reduction? (2)
Once we reduce vi, adding slack to some of the constraints, which vi′ are candidates for
increase? (3) How much should we increase each of the candidate vi′? We’ll answer each
of these questions in turn.

Which vi to decrease? A customer i is a candidate for reduction in vi if it violates the
complementary slackness condition (8.51). The next lemma characterizes those customers
in terms of v and ĉ.

Lemma 8.6 Let v be a dual solution and J+ be a facility set that satisfy PDP1 and PDP2,
and let (x+, y+) be the corresponding feasible solution calculated from (8.52)–(8.53).
Then i ∈ I violates (8.51) if and only if vi > ĉij for at least two j ∈ J+.

Proof. i ∈ I violates (8.51) if and only if there is some j′ ∈ J+ such that vi > ĉij′ but
y+
ij′ = 0. This happens if and only if i is assigned to a different j′′ ∈ J+, i.e., if and only

if there is a j′′ ∈ J+ such that ĉij′′ ≤ ĉij′ . This happens if and only if vi ≥ ĉij for at least
two j ∈ J+.

Therefore, a customer i is a candidate for reduction in vi if vi > ĉij for at least two
j ∈ J+. The algorithm reduces it only as far as the next-smaller ĉij ; that is, it reduces it to
ĉ−i , where ĉ−i is the largest ĉij (among all j ∈ J) that is strictly less than vi:

ĉ−i = max
j∈J
{ĉij |vi > cij}.

Which vi′ to increase? Suppose vi > ĉij for at least two j ∈ J+ and so we reduce vi.
This adds slack to (8.47) for all j ∈ J such that vi > ĉij . Lemma 8.6 implies that two
of these constraints correspond to j+(i) and j++(i), where j++(i) is the second-closest
facility in J+ to i. (Recall that j+(i) is the closest.) Suppose there is some i′ ∈ I for
which there is only one j ∈ J+ such that vi′ ≥ ĉi′j . We’ll say that i′ is solely constrained
by j in this case, because j is the only facility preventing an increase in vi′ . If i′ is solely
constrained by j+(i) or j++(i), then a decrease in vi can be matched by an increase vi′ .
The algorithm therefore focuses on such i′, attempting to increase their vi′ values first. It
also uses the “solely constrained” test to identify candidates for reduction in vi: If there
are no i′ that are solely constrained by j+(i) or j++(i), the algorithm does not consider
reducing vi, even if i is a candidate for a decrease in vi as described above.

How much to increase vi′? Deciding which vi′ to increase, and by how much, is precisely
the intent of the dual-ascent procedure! Therefore, the dual-adjustment procedure uses the
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dual-ascent procedure as a subroutine—first with the set of customers restricted to the
candidates for increases in vi′ , then with i added, and then with the full customer set I .

The dual-adjustment procedure is described in pseudocode in Algorithm 8.5. The
algorithm loops through the customers to identify candidates for reducing vi. A customer
is a candidate if (1) it violates the complementary slackness condition (8.51) (this check
occurs in line 3, making use of Lemma 8.6), and (2) there are at least two customers that
are solely constrained by either j+(i) or j++(i) (this check occurs in lines 4–5). Assuming
customer i passes both checks, lines 6–8 increase the slack for all j for which vi > ĉij , and
line 9 reduces vi to the next smallest ĉij value.

Next, the algorithm calls the dual-ascent procedure to decide how to use up the newly
created slack. Line 10 restricts I to the customers that are solely constrained by j+(i)

or j++(i); line 11 adds i itself to this set; and line 12 runs the dual-ascent algorithm on
the entire set I in order to ensure a valid solution v+. If vi has increased, the adjustment
procedure repeats (for the same i), and this continues until there is no improvement or vi
reaches its original value. At that point, we move on to the next customer. The algorithm
terminates when all customers have been considered.

Algorithm 8.5 Dual-adjustment procedure for DUALOC algorithm
1: for all i ∈ I do . Loop through customers
2: repeat
3: if vi > ĉij for at least two j ∈ J+ then . Check for CSC violation
4: I+ ← {i′ ∈ I|i′ is solely constrained by j+(i) or j++(i)}
5: if I+ 6= ∅ then . Are there other vi′ we can increase?
6: for all j ∈ J s.t. vi > ĉij do
7: sj ← sj + vi − ĉ−i . Increase slack
8: end for
9: vi ← ĉ−i . Reduce vi

10: Run Alg. 8.4 with I restricted to I+ . Increase other vi′
11: Run Alg. 8.4 with I restricted to I+ ∪ {i}
12: Run Alg. 8.4 for full I
13: end if
14: end if
15: until no improvement in dual objective or vi has resumed its original value
16: end for

If the dual-ascent and dual-adjustment procedures result in primal and dual solutions
(v+, x+, y+) whose objective values are equal, then v+ is optimal for the dual LP and
(x+, y+) is optimal for the primal LP and IP. If the objectives are unequal, then a straight-
forward implementation of branch-and-bound can be used to close the optimality gap.
Erlenkotter (1978) reports excellent computational results for this method on several test
problems, typically with little or no branching required.

Körkel (1989) proposes computational improvements that speed the DUALOC algorithm
up considerably. DUALOC has been adapted to solve many other problems, such as the
p-median problem discussed in Section 8.3.2 (Galvão 1980, Nauss and Markland 1981),
the stochastic UFLP discussed in Section 8.6.2 (Mirchandani et al. 1985), the Steiner tree
problem (Wong 1984), and general supply chain network design problems (Balakrishnan
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et al. 1989). Goemans and Williamson (1997) discuss DUALOC and other primal–dual
algorithms.

8.2.5 Heuristics for the UFLP

Heuristics for combinatorial problems such as the UFLP fall into two categories: con-
struction heuristics and improvement heuristics. Construction heuristics build a feasible
solution from scratch, whereas improvement heuristics start with a feasible solution and
attempt to improve it.

The most basic construction heuristics for the UFLP are greedy heuristics such as the
“greedy-add” procedure (Kuehn and Hamburger 1963): Start with all facilities closed and
open the single facility that can serve all customers with the smallest objective function
value; then at each iteration open the facility that gives the largest decrease in the objective,
stopping when no facility can be opened that will decrease the objective. (See Algorithm 8.6.
In the algorithm, xk, yk, and zk refer to the solution when facility k is (temporarily) opened.)

Algorithm 8.6 Greedy-add heuristic for UFLP
1: xj ← 0 ∀ j ∈ J ; z ←∞ . Initialization
2: repeat
3: IMPROVED← FALSE

4: for all k ∈ J s.t. xk = 0 do . Main loop
5: xk ← x, yk ← y . Make copy of current solution
6: xkk ← 1 . Open facility k
7: for all i ∈ I do
8: j(i)← argminj∈J:xkj=1{cij} . Assign i to nearest open j

9: yki,j(i) ← 1

10: end for
11: zk ←

∑
j∈J fjx

k
j +

∑
i∈I
∑
j∈J hicijy

k
ij . Calculate cost if open j

12: end for
13: if mink∈J{zk} < z then . Compare to current cost
14: k∗ ← argmink∈J{zk} . Open best facility
15: xk∗ ← 1; y ← yk

∗
; z ← mink∈J{zk} . Update current solution

16: IMPROVED← TRUE

17: end if
18: until not IMPROVED
19: return x, y, z

� EXAMPLE 8.3

Let us apply the greedy-add heuristic to the UFLP instance in Example 8.1. We
begin with all facilities closed and, one by one, calculate the cost of opening each
facility and assigning all customers to it. For example, if we open facility 1 (New
York, NY), the single-facility solution costs $2,591,762 ($189,600 in fixed cost and
$2,402,162 in transportation cost). If we open facility 2 (Los Angeles, CA), the cost
is $3,638,252, and so on. The best and worst facilities to open, given that we only
open one facility, sorted by cost, are listed in Table 8.1, and a few of the corresponding
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Table 8.1 Greedy algorithm costs: Iteration 1.

Rank Facility # City, State Cost

1 34 St. Louis, MO 1,935,714
2 69 Springfield, IL 1,941,395
3 13 Indianapolis, IN 1,950,055
4 80 Jefferson City, MO 1,970,644
5 44 Cincinnati, OH 1,983,877

...
84 68 Salem, OR 3,911,294
85 11 San Jose, CA 3,913,554
86 81 Olympia, WA 3,991,424
87 14 San Francisco, CA 4,019,984
88 21 Seattle, WA 4,030,326

Table 8.2 Greedy algorithm costs: Iteration 2.

Rank Facility # City, State Cost

1 46 Fresno, CA 1,338,962
2 9 Phoenix, AZ 1,391,766
3 78 Carson City, NV 1,398,997
4 41 Sacramento, CA 1,414,305
5 33 Tucson, AZ 1,424,947

...
83 42 Minneapolis, MN 1,930,728
84 51 St. Paul, MN 1,933,291
85 69 Springfield, IL 1,936,401
86 66 Tallahassee, FL 1,945,300
87 45 Miami, FL 1,980,578

solutions are depicted in Figure 8.5. Since St. Louis, MO is the best city to open, we
open it and leave it open for the duration of the heuristic.

Next we determine the best second facility to open, given that St. Louis is also
open. The best and worst facilities are given in Table 8.2 and Figure 8.6.

So, we fix open the facilities in St. Louis, MO, and Fresno, CA. Proceeding in
this manner, in iteration 3, we open facility 5, in Philadelphia, PA, to obtain the
solution shown in Figure 8.7(a), which has a cost of 904,055. In iteration 4, we open
facility 28 in Fort Worth, TX, for a solution with a cost of 821,501 (Figure 8.7(b)).
In iteration 5, we open facility 7 in Detroit, MI, for a solution with a cost of 793,443
(Figure 8.7(c)). In iteration 6, the best facility to open is facility 15 (Jacksonville,
FL), but the resulting solution has a cost of 807,938, which is greater than the cost
of the previous solution. Therefore, the heuristic terminates, returning the 5-facility
solution in Figure 8.7(c).

�
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(a) St. Louis, MO (cost = 1,935,714).

(b) Springfield, IL (cost = 1,941,395). (c) San Francisco, CA (cost = 4,019,984).

(d) Seattle, WA (cost = 4,030,326).

Figure 8.5 Considering each facility for iteration 1 of greedy algorithm for UFLP.
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(a) Fresno, CA (cost = 1,338,962).

(b) Phoenix, AZ (cost = 1,391,766). (c) Tallahassee, FL (cost = 1,945,300).

(d) Miami, FL (cost = 1,980,578).

Figure 8.6 Considering each facility for iteration 2 of greedy algorithm for UFLP, with facility in
St. Louis, MO, fixed open.
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(a) Iter. 3: Philadelphia, PA (cost = 904,055).

(b) Iter. 4: Fort Worth, TX (cost = 821,501). (c) Iter. 5: Detroit, MI (cost = 793,443).

Figure 8.7 Solutions from iterations 3, 4, and 5 of greedy algorithm for UFLP.

By assuming that the next facility to open will be the last, the greedy-add heuristic can
easily fall into a trap. For example, if it is optimal to open two facilities, the greedy-add
heuristic may first open a facility in the center of the geographical region, which then must
stay open for the second iteration, when in fact it is optimal to open one facility on each
side of the region.

A reverse approach is called the “greedy-drop” heuristic, which starts with all facilities
open and sequentially closes the facility that decreases the objective the most. It has similar
advantages and disadvantages as greedy-add.

One important improvement heuristic is the swap or exchange heuristic (Teitz and Bart
1968), which attempts to find a facility to open and a facility to close such that the new
solution has a smaller objective function value. For more on the swap heuristic, see
Section 8.3.2.3. Other procedures attempt to find closed facilities that can be opened to
reduce the objective function, or open facilities that can be closed.

The heuristics mentioned here have proven to perform well in practice, which means they
return good solutions and execute quickly. Metaheuristics have also been widely applied to
the UFLP. These include genetic algorithms (Jaramillo et al. 2002), tabu search (Al-Sultan
and Al-Fawzan 1999), and simulated annealing (Arostegui et al. 2006).

8.3 OTHER MINISUM MODELS

The UFLP is an example of a minisum location problem. Minisum models are so called
because their objective is to minimize a sum of the costs or distances between customers and
their assigned facilities (as well as possibly other terms, such as fixed costs). In contrast,
covering location problems are more concerned with the maximum distance, with the goal
of ensuring that most or all customers are located close to their assigned facilities.
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At the risk of over-generalizing, it can be said that minisum models are more commonly
applied in the private sector, in which profits and costs are the dominant concerns, and
covering models are most commonly applied in the public sector, in which service, fairness,
and equity are more important. For further discussion of this dichotomy, see Revelle et al.
(1970).

In this section, we discuss two other minisum models—the capacitated fixed-charge
location problem and the p-median problem. In Section 8.4, we discuss covering models.

8.3.1 The Capacitated Fixed-Charge Location Problem (CFLP)

In the UFLP, we assumed that there are no capacity restrictions on the facilities. Obviously,
this is an unrealistic assumption in many practical settings. The UFLP can be easily
modified to account for capacity restrictions; the resulting problem (not surprisingly) is
called the capacitated fixed-charge location problem, or CFLP. Suppose vj is the maximum
demand that can be served by facility j per year. The CFLP can be formulated as follows:

(CFLP) minimize
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

hicijyij (8.54)

subject to
∑
j∈J

yij = 1 ∀i ∈ I (8.55)

yij ≤ xj ∀i ∈ I, ∀j ∈ J (8.56)∑
i∈I

hiyij ≤ vj ∀j ∈ J (8.57)

xj ∈ {0, 1} ∀j ∈ J (8.58)

yij ≥ 0 ∀i ∈ I, ∀j ∈ J (8.59)

This IP is identical to (UFLP) except for the new capacity constraints (8.57). Sometimes
the following constraint is added, which says that the total capacity of the opened facilities
is sufficient to meet the total demand:∑

j∈J
vjxj ≥

∑
i∈I

hi. (8.60)

This constraint is redundant in the IP formulation but tightens some relaxations.
Many approaches have been proposed to solve this problem. We briefly outline a method

very similar to the method discussed for the UFLP. We relax the assignment constraints
(8.55) to obtain the following Lagrangian subproblem:

(CFLP-LRλ) minimize
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

hicijyij +
∑
i∈I

λi

1−
∑
j∈J

yij


=
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

(hicij − λi)yij +
∑
i∈I

λi (8.61)

subject to yij ≤ xj ∀i ∈ I, ∀j ∈ J (8.62)∑
i∈I

hiyij ≤ vj ∀j ∈ J (8.63)
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xj ∈ {0, 1} ∀j ∈ J (8.64)

yij ≥ 0 ∀i ∈ I, ∀j ∈ J (8.65)

As in the UFLP, this problem separates by j, but now computing the benefit βj is a little
more complicated because of the capacity constraint. In particular, for each j ∈ J , we
need to solve a problem of the form

(Pj) minimize βj =
∑
i∈I

aizi (8.66)

subject to
∑
i∈I

hizi ≤ v (8.67)

0 ≤ zi ≤ 1 ∀i ∈ I, (8.68)

where ai = hicij − λi, zi = yij , and v = vj . This is a continuous knapsack problem,
which can be solved efficiently by sorting the is so that

a1

h1
≤ a2

h2
≤ · · · ≤

a|I|

h|I|
.

(This sort order favors large negative values of ai and small positive values of hi.) We then
set zi = 1 for i = 1, . . . , r, where r is the largest number such that ar < 0 and

r∑
i=1

hi ≤ vj .

If r < |I|, we set zr+1 = (vj −
∑r
i=1 hi) /hr+1. Other aspects of the Lagrangian

procedure (finding upper bounds, subgradient optimization, branch-and-bound) are similar
to those discussed in Section 8.2.3, although the upper-bounding procedure must take into
account the capacity constraints.

Several other relaxations for the CFLP have been studied, often using slightly different
formulations from (CFLP). Davis and Ray (1969) solve the LP relaxation of the CFLP in
a branch-and-bound algorithm, as do Akinc and Khumawala (1977). Nauss (1978) and
Christofides and Beasley (1983) use Lagrangian relaxation, relaxing constraints (8.55),
similar to the method outlined above. Klincewicz and Luss (1986) relax the capacity con-
straints (8.57) to obtain a UFLP. Van Roy (1986) also relaxes (8.57) but rather than using
standard Lagrangian relaxation, he uses cross-decomposition, a hybrid of Lagrangian re-
laxation and Benders decomposition. Barcelo et al. (1991) use variable splitting (Guignard
and Kim 1987), also known as Lagrangian decomposition, a method in which some of the
variables are doubled, the new variables are forced equal to the original ones via a con-
straint, and that constraint is then relaxed using Lagrangian relaxation. Also see Geoffrion
and McBride (1978) and Cornuejols et al. (1991) for a discussion of the relative tightness
of the theoretical bounds from the various relaxations of the CFLP.

Generally, the optimal solution to (CFLP) will not have yij ∈ {0, 1} as in (UFLP).
(Why?) This means that some customers will receive product from more than one DC.
Sometimes it is important to prohibit this from happening by requiring yij ∈ {0, 1}; this is
called a single-sourcing constraint. The CFLP with single-sourcing constraints is harder
to solve because (Pj) becomes a 0–1 knapsack problem, which is NP-hard. On the other
hand, good algorithms exist for the knapsack problem, and since the knapsack problem
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does not have the integrality property, the Lagrangian bound will be tighter than the LP
bound. This highlights the important trade-off between the quality of the Lagrangian bound
and the ease with which the subproblem can be solved.

A closely related problem is the capacitated concentrator location problem (CCLP), in
which the demands hi are ignored in the objective function (or, equivalently, the transporta-
tion costs cij are divided by hi) but not in the capacity constraints. The CCLP features
prominently in the location-based heuristic for the vehicle routing problem (Section 11.3.3).
See Mirzaian (1985), Klincewicz and Luss (1986), and Gourdin et al. (2002).

8.3.2 The p-Median Problem (pMP)

In the UFLP, the fixed costs in the objective function prevent the model from opening too
many facilities. Another way to accomplish the same thing is simply to add a constraint that
explicitly limits the number of open facilities. This is the approach taken by the p-median
problem (pMP), which was introduced by Hakimi (1965).

Hakimi focused on problems on networks, in which the distances among nodes are
defined not by a geographical measure like Euclidean or great circle distances, but rather
on shortest-path distances along the edges of the network. (See Section 8.2.2.) His main
result, which has come to be known as the Hakimi property, is that there is always an
optimal solution consisting of nodes of the network rather than points along the edges. In
particular, suppose I = J are the nodes of the network. For any setX consisting of p points
on the network (either at the nodes or along the edges) and for any i ∈ I , define c(i,X)

to be the shortest-path distance from i to the nearest point in X . (This is a generalization
of the notation cij to consider distances to points that are not nodes.) Hakimi proved the
following:

Theorem 8.7 (Hakimi (1965)) There exists a set I∗p ⊆ I consisting of p nodes of the
network such that, for any set X consisting of p points on the network (nodes or edges),∑

i∈I
hic(i, I

∗
p ) ≤

∑
i∈I

hic(i,X).

In other words, there exists an optimal set that consists only of nodes. This allows us to
treat the problem as a discrete one consisting of a finite number of feasible solutions rather
than a continuous one with an infinite number. Hakimi solved the pMP using complete
enumeration of all subsets of p nodes, but of course this approach only works for small p
and |I|. Many more efficient algorithms have been proposed since Hakimi’s original work,
several of which we discuss below.

8.3.2.1 Formulation The pMP uses the same notation as the UFLP (Section 8.2.2),
plus the following:

Parameter
p = number of facilities to locate

The problem is formulated as follows:

(pMP) minimize
∑
i∈I

∑
j∈J

hicijyij (8.69)
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subject to
∑
j∈J

yij = 1 ∀i ∈ I (8.70)

yij ≤ xj ∀i ∈ I,∀j ∈ J (8.71)∑
j∈J

xj = p (8.72)

xj ∈ {0, 1} ∀j ∈ J (8.73)

yij ≥ 0 ∀i ∈ I, ∀j ∈ J (8.74)

The objective function (8.69) computes the transportation cost. (Often cij is defined as
distance, rather than per-unit cost, in which case the objective function is interpreted as
representing the demand-weighted distance.) Constraint (8.72) requires exactly p facilities
to be opened. This constraint could be written with a≤ instead of =, but since the objective
function decreases with the number of open facilities, the optimal solution under such a
constraint will always open exactly p facilities; therefore, the two forms of the constraint
are equivalent. The other constraints function the same as the corresponding constraints in
the (UFLP).

8.3.2.2 Exact Algorithms for the pMP The pMP is NP-hard for arbitrary p but is
polynomially solvable if p is fixed (Garey and Johnson 1979). This means that there exist
algorithms for which the worst-case running time is a polynomial function of the problem
size (|I|, |J |) but not of p. The pMP can also be solved in polynomial time for arbitrary p
when the underlying network is a tree (Kariv and Hakimi 1979b), i.e., when the distance
matrix is derived from shortest-path distances on a tree network. Despite its NP-hardness,
however, the pMP, like the UFLP, can be solved relatively efficiently, partly due to the fact
that its LP relaxation is typically quite tight (ReVelle and Swain 1970).

The Lagrangian relaxation procedure discussed in Section 8.2.3 can be easily modified
for the pMP (Cornuejols et al. 1977). Relaxing constraints (8.70), we obtain the following
Lagrangian subproblem:

(pMP-LRλ) minimize
∑
i∈I

∑
j∈J

hicijyij +
∑
i∈I

λi

1−
∑
j∈J

yij


=
∑
i∈I

∑
j∈J

(hicij − λi)yij +
∑
i∈I

λi (8.75)

subject to yij ≤ xj ∀i ∈ I, ∀j ∈ J (8.76)∑
j∈J

xj = p (8.77)

xj ∈ {0, 1} ∀j ∈ J (8.78)

yij ≥ 0 ∀i ∈ I, ∀j ∈ J (8.79)

The benefit of opening facility j is given by (8.13), exactly as in the UFLP. Then, we set
xj = 1 for the p facilities with the smallest βj (negative or positive). (Recall that for the
UFLP, we set xj = 1 if and only if βj + fj < 0.) Finally, we set yij = 1 if xj = 1 and
hicij − λi < 0. The optimal objective function value of the subproblem,

zLR(λ) =
∑
j∈J

βjxj +
∑
i∈I

λi,
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Figure 8.8 Optimal solution to 88-node pMP instance with p = 6. Total cost = $386,856.

provides a lower bound on the optimal objective function value of (pMP). Feasible solutions
can be found by assigning each customer to the nearest facility that is open in the solution to
the subproblem, and the corresponding objective function value provides an upper bound.
The Lagrange multipliers can be found using subgradient optimization (Section 8.2.3.5).
Branch-and-bound can then be used to close any remaining optimality gap.

� EXAMPLE 8.4

Return to the 88-node data set described in Example 8.1. The optimal solution to the
pMP with p = 6 is shown in Figure 8.8. This solution locates facilities in New York,
NY; Los Angeles, CA; Chicago, IL; Fort Worth, TX; Oakland, CA; and Montgomery,
AL, with a total cost of $386,856. As in Example 8.1, MATLAB took less than 2
seconds to solve this problem to optimality on a laptop computer.

�

Other exact methods include LP relaxation/branch-and-bound (ReVelle and Swain
1970), decomposition methods (Garfinkel et al. 1974), row and column reduction (Rosing
et al. 1979), and adaptations by Galvão (1980) and Nauss and Markland (1981) of the DU-
ALOC algorithm (Erlenkotter 1978) discussed in Section 8.2.4. Reese (2006) provides a
thorough survey of the literature on the pMP, including both exact and heuristic algorithms.

8.3.2.3 Heuristics for the pMP Most heuristics for the UFLP (Section 8.2.5) are
easily adapted for the pMP. For instance, we can apply the greedy-add and greedy-drop
heuristics, except that the procedure terminates when there are exactly p facilities open
rather than when no objective-reducing adds or drops can be found.

One of the earliest and most widely known heuristics for the pMP is the swap or exchange
heuristic introduced by Teitz and Bart (1968). The swap heuristic attempts to find a pair j,
k of facilities with j open and k closed such that if j were closed and k opened (and the
customers reassigned as needed), the objective function value would decrease. If such a
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pair can be found, the swap is made and the procedure continues. Pseudocode for the swap
heuristic is given in Algorithm 8.7. It takes as inputs the current solution variable x and its
objective value z. In the pseudocode, (x̄, ȳ) is a temporary solution and z̄ is its cost.

Algorithm 8.7 Swap heuristic for pMP
1: input current solution x, current cost z
2: repeat . Main loop
3: IMPROVED← FALSE

4: for all j ∈ J s.t. xj = 1 do . Loop through open facilities
5: for all k ∈ J s.t. xk = 0 do . Loop through closed facilities
6: x̄← x; x̄j ← 0; x̄k ← 1 . Try swapping j and k
7: for all i ∈ I do
8: j(i)← argminj∈J:x̄j=1{cij} . Assign i to nearest open j
9: ȳi,j(i) ← 1; ȳi,` ← 0 ∀` ∈ J \ {j(i)}

10: end for
11: z̄ ←

∑
i∈I
∑
`∈J hici`ȳi` . Calculate cost if swap j and k

12: if z̄ < z then . Check for improvement
13: x← x̄; y ← ȳ, z ← z̄ . Update current solution
14: IMPROVED← TRUE

15: end if
16: end for
17: end for
18: until not IMPROVED
19: return x, y, z

� EXAMPLE 8.5

Applying the greedy-add heuristic to the 88-node instance described in Example 8.4,
we open the following facilities, in sequence: Springfield, IL; Los Angeles, CA; New
York, NY; Dallas, TX; Jacksonville, FL; Oakland, CA. The resulting solution, shown
in Figure 8.9(a), has a cost of $423,620—9.5% more expensive than the optimal
solution found in Example 8.4.

Let us now apply the swap heuristic to the greedy solution. First, we can close the
facility in Springfield, IL, and open the one in Chicago, IL, to reduce the cost by 7.6%,
to $391,314. Next, we can close Jacksonville, FL, and open Atlanta, GA, for a new
cost of $387,226; then close Dallas, TX, in favor of Ft. Worth, TX ($387,021); and
finally close Atlanta, GA (opened a few iterations earlier) in favor of Montgomery,
AL ($386,856). These moves are shown in Figures 8.9(b)–8.9(e). No other profitable
swaps can be made, and in fact, this is the optimal solution found in Example 8.4.
Note, however, that the greedy and swap heuristics do not find the optimal solution
in all instances—we just got lucky for this one.

�

The swap heuristic can be modified in many ways. For example, at each iteration,
we can either implement the first swap we find that reduces the objective (this is called
a first-improving strategy) or implement the swap that reduces the objective function the
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(a) Greedy-add solution (cost = $423,620).

(b) Swap iter. 1: close Springfield, open Chicago (cost
= $391,314).

(c) Swap iter. 2: close Jacksonville, open Atlanta (cost
= $387,226).

(d) Swap iter. 3: close Dallas, open Ft. Worth (cost =
$387,021).

(e) Swap iter. 4: close Atlanta, open Montgomery (cost
= $386,856).

Figure 8.9 Greedy and swap solutions for 88-node pMP instance with p = 6.
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most (a best-improving strategy). (Algorithm 8.7 uses a first-improving strategy.) Or, we
can randomize the procedure by choosing randomly from among, for example, the five best
swaps at each iteration, possibly with a bias toward the better swaps.

A straightforward implementation of the swap heuristic is relatively slow since we must
evaluate O(p|J |) possible swaps and, for each, determine O(|I|) customer assignments,
for an overall complexity of O(p|I||J |) for each iteration. Whitaker (1983) proposed
an implementation known as fast interchange, which was further refined by Hansen and
Mladenović (1997) so that each iteration takes O(|I|(|J | − p)).

Another improvement heuristic is the neighborhood search heuristic (Maranzana 1964).
For simplicity, assume that I = J , that is, every node is both a customer and a potential
facility location. Define the neighborhood of an open facility j in a given solution, denoted
Nj , as the set of nodes i that are assigned to j. The neighborhood search heuristic solves
the 1-median problem in each neighborhood Nj to check whether j is in fact the best
facility for Nj . If it is not, it closes j and opens the 1-median. The neighborhoods are then
redefined (i.e., the customers are reallocated), and the procedure repeats. Pseudocode for
the neighborhood search heuristic is given in Algorithm 8.8.

Algorithm 8.8 Neighborhood search heuristic for pMP
1: input current solution x, y
2: repeat . Main loop
3: IMPROVED← FALSE

4: for all j ∈ J s.t. xj = 1 do . Loop through open facilities
5: Nj ← {i ∈ I : yij = 1} . Determine neighborhood of j

6: k ← argmin`∈Nj

{∑
i∈Nj hici`

}
. Determine 1-median of Nj

7: if k 6= j then
8: xj ← 0; xk ← 1 . Swap j and k
9: j(i)← argminj∈J:xj=1{cij} . Assign i to nearest open j

10: yi,j(i) ← 1; yi,` ← 0 ∀` ∈ J \ {j(i)}
11: IMPROVED← TRUE

12: end if
13: end for
14: until not IMPROVED
15: z ←

∑
i∈I
∑
`∈J hici`yi` . Calculate new cost

16: return x, y, z

The neighborhood search heuristic is, in some ways, similar to the swap heuristic in the
sense that it searches for an open facility j to close and a closed facility k to open. The
difference is that the neighborhood search heuristic only searches over facilities k that are
in j’s neighborhood, and when it evaluates the new cost after swapping j and k, it only
considers reassignments of customers in the neighborhood, rather than the entire customer
set. Both of these differences lead to some loss of accuracy, but also significantly faster run
times. (See Problem 8.45.)

The discussion above assumed that I = J . If I 6= J , then instead of searching over the
neighborhood of j, Nj , for a new facility k, we must instead define some suitable set Mj

of facilities that are likely candidates for the 1-median of Nj . For example, we might set
Mj to the set of k ∈ J that are in the convex hull of the points in Nj . The pseudocode in



304 FACILITY LOCATION MODELS

Figure 8.10 Neighborhood of Springfield, IL in greedy solution to 88-node instance for pMP with
p = 6.

Algorithm 8.8 remains the same except for step 6, in which we would replace ` ∈ Nj with
` ∈Mj .

� EXAMPLE 8.6

Consider the solution found by the greedy-add heuristic in Example 8.5, shown
in Figure 8.9(a). The neighborhood of the facility in Springfield, IL, is shown in
Figure 8.10. It happens that Springfield is not the 1-median for this neighborhood;
Chicago is. (Chicago is shown in the figure as an open square; light lines connect the
customers to that facility.) So, we close Springfield and open Chicago, then check
whether there are any Springfield customers that should be assigned to a facility
other than Chicago, or any non-Springfield customers that should now be assigned
to Chicago. (There are not.) Making this swap reduces the cost to $391,314.

The other open facilities are the 1-medians of their respective neighborhoods, so
there are no more moves to make, and the heuristic terminates.

�

Many metaheuristics are available for the pMP. For example, Hosage and Goodchild
(1986) propose a genetic algorithm (GA) for the pMP, one of the first GAs for facility
location problems. Chiyoshi and Galvão (2000) propose a simulated annealing algorithm
for the pMP that makes use of the swap heuristic. Hansen and Mladenović (1997) propose
a variable neighborhood search (VNS) heuristic. For a survey of metaheuristic approaches
for the pMP, see Mladenovic et al. (2007).
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Figure 8.11 400-mile coverage radii around facilities in 6-median solution to 88-node instance.
Total covered demand is 4268 out of 3979 (88.7%). Solid customers are covered by an open facility;
shaded customers are not. Radii around different facilities have different sizes due to the Mercator
projection used in this map, which exaggerates distances farther from the equator.

8.4 COVERING MODELS

In 2001, the National Fire Protection Association established Standard 1710, which, among
many other guidelines, says that fire departments should have the objective of arriving to a
fire within 4 minutes of receiving a call (National Fire Protection Association, Inc. 2001).
The ability of a fire department to adhere to this standard is driven largely by the locations
of its fire stations, since a fire will surely have to wait more than 4 minutes if it is located
too far from its nearest fire station, no matter how quickly the firefighters respond.

However, this is not an objective that the UFLP, pMP, or other minisum models can help
much with, since the optimal solutions to those problems may assign some customers to
very distant facilities if it is cost effective to do so. Instead, we need to use the notion of
coverage, which indicates whether a given customer is within a prespecified distance, or
coverage radius, of an open facility.

For example, Figure 8.11 shows the optimal facilities from the 6-median problem on
the 88-node data set (from Figure 8.8), along with 400-mile coverage radii around each
facility. (Since transportation costs cij for this data set are equal to 0.5 times the distance,
a 400-mile coverage radius is the same as a $200 coverage radius.) Some customers are
covered, but many are not, especially in the western part of the United States, which is
more sparsely populated (and hence less expensive to serve with long hauls in minisum
models). In total, the covered nodes have a demand of 3979, or 88.7% of the total demand
of 4484.

Note that in Figure 8.11 and others in this section, radii around different facilities are
drawn in different sizes due to the Mercator projection used in this map, which exaggerates
distances farther from the equator.

In this section, we discuss three seminal facility location models that use coverage to
determine the quality of the solution. The first, the set covering location problem (SCLP),
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locates the minimum number of facilities to cover every demand node. The second, the
maximal covering location problem (MCLP), covers as many demands as possible while
locating a fixed number of facilities. In other words, the SCLP puts the number of facilities
in the objective function while constraining the coverage, and the MCLP does the reverse.
The third model, the p-center problem, locates a fixed number of facilities to minimize the
maximum distance from a demand node to its nearest open facility—or, put another way,
to minimize the coverage radius required to cover every demand node.

For further reading on covering problems, see Snyder (2011) or Daskin (2013).

8.4.1 The Set Covering Location Problem (SCLP)

In the set covering location problem (SCLP), we are required to cover every demand node;
the objective is to do so with the fewest possible number of facilities. The SCLP was first
formulated in a facility location context by Hakimi (1965), though similar models appeared
in graph-theoretic settings prior to that.

In addition to the notation introduced in earlier sections, we use the following new
notation:

Parameters
aij = 1 if facility j ∈ J can cover customer i ∈ I (if it is open), 0 otherwise

The coverage parameter aij can be derived from a distance or cost parameter such as
cij in the UFLP, for example:

aij =

{
1, if cij ≤ r
0, otherwise

for a fixed coverage radius r. Or aij can be derived in other ways that are unrelated to
distance, especially in the nonlocation applications of the SCLP discussed below.

The SCLP can be formulated as follows:

(SCLP) minimize
∑
j∈J

xj (8.80)

subject to
∑
j∈J

aijxj ≥ 1 ∀i ∈ I (8.81)

xj ∈ {0, 1} ∀j ∈ J (8.82)

The objective function (8.80) calculates the total number of open facilities. Constraints
(8.81) ensure that every customer is covered by some open facility (some facility such that
both aij = 1 and xj = 1), and constraints (8.82) are integrality constraints.

Sometimes we wish to minimize the total fixed cost of the opened facilities, rather than
the total number, in which case the following objective function is appropriate:

minimize
∑
j∈J

fjxj . (8.83)

The SCLP is NP-hard (Garey and Johnson 1979). Hakimi (1965) proposed a solution
method for the SCLP based on Boolean functions, which has not proven to be effective
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for realistic-sized instances. Instead, the problem is usually solved using some form of
branch-and-bound, an approach first proposed by Toregas et al. (1971). Since the optimal
objective function value of the LP relaxation, zLP , is a lower bound on that of (SCLP), and
since the optimal objective function value of (SCLP) must be an integer under objective
(8.80), Toregas et al. (1971) propose adding the following constraint to (SCLP):∑

j∈J
xj ≥ dzLP e. (8.84)

Constraint (8.84) acts as a cut (see Section 10.3.3), potentially eliminating some fractional
solutions without changing the optimal integer solution. The LP relaxation of (SCLP) is
usually very tight (and sometimes all-integer) (Bramel and Simchi-Levi 1997), and the
addition of constraint (8.84) makes it even tighter.

Toregas and ReVelle (1972) propose row- and column-reduction techniques that can
reduce the size of the optimization problem, making it easier to solve. Because of the binary
nature of coverage, certain facilities and customers can be eliminated from consideration
because they are dominated. In particular, a facility j is dominated by a facility k, and we
can set xj = 0 (i.e., eliminate column j from the formulation), if aij ≤ aik for all i ∈ I . In
this case, k covers every customer that j serves (and possibly more), so we have no reason
to open j. Similarly, a customer i is dominated by a customer ` if aij ≥ a`j for all j ∈ J .
In this case, every facility that covers ` also covers i. As long as ` is covered by an open
facility, so is i, so we can ignore the constraint (row) corresponding to i. See Eiselt and
Sandblom (2004) and Daskin (2013) for further discussion of these methods.

� EXAMPLE 8.7

Return to the 88-node instance from Example 8.4. Using a coverage radius of 400
miles, the optimal solution to the SCLP locates 10 facilities, in El Paso, TX; Fort
Worth, TX; Miami, FL; Fresno, CA; Boise City, ID; Tallahassee, FL; Salem, OR;
Springfield, IL; Trenton, NJ; and Pierre, SD. See Figure 8.12. Note to achieve total
coverage, we needed four more facilities than we needed to obtain 88.7% coverage
in Figure 8.11. For example, note the facility in Miami, at the very southern tip of
Florida; this facility is in the solution only to cover the city of Miami itself.

�

8.4.2 The Maximal Covering Location Problem (MCLP)

The SCLP requires every customer to be covered by an open facility. Sometimes this is
impractical, because complete coverage would require opening too many facilities. For
example, it takes 10 facilities to cover 100% of the demand in the 88-node data set with
a 400-mile coverage radius. (See Example 8.6.) But we know from Example 8.7 that we
can cover 88.7% of the demand with only six facilities. In fact, if we are only allowed six
facilities, we can do better than 88.7%, as we will see below.

The maximal covering location problem (MCLP) seeks to maximize the total number of
demands covered subject to a limit on the number of open facilities. It was introduced by
Church and ReVelle (1974). It uses the same notation as the SCLP, plus the usual parameter
p that specifies the allowable number of facilities, as well as a new set of decision variables:
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Figure 8.12 Optimal SCLP solution for 88-node instance with coverage radius of 400 miles. 10
facilities are required.

Decision Variables
zi = 1 if customer i ∈ I is covered by an open facility, 0 otherwise

The MCLP can be formulated as follows:

(MCLP) maximize
∑
i∈I

hizi (8.85)

subject to zi ≤
∑
j∈J

aijxj ∀i ∈ I (8.86)

∑
j∈J

xj = p (8.87)

xj ∈ {0, 1} ∀j ∈ J (8.88)

zi ∈ {0, 1} ∀i ∈ I (8.89)

The objective function (8.85) calculates the total number of covered demands. Constraints
(8.86) prevent a customer i from being counted as “covered” unless there is some open
facility that covers it. Constraint (8.87) requires exactly p facilities to be opened; as in the
pMP, the constraint would be equivalent if we replaced = with ≤. Constraints (8.88) and
(8.89) are integrality constraints. Like the assignment variables yij in the UFLP, we can
relax the zi variables here to be continuous, and they will always be binary in the optimal
solution. (Why?)

The MCLP is NP-hard (Megiddo et al. 1983). Heuristics include a greedy-add heuristic
(in which at each iteration, we choose the facility that increases the covered demand the
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most) and a greedy-add-with-substitution heuristic that considers a “swap” move at each
iteration. Both heuristics were proposed by Church and ReVelle (1974). Other heuristics
include genetic algorithms (Fazel Zarandi et al. 2011) and another metaheuristic approach
called heuristic concentration (ReVelle et al. 2008a).

The LP relaxation of (MCLP) tends to be rather tight, and Church and ReVelle (1974)
report that 80% of their test instances yielded an all-integer solution for the LP relaxation;
Snyder (2011) reports an even higher percentage. Therefore, straightforward LP-based
branch-and-bound is often effective. Galvão and ReVelle (1996) propose a Lagrangian
relaxation method in which constraints (8.86) are relaxed. The resulting Lagrangian sub-
problem is:

(MCLP-LRλ) maximize
∑
i∈I

hizi +
∑
i∈I

λi

∑
j∈J

aijxj − zi


=
∑
i∈I

(hi − λi)zi +
∑
i∈I

∑
j∈J

λiaijxj (8.90)

subject to
∑
j∈J

xj = p (8.91)

xj ∈ {0, 1} ∀j ∈ J (8.92)

zi ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (8.93)

This subproblem decomposes into two separate problems, one that involves only the x
variables and one that involves only the z variables. The x-problem can be solved by
setting xj = 1 for the p facilities with the largest values of

∑
i∈I
∑
j∈J λiaij . The

z-problem can be solved by setting zi = 1 if hi − λi > 0.

� EXAMPLE 8.8

Return to the 88-node instance from Example 8.4. Suppose p = 6 and we have
a coverage radius of 400 miles. Then the optimal solution to the MCLP locates
facilities in Fort Worth, TX; Fresno, CA; Madison, WI; Montgomery, AL; Trenton,
NJ; and Santa Fe, NM. (See Figure 8.13.) This solution covers 4268 of the 4484
demands, or 95.2%.

Figure 8.14 plots the percentage of demand covered vs. p. From the plot, it is
clear that the first several facilities gain a significant percentage of covered demand,
whereas subsequent facilities have a diminishing return. When p ≥ 10, all of the
demand is covered, which is what we would expect given that the optimal solution
to the SCLP has 10 open facilities (Example 8.7).

�

8.4.3 The p-Center Problem (pCP)

The third covering problem we discuss is the p-center problem (pCP), which minimizes
the maximum distance from a customer to its assigned facility while restricting the number
of open facilities to p. Although this may not sound at first like a covering problem, the
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Figure 8.13 Optimal MCLP solution for 88-node instance with coverage radius of 400 miles and
p = 6. Total covered demand is 4268 out of 4484 (95.2%).
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Figure 8.14 Coverage vs. p for 88-node data set with 400-mile coverage radius.
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connection can be made explicit by thinking of the pCP as minimizing the coverage radius
required to ensure that all customers can be covered by p facilities. Like the SCLP, the pCP
aims for an equitable solution, in which no customer is “too far” from an open facility.

For example, in the optimal 6-median solution for the 88-node data set in Figure 8.8,
the maximum assigned distance is 801.6 miles, from the customer in Helena, MT, to the
facility in Oakland, CA. The pCP asks whether we can make this distance (and all other
assigned distances) smaller.

There are two categories of p-center problems: absolute and vertex. In the absolute
p-center problem, facilities can be located anywhere on the network (i.e., on the vertices
or on the links), whereas in the vertex p-center problem, facilities can only be located on
the vertices of the network. The two are not equivalent since the Hakimi property does not
hold for the pCP. (Why?) In this chapter, we consider only vertex p-center problems, and
we drop the word “vertex” when referring to the problem. (See Problems 8.37 and 8.38 for
algorithms for simple absolute p-center problems.)

The pCP uses notation defined in earlier sections, as well as a single new decision
variable:

Decision Variable
r = maximum distance, over all i ∈ I , from i to its assigned facility

In addition, we will tend to think about the parameter cij as referring to distance, rather
than transportation cost, though the distinction is not so important.

The problem can then be formulated as follows:

(pCP) minimize r (8.94)

subject to
∑
j∈J

yij = 1 ∀i ∈ I (8.95)

yij ≤ xj ∀i ∈ I, ∀j ∈ J (8.96)∑
j∈J

xj = p (8.97)

∑
j∈J

cijyij ≤ r ∀i ∈ I (8.98)

xj ∈ {0, 1} ∀j ∈ J (8.99)

yij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (8.100)

The objective function (8.94) is simply the maximum assigned distance, r. Constraints
(8.95)–(8.97) are identical to (8.70)–(8.72); they require all customers to be assigned,
prevent assignments to facilities that are not opened, and require p facilities to be opened.
Constraints (8.98) define r by ensuring that it is at least as large as every assigned distance.
Constraints (8.99) and (8.100) are integrality constraints on x and y. (The nonnegativity
of r is ensured by (8.98).) Note that in the pCP, relaxing (8.100) to 0 ≤ yij ≤ 1 will not
ensure integer-valued y variables in the optimal solution. (Why?)
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Sometimes we wish to weight the customers differently and minimize the maximum
weighted assigned distance. In this case, we simply replace (8.98) with∑

j∈J
hicijyij ≤ r ∀i ∈ I, (8.101)

where hi is the weight on customer i ∈ I .
Like the pMP, the pCP is NP-hard for arbitrary p (Kariv and Hakimi 1979a). Moreover,

an off-the-shelf MIP solver such as CPLEX or Gurobi will take orders of magnitude longer
to solve (pCP) than any of the other formulations in this chapter. For example, when we
solved the 88-node 6-center problem in CPLEX 12.6.1 (see Example 8.9), it took 1607.0
seconds of CPU time. In contrast, it took 0.7 seconds for CPLEX to solve the 6-median
problem on the same instance. This is typical of problems like the pCP that have a minimax-
type structure, because their LP relaxations tend to be much weaker. For example, the LP
relaxation value of the 88-node instance of the pCP is 36.6% smaller than the optimal
objective value of the MIP, whereas the LP relaxation of the pMP has an all-integer solution
(so the LP and MIP values are equal for this instance).

There is a close relationship between the SCLP and the pCP:

Lemma 8.8 Let r ≥ 0. Then the optimal objective function value of the pCP is less than
or equal to r if and only if the optimal objective function value of the SCLP with coverage
radius r is less than or equal to p.

Proof. Omitted; see Problem 8.47.

This allows us to solve the pCP by exploiting the fact that the SCLP is much easier to
solve. In particular, we perform a bisection search on r. For each r, we solve the SCLP.
If the optimal objective function value of the SCLP is less than or equal to p, we reduce r,
otherwise, we increase it. We continue in this manner until we converge to an r value such
that the optimal objective function value of the SCLP equals p but would be larger than
p if we made r smaller; this r is the optimal objective function value of the pCP, and the
optimal solution to the SCLP is also optimal for the pCP. This approach is typically much
faster than solving the MIP (pCP) directly. A method similar to this was first proposed by
Minieka (1970).

Algorithm 8.9 summarizes this method in pseudocode. In the algorithm, ε is the desired
level of optimality tolerance. The inputs rL and rU are lower and upper bounds on the
optimal r; for example, we can set rL = 0 and rU = maxi∈I,j∈J{cij}. At the end of the
algorithm, we use r = r since we know for sure that the optimal solution to the SCLP with
coverage radius r has at most p facilities, but we do not know this for smaller values of r.

� EXAMPLE 8.9

Let us use Algorithm 8.9 to solve the 6-center problem on the 88-node instance
from Example 8.4. We’ll set ε = 0.1. We begin by setting rL = 0 and rU =

maxi,j{cij} = 2743.3. The iterations proceed as follows:

1. r = 2743.3/2 = 1371.6; SCLP has optimal objective 2; set r ← 1371.6

2. r = 1371.6/2 = 685.8; SCLP has optimal objective 4; set r ← 685.8

3. r = 685.8/2 = 342.9; SCLP has optimal objective 11; set r ← 342.9
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Algorithm 8.9 SCLP-based algorithm for pCP
1: input lower and upper bounds rL and rU on r
2: r ← rL; r ← rU . Initialization
3: repeat . Main loop
4: r ← (r + r)/2 . Candidate value for r
5: x∗ ← optimal solution to SCLP with coverage radius r . Solve SCLP
6: if

∑
j∈J x

∗
j ≤ p then r ← r . Reduce r

7: else r ← r . Increase r
8: end if
9: until r − r < ε . Convergence check

10: return x∗, r

4. r = (342.9 + 685.8)/2 = 514.4; SCLP has optimal objective 7; set r ← 514.4

5. r = (514.4 + 685.8)/2 = 600.1; SCLP has optimal objective 6; set r ← 600.1

...

14. r = (525.8 + 526.08)/2 = 525.9; SCLP has optimal objective 7; set r ← 525.9

15. r = (525.9 + 526.08)/2 = 526.0; SCLP has optimal objective 7; set r ← 526.0

At this point, we have r = 526.0 and r = 526.08. Since their difference is less than
ε, the algorithm terminates.

The optimal solution is shown in Figure 8.15. This solution has a maximum
assigned distance of 526.06. It locates facilities in Houston, TX; Jacksonville, FL;
Tucson, AZ; Omaha, NE; Boise, ID; and Harrisburg, PA.

Using Algorithm 8.9, it took less than 0.5 seconds to find this solution on a laptop
computer. In contrast, as noted above, it took over 1600 seconds to solve the MIP
(pCP) directly using CPLEX.

�

Most exact algorithms for the pCP proceed along similar lines, though there are some
variations. For example, Daskin (2000) proposes an algorithm similar to Algorithm 8.9 but
using the MCLP as a subroutine instead of the SCLP. Elloumi et al. (2004) propose a new
MIP formulation of the pCP whose LP relaxation is tighter than that of (pCP); they also
obtain an even tighter lower bound by relaxing only a subset of the integer variables and
show how this bound can be obtained in polynomial time. The bound can then be used in
a bisection search similar to that in Algorithm 8.9.

The pCP is polynomially solvable for certain network topologies, such as tree networks
(Megiddo et al. 1981, Jeger and Kariv 1985). In some cases, this is true even when cij is
replaced by a nonlinear function of the distance from i to j (Tansel et al. 1982). 1-Center
problems on general networks can also be solved in low-order polynomial time, even for
absolute pCPs in which the facility may be located at any point along the edges of the
network (Kariv and Hakimi 1979a, Shier and Dearing 1983); see also Problems 8.37 and
8.38. Many other results of this type exist; see Tansel (2011) for a review.
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Figure 8.15 Optimal pCP solution for 88-node instance with p = 6. Maximum assigned distance
= 526.06 miles, from San Jose, CA to facility in Boise, ID.

8.5 OTHER FACILITY LOCATION PROBLEMS

There are many other types of facility location models in the literature and in practice. We
mention some other types of location models in this section. For further reading, see the
books cited in Section 8.1.

8.5.1 Undesirable Facilities

The problems discussed in this chapter assume that we want customers to be close to
facilities. In some cases, the opposite is true. For example, when siting toxic waste dumps,
weapons repositories, and so on, the goal is usually to locate facilities as far as possible
from population centers. In some cases, we want a certain balance: For example, landfills
should not be located too close to customers (because of odors, truck traffic, etc.) but also
should not be located too far (since garbage collection costs are a function of the distance
traveled by the collection trucks).

Problems such as these are known as undesirable, obnoxious, or semiobnoxious facility
location problems. One example is the maxisum location problem, which seeks to locate
p facilities to maximize the sum of the weighted distances between each customer and its
nearest open facility. (It is not sufficient to simply change the objective function of the pMP
(8.69) from minimize to maximize—why?) See Shamos (1975), Shamos and Hoey (1975),
and Church and Garfinkel (1978) for examples of such problems, and see Melachrinoudis
(2011) for a review of this literature. Problem 8.31 asks you to formulate the maxisum
location problem.

Another type of undesirable location problem is the p-dispersion problem, in which we
locate p facilities to maximize the minimum distance between any pair of open facilities.
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Note that customers are not considered in this model—only facilities. The intent is to
ensure that facilities are spread apart as much as possible, as when locating facilities that
may interact negatively with one another (such as nuclear power plants) or compete with
one another (such as retail locations). See Shier (1977) and Chandrasekaran and Daughety
(1981) for early work on this problem. A variant known as the maxisum dispersion problem
seeks to maximize the sum or average of the distances between pairs of open facilities,
rather than the maximum distance. See Kuby (1987) for a discussion of both of these
problems.

8.5.2 Competitive Location

Competitive location problems assume that two (or more) firms are locating facilities and
that customers will choose a facility to patronize based, at least in part, on distance.
These problems are often formulated and analyzed using ideas from game theory (see
Section 14.2), in which the goal is to determine a Nash equilibrium solution—a solution
that neither player wishes to deviate from unilaterally. A Nash equilibrium solution specifies
the optimal strategy for both players.

This idea dates back to Hotelling (1929), who considers two competitors who each locate
a single facility to serve customers located uniformly along a line (such as a highway or
railroad, or, as later authors have suggested, two ice cream vendors on a beach). The firms
can locate their facilities anywhere on the line. Hotelling proves that the Nash equilibrium
solution is for both players to locate at the midpoint of the line, sharing the demand equally.
He also considers how the competitors should set their prices, a factor that has tended to
be considered less in subsequent competitive location research. (d’Aspremont et al. (1979)
point out a significant error in Hotelling’s original work.)

Hotelling’s model is a simultaneous game in which the two players choose their strategies
at the same time, without knowledge of the other’s strategy. Most of the more recent work
on competitive location has focused on Stackelberg or leader–follower games in which one
player (the leader) moves first, followed by the other player (the follower). Stackelberg
games are often modeled as bilevel optimization problems in which the optimality of the
follower’s response is ensured through constraints in the leader’s problem. Bilevel problems
are difficult in general; see Colson et al. (2007), DeNegre and Ralphs (2009).

Suppose Xp is the set of p facilities that the leader has already located. Then the
follower’s optimal set of r facilities—the set of facilities that maximizes the follower’s
captured demand—is called an (r|Xp) medianoid. The leader’s optimal set Xp of p
facilities—the set of facilities that maximizes the leader’s captured demand, given that the
follower will respond by locating at the (r|Xp) medianoid—is called an (r|p) centroid.

Drezner (1982) considers the problem of finding (r|Xp) medianoids and (r|p) centroids
on the continuous plane when r = 1 and/or p = 1. Hakimi (1983) considers medianoids
and centroids on networks, showing that the Hakimi property (in which an optimal solution
is guaranteed to contain only nodes of the network) does not hold in general and examining
medianoids’ and centroids’ relationships to other problems such as the pMP and pCP.
Hakimi proves that the medianoid problem is NP-hard for general r, even when p = 1, and
that the centroid problem is NP-hard for general p, even when r = 1.

ReVelle (1986) focuses on the medianoid (follower’s) problem, which he calls the
maximum-capture (or MAXCAP) problem. He formulates this problem as an integer
programming problem and shows that it is equivalent to the pMP. Serra and ReVelle (1994)
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consider the centroid (leader’s) problem and suggest a heuristic in which the leader locates
facilities; the follower solves MAXCAP in response; the leader then updates its facilities
using a swap heuristic; then the follower responds by solving MAXCAP; and so on. This
type of heuristic, iterating between the leader’s and follower’s solutions, is common (e.g.,
Ghosh and Craig (1983)) since the overall bilevel problem is difficult to solve exactly.

For reviews of competitive location models, see Eiselt et al. (1993), Eiselt (2011),
Younies and Eiselt (2011), and Dasci (2011).

8.5.3 Hub Location

In some systems, transportation occurs both from facilities to customers and between pairs
of facilities. Many airlines use such a structure, offering flights between hub airports and
from hubs to other cities. To fly between two nonhub cities, one has to fly through one or
more hubs and change planes. Similar designs are used in telecommunications and other
networks. Such networks are called hub-and-spoke networks, and problems that optimize
their structure are called hub location problems.

A straightforward example of a hub location problem uses the pMP as a starting point.
Instead of defining the demand in terms of the nodes (hi), we define the traffic or flow
between nodes i and j as hij . This traffic must travel from i to a hub k, then to another
hub m, and finally to the destination j. It is possible that k = m, i.e., the route from i to j
travels through only one hub. We wish to

minimize
∑
j∈J

fjxj+

∑
i∈I

∑
j∈I

hij

(∑
k∈J

cikyik + α
∑
k∈J

∑
m∈J

ckmyikyjm +
∑
m∈J

cjmyjm

)
, (8.102)

subject to the pMP constraints (8.69)–(8.73) and binary constraints on the y variables. The
first term inside the parentheses in (8.102) calculates the cost of i–j traffic as it flows from
i to its assigned hub k; the second term is the cost as the i–j traffic travels between hubs k
andm; and the third term is the cost of the traffic as it travels fromm to j. The second term
is discounted by a factor of α < 1 to reflect the economies of scale in shipping between
hubs. This problem, known as the p-hub median problem, was first introduced by O’Kelly
(1987).

The primary difficulty with a formulation using (8.102) is that it is nonlinear, due to
the second term inside the parentheses. O’Kelly (1987) proposes two enumeration-based
heuristics to solve the p-hub median problem. Subsequent papers worked to linearize
O’Kelly’s formulation. For example, Campbell (1996) introduces binary variables yijkm
that equal the fraction of i–j traffic that is routed through hubs k and m. The resulting
formulation is linear but has many more variables (O(n4) instead of O(n2), where n is the
number of nodes). On the other hand, these variables are continuous rather than binary.

Other hub location problems are based on the UFLP, pCP, and SCLP; see Campbell
(1994a) for formulations of these and other problems. For reviews of hub location problems,
see Campbell (1994b), Alumur and Kara (2008), and Kara and Taner (2011).
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8.5.4 Dynamic Location

During the time when most facilities are operational—years, if not decades—demands
and other parameters may change. Dynamic location problems model these parameter
changes and allow facilities to be added, removed, and/or relocated over time to reflect
these changes. Note that we are still assuming that the parameters are deterministic, but
that they change over time—they are dynamic.

Ballou (1968) considers the problem of locating and relocating a single facility over a
finite planning horizon; he solves the problem heuristically by solving a series of single-
period models. Wesolowsky (1973) and Drezner and Wesolowsky (1991) consider a fixed
cost for each relocation in the single-facility problem. Scott (1971) considers a multi-
facility problem in which one facility is opened per time period; he presents a greedy-type
heuristic as well as a dynamic programming approach. Drezner (1995b) generalizes this
idea to allow the location of p facilities at any time during T time periods; once open, a
facility must remain open. Van Roy and Erlenkotter (1982) consider both openings and
closures of facilities over time and solve it using a modified DUALOC algorithm (see
Section 8.2.4) embedded in branch-and-bound. Gunawardane (1982) and Schilling (1980)
propose dynamic location problems based on coverage objectives.

See Owen and Daskin (1998) for a review of dynamic location problems. Problem 8.51
asks you to formulate a simple example of a dynamic location problem.

8.6 STOCHASTIC AND ROBUST LOCATION MODELS

8.6.1 Introduction

The facility location models we have discussed so far in this chapter are deterministic—they
assume that all of the parameters in the model are known with certainty, and that facilities
always operate as expected. However, the life span of a typical factory, warehouse, or other
facility is measured in years or decades, and over this long time horizon, many aspects of
the environment in which the facility operates may change. It is a good idea to anticipate
these eventualities when designing the facility network so that the facilities perform well
even in the face of uncertainty.

In this section, we discuss approaches for optimizing facility location decisions when
the model parameters are stochastic. (In Section 9.6, we discuss a model in which the
performance of the facilities itself is stochastic, i.e., the facilities are subject to disruptions.)
The stochastic parameters are modeled using scenarios, each of which specifies all of the
parameters in one possible future state. We must choose facility locations now, before
we know which scenario will occur, but we may reassign customers to facilities after we
know the scenario. That is, facility locations are first-stage decisions, while customer
assignments are second-stage decisions.

In some models, we know the probability distribution of the scenarios (i.e., the probabil-
ity that each scenario occurs), while in others we do not. Models in which the probability
distribution is known fall under the domain of stochastic optimization, while those in which
it is not are part of robust optimization. In stochastic optimization models, the objective is
usually to minimize the expected cost over the scenarios. Several objectives are used for
robust facility location models, the most common of which is to minimize the worst-case
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cost over the scenarios. We will discuss both stochastic and robust approaches for facility
location in this section.

Suppose a given set of facilities is meant to operate for 20 years. There are several ways
to interpret the way scenarios occur over this time. One way is to assume that we build
the facilities today, and then a single scenario occurs tomorrow and lasts for all 20 years.
Another is to assume that a new scenario occurs, say, every year or every month, drawn
in an iid manner from the scenario distribution. Either interpretation is acceptable for the
models we consider in this section.

Choosing the scenarios to include in the model is a difficult task, as much art as science.
Expert judgment plays an important role in this process, as can the demand modeling
techniques described in Chapter 2. The number of scenarios chosen plays a role in the
computational performance of these models: They generally take longer to solve as the
number of scenarios increases.

A wide range of approaches for modeling and solving stochastic location problems has
been proposed. We discuss only a small subset of them. For more thorough reviews,
see Owen and Daskin (1998) or Snyder (2006).

We introduce the following new notation, which we will use throughout this section:

Set
S = set of scenarios

Parameters
his = annual demand of customer i ∈ I in scenario s ∈ S
cijs = cost to transport one unit of demand from facility j ∈ J to customer i ∈ I in

scenario s ∈ S
qs = probability that scenario s occurs

Decision Variables
yijs = the fraction of customer i’s demand that is served by facility j in scenario s

Otherwise, the notation is identical to the notation for the UFLP introduced in Section 8.2.2.

8.6.2 The Stochastic Fixed-Charge Location Problem

Suppose we know the scenario probabilities qs. Our objective is to minimize the total
expected cost of locating facilities and then serving customers. We will refer to this problem
as the stochastic fixed-charge location problem (SFLP). It was formulated by Mirchandani
(1980) and Weaver and Church (1983). The SFLP is an example of stochastic optimization,
a field of optimization that considers optimization under uncertainty. (In particular, this
formulation is an example of a deterministic equivalent problem.) Usually, the objective is
to optimize the expected value of the objective function under all scenarios, and that is the
approach we will take here.

The SFLP is formulated as follows:

(SFLP) minimize
∑
j∈J

fjxj +
∑
s∈S

∑
i∈I

∑
j∈J

qshiscijsyijs (8.103)

subject to
∑
j∈J

yijs = 1 ∀i ∈ I,∀s ∈ S (8.104)
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yijs ≤ xj ∀i ∈ I, ∀j ∈ J, ∀s ∈ S (8.105)

xj ∈ {0, 1} ∀j ∈ J (8.106)

yijs ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀s ∈ S (8.107)

The objective function (8.103) computes the total fixed plus expected transportation cost.
Constraints (8.104) and (8.105) are multiscenario versions of the assignment and linking
constraints, respectively. Constraints (8.106) require the location (x) variables to be binary,
and constraints (8.107) require the assignment (y) variables to be nonnegative. Note that, if
|S| = 1, this problem is identical to the classical UFLP. (Therefore, the SFLP is NP-hard.)

The SFLP can be solved using a straightforward modification of the Lagrangian relax-
ation algorithm for the UFLP (Section 8.2.3). We relax constraints (8.104) to obtain the
following Lagrangian subproblem:

(SFLP-LRλ)

minimize
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

∑
s∈S

qshiscijsyijs +
∑
i∈I

∑
s∈S

λis

1−
∑
j∈J

yijs


=
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

∑
s∈S

(qshiscijs − λis)yijs +
∑
i∈I

∑
s∈S

λis (8.108)

subject to yijs ≤ xj ∀i ∈ I, ∀j ∈ J, ∀s ∈ S (8.109)

xj ∈ {0, 1} ∀j ∈ J (8.110)

yijs ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀s ∈ S (8.111)

Just as for the UFLP, this problem can be solved easily by inspection. The benefit of
opening facility j is

βj =
∑
i∈I

∑
s∈S

min{0, qshiscijs − λis}.

An optimal solution to (SFLP-LRλ) can be found by setting

xj =

{
1, if βj + fj < 0

0, otherwise

yijs =

{
1, if xj = 1 and hiscijs − λis < 0

0, otherwise.

The objective value of this solution is given by∑
j∈J

min{0, βj + fj}+
∑
i∈I

∑
s∈S

λis.

Upper bounds can be obtained from feasible solutions that are constructed by opening the
facilities for which xj = 1 in the Lagrangian subproblem and then assigning each customer
to its nearest open facility in each scenario. (Since the transportation cost may vary by
scenario, so may the optimal assignments.) The remainder of the Lagrangian relaxation
algorithm is similar to that for the UFLP.

The SFLP can actually be interpreted as a special case of the deterministic UFLP
obtained by replacing the customer set I with I × S. That is, think of creating multiple
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instances of each customer, one per scenario, and using this as the customer set. Viewed in
that light, the formulation and algorithm for the SFLP are identical to those for the UFLP.
This means that an instance of the SFLP with 100 nodes and 10 scenarios is equivalent to
an instance of the UFLP with 1000 nodes and can be solved equally quickly.

In fact, the SFLP can also be interpreted another way. Imagine a deterministic problem
with multiple products, each of which has its own set of demands and transportation costs.
The formulation for SFLP models this situation exactly, so long as we interpret S as the set
of products rather than scenarios.

8.6.3 The Minimax Fixed-Charge Location Problem

In this section, we discuss the minimax fixed-charge location problem (MFLP), which
minimizes the maximum (i.e., worst-case) cost over all scenarios. Minimax problems
are an example of robust optimization. Robust optimization takes many forms, but the
general objective of all of them is to find a solution that performs well no matter how
the random variables are realized. Most robust models (including the MFLP) assume that
no probabilistic information is known about the random parameters. This is one of the
main advantages of robust optimization, since scenario probabilities can be very difficult
to estimate. On the other hand, robust optimization problems are generally more difficult
to solve than stochastic optimization problems, because of their minimax structure (like
the pCP). Moreover, minimax models are often criticized for being overly conservative
since their solutions are driven by a single scenario, which may be unlikely to occur.
Nevertheless, they are an important class of problems, both within facility location and in
robust optimization in general.

Conceptually, the MFLP can be formulated as follows:

minimize max
s∈S

∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

hiscijsyijs

 (8.112)

subject to the same constraints as in (SFLP). However, this is not a valid objective function
for a linear integer program (because of the “max”), so instead we introduce a new
variable, w, that represents the maximum cost over all the scenarios. The MFLP can then
be formulated as follows:

(MFLP) minimize w (8.113)

subject to
∑
j∈J

yijs = 1 ∀i ∈ I, ∀s ∈ S (8.114)

yijs ≤ xj ∀i ∈ I, ∀j ∈ J, ∀s ∈ S (8.115)∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

hiscijsyijs ≤ w ∀s ∈ S (8.116)

xj ∈ {0, 1} ∀j ∈ J (8.117)

yijs ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀s ∈ S (8.118)

Constraints (8.116) ensure that w is at least as large as the cost in each scenario. Since the
objective function (8.113) minimizes w, we are guaranteed that w will equal the maximum
cost over all scenarios. The remaining constraints are identical to those in (SFLP).
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Unfortunately, facility location problems that minimize the worst-case cost, such as
the MFLP, are generally much more difficult to solve than their stochastic counterparts.
The Lagrangian relaxation algorithm from Section 8.6.2, and most other algorithms for
stochastic location problems, cannot be readily adapted for robust problems. Therefore,
these problems are generally solved heuristically (e.g., Serra et al. 1996, Serra and Marianov
1998), or solved exactly for special cases such as locating single facilities or locating
facilities on specialized networks such as trees (e.g., Vairaktarakis and Kouvelis 1999).
Additional results are sometimes possible if the uncertain parameters are modeled using
intervals in which the parameters are guaranteed to lie rather than scenarios (e.g., Chen and
Lin 1998, Averbakh and Berman 2000a,b).

Another common approach for robust optimization is to minimize the worst-case regret
(rather than cost). The regret of a given solution in a given scenario is defined as the
difference between the cost of that solution in that scenario and the cost of the optimal
solution for that scenario. In other words, it’s the difference between how well your solution
performs in a given scenario and how well you could have done if you had known that that
scenario would be the one to occur. The absolute regret calculates the absolute difference
in cost, whereas the relative regret reports this difference as a fraction of the optimal cost.
If (x, y) is the solution to a facility location problem and zs(x, y) is the cost of that solution
in scenario s, then the absolute regret of (x, y) in scenario s is given by

zs(x, y)− zs(x∗s, y∗s )

and the relative regret is given by

zs(x, y)− zs(x∗s, y∗s )

zs(x∗s, y
∗
s )

,

where (x∗s, y
∗
s ) is the optimal solution for scenario s.

Minimax-regret models are closely related to minimax-cost models. In fact, the MFLP
can be modified easily to minimize the worst-case regret rather than the worst-case cost
simply by subtracting zs(x∗s, y

∗
s ) from the left-hand side of (8.116) (to minimize absolute

regret) and by also dividing the left-hand side of (8.116) by zs(x
∗
s, y
∗
s ) (to minimize

relative regret). The constants zs(x∗s, y
∗
s ) must be calculated ahead of time by solving |S|

single-scenario problems. Since we are modifying constraints by adding and multiplying
constants, the structure of the problem does not change (though the optimal solutions
might). Therefore, solutions methods for minimax-cost problems are often applicable for
minimax-regret problems, and vice-versa.

8.7 SUPPLY CHAIN NETWORK DESIGN

The facility location models discussed so far in this chapter make decisions about which
facilities to open in only a single echelon (the DCs). In practice, firms must often make
open/close decisions about multiple echelons (suppliers, factories, etc.), as well as about the
transportation links connecting them. We will refer to these more complicated optimization
problems as supply chain network design problems.

Roughly speaking, supply chain network design problems fall into two categories: node
design problems, in which we must decide which nodes (facilities) to open, and arc design
problems, in which we must decide which arcs (links) to open. Both types of problems
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typically allow for multiple commodities, capacitated nodes and/or arcs, and other side
constraints. Facility location problems are examples of relatively simple node design
problems.

In some cases, problems of one type can be converted to problems of the other type
through suitable modeling tricks such as adding dummy nodes or arcs, and so on. Moreover,
some supply chain network design models consider open/close decisions for both nodes
and arcs. Nevertheless, we will draw a distinction between the two types of problems and
will discuss each type separately: node design problems in Section 8.7.1 and arc design
problems in Section 8.7.2.

Although we discuss supply chain network design models in the context of transportation
networks, these models are also widely applied in other arenas such as telecommunications,
energy, water distribution, and so on.

We will tend to avoid the more generic phrase “network design” since it means different
things to different people. To optimizers and other operations researchers, “network design”
usually refers to arc design models of the type described in Section 8.7.2, whereas to supply
chain practitioners, it usually connotes node design models like those in Section 8.7.1.

8.7.1 Node Design

8.7.1.1 Introduction In this section, we present a model that makes location decisions
about two echelons and can be extended to consider a general number of echelons. In
addition, this model considers multiple products and joint capacity constraints that reflect
the limited capacity in each facility that the several products “compete” for. This problem
can be thought of as a multiechelon, multicommodity, capacitated facility location problem.
Models such as these are at the core of many commercial supply chain network design
software packages.

The seminal paper on multiechelon facility location problems is by Geoffrion and Graves
(1974), which presents a three-echelon (plant–DC–customer) model. This paper considers
location decisions only at the DC echelon, but it optimizes product flows among all three
echelons. The model we will present in this section also considers location decisions at the
plant echelon. It is adapted from Pirkul and Jayaraman (1996).

8.7.1.2 Problem Statement This problem is concerned with a three-echelon system
consisting of plants, DCs, and customers. The customer locations are fixed, but the plant
and DC locations are to be optimized. (See Figure 8.16.) In addition, the model considers
multiple products and limited capacity at the plants and DCs. As in the UFLP and CFLP,
the objective is to minimize the total fixed and transportation cost.

We will use the following notation:

Sets
I = set of customers
J = set of potential DC locations
K = set of potential plant locations
L = set of products

Demands and Capacities
hil = annual demand of customer i ∈ I for product l ∈ L
vj = capacity of DC j ∈ J
bk = capacity of plant k ∈ K
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Plants (K) DCs (J) Customers (I)

Figure 8.16 Three echelons in node design problem: plants (4), DCs (�), and customers (©).
Customer locations are fixed; plant and DC locations are to be determined by the model.

sl = units of capacity consumed by one unit of product l ∈ L
Costs

fj = fixed (annual) cost to open a DC at site j ∈ J
gk = fixed (annual) cost to open a plant at site k ∈ K
cijl = cost to transport one unit of product l ∈ L from DC j ∈ J to customer

i ∈ I
djkl = cost to transport one unit of product l ∈ L from plant k ∈ K to DC

j ∈ J
Decision Variables

xj = 1 if DC j is opened, 0 otherwise
zk = 1 if plant k is opened, 0 otherwise
yijl = number of units of product l shipped from DC j to customer i
wjkl = number of units of product l shipped from plant k to DC j

The usage parameter sl must be expressed in the same units used to express the capacities
vj and ck. That is, if capacities are expressed in square feet, then sl is the number of square
feet taken up by one unit of product l. If capacities are expressed in person-hours of work
available per year, then sl is the number of person-hours of work required to process one
unit of product l. And so on.

The transportation variables y andw indicate the amount of product l shipped along each
arc, from plants to DCs (w) and from DCs to customers (y). There is an alternate way to
formulate a model like this in which we define a single set of transportation variables, call
it yijkl, that specifies the amount of product l shipped from plant k to customer i via DC j.
(Geoffrion and Graves (1974) use this approach.) This type of formulation is more compact
and has certain attractive structural properties. However, this strategy requires |I||J ||K||L|
transportation variables, which is generally larger than the |I||J ||L|+ |J ||K||L| variables
required by the formulation below.

Moreover, the strategy of defining a new set of transportation variables for each pair
of consecutive echelons allows us to extend this model to more than three echelons. The
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number of such variables in the alternate approach grows multiplicatively with the number
of echelons, while the approach taken here grows only additively.

Note that while in the UFLP, the yij variables indicated the fraction of i’s demand served
by j, here yijl is a quantity.

8.7.1.3 Formulation The multiechelon location problem can be formulated as a
mixed-integer programming (MIP) problem as follows:

minimize
∑
j∈J

fjxj+
∑
k∈K

gkzk+
∑
l∈L

∑
j∈J

∑
i∈I

cijlyijl +
∑
k∈K

∑
j∈J

djklwjkl

 (8.119)

subject to
∑
j∈J

yijl = hil ∀i ∈ I,∀l ∈ L (8.120)

∑
i∈I

∑
l∈L

slyijl ≤ vjxj ∀j ∈ J (8.121)∑
k∈K

wjkl =
∑
i∈I

yijl ∀j ∈ J, ∀l ∈ L (8.122)∑
j∈J

∑
l∈L

slwjkl ≤ bkzk ∀k ∈ K (8.123)

xj , zk ∈ {0, 1} ∀j ∈ J, ∀k ∈ K (8.124)

yijl, wjkl ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, ∀l ∈ L (8.125)

The objective function (8.119) computes the total fixed and transportation cost. Con-
straints (8.120) require the total amount of product l shipped to customer i to equal i’s
demand for l. These constraints are analogous to constraints (8.4) in the UFLP. Constraints
(8.121) ensure that the total amount shipped out of DC j is no more than the DC’s capacity,
and that nothing is shipped out if DC j is not opened. Constraints (8.122) require the total
amount of product l shipped into DC j to equal the total amount shipped out. Constraints
(8.123) are capacity constraints at the plants and prevent product from being shipped from
plant k if k has not been opened. Finally, constraints (8.124) and (8.125) are integrality
and nonnegativity constraints.

The UFLP and CFLP are special cases of this problem, and hence it is NP-hard. We
will discuss a Lagrangian relaxation algorithm for solving it.

8.7.1.4 Lagrangian Relaxation We will solve the multiechelon location problem
using Lagrangian relaxation. Before we do, though, we’ll add a new set of constraints to
the model:

yijl ≤ hil ∀i ∈ I, ∀j ∈ J,∀l ∈ L (8.126)

These constraints simply say that the amount of product l shipped to customer i cannot
exceed i’s demand for l. They are redundant in the original model in the sense that they
are satisfied by every feasible solution. However, they will not be redundant after we relax
some of the original constraints. Adding constraints (8.126) tightens the relaxation, as we
will see below.

We relax the assignment constraints (8.120) (as in the UFLP) as well as the “balance”
constraints (8.122). We use Lagrange multipliers λil for the first set of constraints and µjl
for the second. The resulting subproblem is as follows:
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minimize
∑
j∈J

fjxj +
∑
k∈K

gkzk +
∑
l∈L

∑
j∈J

∑
i∈I

cijlyijl +
∑
k∈K

∑
j∈J

djklwjkl


+
∑
i∈I

∑
l∈L

λil

hil −∑
j∈J

yijl

+
∑
j∈J

∑
l∈L

µjl

(∑
i∈I

yijl −
∑
k∈K

wjkl

)
(8.127)

subject to yijl ≤ hil ∀i ∈ I, ∀j ∈ J, ∀l ∈ L (8.128)∑
i∈I

∑
l∈L

slyijl ≤ vjxj ∀j ∈ J (8.129)∑
j∈J

∑
l∈L

slwjkl ≤ bkzk ∀k ∈ K (8.130)

xj , zk ∈ {0, 1} ∀j ∈ J, ∀k ∈ K (8.131)

yijl, wjkl ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀k ∈ K,∀l ∈ L (8.132)

The first two sets of constraints involve only the x and y variables, while the third set
involves only the z and w variables. This allows us to decompose the subproblem into two
separate subproblems:

(xy-problem) minimize
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

∑
l∈L

(cijl − λil + µjl)yijl (8.133)

subject to yijl ≤ hil ∀i ∈ I, ∀j ∈ J, ∀l ∈ L (8.134)∑
i∈I

∑
l∈L

slyijl ≤ vjxj ∀j ∈ J (8.135)

xj ∈ {0, 1} ∀j ∈ J (8.136)

yijl ≥ 0 ∀i ∈ I, ∀j ∈ J, ∀l ∈ L (8.137)

(zw-problem) minimize
∑
k∈K

gkzk +
∑
k∈K

∑
j∈J

∑
l∈L

(djkl − µjl)wjkl (8.138)

subject to
∑
j∈J

∑
l∈L

slwjkl ≤ bkzk ∀k ∈ K (8.139)

zk ∈ {0, 1} ∀k ∈ K (8.140)

wjkl ≥ 0 ∀j ∈ J, ∀k ∈ K, ∀l ∈ L
(8.141)

Both problems are quite easy to solve. First, consider the xy-problem. If we set xj = 1

for a given j, then we are allowed to set some of the yijl variables to something greater
than 0. The problem of determining values for the yijl variables (assuming xj = 1) is
a continuous knapsack problem. Here’s where constraints (8.126) come into play. If we
didn’t have these constraints in the formulation, we would set yijl = vj/sl for only a single
i and l. By imposing bounds on the yijl variables, we obtain a solution that is much closer
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to the true optimal solution and hence provides a tighter lower bound. For each j, we solve
the continuous knapsack problem, and if the optimal objective value is less than −fj , we
set xj = 1; otherwise, we set xj = 0. Solving the zw-problem is very similar, except that
there are no explicit upper bounds on the wjkl variables.

As in the UFLP, upper bounds are found using a greedy-type heuristic, and the Lagrange
multipliers are updated using subgradient optimization. In computational tests reported by
Pirkul and Jayaraman (1996), this algorithm could solve small- to medium-sized problems
in roughly 1 minute.

� EXAMPLE 8.10

Let us broaden the scope of the 88-node UFLP instance to include plant-location
decisions, as well as multiple products. The data set node_design_data.xlsx
considers a set K of 10 possible locations for plants, each of which has a total
capacity of 10,000 units and a fixed cost of $1,000,000. The set L of products in this
data set consists of five products, of which product 1 is from the original 88-node
data set. We assume that each DC in J has a capacity of 2000 units and the same
fixed costs as in the UFLP instance. Transportation costs djkl are set equal to 0.25
times the great circle distance between plant k and DC j, whereas cijl continues to
equal 0.5 times the distance between DC j and customer i. (Plant–DC shipments
are typically larger and therefore benefit from economies of scale; hence the smaller
per-unit costs.) Transportation costs are the same for every product.

The optimal solution to this 98-node instance of the node design problem is shown
in Figure 8.17(a). This solution opens nine DCs (in Chicago, IL; Houston, TX;
Philadelphia, PA; Detroit, MI; Phoenix, AZ; Fresno, CA; Topeka, KS; Harrisburg,
PA; and Frankfort, NY) and two plants (in Louisville, KY, and Anaheim, CA). The
plants are drawn as triangles in Figure 8.17(a). To make the plant–DC shipments
easier to visualize, Figure 8.17(b) draws the customers and their inbound links in a
lighter shade.

In the optimal solution, two customers are served from more than one DC. In
particular, the customer in New York, NY, receives product 1 from both Philadelphia,
PA, and Harrisburg, PA; it receives all other products only from Philadelphia. In
addition, the customer in Salt Lake City, UT, receives products 1 and 2 from Phoenix,
AZ, and the other products from Fresno, CA. At first, it may seem surprising that only
2 of the 88 customers are served by multiple DCs, but this is actually fairly typical;
when a given facility’s capacity is fully utilized, only the “final” customer will have
its demand split. In this solution, only two of the DCs (Fresno and Philadelphia) are
fully utilized.

This solution is different from the solution we would obtain by following a se-
quential approach in which we first solve for the optimal DC locations (ignoring the
plants), then fix open the resulting DCs and find the optimal plant locations. That
solution, which is pictured in Figure 8.18, opens 11 DCs and the same 2 plants as
the optimal solution. It has a total cost of $4,776,380, which is only 2.1% more
expensive than optimal. In general, however, the error from this sequential approach
can be considerably larger.

�
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(a) All shipments.

(b) Plant–DC shipments.

Figure 8.17 Optimal solution to 98-node node design instance. Total cost = $4,678,145.
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(a) All shipments.

(b) Plant–DC shipments.

Figure 8.18 Sequential-optimization solution to 98-node node design instance. Total cost =
$4,776,380.
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Figure 8.19 Simple arc design problem instance. Grey and black bars inside nodes indicate supply
(> 0) or demand (< 0) for two products.

8.7.2 Arc Design

We now turn our attention to arc design problems, in which the nodes of the network are
already determined, and we are to make decisions about which arcs (or links, or edges) to
open. These are classical OR models; indeed, as noted above, the generic phrase “network
design” often connotes this type of problem when used by an optimizer or other operations
researcher. For a more thorough discussion of arc design problems, see Magnanti and
Wong (1984).

8.7.2.1 Problem Statement We are given a setN of nodes (which are already open)
and a set E of potential arcs. We will assume that the arcs are directed, i.e., that arc (i, j)

is not the same as arc (j, i) for i, j ∈ N . To model undirected networks, we can simply
double each arc, orienting one copy in each direction.

The network can handle multiple products (commodities), which are contained in the
set L. Each node i ∈ N has a certain number bli of “available units” of product l ∈ L: If
bli > 0, then node i supplies bli units of product l to the network; if bli < 0, then node i
demands −bli units of product l; and if bli = 0, then node i does neither. In any of these
cases, product l may flow through node i en route to other nodes.

We will assume that if node i supplies product l (bli > 0), then it must send exactly
bli units into the network. This implies that the total supply of product l equals the total
demand: ∑

i∈N
bli = 0

for all l ∈ L. It is simple to relax this assumption by adding a dummy node that “absorbs”
the excess supply if

∑
i∈N b

l
i > 0.

For example, Figure 8.19 depicts a simple instance for an arc design problem with two
products. The small bar graph inside each node indicates the available units of each of the
two products. For example, the node in the top left supplies 5 units of product 1 and 3
units of product 2; the node in the middle demands 3 units of product 1 and supplies 3 units
of product 2; the node in the bottom right does not supply or demand any units of either
product; and so on.

If we open arc (i, j), we incur a fixed cost of fij . If it is opened, we can send product
flows along arc (i, j), at a cost of clij per unit of product l. Arc (i, j) has a total capacity of
vij units of flow (summed across all products). We assume that the capacity vij is expressed
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in the same units as the bli values. We use decision variables xij and ylij to denote whether
arc (i, j) is opened and the flow of product l on arc (i, j), respectively.

In addition to the constraints described above, we may include other “side constraints.”
(See Problem 8.57 for some examples.) We let S denote the set of solutions (x, y) that are
feasible with respect to these side constraints. If there are no side constraints, we can set S
equal to a set that does not impose any additional constraints, such as

S = {0, 1}|E| × R|E||L|+ , (8.142)

where R+ is the set of all nonnegative real numbers.
As in the UFLP, the key trade-off in this problem is between the fixed cost to construct

arcs and the variable cost in using them. The more arcs we open, the higher our fixed costs,
but the more flexibility we have in transporting the products, and therefore, the lower the
flow costs.

We summarize the notation below:

Sets
N = set of nodes
E = set of potential arcs
L = set of products
S = set of solutions (x, y) that are feasible with respect to side constraints

Parameters
bli = available units of product l ∈ L at node i ∈ I
vij = capacity of arc (i, j) ∈ E
fij = fixed cost to open arc (i, j) ∈ E
clij = cost to transport one unit of product l ∈ L along arc (i, j) ∈ E

Decision Variables
xij = 1 if arc (i, j) ∈ E is opened, 0 otherwise
ylij = number of units of product l ∈ L shipped along arc (i, j) ∈ E

8.7.2.2 Formulation The arc design problem can be formulated as follows:

minimize
∑

(i,j)∈E

fijxij +
∑

(i,j)∈E

∑
l∈L

clijy
l
ij (8.143)

subject to
∑
j∈N

ylij −
∑
j∈N

ylji = bli ∀i ∈ N, ∀l ∈ L (8.144)

∑
l∈L

ylij ≤ vijxij ∀(i, j) ∈ E (8.145)

(x, y) ∈ S (8.146)

xij ∈ {0, 1} ∀(i, j) ∈ E (8.147)

ylij ≥ 0 ∀(i, j) ∈ E,∀l ∈ L (8.148)

The objective function calculates the total fixed cost plus flow costs over all arcs and
products. Constraints (8.144) are flow balance constraints: They require the net flow out
of node i of product l (flow out minus flow in) to equal the available supply of l at node i.
If bli > 0, then more units of l flow out of than into node i; if bli < 0, then more units flow
in than out; and if bli = 0, then all units that enter node i also leave it. Constraints (8.145)
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prevent flow along an arc that has not been opened, and also enforce the capacity (joint
across all products) on the arc. Constraints (8.146) are the side constraints. Constraints
(8.147) and (8.148) are integrality and nonnegativity constraints.

This problem is NP-hard; the easiest way to see this is to note that many well known
NP-hard problems are special cases of it. Even if the x variables are fixed, the problem is
still difficult to solve: It becomes a multicommodity network flow problem. If fractional
flows are allowed, the multicommodity network flow problem is usually formulated as an
LP, but it is a large and particularly challenging LP to solve. If the flows must be integer,
even finding a feasible solution is NP-complete. (See Ahuja et al. (1993).)

If there are no capacities (vij = ∞ for all (i, j) ∈ E) and no side constraints, the
problem is sometimes called the fixed-charge design problem. If there are no capacities,
no fixed costs (fij = 0 for all (i, j) ∈ E), and a single side constraint consisting of
a budget constraint, it is known as the budget design problem. Both of these problems
are considerably easier to solve than their capacitated counterparts, primarily because the
presence of capacities weakens the LP relaxation.

Arc design problems exist in many other flavors. For example, sometimes each product
l is assumed to have a single origin and destination (Magnanti and Wong 1984); this is
common in telecommunications networks in which the flow represents packets that must
be routed from one node to another. Sometimes the commodity is even required to follow
a single path through the network, rather than being split and recombined (Gavish and
Altinkemer 1990). In other models, we must decide how many facilities to open on each
arc or, similarly, how much capacity to add to each arc (Bienstock and Günlük 1996,
Gendron et al. 1999). Other models include nonlinear costs, arc congestion, dynamically
changing parameters, and so on.

8.7.2.3 Solution Methods Uncapacitated arc design problems are frequently solved
using Benders decomposition. The basic idea is to choose values for the x variables in a
“master problem,” solve for the optimal resulting flows in a “subproblem,” and then use
those flows to determine additional cuts that can be added to the master problem to eliminate
the current (infeasible or suboptimal) x and find a better one. For further discussion of
Benders decomposition applied to arc design problems, see Magnanti and Wong (1984),
Magnanti et al. (1986), and Costa (2005). A dual-ascent procedure based on the DUALOC
algorithm was proposed by Balakrishnan et al. (1989).

As noted above, capacitated arc design problems are considerably more difficult to
solve. Algorithms have been proposed using branch-and-cut (Günlük 1999, Atamtürk
2002) and Lagrangian relaxation (Holmberg and Yuan 2000, Crainic et al. 2001), among
others. For a survey, see Gendron et al. (1999). Heuristics such as add/drop-type methods
have been applied to arc design problems (Powell 1986), as have tabu search (Crainic et al.
2000, Ghamlouche et al. 2003), genetic algorithms (Drezner and Salhi 2002), and other
metaheuristics.

� EXAMPLE 8.11

Figure 8.20 maps the ten largest cities in Hungary along with potential arcs connecting
them. This instance consists of three products, all of whose demand occurs in
Budapest. Product 1 is produced in Szeged and Székesfehérvár; product 2 is produced
in Szeged and Debrecen; and product 3 is produced in Pécs and Miskolc. Available
units bli are plotted as bar graphs, as in Figure 8.19. The arc widths are proportional
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Figure 8.20 Hungary cities arc design problem instance. Grey and black bars inside nodes indicate
supply (> 0) or demand (< 0) for three products.

to their capacities, and the fixed and variable costs are listed along the arcs. Variable
costs are the same for all products. (For the complete specification of the instance,
see the file hungary.xlsx.)

The optimal solution to this instance of the arc design problem is drawn in Fig-
ure 8.21(a). This solution has a total cost of 647.6. The solution opens 8 arcs.
CPLEX solved this instance in less than 1 second.

The optimal solution is different from the solution that would result from solving
3 separate single-product problems, one for each product, and then combining the
results. That solution is plotted in Figure 8.21(b). In fact, that solution is not even
feasible for the original problem, since it sends 6 units of flow along the arc from
Szeged to Kecskemét, but that arc only has a capacity of 3. Solving for each product
individually ignores the shared capacity and results in this infeasible solution. This
highlights the fact that it can be difficult even to find a feasible solution for the
capacitated arc design problem, let alone an optimal one.

�

CASE STUDY 8.1 Locating Fire Stations in Istanbul

Istanbul, Turkey, is one of the world’s largest cities, with a population of over 13
million and growing. By 2008, the population growth had rendered the existing set of
fire stations insufficient to meet the current needs, prompting the Istanbul Metropolitan
Municipality (IMM) to sponsor a project by researchers from Dogus University and
Istanbul Technical University to determine locations for new fire stations in the city.
Their project is described by Aktaş et al. (2013) and summarized here.

The city of Istanbul is divided into 40 districts and 790 subdistricts. The researchers
treated these subdistricts as both the demand nodes and potential facility locations in
their location models. The IMM aims to respond to fire incidents within 5 minutes,
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(a) Optimal solution.
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(b) Solution obtained by solving for each product individually.

Figure 8.21 Solutions to Hungary cities arc design problem instance. Arcs selected in the solution
are black; nonselected potential arcs are gray.
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leading the researchers to use coverage models with a coverage radius based on a five-
minute travel time. The researchers used the set covering location problem (SCLP) to
identify the cheapest solution that would achieve 100% service, as well as the maximal
covering location problem (MCLP) to find solutions that maximize coverage subject to
a budget constraint. Both models required all existing fire stations to remain open; the
goal was to choose locations for new fire stations.

Their SCLP model differs from the formulation given in Section 8.4.1 in two ways.
First, it allows for multiple types of fire stations, each with its own fixed cost and
capacity. Second, it requires a given subdistrict to be covered by sufficiently many,
or sufficiently large, fire stations to meet the annual number of fire incidents in that
subdistrict. In particular, it replaces constraints (8.81) with∑

j∈J

∑
k∈K

rkaijxjk ≥ hi ∀i ∈ I, (8.149)

where K is the set of fire station types, rk is the capacity of a type-k station (number
of incidents it can handle per year), hi is the number of incidents in subdistrict i per
year, and xjk = 1 if we open a fire station of type k in subdistrict j. The model
also imposes a constraint requiring at most one type of station to be opened in each
subdistrict: ∑

k∈K

xjk ≤ 1 ∀j ∈ J. (8.150)

Finally, the objective function (8.83) is modified to sum over k in addition to j.
Their MCLP model is similarly modified, replacing constraints (8.86) with

hizi ≤
∑
j∈J

∑
k∈K

rkaijxjk ∀i ∈ I. (8.151)

In other words, i only counts as covered if the opened facilities that cover i have
sufficient combined capacity to respond to the number of incidents at i. In some
versions of their model, they also modify hi to reflect the number of cultural heritage
sites in the subdistrict and to give more weight to those subdistricts that have more
such sites. (The city’s history goes back more than 2500 years. A group of sites called
the Historical Areas of Istanbul was placed on the UNESCO World Heritage List in
1985.)

The research team used a commercial geographic information system (GIS) to as-
semble the data for the study. The GIS calculated the geographical center of each
subdistrict and the average travel times between subdistricts, taking into account the
road network and the typical speed on each road link. These travel times were then
used to determine the coverage parameters aij for the SCLP and MCLP. Fixed location
costs were assumed to be the same at every location, but different for different fire
station types. Demands hi were estimated from 12 years of historical incident data
from IMM.

The status quo solution, consisting of Istanbul’s existing 60 fire stations, was shown
to cover only 56.6% of the demands in the model (as measured by historical incidents)
within a 5-minute service time, and only 18.2% of demands from subdistricts that
contain cultural heritage sites. This poor coverage was the result of the city’s expansion
or changes in the road system and is what prompted this study in the first place.
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The SCLP solution, which covers 100% of all demands, required 149 new stations.
This exceeded the IMM’s budget for opening new stations, which allowed for the equiv-
alent of 64 new stations. Therefore, the researchers imposed this budget constraint in
the MCLP and found a solution that covers 93.9% of the demand, including 71.1%
of demands from heritage subdistricts. It also double-covers 35.6% of the subdistricts,
more than twice the number that are double-covered in the status quo solution. The
problems were solved in the modeling language GAMS using the MIP solver CPLEX,
with run times of less than 1 second.

As of their 2013 paper, Aktaş, et al. report that IMM had opened 25 new fire stations
in subdistricts proposed by the model, with a subsequent slowdown due to economic
conditions. Their solution provides a roadmap for future expansion of the fire station
network that can be implemented as budgets allow.

PROBLEMS

8.1 (Locating DCs for Toy Stores) A toy store chain operates 100 retail stores throughout
the United States. The company currently ships all products from a central distribution
center (DC) to the stores, but it is considering closing the central DC and instead operating
multiple regional DCs that serve the retail stores. It will use the UFLP to determine where
to locate DCs. Planners at the company have identified 24 potential cities in which regional
DCs may be located. The file toy-stores.xlsx lists the longitude and latitude for all of
the locations (stores and DCs), as well as the annual demand (measured in pallets) at each
store and the fixed annual location cost at each potential DC location. Using optimization
software of your choice, implement the UFLP model from Section 8.2.2 and solve it using
the data provided. Assume that transportation from DCs to stores costs $1 per mile, as
measured by the great circle distance between the two locations. Report the optimal cities
to locate DCs in and the optimal total annual cost.

8.2 (10-Node UFLP Instance: Exact) The file 10node.xlsx contains data for a 10-
node instance of the UFLP, with nodes located on the unit square and I = J , pictured
in Figure 8.22. The file lists the x- and y-coordinates, demands hi, and fixed costs fj
for each node, as well as the transportation cost cij between each pair of nodes i and j.
Transportation costs equal 10 times the Euclidean distance between the nodes. All fixed
costs equal 200.

Solve this instance of the UFLP exactly by implementing the UFLP in the modeling
language of your choice and solving it with a MIP solver. Report the optimal locations,
optimal assignments, and optimal cost.

8.3 (10-Node UFLP Instance: Greedy-Add) Use the greedy-add heuristic to solve the
10-node UFLP instance described in Problem 8.2. Report the facility that is opened at each
iteration, as well as the final locations, assignments, and cost.

8.4 (10-Node UFLP Instance: Swap) Suppose we have a solution to the 10-node UFLP
instance described in Problem 8.2 in which x2 = x3 = 1 and xj = 0 for all other j. Use
the swap heuristic to improve this solution. Use a best-improving strategy (that is, search
through the facilities in order of index, and at each iteration, implement the first swap
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Figure 8.22 10-node facility location instance for Problems 8.2–8.11.

found that improves the cost.) Report the swaps made at each iteration, as well as the final
locations, assignments, and cost.

8.5 (10-node pMP Instance: Exact) Using the file 10node.xlsx (see Problem 8.2),
solve the pMP exactly by implementing it in the modeling language of your choice and
solving it with a MIP solver. Ignore the fixed costs in the data set and use p = 4. Report
the optimal locations, optimal assignments, and optimal cost.

8.6 (10-Node pMP Instance: Swap) Suppose we have a solution to the 10-node pMP
instance described in Problem 8.5 in which x2 = x3 = x5 = x8 = 1 and xj = 0 for all
other j. Use the swap heuristic to improve this solution. Use a best-improving strategy
(that is, search through the facilities in order of index, and at each iteration implement the
first swap found that improves the cost.) Report the swaps made at each iteration, as well
as the final locations, assignments, and cost.

8.7 (10-Node pMP Instance: Neighborhood Search) Suppose we have a solution to
the 10-node pMP instance described in Problem 8.5 in which x4 = x5 = x6 = x10 = 1

and xj = 0 for all other j. Use the neighborhood search heuristic to improve this solution.
Report the swaps made at each iteration, as well as the final locations, assignments, and
cost.

8.8 (10-node SCLP Instance) Using the file 10node.xlsx (see Problem 8.2), solve the
SCLP exactly by implementing it in the modeling language of your choice and solving it
with a MIP solver. Set the fixed cost of every facility equal to 1. Assume that facility j
covers customer i if cij ≤ 2.5. Report the optimal locations.

8.9 (10-node MCLP Instance) Using the file 10node.xlsx (see Problem 8.2), solve
the MCLP exactly by implementing it in the modeling language of your choice and solving
it with a MIP solver. Set p = 4. Assume that facility j covers customer i if cij ≤ 2.5.
Report the optimal locations and the total number of demands covered.
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8.10 (10-node MCLP Instance: Coverage vs. p) Using the file 10node.xlsx (see
Problem 8.2), solve the MCLP exactly for p = 1, 2, . . . , 10 using the modeling language
and solver of your choice. Assume that facility j covers customer i if cij ≤ 2.5. Construct
a plot similar to Figure 8.14.

8.11 (10-node pCP Instance) Use Algorithm 8.9 to solve the 10-node instance of the
pCP specified in the file 10node.xlsx (see Problem 8.2). Set p = 3. Use rL = 0,
rU = maxi∈I,j∈J{cij}, and ε = 0.1. Report the value of r at each iteration, as well as the
optimal locations, assignments, and objective function value.

8.12 (Locating Homework Centers for Chicago Schools) Suppose the City of Chicago
wishes to establish homework-help centers at 12 of its public libraries. It wants the
homework center locations to be as close as possible to Chicago public schools. In
particular, it wants the homework centers to cover as many schools as possible, where a
school is “covered” if there is a homework center located within 2 miles of it.

a) Using the files chicago-schools.csv and chicago-libraries.csv and de-
termining coverage using great circle distances, find the 12 libraries at which
homework centers should be established. Report the indices of the libraries se-
lected, as well as the total number of schools covered. (Chicago school and
library data are adapted from Chicago Data Portal (2017a,b).)

b) Suppose now that the city wishes to ensure that all schools are covered. What is
the minimum number of homework centers that must be established to accomplish
this?

8.13 (Easy or Hard Modifications?) Which of the following costs can be implemented
in the UFLP by modifying the parameters only, without requiring structural changes to
the model; that is, without requiring modifications to the variables, objective function, or
constraints? Explain your answers briefly.

a) A per-unit cost to ship items from a supplier to facility j. (The cost may be
different for each j.)

b) A per-unit processing cost at facility j. (The cost may be different for each j.)
c) A fixed cost to ship items from facility j to customer i. (The cost is independent

of the quantity shipped but may be different for each i and j.)
d) A transportation cost from facility j to customer i that is a nonlinear function

of the quantity shipped (for example, one of the quantity discount structures
discussed in Section 3.4).

e) A fixed capacity-expansion cost that is incurred if the demand served by facility
j exceeds a certain threshold.

f) Some facilities are already open; an open facility j can be closed at a cost of f̂j .
(In addition, we can open new facilities, as in the UFLP.)

8.14 (LP Relaxation of UFLP) Develop a simple instance of the UFLP for which the
optimal solution to the LP relaxation has fractional values of the xj variables. This solution
must be strictly optimal—that is, you can’t submit an instance for which the LP relaxation
has an optimal solution with all integer values, even if there’s another optimal solution,
that ties the integer one, with fractional values. Your instance must have I = J , that is,
all customer nodes are also potential facility sites. Your instance must have at most four
nodes.
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Include the following in your report:
• A diagram of the nodes and edges.
• The values of hi, fj , and cij for all i, j.
• The optimal solution (xLP and yLP ) and optimal objective value (zLP ) for the LP

relaxation.
• The optimal solution (x∗ and y∗) and optimal objective value (z∗) for the IP.

8.15 (LP Relaxation of pMP) Repeat Problem 8.14 but for the pMP instead of the
UFLP.

8.16 (Ignoring Some Customers in the UFLP) The UFLP includes a constraint that
requires every customer to be assigned to some facility. It is often the case that a small
handful of customers in remote regions of the geographical area are difficult to serve and
can influence the solution disproportionately. In this problem, you will formulate a version
of the UFLP in which a certain percentage of the demands may be ignored when calculating
the objective function.

Let α be the minimum fraction of demands to be assigned; that is, a set of customers
whose cumulative demand is no more than 100(1 − α)% of the total demand may be
ignored. The parameter α is fixed, but the model decides endogenously which customers
to ignore. Customers must be either assigned or not—they cannot be assigned fractionally.

a) Using the notation introduced in Section 8.2.2, formulate this problem—we’ll call
it the “partial assignment UFLP” (PAUFLP)—as a linear integer programming
problem. Explain each of your constraints in words.

b) Now consider adding a dummy facility, call it u, to the original UFLP. Facility
u has a fixed capacity, so we are really dealing with the capacitated fixed-charge
location problem (CFLP), not the UFLP. (See Section 8.3.1 for more on the CFLP.)
Assigning customers to this dummy facility in the CFLP represents choosing
not to assign them in the PAUFLP. Explain how to set the dummy facility’s
parameters—its fixed cost, capacity, and transportation cost to each customer—
so that solving the CFLP with the dummy facility is equivalent to solving the
PAUFLP. Formulate the resulting integer programming problem.

c) Using Lagrangian relaxation, relax the assignment constraints in your model
from part (b). Formulate the Lagrangian subproblem, using λi as the Lagrange
multiplier for the assignment constraint for customer i.

d) Explain how to solve the Lagrangian subproblem you wrote in part (c) for fixed
values of λ.

e) Once you have a solution to the Lagrangian subproblem for fixed values of λ,
how can you convert it to a feasible solution to the CFLP?

8.17 (UFLP with Multiple Assignments) Suppose that, in the UFLP, customers do
not receive 100% of their demand from their nearest open facility. For example, a given
customer might receive 80% of its demand from the closest facility, 15% from the second-
closest, and 5% from the third-closest. This situation might arise, for example, when
locating ambulances, repair centers, or other services for which the primary facility may
sometimes be busy.

Let m be the maximum number of facilities that serve each customer, and let bik be
the fraction of demand that customer i ∈ I receives from the kth-closest open facility, for
k = 1, . . . ,m. (In the example above, m = 3, bi1 = 0.8, bi2 = 0.15, and bi3 = 0.05.) The
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bik are inputs to the model; that is, the assignment fractions are known in advance. Assume
that, for a given i, the bik are nonincreasing in k.

a) Formulate this problem as an integer linear optimization problem. Use the
notation introduced in Section 8.2.2, with the following modification: yijk equals
1 if facility j serves customer i as the kth closest, and 0 otherwise. If you
introduce any new notation, define it clearly. Explain the objective function and
each constraint in words.

b) If customer i is assigned to j1 at level k1 and j2 at level k2 for k1 < k2, then
we must have cij1 ≤ cij2 . Explain why the model does not need a constraint
enforcing this condition.

c) If we require yijk ≥ 0 rather than yijk ∈ {0, 1}, as we did in the UFLP, does
there always exist an optimal solution in which these variables are binary, as there
is in the UFLP?

d) In your model from part (a), you should have a constraint that requires each
customer i to be assigned to exactly one facility j at each proximity level k. Relax
this constraint via Lagrangian relaxation. Write the Lagrangian subproblem that
results. Explain how to solve this problem efficiently for fixed values of the
Lagrange multipliers. Your method must be exact (i.e., it must be guaranteed to
find the optimal solution) and self-contained (i.e., it may not rely on CPLEX or
another solver).

e) Bonus: Suppose the bik are not nonincreasing in k. Then the distance-ordering
property in part (c) may not hold unless we enforce it using constraints. Write
constraints to enforce this condition.

8.18 (Relaxing x Variables in UFLP) Prove or disprove the following claim: If we
constrain the y variables to be binary in the UFLP but allow the x variables to be continuous,
then there always exists an optimal solution to the resulting problem in which the x variables
are binary.

8.19 (Locating Paper Factories) A paper company needs to decide where to locate
paper factories in order to supply its five regional branches, which are located in Akron,
OH, Albany, NY, Nashua, NH, Scranton, PA, and Utica, NY. The Assistant to the Regional
Manager of the Scranton office has selected four potential locations for factories: Bethle-
hem, PA, Pittsburgh, PA, Rochester, NY, and Springfield, MA. Table 8.3 lists the annual
fixed costs and capacities at the four potential plant locations; the annual demand at each of
the regional branches; and the cost to produce and ship one case of paper from each plant
to each branch. Plant capacities and branch demands are expressed in cases per year.

Where should the company build its plants? Which plant(s) should each branch receive
paper from? What is the total cost of your solution? Solve the problem using the modeling
environment and solver of your choice.

8.20 (DUALOC #1) Figure 8.23 depicts an instance of the UFLP with three customers
(marked as circles) and three potential facility sites (marked as squares). Fixed costs fj are
marked next to each facility. Each customer has a demand of hi = 1, and transportation
costs are equal to the Manhattan-metric distance between the facility and customer.

Apply DUALOC’s dual-ascent procedure (Algorithm 8.4) to this instance. Report:

• The values of vi for all i ∈ I and sj for all j ∈ J at the end of the first complete
iteration, i.e., after looping through all the customers once.
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Table 8.3 Paper-company data for Problem 8.19.

Production + Shipping Costs
Bethlehem Pittsburgh Rochester Springfield Demand

Akron $2.20 $1.80 $2.70 $3.80 1,200,000
Albany $1.60 $3.20 $1.20 $0.60 1,150,000
Nasuha $3.20 $4.00 $2.50 $0.70 1,350,000
Scranton $0.80 $2.10 $1.40 $1.30 1,800,000
Utica $1.60 $2.40 $0.70 $1.50 900,000

Fixed Cost $4,000,000 $7,500,000 $4,500,000 $5,200,000
Capacity 3,300,000 4,800,000 4,200,000 3,750,000
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Figure 8.23 UFLP instance for Problem 8.20. Distances use Manhattan metric.

• The final values of v+, J+, x+, y+, and the dual and primal objective function
values.

• Whether the solution to this instance of the UFLP is (a) definitely optimal, (b)
definitely sub-optimal, or (c) you can’t tell.

8.21 (DUALOC #2) Repeat Problem 8.20 for the instance depicted in Figure 8.24.

8.22 (Warehouses for Quikflix) Quikflix is a mail-order DVD-rental company. You
choose which DVDs to rent on Quikflix’s web site, and the company mails the DVDs to
you. When you’ve finished watching the movies, you mail them back to Quikflix. Quikflix’s
business plan depends on fast shipping times (otherwise, customers will get impatient). But
overnight delivery services like FedEx are prohibitively expensive. Instead, Quikflix has
decided to open enough DCs so that roughly 90% of their customers enjoy 1-day delivery
times.

In this problem, you will formulate and solve a model to determine where Quikflix
should locate DCs to ensure that a desired percentage of the US population is within a
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Figure 8.24 UFLP instance for Problem 8.21. Distances use Manhattan metric.

1-day mailing range while minimizing the fixed cost to open the DCs. (You may assume
that the per-unit cost of processing and shipping DVDs is the same at every DC.)

a) Formulate the following problem as an integer programming problem: We are
given a set of cities, as well as the population of each city and the fixed cost to
open a DC in that city. The objective is to decide in which cities to locate DCs in
order to minimize the total fixed cost while also ensuring that at least α fraction
of the population is within a 1-day mailing range.

Define your notation clearly and indicate which items are parameters (inputs)
and which are decision variables. Explain each of your constraints in words.

b) Implement your model using a modeling language of your choice. Solve the
problem using the data set provided in quikflix.xlsx, which gives the locations
and populations of the 250 largest cities in the United States (according to the
2000 US Census), as well as the average annual fixed costs to open a DC in the
cities (which are fictitious). The file also contains the distance between each
pair of cities in the data set, in miles. Assume that two cities are within a 1-day
mailing radius if they are no more than 150 miles apart.

Using these data and a coverage percentage of α = 0.9, find the optimal
solution to the Quikflix DC location problem. Include a printout of your model
file (data not necessary) in your report. Report the total cost of your solution and
the total number of DCs open.

8.23 (Solving the Quikflix Problem) In Problem 8.22, you formulated an IP model
to solve Quikflix’s problem of locating DCs to ensure that a given fraction (α) of the
population is within a 1-day mailing range of its nearest DC. In this problem, you will
develop a method for solving this IP using Lagrangian relaxation.

The IP formulation for Problem 8.22 contains two sets of decision variables. We’ll
assume that the x variables represent location decisions, while the z variables indicate
whether or not a city is covered (i.e., is within a 1-day mailing radius of an open facility).
If you defined z as a continuous variable, make sure you have added a constraint requiring
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it to be less than or equal to 1. (This constraint is not strictly necessary since it is implied
by other constraints, but it strengthens the Lagrangian relaxation formulation.)

The IP formulation also has a set of constraints that allow city i to be covered only if
there is an open facility that is less than 150 miles away. If necessary, rewrite your model
so that those constraints are written as ≤ constraints. Then relax those constraints, and let
λi be the Lagrange multiplier for the constraint corresponding to node i ∈ J , where J is
the set of cities.

a) Write out the Lagrangian subproblem that results from this relaxation.
b) The subproblem should decompose into two separate problems, one containing

only the x variables and one containing only the z variables. Write out these two
separate problems.

c) Explain how to solve each of the two subproblems, the x-subproblem and the
z-subproblem. Your solution method may not rely on using the simplex method
or any other general-purpose LP or IP algorithm.

d) Suppose that the problem parameters and Lagrange multipliers are given by the
following values:

i fi hi λi

1 100 80 −50

2 100 120 −50

3 100 40 −40

4 100 90 −200

Suppose also that α = 0.7 and that node 1 covers nodes 1, 2, 3; node 2 covers
nodes 1, 2, and 4; node 3 covers nodes 1 and 3; and node 4 covers nodes 2 and 4.

Determine the optimal values of x and z, as well as the optimal objective
value, for this iteration of the Lagrangian subproblem.

8.24 (UFLP with Enemy Customers) Suppose that, in the UFLP model, some pairs
of customers are “enemies” and cannot be served by the same facility. Let aik = 1 if
customers i, k ∈ I (i 6= k) are enemies of each other, 0 otherwise. (aik is a parameter.)
Assume that the enemy pairs don’t overlap: If i and k are enemies of each other, then i and
k aren’t enemies of any other customers.

a) Write one or more linear constraints that can be added to the UFLP to enforce the
condition that two customers may not be assigned to the same facility if they are
enemies of each other. If you introduce any new notation, define it clearly.

b) Suppose we add your constraints from part (a) to the UFLP and then relax
constraints (8.4) using Lagrangian relaxation, with Lagrange multipliersλi. Write
the resulting Lagrangian subproblem.

c) Explain how to solve the Lagrangian subproblem you formulated in part (b) for
fixed values of λ. Your solution method may not rely on using the simplex method
or any other general-purpose LP or IP algorithm.

d) Choose one option and briefly explain your reasoning: For every instance of the
UFLP with enemy constraints, the optimal objective function value will be [≤,
<, =, >, ≥] the optimal objective function value of the corresponding instance
of the classical UFLP.
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e) Choose one option and briefly explain your reasoning: For every instance of the
UFLP with enemy constraints, the optimal number of open facilities will be [≤,
<, =, >, ≥] the optimal number of open facilities in the corresponding instance
of the classical UFLP.

8.25 (Locating Warehouses for Vandelay Industries) Vandelay Industries manufac-
tures latex products at several plants (whose locations must be chosen from among a set
of potential locations) and ships products to customers (whose locations and demands are
known). There is a fixed cost to open each plant, and each has a fixed production capacity.

For each unit of demand shipped to a given customer, Vandelay Industries earns a certain
amount of revenue. However, the company may choose to satisfy only a part of a given
customer’s demand, or not to satisfy its demand at all (for example, if it is too expensive to
ship to that customer). The only penalty for failing to serve a customer is the lost revenue.

In order to ensure adequate service to customers spread throughout the country, Vandelay
Industries also wishes to ensure that no two plants are located less than a certain distance
apart.

The company’s objective is to maximize the total profit, accounting for the revenue from
serving customers and the costs of opening facilities and shipping goods to customers.

Formulate this problem as a linear mixed-integer optimization problem (MIP). In addi-
tion to the notation in Sections 8.2.2 and 8.3.1, please use the following notation. If you
use any additional notation, define it clearly.

cjk = distance (miles) between plant j ∈ J and plant k ∈ J
cmin = minimum allowable distance (miles) between two open plants

8.26 (Locating Snack Bars) You have been hired as a consultant for a new theme park
to help choose locations for the park’s snack bars (restaurants). The park has been divided
into sectors, each representing a small area of land. The management team has forecast the
number of people that are expected to be in each sector at any point in time.

Let I be the set of sectors and let J be the set of possible locations for the snack bars.
The set J is a subset of I because each possible snack bar location is also a sector. Let hi
be the number of people located in sector i, for i ∈ I . (Of course, hi is just an estimate,
because this number will constantly be changing, but we’ll treat it as though the number of
people in sector i is static and deterministic.) Let tij be the number of minutes it takes to
walk from sector i to sector j.

The management team has decided there will be four snack bars in the theme park.
The snack bars are to be located so as to maximize the number of people that are within a
5-minute walk of a snack bar. Let aij equal 1 if sector j is within a 5-minute walk of sector
i; that is,

aij =

{
1, if tij ≤ 5

0, otherwise

Let xj equal 1 if we locate a snack bar in sector j and 0 otherwise (j ∈ J). Let zi equal 1
if sector i is within a 5-minute walk of a snack bar (i ∈ I).

a) Formulate this problem as a linear mixed-integer optimization problem (MIP). If
you use any new notation, define it clearly. Explain your constraints in words.

b) Suppose that the management team wants instead to maximize the number of
customers covered by at least two snack bars. We can redefine zi to equal 1 if
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sector i is covered by at least two open snack bars. Explain how to modify your
model from part (a) to enforce this new requirement. Clearly define any new
notation you introduce and explain your new constraint(s) in words.

c) Return to the original formulation—assume again that a customer is “covered”
if there is one open snack bar within 5 minutes. Suppose now the management
team also wants to ensure that the average distance traveled by a customer to
his or her closest snack bar is no more than 6 minutes. (The average is taken
across all customers.) That is, we want to maximize the number of customers
within 5 minutes of a snack bar, but we also want to ensure that the average time
for all customers is no more than 6 minutes. Revise the model to include this
requirement. Clearly define any new notation you introduce and explain any new
constraints in words.

d) Continuing with the model in part (c), suppose that the management wants to
require that the average distance traveled by a customer to his or her second-
closest snack bar is no more than 6 minutes. Explain how to modify your model
from part (c) to include this requirement. Clearly define any new notation you
introduce and explain any new constraints in words.

8.27 (Locating RFID Readers) The theme park from Problem 8.26 issues bands to all of
the visitors to the park. The bands are worn on the wrist, and they contain RFID chips that
allow the park to identify visitors, without paper tickets, barcodes, etc. The RFID chips are
“read” by RFID readers that are located throughout the park—at the park entrance, near the
entrances to rides, and so on. RFID is wireless, and each RFID reader can detect RFID chips
that are within a certain radius. In fact, there are two types of RFID readers—short-range
and long-range—and the wrist bands contain both types of RFID chips. Some locations
within the park must be covered by a short-range reader, some by a long-range reader, and
some by both.

Two technical constraints restrict the locations of the readers:

1. Short- and long-range readers cannot be placed at the same location.

2. No location can be covered by more than four readers, total (including both types).

Park planners want to locate RFID readers throughout the park to cover all of the
necessary sites with the reader types required, at minimum possible cost, while satisfying
the technical constraints.

a) Let I be a set of nodes representing locations in the park that must be covered
by an RFID reader. (We’ll call these “demand nodes.”) Let J be a set of nodes
representing potential sites for the readers. Let k = 1, 2 be the two types of
readers (1 = short-range, 2 = long-range). Let rik be a parameter (an input) that
equals 1 if demand node i ∈ I must be covered by a reader of type k. Let fjk be
the fixed cost to locate a type-k reader at location j ∈ J . Let xjk be a decision
variable that equals 1 if we locate a reader of type k at location j ∈ J .

Using this notation, formulate the problem as a linear integer optimization
model. Explain the objective function and the constraints in words. If you
introduce any new notation, define it clearly.

b) Now suppose the theme park’s engineers have found a way to locate a short-range
and a long-range RFID reader in the same location j ∈ J , but due to the expense
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involved in doing so, planners wish to have at most two locations that have both
types of readers. Write one or more linear constraints to enforce this restriction.

8.28 (Locating Compost Sites) The city of Greentown is planning to open several
composting facilities, which will convert organic matter (kitchen waste, leaves, yard waste,
shredded paper, etc.) into fertilizer instead of sending it to landfills. While the population
of Greentown agrees that this is a good idea, nobody wants a new compost site too close to
their homes, due to the noise, smell, and truck traffic to and from the site. The city’s mayor
has hired you to develop a model to choose locations for the new compost facilities.

The population of the city has been aggregated into a set I of neighborhoods, each
with population hi. City planners have identified a set J of potential sites for the compost
facilities. The distance between neighborhood i and site j is given by cij miles. The city
wishes to locate p compost sites in order to maximize the minimum distance between a
neighborhood and its nearest open compost facility.

Define the following decision variables:

xj =

{
1, if we locate a compost facility at site j,
0, otherwise

yij =

{
1, if site j is the nearest open compost facility to neighborhood i,
0, otherwise

a) Formulate this problem as a linear integer optimization model. Explain the objec-
tive function and constraints in words as well as formulating them in mathematical
notation. If you introduce any new notation (sets, parameters, decision variables),
define it clearly.

b) Now suppose that, instead of maximizing the minimum distance between a neigh-
borhood and its nearest open facility, the mayor wants to maximize the shortest
distance between any two open compost facilities. Note that this objective func-
tion focuses only on the distances among compost facilities and ignores distances
between facilities and neighborhoods.

Formulate this modified problem as a linear integer optimization model. Ex-
plain the objective function and new constraints in words. If you introduce any
new notation, define it clearly.

8.29 (Convex Hulls are Nonoverlapping) Consider a facility location instance with
nodes inR2 and Euclidean distances. Suppose we open a set J ′ ⊆ J of facilities and assign
each customer in I to the nearest open facility. Recall that the neighborhood of an open
facility j is Nj ≡ {i ∈ I|yij=1}. Prove that the convex hulls of the neighborhoods of the
open facilities do not overlap.

8.30 (LR Iteration for UFLP) The file LR-UFLP.xlsx contains data for a 50-node
instance of the UFLP, as well as the Lagrange multipliers for a single iteration of the
Lagrangian relaxation algorithm described in Section 8.2.3. For each facility j ∈ J ,
column B lists the fixed cost fj . For each customer i ∈ I , row 2 lists the demand hi and
row 3 lists the Lagrange multiplier λi. Finally, the cells in the range C6:AZ55 contain the
matrix of transportation costs cij .
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a) For each j ∈ J , calculate the benefit βj , the optimal value of xj , and the optimal
objective value of (UFLP-LRλ). The worksheet labeled “solution” contains
spaces to list βj (column B), xj (column C), and the objective value (cell C5).

Hint: To double-check your calculations, we’ll tell you that if i = 6 and j = 3,
then hicij − λi = 12422.34.

b) Using the method described in Section 8.2.3.4, generate a feasible solution to the
UFLP. In row 2 of the “solution” worksheet, list the index of the facility that
each customer is assigned to in your solution. In cell C6, list the objective value
of your solution.

8.31 (Maxisum Location Problem) Consider the following problem: We must locate
exactly p facilities, for fixed p. The objective is to maximize the sum of the demand-
weighted distances between each customer and its nearest facility. Formulate this problem
as an IP. Define any new notation clearly. Explain the objective function and each of the
constraints in words.

8.32 (Supplier–Facility Capacities) Consider the following extension of the UFLP: We
are given a set K of suppliers whose locations are fixed. Each supplier k ∈ K can ship
at most bjk units to facility j ∈ J . This is like a capacity constraint, but it is (supplier,
facility)-specific rather than the facility-specific capacities discussed in Section 8.3.1. Such
constraints might arise from, say, the capacity of the truck transporting goods from k to
j. Let djk be the cost to transport one unit of demand from supplier k ∈ K to facility
j ∈ J , and let zjk be a decision variable representing the number of units transported from
k to j. Note that zjk is a flow-type variable (zjk ≥ 0), whereas yij is a fractional variable
(0 ≤ yij ≤ 1). Multiple-sourcing is allowed; that is, facility j may receive shipments
from more than one supplier k. In addition to the notation just defined, use the notation in
Section 8.2.2. If you need to define any additional notation, define it clearly.

a) Formulate this extension of the UFLP as a linear mixed-integer optimization
problem. Explain the objective function and each constraint clearly in words.

b) In Section 8.2.3, we solved the UFLP by relaxing the “assignment” constraints
that require each customer to be assigned to exactly 1 facility. Write the objective
function of the Lagrangian subproblem that results from relaxing the analogous
constraint in your model from part (a).

c) Consider the special case in which hi = h for all i ∈ I , i.e., all of the customers
have the same demand, and bjk is an integer multiple of h for all j, k. Explain
how to solve the Lagrangian subproblem from part (b) for this special case. Your
method must be exact (i.e., it must be guaranteed to find the optimal solution) and
self-contained (i.e., it may not rely on a general-purpose optimization solver).

d) Describe a method that, given a feasible solution to the Lagrangian subproblem,
produces a feasible solution for the original problem.

8.33 (Salt Stockpiles) You are the director of your local Department of Transportation.
You have decided to build silos to stockpile the salt the department uses on roadways during
winter weather. A stockpile is considered to cover a town if they are within r miles of each
other. Your job is to determine where to locate up to p stockpiles to maximize the total
population of the towns that are double-covered, i.e., covered by at least two stockpiles.
Local planners have provided you with the population of each town that you would like to
be covered.
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a) Formulate this problem as an integer programming problem. Define any new
notation clearly.

b) Now suppose that the two stockpiles that double-cover a given town must be at
least s miles from each other. (Two stockpiles may be located less than s miles
from each other, but a given town doesn’t count as double-covered unless there
are two stockpiles that cover it and that are at least s miles apart.) Formulate the
new model, and define any new notation clearly.

8.34 (Pre-Positioning Disaster Relief Shelters) A disaster relief agency plans to estab-
lish shelters in preparation for a hurricane that has been forecast for the coming days. The
agency wishes to choose shelters from a set J of potential locations in order to cover every
population center in the set I . A shelter covers a population center if it is within r miles
of it. As in the set covering and maximal covering models, we define the parameter aij to
equal 1 if a shelter at site j ∈ J covers population center i ∈ I .

If we locate a shelter at site j, we incur a fixed cost of fj , as well as an “assignment
cost” of wj for each population center assigned to the shelter at j (regardless of the size of
these population centers). For example, if shelter j serves 12 population centers, then we
pay an assignment cost of 12wj .

Define the following decision variables:

xj =

{
1, if we locate a shelter at site j
0, otherwise

yij =

{
1, if a shelter at site j serves population center i
0, otherwise

a) Formulate this problem as a linear integer optimization problem. If you introduce
any new notation, define it clearly. Briefly explain your objective function and
constraints.

b) In part (a), the assignment cost is a linear function of the number of population
centers assigned to each shelter: It equals wjn, where n is the number of popula-
tion centers assigned to j. Suppose instead that the assignment cost is a nonlinear
function gj(n), where n is the number of population centers assigned to j. Define
the following decision variables:

zjn =

{
1, if exactly n population centers are assigned to a shelter at j
0, otherwise

Formulate this problem as a linear integer programming problem. Define any
new notation clearly, and explain the objective function and any new constraints.

8.35 (Stochastic Pre-Positioning) A humanitarian relief agency wishes to pre-position
stockpiles of emergency supplies (food, water, blankets, medicine, etc.) for use in the
aftermath of disasters. Its objective is to locate the smallest possible number of stockpiles
while ensuring a low probability that, for each population center, a disaster strikes and the
population center cannot be served by any stockpile. Whether a given stockpile can serve
a given population center depends on their physical distance as well as on the disaster that
strikes.
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Disasters are represented by scenarios. A scenario can be thought of as a disaster type,
magnitude, and location (e.g., magnitude 7.5 earthquake in city A, influenza pandemic in
city B, etc.). However, mathematically each scenario simply specifies whether a given
population center can be served by a given stockpile during a given disaster.

Let I be the set of population centers, and let J be the set of potential stockpile locations.
Let S be the set of scenarios (including the scenario in which no disaster occurs), and let qs
be the probability that scenario s occurs. Stockpile j is said to “cover” population center i
in scenario s if either stockpile j can serve population center i in scenario s or population
center i does not need disaster relief in scenario s. Let aijs be a parameter that equals
1 if stockpile j covers population center i in scenario s, and 0 otherwise. Assume each
stockpile is sufficiently large to serve the needs of the entire population it covers.

Formulate a linear integer programming problem that chooses where to locate stockpiles
in order to minimize the total number of stockpiles located while ensuring that, for each
i ∈ I , the probability that i is not covered by any open stockpile is less than or equal to α,
for given 0 ≤ α ≤ 1. Clearly define any new notation you introduce. Explain the objective
function and all constraints in words.

8.36 (Error Bias) Suppose the transportation costs are estimated badly in the UFLP. It
is natural to expect that the true cost of the solution found under the erroneous data has
an equal probability of being larger or smaller than the cost calculated when solving the
problem. Test this hypothesis by solving the instance given in random-errors.xlsx 100
times, each time perturbing the transportation costs by multiplying them by U [0.75, 1.25]

random variates. For each instance generated this way, record the objective function value,
as well as the objective function of the same solution when the correct costs are used. If the
hypothesis is correct, the objective function should be less than the true cost for roughly
half of the instances and greater for the other half. Do your results confirm the hypothesis?
In a few sentences, explain your results, and why they occurred. Also comment on the
implications your results have for the importance of having accurate data when choosing
facility locations.

8.37 (1-Center on a Tree) Consider the 1-center problem on a tree network in which
all of the demands are 1. Prove that the Algorithm 8.10 finds the optimal solution to both
the absolute and the vertex 1-center problem. (Recall from Section 8.4.3 that the absolute
p-center problem allows facilities to be located on either the edges or the nodes of the
network, whereas the vertex p-center problem restricts facilities to the nodes.)

Algorithm 8.10 1-Center on a tree
1: v1← any point on the tree
2: v2← node that is farthest from v1

3: v3← node that is farthest from v2

4: absolute 1-center is at the midpoint of the (unique) path from v2 to v3; vertex 1-center
is at the vertex of the tree that is closest to the absolute 1-center

8.38 (2-Center on a Tree) Prove that Algorithm 8.11 finds the optimal solution to the
absolute 2-center problem.

8.39 (N -Echelon Location Problem) By extending the approach used in Section 8.7.1,
formulate a facility location model with N echelons, for general N ≥ 3. Echelon N ships
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Algorithm 8.11 2-Center on a tree
1: using Algorithm 8.10, find the absolute 1-center of the tree
2: delete from the tree the link containing the absolute 1-center. (If the absolute 1-center

is on a vertex, delete one of the links incident to the center on the path from v1 to v2.)
This divides the tree into two disconnected subtrees

3: use Algorithm 8.10 to find the absolute 1-center of each of the subtrees; these constitute
a solution to the absolute 2-center problem

products to echelon N − 1, which ships products to echelon N − 2, and so on; echelon
1 serves the end customer. The locations of the facilities in echelons 2, . . . , N are to be
decided by the model, and there are fixed costs for each. Define any new notation clearly.
Explain the objective function and each of the constraints in words. Note: No decision
variables should have more than 3 indices.

8.40 (UFLP Duality Gap) Prove Lemma 8.4.

8.41 (Another Relaxation for the pMP) Suppose that we use Lagrangian relaxation to
relax constraint 8.72 in the pMP. Write the resulting Lagrangian subproblem. This problem
is structurally identical to another problem discussed in this chapter; what is it? Briefly
summarize the advantages and disadvantages of this relaxation compared to the relaxation
discussed in Section 8.3.2.2: Which subproblem is harder to solve? Which approach will
give a tighter bound? For which approach will the subgradient optimization procedure
converge more quickly?

8.42 (Tightening the CFLP Relaxation) Suppose we add the following constraint to
the CFLP: ∑

j∈J
vjxj ≥

∑
i∈I

hi. (8.152)

Explain in words what this constraint says. Explain why this constraint is redundant for
the CFLP (adding it does not change the optimal solution for the CFLP) and why adding it
tightens the Lagrangian relaxation discussed in Section 8.3.1. Finally, explain how to solve
the Lagrangian subproblem when constraint (8.152) is included in the model.

8.43 (Variable-Splitting Method for CFLP) In this problem, you will develop a
variable-splitting method for the CFLP. Variable splitting (also known as Lagrangian
decomposition) is a method that involves duplicating one or more sets of variables, adding
a constraint that requires those variables to be equal to their duplicates, and then relaxing
that constraint using Lagrangian relaxation. (See Guignard and Kim (1987).)

a) Introduce new decision variables wij for i ∈ I , j ∈ J . Rewrite the objective
function as

minimize
∑
j∈J

fjxj + β
∑
i∈I

∑
j∈J

hicijyij + (1− β)
∑
i∈I

∑
j∈J

hicijwij ,

where 0 ≤ β ≤ 1 is a constant. Rewrite constraints (8.55) using w instead of
y. Add the following new constraints, which require w and y to be equal, and
require w to be nonnegative:

wij = yij ∀i ∈ I, ∀j ∈ J (8.153)
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wij ≥ 0 ∀i ∈ I, ∀j ∈ J (8.154)

Write the resulting problem. This problem is equivalent to (CFLP).
b) Relax constraints (8.153) using Lagrangian relaxation. Write the resulting sub-

problem.
c) Explain how to solve the subproblem from part (b).
d) Based on your intuition, will this relaxation provide a tighter, weaker, or equiva-

lent bound to the relaxation discussed in Section 8.3.1?

8.44 (Accuracy of Spherical Law of Cosines Formula) Calculate the distances between
every pair of nodes in the 88-node data set (88node.xlsx) using both the great circle
distance formula (8.1) and the spherical law of cosines formula (8.2). Compare the results.
Are there any cases for which the two formulas produce distances that differ by more than
a mile or so? If so, what characterizes those cases?

8.45 (Swap vs. Neighborhood Search for p-Median) Implement the swap and neigh-
borhood search heuristics for the pMP (Algorithms 8.7 and 8.8). Conduct a numerical
experiment to compare the effectiveness (as measured by objective function value) and
efficiency (as measured by CPU time) of these two heuristics. Your experiment should use
randomly generated p-median instances with at least 100 nodes.

8.46 (Hakimi Property for SCLP) Does the Hakimi property hold for the set covering
problem? Explain your answer.

8.47 (Proof of Lemma 8.8) Prove Lemma 8.8.

8.48 (Solving the pCP using the MCLP) Algorithm 8.9 relies on the relationship
between the pCP and the SCLP stated in Lemma 8.8. A similar relationship exists between
the pCP and the MCLP.

a) State a lemma similar to Lemma 8.8 that describes this relationship.
b) Write pseudocode similar to Algorithm 8.9 for an exact algorithm that solves the

pCP by iteratively solving MCLPs.

8.49 (The MCLP with Mandatory Closeness Constraints) The MCLP with mandatory
closeness constraints is identical to the MCLP except that it also requires every customer
to be covered within a distance of s, with s ≥ r. That is, we wish to maximize the number
of demands that are covered within r, but every customer must be covered within s. Write
an integer programming formulation for this problem. If you introduce any new notation,
define it clearly. Explain the objective function and each constraint in words.

8.50 (MCLP is a Special Case of pMP) Show that the MCLP is a special case of the
pMP by showing how to set the parameters of the pMP so that solving it is equivalent to
solving the MCLP.

8.51 (A Dynamic Location Problem) Consider a dynamic facility location problem in
which the demands over a finite time horizon are known but change in each time period:
hit is the demand at node i ∈ I in period t, where t = 1, . . . , T . We can open and close as
many facilities as we like in each time period. Facility j ∈ J incurs a fixed cost of f+

jt if
it is opened in period t (but was closed in period t− 1), a fixed cost of f−jt if it is closed in
period t (but was open in period t− 1), and a fixed cost of fjt if it remains open in period
t (that is, if it was also open in period t − 1). Assume that no facilities are open at the
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start of the horizon, that is, in period 0. The transportation cost from facility j to customer
i in period t is given by cijt. Formulate an integer programming model to optimize the
locations of facilities over the time horizon to minimize the total fixed and transportation
costs. If you introduce any new notation, define it clearly. Explain your objective function
and constraints in words.

8.52 (MCLP Modifications) Modify the MCLP to accommodate each of the changes
described below (one at a time). For each modification, change either the objective function
or exactly one constraint to reflect the modification. Indicate the number of the equation
(objective function or constraint) you are changing.

a) We wish to maximize the total number of nodes covered, not the total population
covered.

b) Each facility j has a fixed construction cost of fj . Rather than restricting the
number of facilities to equal p, restrict the total amount spent to construct facilities
to a budget of b.

c) A demand node only counts as covered if there are two facilities within the
coverage radius.

8.53 (Subproblem Assignments) Prove that, if customer i is assigned to at least one
facility in the optimal solution to (UFLP-LRλ), then one of the facilities it is assigned to is
the nearest open facility. (This implies that in step 4 of Algorithm 8.2, it suffices to check
only those j such that yij = 1 in the optimal solution to (UFLP-LRλ).)

8.54 (Location of Power Generators) Consider the problem of locating generators
within an electricity network.

a) First consider a single generator. Suppose the generator’s load (i.e., the total
demand for electricity from the generator) is given by D ∼ N(µ, σ2), where D
is measured in kilowatt-hours (kWh). The cost to generate enough electricity to
meet a load of d kWh is given by 1

2γd
2, where γ > 0 is a constant. Prove that

the expected generation cost is given by 1
2γ(µ2 + σ2).

b) Now consider an electricity network consisting of multiple generators, whose
locations we need to choose. Let I be the set of loads (demand nodes), with
load i having a daily demand distributed N(µi, σ

2
i ). Let J be the set of potential

generators. The daily fixed cost if generator j is open is fj , and the generation cost
coefficient for j is γj . Formulate the problem of choosing generator locations and
assigning loads to generators in order to minimize the expected daily cost of the
system. Assume that, once location and assignment decisions are made, the power
network for a given generator and its loads is disconnected from the remaining
generators and loads (so that the physics of power flows can be ignored). Also
assume that the cost to transmit power is negligible.

8.55 (Stochastic Location for Toy Stores) Return to Problem 8.1, and suppose now that
the demands are stochastic. The file toy-stores-stochastic.xlsx gives the demands
for five scenarios, as well as the probability that each scenario occurs.

a) Implement the stochastic fixed-charge location problem in a modeling language
of your choice. Find the optimal solution for the instance given in the data set.
Report the optimal set of facilities and the corresponding cost.
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b) Now implement and solve the minimax fixed-charge location problem. Report
the optimal set of facilities and the corresponding cost.

8.56 (Minimax Cost 6= Minimax Regret) Construct a small example of the minimax
fixed-charge location problem (MFLP) in which minimizing the maximum cost results in
an optimal solution that is different from the solution that minimizes the maximum regret.
(You may choose either relative or absolute regret.) Your instance may have at most five
nodes.

8.57 (Side Constraints for Arc Design) Formulate each side constraint listed below for
the arc design model in Section 8.7.2.2. Your constraints must be linear. If you introduce
any new notation, define it clearly.

a) We have a set P ⊆ E × E of ordered pairs of arcs such that, for (e1, e2) ∈ P , if
arc e1 is opened, then arc e2 must be opened.

b) We have a set of E′ ⊆ E of arcs such that at most r arcs in E′ may be opened.
c) We have a set of E′ ⊆ E of arcs such that at least r arcs in E′ must be opened.
d) We have an upper bound B on the transportation cost that may be spent shipping

on a subset E′ ⊆ E of the arcs.

8.58 (Modified Hungary Network) Consider the Hungary instance of the arc design
problem shown in Figure 8.20. The file hungary2.xlsx contains a modification of the
instance described in Example 8.11. It lists the latitude and longitude of each node, the
available units for each node and product, and the fixed cost and capacity for each arc. The
variable cost is 1 for every arc and product. Formulate the arc design model in a modeling
language of your choice, and solve this instance. Report the optimal arcs to open, the
optimal flows, and the optimal total cost.

8.59 (Campaign Offices) A candidate for a national political position wishes to establish
campaign offices and decide how much money to spend on campaign activities at those
offices. The candidate’s staff has identified a set J of potential locations for campaign
offices (facilities) and a set I of neighborhoods (demand nodes) that they wish to “cover”
using these offices. Let aij be a parameter that equals 1 if office location j ∈ J covers
neighborhood i ∈ I , and 0 otherwise. Neighborhood i ∈ I has hi registered voters living
in it. Opening an office at location j ∈ J incurs a fixed cost of fj .

In addition to choosing where to locate offices, the candidate’s staff needs to determine
how much money to spend on campaign activities (get-out-the-vote, marketing, etc.) at
each office. They can only perform campaign activities at offices that they have chosen to
open. Staffers have estimated that each $1 spent on these activities will earn the candidate
exactly one extra vote.

For example: Suppose the candidate opens an office at location j ∈ J , and location j
covers 1000 registered voters. If the campaign spends $1000 on campaign activities (not
including the fixed cost fj), the candidate will earn all of their votes; if it spends $500,
the candidate will earn half of their votes; and if it spends $0, the candidate will earn none
of their votes. Note that there is no advantage to spending more than $1000 on campaign
activities in this example. There is also no advantage to opening an office at j if we spend
$0 since the candidate will not earn any votes.

If a neighborhood is covered by more than one open campaign office, its votes can only
be earned once. Therefore, only one office should direct its campaign activities at that
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neighborhood. Your model should choose which of the open offices should “serve” each
customer.

The candidate’s objective is to maximize the number of votes earned. The campaign
has a total budget of $B to spend on both fixed costs and campaign activities.

Define the following decision variables:

xj = 1, if we open a campaign office at location j ∈ J , 0 otherwise
wj = the number of dollars we spend on campaign activities at office j ∈ J

Formulate this problem as an integer linear optimization problem. If you introduce any new
notation, define it clearly. Explain your objective function and each constraint in words.

8.60 (Exchange Rate Hedging) An automobile manufacturer wishes to decide where to
locate factories around the world in order to account for random fluctuations in currency
exchange rates. The company will change the production levels at the various factories
to take advantage of changes in the exchange rates. Exchange rates are expressed as α
$/¤, where $ stands for US dollars (USD) and ¤ stands for the local currency in the other
country. For example, if the exchange rate between the United States and Thailand is
α = 0.028 $/฿, then 1 Thai baht is worth US$0.028.

The manufacturer is considering a set J of potential locations for the factories, which
will ship automobiles directly to the customers in a set I . Customer i ∈ I has a demand of
hi units per year. We have the following costs:

• Building a factory at site j ∈ J incurs a fixed annual cost of $fj , which is deterministic
and expressed in USD.

• The cost to produce one automobile at factory j ∈ J is ¤bj , which is deterministic
and expressed in the local currency of the country in which factory j is located.

• The cost to ship one automobile from factory j ∈ J to customer i ∈ I is $cij , which
is deterministic and expressed in USD.

The factories have effectively unlimited capacity.
Once the factories are built, the random exchange rates are realized, and the company

then decides how much to produce at each factory, as well as how much to ship from each
factory to each customer. The exchange rates are described by a set S of scenarios, such
that αjs is the exchange rate (in $/¤) in scenario s for the country in which facility j ∈ J
is located. Let qs be the probability that scenario s occurs.

Let xj equal 1 if we open a factory at site j ∈ J , 0 otherwise. Let yijs equal the number
of automobiles to be shipped from a factory at site j ∈ J to customer i ∈ I in scenario
s ∈ S. These are our decision variables. You may treat yijs as a continuous variable.

a) Formulate a stochastic optimization problem that minimizes the total expected
annual cost of locating facilities and producing and transporting automobiles. If
you introduce any new notation, define it clearly. Explain your objective function
and each constraint in words.

b) Suppose we allow yijs to be continuous and nonnegative. If the demands hi are
expressed as integers, will there necessarily exist an optimal solution in which
the yijs are integers? Why or why not?

c) Suppose that, instead of minimizing the total expected cost, the company wishes
to minimize the maximum absolute regret that can occur, across all exchange
rate scenarios. Formulate this new problem. If you introduce any new notation,
define it clearly.



CHAPTER 9

SUPPLY UNCERTAINTY

9.1 INTRODUCTION TO SUPPLY UNCERTAINTY

Supply chains are subject to many types of uncertainty, and many approaches have been
proposed for modeling uncertainty in the supply chain. So far in this book, we have
primarily considered uncertainty in demand. In this chapter, we study models that consider
uncertainty in supply; in other words, what happens when a firm’s suppliers, or the firm’s
own facilities, are unreliable.

Supply uncertainty may take a number of forms. These include:

• Disruptions. A disruption interrupts the supply of goods at some stage in the supply
chain. Disruptions tend to be binary events—either there’s a disruption or there isn’t.
During a disruption, there’s generally no supply available. Disruptions may be due
to bad weather, natural disasters, strikes, suppliers going out of business, etc.

• Yield Uncertainty. Sometimes the quantity that a supplier can provide falls short of
the amount ordered; the amount actually supplied is random. This is called yield
uncertainty. It can be the result of product defects, or of batch processes in which
only a certain percentage of a given batch (the yield) is usable.

• Capacity Uncertainty. Uncertainty in the quantity that a supplier can provide.
Whereas yield uncertainty is typically dependent on the order quantity (e.g., we
order S units, but only a portion of them are usable), capacity uncertainty usually as-
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sumes the capacity is independent of the order quantity, and the supplier will deliver
the minimum of the two.

• Lead Time Uncertainty. Uncertainty in the supply lead time can result from stockouts
at the supplier, manufacturing or transit delays, and so on. In this case, the lead time
L that figures into many of the models in this book must be treated as a random
variable rather than a constant. See, for example, Section 5.3.3.

In this chapter, we will discuss the first two types of supply uncertainty. We will discuss
models for setting inventory levels in the presence of disruptions in Section 9.2 and in the
presence of yield uncertainty in Section 9.3. In both sections, we will cover models that are
analogous to the classical economic order quantity (EOQ) and infinite-horizon newsvendor
models (the models from Sections 3.2 and 4.3.4). We discuss a newsvendor-type model
with a more general supply process in Section 9.4. Next, we discuss the risk-diversification
effect, a supply-uncertainty version of the risk-pooling effect, in Section 9.5. Finally, in
Section 9.6, we discuss a facility location model with supply uncertainty in the form of
disruptions.

In most of the models in this chapter, we will assume that demand is deterministic.
We do this for tractability, but also, more importantly, to highlight the effect of supply
uncertainty, in the absence of demand uncertainty.

In some ways, there is no conceptual difference between supply uncertainty and demand
uncertainty. After all, having too little supply is the same as having too much demand. A
firm might use similar strategies for dealing with the two types of uncertainty, as well—for
example, holding safety stock, utilizing multiple suppliers, or improving its forecasts of
the uncertain events. But, as we will see, the ways in which we model these two types of
uncertainty, and the insights we get from these models, can be quite different. (For more
on this issue, see Snyder and Shen (2006).)

For reviews of the literature on disruptions, see Snyder et al. (2016) and Vakharia and
Yenipazarli (2008), and for yield uncertainty, see Yano and Lee (1995) and Grosfeld Nir
and Gerchak (2004). Ciarallo et al. (1994) discuss capacity uncertainty. For an overview
of models with lead-time uncertainty, see Zipkin (2000).

9.2 INVENTORY MODELS WITH DISRUPTIONS

Disruptions are usually modeled using a two-state Markov process in which one state
represents the supplier operating normally and the other represents a disruption. These
states may be known as up/down, wet/dry, on/off, normal/disrupted, and so on. (We’ll
use the terms up/down.) Not surprisingly, continuous-review models (such as the one in
Section 9.2.1) use continuous-time Markov chains (CTMCs), while periodic-review models
(Section 9.2.2) use discrete-time Markov chains (DTMCs). The time between disruptions
and the length of disruptions are therefore exponentially or geometrically distributed (in
the case of CTMCs and DTMCs, respectively). The models presented here assume the
inventory manager knows the state of the supplier at all times.

Some papers also consider more general disruption processes than the ones we consider
here—for example, nonstationary disruption probabilities (Snyder and Tomlin 2007) or
partial disruptions (Güllü et al. 1999). These disruption processes can also usually be
modeled using Markov processes.
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Figure 9.1 EOQ inventory curve with disruptions.

9.2.1 The EOQ Model with Disruptions

9.2.1.1 Problem Statement Consider the classical EOQ model with fixed order cost
K and holding cost h per unit per year. The demand rate is d units per year (a change
from our notation in Section 3.2). Suppose that the supplier is not perfectly reliable—that
it functions normally for a certain amount of time (an up interval) and then shuts down
for a certain amount of time (a down interval). The transitions between these intervals are
governed by a CTMC. During down intervals, no orders can be placed, and if the retailer
runs out of inventory during a down interval, all demands observed until the beginning of
the next up interval are lost, with a stockout cost of p per lost sale. During up intervals,
the lead time is 0. Both types of intervals last for a random amount of time. Every order
placed by the retailer is for the same fixed quantity Q. Our goal is to choose Q to minimize
the expected annual cost.

This problem, which is known as the EOQ with disruptions (EOQD), was first introduced
by Parlar and Berkin (1991), but their analysis contained two errors that rendered their
model incorrect. A correct model was presented by Berk and Arreola-Risa (1994), whose
treatment we follow here.

Let X and Y be the duration of a given up and down interval, respectively. X and Y
are exponentially distributed random variables, X with rate λ and Y with rate µ. (Recall
that if X ∼ exp(λ), then f(x) = λe−λx, F (x) = 1 − e−λx, and E[X] = 1/λ.) The
parameters λ and µ are called the disruption rate and recovery rate, respectively. These
are the transition rates for the CTMC.

The EOQ inventory curve now looks something like Figure 9.1. Note that the inventory
position never becomes negative because excess demands are lost, not backordered. The
time between successful orders is called a cycle. The length of a cycle, T , is a random
variable. If the supplier is in an up interval when the inventory level reaches 0, then
T = Q/d, otherwise, T > Q/d.

Note: In the EOQ, we ignored the per-unit purchase cost c because the annual per-unit
cost is independent of Q (since d units are ordered every year, regardless of Q). It is not
strictly correct to ignore c in the EOQD because, in the face of lost sales, the number of
units ordered each year may not equal d, and in fact it depends onQ. Nevertheless, we will
ignore c for tractability reasons.
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9.2.1.2 Expected Cost Let ψ be the probability that the supplier is in a down interval
when the inventory level hits 0. One can show that

ψ =
λ

λ+ µ

(
1− e−

(λ+µ)Q
d

)
. (9.1)

Let f(t) be the pdf of T , the time between successful orders. Then

f(t) =


0, if t < Q/d

1− ψ, if t = Q/d

ψµe−µ(t−Q/d), if t > Q/d.

Note that f(t) has a point mass at Q/d and is continuous afterwards.
Each cycle lasts at leastQ/d years. After that, with probability 1−ψ, it lasts an additional

0 years, and with probability ψ, it lasts, on average, an additional 1/µ years (because of the
memoryless property of the exponential distribution). Therefore, the expected length of a
cycle is given by

E[T ] =
Q

d
+
ψ

µ
. (9.2)

We’re interested in finding an expression for the expected cost per year. It’s difficult to
write an expression for this cost directly. On the other hand, we can calculate the expected
cost of one cycle, as well as the expected length of a cycle, and the time between orders is
iid. This implies that we can use the renewal-reward theorem (Theorem 4.7), treating each
successful order as a renewal point. In particular, the renewal-reward theorem tells us that
the expected cost per year, g(Q), is given by

g(Q) =
E[cost per cycle]

E[cycle length]
. (9.3)

The denominator is given by (9.2); it remains to find an expression for the numerator.
In each cycle, we place exactly one order, incurring a fixed cost ofK. The inventory in a

given cycle is positive for exactlyQ/d years (regardless of whether there’s a disruption), so
the holding cost is based on the area of one triangle in Figure 9.1, namely Q2/2d. Finally,
we incur a penalty cost if the supplier is in a down interval when the inventory level hits 0.
This happens with probability ψ, and if it does happen, the expected remaining duration of
the down interval is 1/µ. Therefore, the expected stockout cost per cycle is pdψ/µ. Then
the total expected cost per cycle is

K +
hQ2

2d
+
pdψ

µ
. (9.4)

We can use (9.2)–(9.4) to derive the expected cost per year; the result is stated in the next
proposition.

Proposition 9.1 In the EOQD, the expected cost per year is given by

g(Q) =
K + hQ2/2d+ pdψ/µ

Q/d+ ψ/µ
. (9.5)
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Figure 9.2 Exact EOQD cost g(Q) for Example 9.1.

9.2.1.3 Solution Method Remember that ψ is a function ofQ, and in fact it’s a pretty
messy function of Q. Therefore, (9.5) can’t be solved in closed form—that is, we can’t
take a derivative, set it equal to 0, and solve for Q. Instead, it must be solved numerically
using line search techniques such as bisection search. These techniques typically assume
that g(Q) is convex. Unfortunately, it is not known whether g(Q) is convex with respect
to Q, but it is known that g(Q) is quasiconvex in Q. A quasiconvex function has only one
local minimum, which is a sufficient condition for most line search techniques to work.

� EXAMPLE 9.1

Recall Joe’s Corner Store from Example 3.1. Suppose that Joe’s supplier is subject to
disruptions, with up and down intervals that have exponentially distributed durations
with rates 1.5 and 14, respectively. (That is, disruptions begin, on average, 1/1.5 =

0.6667 years after the last disruption ended, and they last, on average, 1/14 = 0.0714

years, or 0.8571 months.) Recall that d = 1300, K = 8, and h = 0.225 and
suppose that, as in Example 3.8, p = 5. What is the optimal order quantity and the
corresponding expected cost?

Figure 9.2 plots g(Q). We optimized g(Q) numerically and found that Q∗ =

772.81 and g(Q∗) = 173.95. Note that the optimal order is nearly twice the size
of the order placed when there are no disruptions, in Example 3.1. The cost is
considerably higher, too.

�

There’s nothing wrong with solving the EOQD numerically, insofar as the algorithm for
doing so is quite efficient. On the other hand, it’s desirable to have a closed-form solution
for it for two main reasons. One is that we may want to embed the EOQD into some larger
model rather than implementing it as-is. (See, e.g., Qi et al. (2010).) Doing so may require
a closed-form expression for the optimal solution or the optimal cost. The other reason is
that we can often get insights from closed-form solutions that we can’t get from solutions
we have to obtain numerically.
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Although we can’t get an exact solution for the EOQD in closed form, we can get an
approximate one. In particular, Snyder (2014) approximates ψ by ignoring the exponential
term:

ψ̂ =
λ

λ+ µ
. (9.6)

ψ̂ is the probability that the supplier is in a down interval at an arbitrary point in time. But
ψ refers to a specific point in time, i.e., the point when the inventory level hits 0, and the
term (1 − e−(λ+µ)Q/d) in the definition of ψ accounts for the knowledge that, when this
happens, we were in an up interval Q/d years ago.

By replacing ψ with ψ̂, then, we are essentially assuming that the system approaches
steady state quickly enough that when the inventory level hits 0, we can ignore this bit of
knowledge, i.e., ignore the transient nature of the system at this moment. The approximation
is most effective, then, when cycles tend to be long; e.g., when Q/d is large. If Q/d is
large, then (λ + µ)Q/d is large, e−(λ+µ)Q/d is small, and ψ̂ ≈ ψ. The approximation
tends to be quite tight for reasonable values of the parameters.

The advantage of using ψ̂ in place of ψ is that the resulting expected cost function no
longer has any exponential terms, and we can set its derivative to 0 and solve for Q in
closed form. (See Problem 9.7(b).) This also allows us to perform some of the same
analysis on the EOQD that we do on the EOQ—for example, we can perform sensitivity
analysis, develop worst-case bounds for power-of-two policies, and so on. It also allows an
examination of the cost of using the classical EOQ solution when disruptions are possible;
as it happens, the cost of this error can be quite large.

� EXAMPLE 9.2

Figure 9.3 plots both the exact cost function, g(Q), and the approximate cost function,
ĝ(Q), for the problem in Example 9.1. The two curves are virtually indistinguishable.
Using ψ̂ in place of ψ and optimizing numerically (or using the closed-form expres-
sion in Problem 9.7(b)), we get Q̂∗ = 773.14—very close to the exact Q∗, 772.81,
in Example 9.1. Similarly, we get ĝ(Q̂∗) = 173.96, whereas g(Q∗) = 173.95 in
Example 9.1. Note that e−(λ+µ)Q∗/d = 9.96 × 10−5, confirming the claim above
that this term tends to be small.

�

9.2.2 The Newsvendor Problem with Disruptions

In this section, we consider the infinite-horizon newsvendor problem of Section 4.3.4,
except that in place of demand uncertainty, we have supply uncertainty, in the form of
disruptions. We know from Section 4.3.4 that in the case of demand uncertainty, a base-
stock policy is optimal, with the optimal base-stock level given by

S∗ = µ+ σΦ−1

(
p

p+ h

)
(9.7)

(if demand is normally distributed and γ = 1). We will see that the optimal solution for
the problem with supply uncertainty has a remarkably similar form.

The model we discuss below can be viewed as a special case of models introduced
by Güllü et al. (1997) and by Tomlin (2006). Elements of our analysis are adapted from
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Figure 9.3 Approximate and exact EOQD costs ĝ(Q) and g(Q) for Example 9.2.

Tomlin (2006) and from the unabridged version of that paper (Tomlin 2005). Some of the
analysis can also be found in Schmitt et al. (2010).

9.2.2.1 Problem Statement As in Section 9.2.1 on the EOQD, we assume that
demand is deterministic; it’s equal to d units per period. (d need not be an integer.) On-
hand inventory and backorders incur costs of h and p per unit per period, respectively.
There is no lead time. The sequence of events is identical to that described in Section 4.3,
except that in step 2, no order is placed if the supplier is disrupted.

The probability that the supplier is disrupted in the next period depends on its state in
the current period. In other words, the disruption process follows a two-state DTMC. Let

α = P(down next period|up this period)

β = P(up next period|down this period).

We refer to α as the disruption probability and β as the recovery probability. These are the
transition probabilities for the DTMC. The up and down periods both constitute geometric
processes, and these processes are the discrete-time analogues to the continuous-time
up/down processes in Section 9.2.1.

Given the transition probabilities α and β, we can solve the steady-state equations to
derive the steady-state probabilities of being in an up or down state as follows:

πu =
β

α+ β
(9.8)

πd =
α

α+ β
(9.9)

It turns out to be convenient to work with a more granular Markov chain that indicates
not only whether the supplier is in an up or down period, but also how long the current
down interval has lasted. In particular, state n in this Markov chain represents being in a
down interval that has lasted for n consecutive periods. If n = 0, we are in an up period.
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Let πn be the steady-state probability that the supplier is in a disruption that has lasted
n periods. Furthermore, define

F (n) =

n∑
i=0

πi. (9.10)

F (n) is the cdf of this process and represents the steady-state probability that the supplier
is in a disruption that has lasted n periods or fewer (including the probability that it is not
disrupted at all). These probabilities are given explicitly in the following lemma, but often,
we will ignore the explicit form of the probabilities and just use πn and F (n) directly.

Lemma 9.2 If the disruption probability is α and the recovery probability is β, then

π0 =
β

α+ β

πn =
αβ

α+ β
(1− β)n−1, n ≥ 1

F (n) = 1− α

α+ β
(1− β)n, n ≥ 0.

Proof. Omitted; see Problem 9.10.

9.2.2.2 Form of the Optimal Policy Our objective is to make inventory decisions
to minimize the expected holding and stockout cost per period. What type of inventory
policy should we use? It turns out that a base-stock policy is optimal for this problem:

Theorem 9.3 A base-stock policy is optimal in each period of the infinite-horizon newsven-
dor problem with deterministic demand and stochastic supply disruptions.

We omit the proof of Theorem 9.3; it follows from a much more general theorem proved
by Song and Zipkin (1996). Note that a base-stock policy works somewhat differently in
this problem than in previous problems, since we might not be able to order up to the base-
stock level in every period—in particular, we can’t order anything during down periods.
So a base-stock policy means that we order up to the base-stock level during up periods
and order nothing during down periods. The extra inventory during up periods is meant to
protect us against down periods.

9.2.2.3 Expected Cost Suppose the supplier is in state n = 0; that is, an up period.
If we order up to a base-stock level of S at the beginning of the period, we incur a cost at
the end of the period of

h(S − d)+ + p(d− S)+. (9.11)

In state n = 1, we incur a cost of

h(S − 2d)+ + p(2d− S)+, (9.12)

and in general, we incur a cost of

h [S − (n+ 1)d]
+

+ p [(n+ 1)d− S]
+ (9.13)

in state n, for n = 0, 1, . . ..
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Therefore, the expected holding and stockout costs per period can be expressed as a
function of S as follows:

g(S) =

∞∑
n=0

πn

[
h [S − (n+ 1)d]

+
+ p [(n+ 1)d− S]

+
]
. (9.14)

9.2.2.4 Optimal Solution

Lemma 9.4 The optimal base-stock level S∗ is an integer multiple of d.

Proof (sketch). The proof follows from the fact that g is a piecewise-linear function of S,
with breakpoints at multiples of d.

Normally, we would find the optimal S by taking a derivative of g(S), but since S
is discrete (by Lemma 9.4), we need to use a finite difference instead, as we did for the
newsvendor problem with a discrete demand distribution in Section 4.3.2.8. In particular,
S∗ is the smallest S that is an integer multiple of d such that ∆g(S) ≥ 0, where

∆g(S) = g(S + d)− g(S). (9.15)

(In Section 4.3.2.8, we defined ∆g(S) as g(S + 1)− g(S), but here, since S can only take
on values that are multiples of d, it’s sufficient to define ∆g(S) as in (9.15).)

∆g(S) = g(S + d)− g(S)

=

∞∑
n=0

πn

[
h [S − nd]

+
+ p [nd− S]

+

−h [S − (n+ 1)d]
+ − p [(n+ 1)d− S]

+
]

Now,

[S − nd]
+ − [S − (n+ 1)d]

+
=

{
d, if n < S

d

0, otherwise

and

[nd− S]
+ − [(n+ 1)d− S]

+
=

{
−d, if n ≥ S

d

0, otherwise.

Therefore,

∆g(S) = d

h S
d−1∑
n=0

πn − p
∞∑
n=S

d

πn


= d

[
hF

(
S

d
− 1

)
− p

(
1− F

(
S

d
− 1

))]
= d

[
(h+ p)F

(
S

d
− 1

)
− p
]
,

where F is as defined in (9.10). Then S∗ is the smallest multiple of d such that

(h+ p)F

(
S

d
− 1

)
− p ≥ 0 (9.16)
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⇐⇒ S ≥ d+ dF−1

(
p

p+ h

)
, (9.17)

where F−1(γ) is interpreted as the smallest n such that F (n) ≥ γ. Interpreted this way,
F−1(γ) is an integer for all γ, the right-hand side of (9.17) is automatically a multiple of d,
and we can drop the “smallest multiple of d” language and replace the inequality in (9.17)
with an equality.

We have now proved the following:

Theorem 9.5 In the infinite-horizon newsvendor problem with deterministic demand and
stochastic supply disruptions, the optimal base-stock level is given by

S∗ = d+ dF−1

(
p

p+ h

)
, (9.18)

where F is as defined in (9.10) and F−1 is interpreted as described above.

Notice that the optimal base-stock level under supply uncertainty has a very similar
structure to that under demand uncertainty, as given in (9.7). First, it uses the familiar
newsvendor critical ratio p/(p+ h), but here the inverse cdf F−1 refers not to the demand
distribution but to the supply distribution.

Second, the right-hand side of (9.18) has a natural cycle stock–safety stock interpretation,
just like in the demand uncertainty case. Here, d is the cycle stock—the inventory to meet
this period’s demand—and dF−1(γ), where γ = p/(p + h), is the safety stock—the
inventory to protect against uncertainty (in this case, supply uncertainty).1

Just like in the demand uncertainty case, the optimal solution specifies what fractile of
the distribution we should protect against. Here, we should have enough inventory to protect
against any disruption whose length is no more than F−1(γ) periods. The probability of
a given period being in a disruption that has lasted longer than this is 1 − γ, so, as in the
demand uncertainty case, the type-1 service level is given by γ. As usual, the base-stock
level increases with p and decreases with h.

� EXAMPLE 9.3

Gauss & Poisson (G&P; see Example 7.1) relies on a certain unreliable supplier for
a key raw material used to make toothpaste. G&P produces 2000 cases of toothpaste
per day. Each case of toothpaste carried in inventory incurs a holding cost of $0.25,
and each case of toothpaste that cannot be manufactured because of a lack of raw
materials incurs a stockout cost of $3.00 per day. The supplier has a disruption
probability of α = 0.04 and a recovery probability of 0.25. (Thus, disruptions occur,
on average, every 25 days and last, on average, 4 days.) What is the base-stock level
should G&P use to manage the inventory of the raw material, and what is the optimal
expected cost per day?

First, note that this example treats the manufacturing process as the “demand,”
and the inventory is of raw materials used in the manufacturing process, rather than
of finished goods. We have d = 2000, h = 0.25, p = 3. Using Lemma 9.2, we get
the pmf πn and cdf F (n) shown in Table 9.1 for 0 ≤ n ≤ 10. (Ignore the last column
for now.)

1In earlier chapters, we used α = p/(p+ h); here, we use γ since α has a new meaning in this section.
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Table 9.1 pmf, cdf, and costs of supplier disruptions in Example 9.3.

πn

[
h [S − (n+ 1)d]

+

n πn F (n) +p [(n+ 1)d− S]
+
]

0 0.8621 0.8621 1293.10
1 0.0345 0.8966 34.48
2 0.0259 0.9224 12.93
3 0.0194 0.9418 0.00
4 0.0145 0.9564 87.28
5 0.0109 0.9673 130.93
6 0.0082 0.9755 147.29
7 0.0061 0.9816 147.29
8 0.0046 0.9862 138.09
9 0.0035 0.9896 124.28

10 0.0026 0.9922 108.74

We have γ = p/(p + h) = 0.9231, so F−1(γ) = 3, interpreting F−1(γ) as the
smallest integern such thatF (n) ≥ γ. Thus, by Theorem 9.5,S∗ = 2000+2000·3 =

8000. In other words, we should hold enough raw materials to cover us for a disruption
of up to 3 days; after that, we will begin to stock out.

The last column of Table 9.1 gives the summand of (9.14) for 0 ≤ n ≤ 10. For
example, ifn = 0 (we are in a nondisrupted period), we will end the period with 6,000
units on hand, for a cost of 0.25 · 6,000 = 1,500, and this occurs with probability
0.8621, so the 0th term in the sum in (9.14) is 0.8621 · 1500 = 1293.10. Similarly,
if n = 5 (we are in the fifth period of a disruption), then we will end the period with
4000 units of backorders, for a cost of 0.0109 · 3 · 4000 = 130.93. The total cost
(approximated by calculating the summands through n = 100) is g(S∗) = 2737.07.
�

9.3 INVENTORY MODELS WITH YIELD UNCERTAINTY

In some cases, the number of items received from the supplier may not equal the number
ordered. This may happen because of stockouts or machine failures at the supplier, or
because the production process is subject to defects. The quantity actually received is
called the yield. If the yield is deterministic—e.g., we always receive 80% of our order
size—then the problem is easy: we just multiply our order size by 1/0.8 = 1.25. More
commonly, however, there is a significant amount of uncertainty in the yield. The optimal
solution under yield uncertainty generally involves increasing the order quantity, as under
imperfect but deterministic yield, but it should account for the variability in yield, not just
the mean—just as in the case of demand uncertainty.

In the sources of yield uncertainty mentioned above, we’d expect that the actual yield
should always be less than or equal to the order quantity—we shouldn’t receive more than
we order. But yield uncertainty can also occur in batch production processes—e.g., for
chemicals or pharmaceuticals—or in agriculture. In this case, it’s not a matter of items
being “defective,” but rather of not knowing in advance precisely how much usable product
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Figure 9.4 EOQ inventory curve with yield uncertainty.

will result from the process. The amount received may therefore be more than the amount
expected, and we can’t necessarily place an upper bound on the yield.

In this section, we consider how to set inventory levels under yield uncertainty. As in
Section 9.2, we consider both a continuous-review setting, based on the EOQ model, and a
periodic-review setting, based on the newsvendor problem. As before, we will assume that
demand is deterministic.

There are many ways to model yield uncertainty. We will consider two that are intuitive
and tractable.

The first is an additive yield uncertainty model in which we assume that if an order of
size Q is placed, then the yield (the amount received) equals Q + Y . Y is a continuous
random variable with pdf fY and cdf FY . Y need not be normal, or even symmetric. Y
might be bounded from above by 0 if the yield can never exceed the order quantity; in
this case, it might have an point mass at 0 (otherwise, the yield would equal 100% with 0
probability). Typically, the yield distribution is truncated at −Q (since we can’t receive a
negative amount), but we’ll use−∞ as its lower bound, primarily because it’s inconvenient
to have the yield distribution depend on the order size.

The second approach is a multiplicative yield uncertainty approach in which the yield is
given as QZ, where Z is a continuous, nonnegative random variable with pdf fZ and cdf
FZ . Again, Z need not be symmetric. If the yield cannot exceed Q, then Z ≤ 1.

In both cases, we assume that the yield distribution (fY or fZ) does not depend on
Q. This assumption may or may not be realistic; it is made primarily for mathematical
convenience.

9.3.1 The EOQ Model with Yield Uncertainty

9.3.1.1 Problem Statement The setup for this problem is just like the EOQ model,
except that if an order is placed for Q units, the actual number of units received may differ
from Q. Unlike the EOQD in Section 9.2.1, the supplier never experiences down intervals,
so it’s always possible to place an order, even if the quantity delivered falls short of the
quantity ordered. That means that, unlike the EOQD, we never have stockouts in the EOQ
with yield uncertainty. (See Figure 9.4.)

As in the EOQD, we’ll derive the expected cost per year as a function of Q using the
renewal-reward theorem. Here, we can define a renewal simply as an order. We need to
derive expressions for the expected cost per cycle and the expected cycle length.
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9.3.1.2 Additive Yield Let’s first consider the additive yield approach, in which the
yield is given by Q+ Y . In each cycle, we place exactly one order, so the fixed order cost
is given by K. The expected holding cost is given by h times the area of one triangle in
Figure 9.4, but these triangles have varying heights and widths. In particular, if the yield is
Q+ Y , then the holding cost is h(Q+ Y )2/2d. Therefore, the expected cost per cycle is
given by

K +

∫ ∞
−∞

h

2d
(Q+ y)2fY (y)dy =K +

h

2d

[
Q2

∫ ∞
−∞

fY (y)dy

+2Q

∫ ∞
−∞

yfY (y)dy +

∫ ∞
−∞

y2fY (y)dy

]
(9.19)

=K +
h

2d

[
Q2 + 2QE[Y ] + E[Y 2]

]
=K +

h

2d

[
Q2 + 2QE[Y ] + Var[Y ] + E[Y ]2

]
=K +

h

2d

[
(Q+ E[Y ])2 + Var[Y ]

]
. (9.20)

The expected cycle length is given by

Q+ E[Y ]

d
. (9.21)

Using the renewal-reward theorem (Theorem 4.7), the total expected cost per year is then

g(Q) =
2Kd+ h

[
(Q+ E[Y ])2 + Var[Y ]

]
2(Q+ E[Y ])

=
2Kd+ hVar[Y ]

2(Q+ E[Y ])
+
h(Q+ E[Y ])

2
.

(9.22)
g(Q) is clearly convex with respect toQ, so we can find a minimum by setting its derivative
to 0:

dg

dQ
= −2Kd+ hVar[Y ]

2(Q+ E[Y ])2
+
h

2
= 0

=⇒ h(Q+ E[Y ])2 = 2Kd+ hVar[Y ]

=⇒ Q+ E[Y ] =

√
2Kd+ hVar[Y ]

h

=⇒ Q∗ =

√
2Kd

h
+ Var[Y ]− E[Y ] (9.23)

Note that if Var[Y ] = 0 (i.e., the yield differs from the order quantity but is no longer
uncertain), then the solution is equivalent to the classical EOQ solution shifted by E[Y ]—
i.e., order

√
2Kd/h, but if we will always receive 20 units fewer than we order (E[Y ] =

−20), then add 20 units to our order. If, in addition E[Y ] = 0, then we have the EOQ
solution precisely.

Notice also that the optimal solution does not depend on the distribution of Y , only its
first two moments. The optimal order quantity increases with Var[Y ] but decreases with
E[Y ], since we need to over-order less if the additive term is greater.
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� EXAMPLE 9.4

Many vaccines are manufactured by injecting the target virus into chicken eggs,
where the virus replicates and is eventually harvested and purified. The yield of this
process is stochastic due to uncertainty in the growth rates of the virus inside the
eggs, as well as contamination by bacteria and other sources.

Consider a childhood vaccine whose demand is steady at a rate of 75,000 doses per
month. If the manufacturer initiates a batch with the intention of producing Q doses,
the actual number of doses produced is Q + Y , where Y ∼ N(−15,000, 9,0002).
Note that there is a small (5%) chance that more than Q doses will be produced, but
in most cases Y < 0. Each production batch costs the manufacturer $18,500, and
each dose of finished vaccine in inventory incurs a holding cost of $0.06 per month.

What are the optimal batch size and expected cost per year? On average, how
often will the manufacturer produce new batches of the vaccine?

We have d = 75,000, K = 18,500, h = 0.06, E[Y ] = −15,000, and Var[Y ] =
9,0002. Therefore, by (9.23),

Q∗ =

√
2 · 18,500 · 75,000

0.06
+ 9,0002 − (−15,000) = 230,246.37.

Plugging Q∗ into (9.22) (or using Problem 9.13), we get

g(Q∗) = 12,914.78.

From (9.21), the expected cycle length is

230,246.37 + (−15,000)

75,000
= 2.87,

so the manufacturer produces batches approximately every 2.87 months.

�

9.3.1.3 Multiplicative Yield Now consider the multiplicative yield approach, in
which the yield is given by QZ. In analogy to (9.19), the expected cost per cycle is

K +
hQ2

2d

∫ ∞
0

z2fZ(z)dz = K +
hQ2

2d

(
Var[Z] + E[Z]2

)
.

Similarly, the expected cycle length is QE[Z]/d, so the expected cost per year is

g(Q) =
Kd

QE[Z]
+
hQ(Var[Z] + E[Z]2)

2E[Z]
. (9.24)

Again, we take a derivative with respect to Q:

dg

dQ
= − Kd

Q2E[Z]
+
h(Var[Z] + E[Z]2)

2E[Z]
= 0

=⇒ Q∗ =

√
2Kd

h(Var[Z] + E[Z]2)
(9.25)
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Similar to the additive yield case, the optimal solution reduces to the EOQ solution, scaled
by 1/E[Z], if Var[Z] = 0. If, in addition, E[Z] = 1, then we have the EOQ solution
exactly.

Here, too, the optimal solution depends only on the first two moments of Z, not its
distribution. As before, Q∗ decreases with E[Z], but here it also decreases with Var[Z].
This is somewhat strange behavior. The explanation lies in what Yano and Lee (1995) call
the “portfolio effect,” which basically means that if the yield is very variable, it’s preferable
to use smaller batches to increase our chances of getting a “good” batch the next time.

� EXAMPLE 9.5

Return to Example 9.4 and suppose now that the yield is multiplicative, with the
number of doses produced equal to QZ, where Z ∼ Beta(5, 1). What are the
optimal batch size and expected cost per year? On average, how often will the
manufacturer produce new batches of the vaccine?

A Beta(α, β) random variable has a mean of α/(α+β), or 0.8333, and a variance
of αβ/((α+ β)2(α+ β + 1)), or 0.0198. Therefore, by (9.25),

Q∗ =

√
2 · 18,500 · 75,000

0.06(0.0198 + 0.83332)
= 254,460.21.

Plugging Q∗ into (9.24) (or using Problem 9.14), we get

g(Q∗) = 13,086.53.

The expected cycle length is

Q∗E[Z]

d
=

254,460.21 · 0.8333

75,000
= 2.83,

so the manufacturer produces batches approximately every 2.83 months. �

9.3.2 The Newsvendor Problem with Yield Uncertainty

9.3.2.1 Problem Statement Next, we consider the same infinite-horizon newsvendor-
type problem as in Section 9.2.2, except that the supplier suffers from yield uncertainty
rather than disruptions. As before, we assume that the demand is deterministic and equal
to d per period.

9.3.2.2 Additive Yield If we choose a base-stock level of S, then we have S + Y on
hand after the shipment arrives but before demand is realized, and the inventory level at the
end of the period is S + Y − d. This inventory level is positive if Y > d− S and negative
otherwise. Therefore, the expected cost per period is given by

g(S) = h

∫ ∞
d−S

((S + y)− d)fY (y)dy + p

∫ d−S

−∞
(d− (S + y))fY (y)dy. (9.26)

We can convert this to a newsvendor function by letting R ≡ d − S. (−R represents
the safety stock: the amount ordered in excess of the demand to protect against yield
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uncertainty.) Equation (9.26) can then be written as

g(R) = p

∫ R

−∞
(R− y)fY (y)dy + h

∫ ∞
R

(y −R)fY (y)dy. (9.27)

This equation is identical in form to (4.3) (but note the reversal of the cost coefficients).
Therefore, using (4.17) we know that

R∗ = F−1
Y

(
h

h+ p

)
,

so

S∗ = d− F−1
Y

(
h

h+ p

)
. (9.28)

Note that the critical ratio has h in the numerator, not p. If E[Y ] ≤ 0 (as is typical), and if
h < p (as is also typical), then F−1

Y (h/(h + p)) < 0, so (9.28) instructs us to order more
than d to compensate for the yield uncertainty. (Even if E[Y ] > 0, F−1

Y (h/(h + p)) may
still be negative, depending on h/(h+ p).)

If Y is normally distributed, then

S∗ = d−
[
E[Y ] + Φ−1

(
h

h+ p

)√
Var[Y ]

]
.

= d− E[Y ] + zα
√

Var[Y ] (9.29)

since zα = −z1−α (C.11). Again, S∗ decreases with E[Y ]. If h < p, then zα > 0, so, like
the EOQ model with additive yield in Section 9.3.1.2, S∗ increases with Var[Y ].

In both (9.28) and (9.29), the term subtracted from d is a newsvendor quantity ((4.17) or
(4.24)) in which the probability distribution function models the supply uncertainty rather
than the demand uncertainty (and the critical ratio is reversed).

� EXAMPLE 9.6

Consider now the influenza (flu) vaccine, which is primarily used during a single
season but has a long manufacturing lead time leading up to that season and therefore
can be modeled as a newsvendor problem. (In contrast, childhood vaccines like those
discussed in Example 9.4 are used at more or less constant rates throughout the year.)

Suppose that a certain manufacturer of influenza vaccine expects a demand of 1.5
million doses this year. A manufacturing batch intended to produce Q units will
actually produce Q+ Y units, where Y ∼ U [−500,000, 500,000]. Unmet demands
are lost at a cost of $75 per dose, and unused doses must be discarded, incurring a cost
of $15 per dose in wasted material. (This is a single-period newsvendor problem, but
the results in this section, which assume an infinite horizon, still apply.)

What are the optimal batch size and expected cost per year?
For simplicity, let’s use units of 1 million doses. Then d = 1.5, p = 75,000,000,

h = 15,000,000, h/(h+ p) = 0.1667. Furthermore,

fY (y) = 1

FY (y) =
y + 0.5

1
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for y ∈ [−0.5, 0.5] and
F−1
Y (γ) = γ − 0.5

for γ ∈ [0, 1]. Therefore, by (9.28),

S∗ = 1.5− (0.1667− 0.5) = 1.8333

and R∗ = 1.5 − 1.8333 = −0.3333. Therefore, the manufacturer should produce
1.83 million doses of the vaccine, with a safety stock of 0.33 million. From (9.26),
we have

g(R∗ = −0.3333) =75,000,000

∫ −0.3333

−0.5

(−0.3333− y)dy

+ 15,000,000

∫ 0.5

−0.3333

(y + 0.3333)dy

=75,000,000 · 0.0139 + 15,000,000 · 0.3472

=6,250,500.

�

9.3.2.3 Multiplicative Yield We will only consider a single-period version of the
newsvendor problem with multiplicative yield. The multiperiod problem is much more
difficult than the version with additive yield. This is because it is more difficult to calculate
the inventory level after the shipment arrives but before the demand occurs. In the additive
yield model, this simply equalled S+Y , but under multiplicative yield, it equals x+ (S−
x)Z, where x is the ending inventory level in the previous period. This dependence on the
system state in the previous period complicates the multiperiod analysis significantly.

In the single-period model, assume that we begin with an inventory level of 0, and we
order S units. The inventory level after the shipment arrives is therefore SZ, where Z is
the random variable representing the yield. The expected cost in the period is given by

g(S) = h

∫ ∞
d/S

(Sz − d)fZ(z)dz + p

∫ d/S

0

(d− Sz)fZ(z)dz. (9.30)

Taking the derivative using Leibniz’s rule (C.49), we get

g′(S) =h

∫ ∞
d
S

zfZ(z)dz − p
∫ d/S

0

zfZ(z)dz

=h

[∫ ∞
0

zfZ(z)dz −
∫ d/S

0

zfZ(z)dz

]
− p

∫ d/S

0

zfZ(z)dz

=hE[Z]− (h+ p)

∫ d/S

0

zfZ(z)dz. (9.31)

Moreover,

g′′(S) = −(h+ p)
d

S
fZ

(
d

S

)
> 0,
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so g(S) is convex and the first-order condition is sufficient. Setting g′(S) = 0, we find that
S∗ satisfies ∫ d/S∗

0

zfZ(z)dz =
hE[Z]

h+ p
(9.32)

or, using (C.70),
d

S∗
FZ

(
d

S∗

)
− n̄Z

(
d

S∗

)
=
hE[Z]

h+ p
. (9.33)

Unfortunately, there is no closed-form expression for S∗, but we can solve (9.32) or (9.33)
numerically to get S∗.

� EXAMPLE 9.7

Suppose that the flu vaccine described in Example 9.6 instead exhibits multiplicative
yield uncertainty: The yield Z is normally distributed with a mean of 0.8 and a
standard deviation of 0.04. (We can treat the probability that Z > 1 as negligible.)
What are the optimal batch size and expected cost per year?

Recall that d = 1.5 and h/(h+p) = 0.1667. By (9.33), sinceZ ∼ N(0.8, 0.042),
the optimal base-stock level satisfies

1.5

S
Φ

(
d
S − 0.8

0.04

)
− 0.04L̄

(
d
S − 0.8

0.4

)
= 0.1667 · 0.8 = 0.1334,

using (C.32). Solving numerically we find that S∗ = 1.9669 does the trick:

1.5

1.9669
Φ

(
d

1.9669 − 0.8

0.04

)
− 0.04L̄

(
d

1.9669 − 0.8

0.4

)

=
1.5

1.9669
· 0.1750− 0.04 · 0.0038 = 0.1334.

Therefore, the manufacturer should produce 1.97 million doses of the vaccine.
From (9.30), we have

g(1.9669) =15,000,000

∫ ∞
1.5/1.9669

(1.9669z − 1.5)fZ(z)dz

+ 75,000,000

∫ 1.5/1.9669

0

(1.5− 1.9669z)fZ(z)dz

=1,770,125.49.

�

9.4 A MULTISUPPLIER MODEL

In this section, we discuss a model by Dada et al. (2007) in which a newsvendor orders from
multiple suppliers, some of which may be subject to supply uncertainty. The newsvendor’s
objective is to maximize its expected profit. Supply uncertainty is modeled in a very general
way; disruptions, yield uncertainty, and many other forms of supply uncertainty are special
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cases. The model can be used to make ordering decisions, but also to answer qualitative
questions about which suppliers will be preferred over which others.

This is a single-period model. Therefore, the ordering decision is used to balance among
the suppliers’ uncertainties—that is, to choose a portfolio of suppliers and corresponding
order quantities in order to achieve as close as possible to the desired total inventory for
the current period. In contrast, the disruption and yield uncertainty models in Sections 9.2
and 9.3 use the ordering decision to obtain inventory that can be used to buffer against
the uncertainty in future orders. In other words, the earlier models spread the supply risk
temporally across orders, whereas the model in this section spreads the supply risk spatially
across suppliers.

9.4.1 Problem Statement

We consider a newsvendor that faces stochastic demand represented by a random variable
D with pdf f(·) and cdf F (·). There are N suppliers available to the newsvendor, which
may differ in terms of their supply uncertainty. If the newsvendor orders a quantity Qi
from supplier i, then the number of units supplier i will actually have available for the
newsvendor is given by its production function, Bi(Qi, Xi), where Xi is a nonnegative
random variable with pdf gi(·) and cdf Gi(·). The suppliers never supply more than the
newsvendor orders. The actual amount delivered to the newsvendor, then, isWi(Qi, Xi) ≡
min{Qi, Bi(Qi, Xi)}. We will often drop the arguments and just write or Bi or Wi.

We assume theXi are independent. We also assume that theBi(·) are differentiable and
that ∂Bi/∂Qi ≤ 1 (so ordering one additional unit results in no more than one additional
unit being available).

In some cases, the production function depends on the order quantity—for example, in
the case of additive or multiplicative yield. We call these endogenous production func-
tions. In contrast, exogenous production functions do not depend on the order quantity—
disruptions are an example. If supplier i has an exogenous production function, then
Bi(Qi, Xi) = Xi for all Qi and Xi.

We say that supplier i is perfectly reliable if there is no chance that the supplier will
deliver less than the newsvendor ordered from it, and unreliable if there is some possibility
that the supplier will deliver less than ordered. In other words, i is perfectly reliable if
P(Wi(Qi, Xi) = Qi) = 1, and unreliable if P(Wi(Qi, Xi) = Qi) < 1.

The production function is a very flexible construct, which is capable of modeling many
forms of supply uncertainty. For example:

• Perfect reliability: Bi(Qi, Xi) = Xi and Xi = ∞, regardless of Qi. In this case,
we have Wi = Qi.

• Disruptions: Bi(Qi, Xi) = Xi, where Xi = M with some probability and Xi = 0

with 1 minus that probability, for large M .

• Capacity uncertainty: Bi(Qi, Xi) = Xi, whereXi is a random variable with a given
distribution.

• Multiplicative yield uncertainty: Bi(Qi, Xi) = QiXi, whereXi is a random variable
with a given distribution with support in [0, 1] .
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• Additive yield uncertainty: Bi(Qi, Xi) = (Qi −Xi)
+, where Xi is a nonnegative

random variable with a given distribution. (The (·)+ is required to ensure that the
number of available units is nonnegative.)

Note that the first three examples use exogenous production functions (in fact, the first
example is a special case in whichXi is degenerate, i.e., the supply is deterministic), while
the last two use endogenous functions.

The newsvendor seeks to maximize its expected profit. (Most of the other models in this
and earlier chapters assume the inventory manager wishes to minimize the expected cost,
but the two are mathematically equivalent.) We will model the cost and revenue parameters
explicitly, similar to the “explicit” newsvendor formulation in Section 4.3.2.4.

Each unit that supplier i delivers to the newsvendor costs the newsvendor ci. (Note that
this cost is charged based on the number of units delivered, not the number ordered.) We
assume the suppliers are sorted so that

c1 ≤ c2 ≤ · · · ≤ cN . (9.34)

The newsvendor earns a revenue of r for each unit that it sells. Unmet demands incur a
stockout cost of p in addition to the lost profit (e.g., p is a loss-of-goodwill cost). Excess
inventory may be salvaged to earn a revenue of v (with v ≤ c1).

9.4.2 Expected Profit

Suppose we order only from supplier i. Then the underage cost per unit of unmet demand
is p+ r − ci and the overage cost per unit of excess inventory is ci − v. The critical ratio
is therefore (p + r − ci)/(p + r − v), which we denote αi. Note that this is identical to
the critical ratio in (4.21) for the explicit formulation of the classical newsvendor problem,
except that there is no additional holding cost h. By (9.34), we have

α1 ≥ α2 ≥ · · · ≥ αN . (9.35)

Let Q be the vector of order quantities. Then the newsvendor’s expected profit as a function
of Q, denoted Π(Q), is

Π(Q) = EX,D

[
rmin{D,WT }+ v(WT −D)+ − p(D −WT )+ −

N∑
i=1

ciWi

]
, (9.36)

where X is the vector of random variables Xi and WT =
∑N
i=1Wi is the total quantity

delivered by all suppliers. Note that although X does not appear explicitly inside the
expectation in (9.36), it is still there, since Wi and WT depend on it.

One can show (see Problem 9.18) that

Π(Q) =(r + p− v)EX,D

[
N∑
i=1

αiWi − (WT −D)+

]
− pE[D] (9.37)

=(r + p− v)

[
N∑
i=1

αiEXi [Wi]− EX,D[(WT −D)+]

]
− pE[D]. (9.38)
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The terms r + p − v and pE[D] are constants and can be ignored without changing the
function’s optimizers. Therefore, we will work with the following modified expected profit
function, denoted with a tilde:

Π̃(Q) =

N∑
i=1

αiEXi [Wi]− EX,D[(WT −D)+]. (9.39)

Below, it will be convenient to separate out the parts of Π̃(Q) that correspond to a given
supplier i from those that do not. To that end, let WT−i ≡ WT −Wi be the total quantity
delivered by all suppliers except i. Then for any i,

Π̃(Q) = αiEXi [Wi]− EX,D[(Wi +WT−i −D)+] + EX

 N∑
j 6=i

αjWj

 , (9.40)

where the notation
∑N
j 6=i means the sum over all j = 1, . . . , N excluding j = i. One can

interpret (9.40) as something analogous to a standard newsvendor objective function with a
single ordering decision, Wi, by treating the newsvendor’s demand as WT−i −D (which,
in (9.40), is the remaining demand after the other suppliers’ delivered units are used up).
The third term is a constant (with respect to Wi). If one multiplies (9.40) by −1 to convert
it to a cost function, it takes the form of (4.12).

Therefore, we will consider the following optimization problem:

maximize Π̃(Q) (9.41)

subject to Qj ≥ 0 ∀j = 1, . . . , N (9.42)

In the objective function (9.41), Π̃(Q) can be written as in (9.39) or (9.40).

9.4.3 Optimality Conditions

The objective function Π̃(Q) is not, in general, concave. This can make it difficult to find
the optimal order quantities. Nevertheless, the model itself still provides plenty of structure
to enable us to draw interesting conclusions and insights.

We can rewrite the objective function using n̄(·), the complementary loss function
corresponding to the demand distribution (see (4.5)):

Π̃(Q) = αiEXi [Wi]− EX[n̄(Wi +WT−i)] + EX

 N∑
j 6=i

αjWj

 . (9.43)

Under some fairly mild conditions on the random variables and the production functions,
Π̃(Q) is differentiable. (See Dada et al. (2007) for details.) Let

Π̃′i(Q) ≡ ∂Π̃(Q)

∂Qi
.

(Throughout, we will use the prime symbol ′ to denote (partial) differentiation with respect
to Qi.) Then from (9.43), we get the following optimality condition:

Π̃′i(Q) = αiEXi [W ′i (Qi, Xi)]− EX[W ′i (Qi, Xi)F (Wi +WT−i)], (9.44)
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where W ′i (Qi, Xi) is the marginal quantity delivered by supplier i, that is,

W ′i (Qi, Xi) =

{
B′i, if Bi < Qi

1, if Bi ≥ Qi.
(9.45)

(Wi is not differentiable at Bi = Qi, but we will write W ′i nevertheless.) In (9.44), we use
the derivative of n̄ from (C.16), the chain rule, and the fact that the third term of (9.43) is
independent of Qi.

� EXAMPLE 9.8

Consider the special case in which there is only one supplier and it is perfectly
reliable—in other words, we have a classical newsvendor. Then (dropping the
subscripts i) B(Q,X) = ∞, W = min{Q,B(Q,X)} = Q, W ′(Q,X) = 1 for all
Q and X , and

Π̃′(Q) = α− F (Q),

which yields the familiar newsvendor optimality condition from Section 4.3.2.3.
Now consider the additive yield uncertainty model from Section 9.3.2.2: There

is a single supplier with additive yield uncertainty, and the demand is deterministic
and equal to d. We’ll assume the yield is always less than or equal to Q, and that the
yield is negative with very low probability; that is, B(Q,X) = Q−X , where X is
nonnegative and P(X > Q) ≈ 0. Then W = min{Q,B(Q,X)} = B(Q,X), and

W ′(Q,X) = B′(Q,X) = 1.

Then
Π̃′(Q) = α− EX [F (Q−X)].

However, the demand distribution is degenerate: F (z) equals 1 if z ≥ d and 0
otherwise. Therefore,

Π̃′(Q)  =  α  −  EX [1{Q  −  X  ≥  d}],

where 1{·} = 1 if the condition inside the {·} is true and 0 otherwise. So

Π̃′(Q) = α− P(X ≤ Q− d) = α−G(Q− d),

which means that
Q∗ = d+G−1(α). (9.46)

This is identical to the optimal solution given in (9.28).2 �

Any optimal solution Q∗ satisfies the following KKT conditions:

Π̃′i(Q
∗) ≤ 0 ∀i = 1, . . . , N (9.47)

Π̃′i(Q
∗)Q∗i = 0 ∀i = 1, . . . , N (9.48)

2We modeled the yield as Q −X (X ≥ 0) here. In Section 9.3.2.2, we assume the yield is Q + Y , so to keep
the models equivalent, we would assume Y ≤ 0, with Y = −X . Therefore, if FY (·) is the cdf of Y , we have
G(x) = 1− FY (−x) and G−1(α) = −F−1

Y (1− α). Thus, (9.46) and (9.28) are equivalent.
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These are necessary conditions, but they are not sufficient unless Π̃(Q) happens to be
concave.

Suppose Q∗i > 0; then by (9.48), Π̃′i(Q
∗) = 0—that is,

EX[W ′i (Qi, Xi)F (Wi +WT−i)]

EXi [W ′i (Qi, Xi)]
= αi. (9.49)

In other words, we should choose Qi so that the resulting total delivery quantity yields a
service rate that, after scaling by constants that reflect supplier i’s unreliability, equals the
critical ratio. In the special cases in Example 9.8, these constants equal 1, but in general
they need not.

9.4.4 Supplier Selection

In this section, we discuss some properties of the optimal suppliers to choose from among
the available suppliers 1, . . . , N . The main insight from this analysis is that cost, rather
than reliability, is the primary driver for supplier selection.

Let SL(Q) be the type-1 service level (see Section 4.3.4.2) resulting from the order-
quantity vector Q; i.e.,

SL(Q) = EX[F (WT )]. (9.50)

Let QT =
∑N
i=1Qi. The following lemma establishes a relationship between the overall

service level and the critical ratio for supplier i, based on the order quantity for supplier i.

Lemma 9.6

(a) If Q∗i = 0, then SL(Q∗) ≥ αi.

(b) If Q∗i > 0, then E[W ′i (Q
∗
i , Xi)]αi ≤ SL(Q∗) ≤ αi.

Proof. Omitted; see Problem 9.19 for one part of the proof.

If supplier i is perfectly reliable, then Lemma 9.6 says that SL(Q∗) = αi since
W ′i (Q

∗
i , Xi) = 1. In other words, if we order from a perfectly reliable supplier, then

the overall service level is exactly equal to the service level in the classical newsvendor
problem.

Theorem 9.7 Suppose Q∗ is an optimal solution to (9.41)–(9.42). Let Q0 ≡ F−1(α1) be
the classical newsvendor order quantity, i.e., the order quantity for a newsvendor who has
only a single supplier with cost c1 that is perfectly reliable. Then

SL(Q∗) ≤ α1 = F (Q0) ≤ F (Q∗T ).

Proof. We prove the theorem for the case in which all suppliers have exogenous supply
functions. The analysis for endogenous supply functions is similar but more complex.

From (9.44) and the law of total expectation,

Π̃′(Q) =EX [W ′i (Qi, Xi)(αi − F (Wi +WT−i)) | Xi < Qi]P(Xi < Qi)+

EX [W ′i (Qi, Xi)(αi − F (Wi +WT−i)) | Xi ≥ Qi]P(Xi ≥ Qi)
=EX [αi − F (Qi +WT−i) | Xi ≥ Qi]P(Xi ≥ Qi)
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=(αi − EX[F (Qi +WT−i)])(1−Gi(Qi)). (9.51)

The second equality follows from the fact that if supplier i has an exogenous supply function,
then when Xi < Qi, W ′i (Qi, Xi) = ∂Xi/∂Qi = 0, and when Xi ≥ Qi, Wi = Qi and
W ′i (Qi, Xi) = 1. The third follows from the fact that WT−i is independent of Xi.

One can show that Π̃′i(0) > 0; therefore, it is not optimal to set Q = 0 since this
violates the first KKT condition (9.47). Therefore, by Lemma 9.6(b), there exists an i such
that SL(Q∗) ≤ αi. By the sorting of the suppliers (9.35), αi ≤ α1 for all i. Therefore,
SL(Q∗) ≤ α1, proving the first inequality. The equality comes from the definition of Q0.

To prove the second inequality, note that

α1 ≤ EX[F (Q∗1 +W ∗T−1)]

by (9.47) and (9.51), where W ∗T−1 is WT−1 under Q = Q∗. Then

α1 ≤ EX[F (Q∗1 +Q∗T−1)] = E[F (Q∗T )],

where Q∗T−1 = Q∗T −Q∗1. The inequality follows from the fact that S∗i ≤ Q∗i for all i and
that F (·) is a nondecreasing function.

Theorem 9.7 says that the newsvendor with unreliable suppliers orders more than the
classical newsvendor (becauseF (Q0) ≤ F (Q∗T ) andF (·) is increasing) but provides worse
service to its customers.

We say that supplier i is active if Q∗i > 0 and inactive otherwise. The next theorem
gives conditions under which we know for sure that a given supplier will be inactive, given
the status of lower-cost suppliers.

Theorem 9.8 Suppose i < j.

(a) If Q∗i = 0, then Q∗j = 0.

(b) If i is perfectly reliable, then Q∗j = 0.

(c) If i is unreliable and E[W ′i (Q
∗
i , Xi)]αi ≥ αj , then Q∗j = 0.

Proof.

(a) IfQ∗i = 0, then by Lemma 9.6(a), SL(Q∗) ≥ αi, and by (9.35), αi > αj . Therefore,
Q∗j = 0 by Lemma 9.6(b).

(b) If Q∗i = 0, then Q∗j = 0 by part (a). If, instead, Q∗i > 0, then SL(Q∗) = αi by
Lemma 9.6(b); and αi > αj by (9.35). Therefore, Q∗j = 0 by Lemma 9.6(b).

(c) If Q∗i = 0, then Q∗j = 0 by part (a). If Q∗i > 0, then

SL(Q∗) > E[W ′i (Q
∗
i , Xi)]αi ≥ αj ,

where the first inequality follows from Lemma 9.6(b) and the second is by assumption.
Therefore, Q∗j = 0 by Lemma 9.6(b).

Part (a) says that if a given supplier is inactive, then all more expensive suppliers are
inactive as well. In other words, cost, not reliability, is the primary driver when choosing
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suppliers, since in the optimal solution, the n least expensive suppliers will be active (for
some n), and no others. On the other hand, reliability is not completely irrelevant, since,
according to part (b), if there is a perfectly reliable supplier i available, then all more
expensive suppliers are inactive, whether i is active or not. E[W ′i (Q

∗
i , Xi)] is a proxy for

reliability: If E[W ′i (Q
∗
i , Xi)] = 1, then i is perfectly reliable, since every additional unit

ordered results in exactly 1 additional unit received; and the smaller E[W ′i (Q
∗
i , Xi)] is, the

less inventory we receive for each additional unit ordered from supplier i. Therefore, part
(c) gives us a hybrid measure of a supplier’s quality: If E[W ′i (Q

∗
i , Xi)] is close to 1, then

supplier i is fairly reliable, and if αi is close to 1, then supplier i is fairly inexpensive.
Taken together, the three parts of the theorem say that we activate suppliers in order of

cost until we activate a supplier i either that is perfectly reliable or that has a sufficiently
good combination of reliability and cost. Once we find such a supplier, it becomes active
but all more expensive suppliers are inactive.

By Lemma 9.6(b), if supplier i is perfectly reliable and active, then the overall service
level equals αi, the optimal service level from the newsvendor problem in which supplier
i is the sole, perfectly reliable, supplier. In other words, if there is an active, perfectly
reliable supplier, then it is that supplier’s role to make up the difference in the service level
provided by the unreliable suppliers, bringing it up to αi. If the unreliable suppliers’ costs
or reliabilities changed, their respective optimal order quantities would change, and Q∗i
would adjust to maintain a service level of αi.

Suppose there is an expensive, unreliable supplier j that is inactive because there is a
cheaper supplier i that satisfies the conditions in Theorem 9.8(b) or (c), i.e., that is perfectly
reliable or for which E[W ′(Q∗i , Xi)]αi ≥ αj . Then another implication of these results is
that supplier j cannot gain activation by making itself more reliable, because doing so will
not change the fact that supplier i that satisfies the conditions in Theorem 9.8(b) or (c), but
it can gain activation by making itself less expensive (thus changing the sort order so that
it is preferred over i).

� EXAMPLE 9.9

A florist is preparing for Valentine’s Day, when it will sell a large number of specialty
roses. From previous years, the florist knows that the demand for roses on Valentine’s
Day will have a normal distribution with mean 500 and standard deviation 100. The
florist has six suppliers of roses, which have the following characteristics:

• Supplier 1 charges the florist $1.28 per rose. It is subject to additive yield uncertainty
with B1(Q1, X1) = (Q1 −X1)+, where X1 ∼ exp(0.02).

• Supplier 2 charges $1.46 per rose. It is subject to multiplicative yield uncertainty
with B2(Q2, X2) = Q2X2, where X2 ∼ U [0.7, 1].

• Supplier 3 charges $1.49 per rose and is also subject to multiplicative yield uncer-
tainty, with X3 ∼ Beta(25, 2).

• Supplier 4 charges $2.59 per rose. It is subject to disruptions with probability 0.2

and has infinite capacity when not disrupted. That is, B4(Q4, X4) = X4, where
X4 = M with probability 0.8 and X4 = 0 with probability 0.2. (M is a very large
number.)

• Supplier 5 charges $2.61 per rose and is perfectly reliable: B5(Q5, X5) =∞.
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Table 9.2 Key quantities for suppliers in Example 9.9.

i αi Wi Distribution of Xi W ′i

1 0.9628 (Q1 −X1)+ exp(0.02) 1 if Q1 ≥ X1, 0 otherwise
2 0.9502 Q2X2 U [0.7, 1] X2

3 0.9481 Q3X3 Beta(25, 2) X3

4 0.8709 Q4X4 M w.p. 0.8, 0 w.p. 0.2 1 if X4 = M , 0 otherwise
5 0.8695 Q5 N/A 1
6 0.8667 min{Q6, X6} N(150, 202) 1 if Q6 ≤ X6, 0 otherwise
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Figure 9.5 pdf/pmf of quantity received from each supplier in Example 9.9. Assumes Qi = 200
for all i. Suppliers 1, 2, 3, and 6 are plotted against the left-hand y-axis; suppliers 4 and 5 are plotted
against the right-hand y-axis.

• Supplier 6 charges $2.65 per rose. It is subject to capacity uncertainty, with
B6(Q6, X6) = X6, where X6 ∼ N(150, 202).

The florist sells the roses for r = $3 each. Unsold roses can be sold in the days after
Valentine’s Day for the steeply discounted price of v = $0.75. Unmet demands incur
a loss-of-goodwill cost of p = $12 per rose.

The key quantities for each supplier are listed in Table 9.2. Figure 9.5 plots the
pdf/pmf of the quantity received from each supplier if we order 200 units from each.

The supplier’s modified expected profit function, from (9.39), is:

Π̃(Q) =EX

[
α1(Q1 −X1)+ + α2Q2X2 + α3Q3X3 + α4Q4X4 + α5Q5

+α6 min{Q6, X6}]

− EX,D

[ (
(Q1 −X1)+ +Q2X2 +Q3X3 +Q4X4 +Q5

+ min{Q6, X6} −D
)+]

(9.52)
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Since supplier 5 is perfectly reliable, by Theorem 9.8(b), Q∗6 = 0. Moreover,

E[W ′3(Q∗3, X3)]α3 = E[X3]α3 =
25

27
· 0.9481 = 0.8778,

since the mean of a Beta(α, β) random variable is α/(α+ β). Therefore,

E[W ′3(Q∗3, X3)]α3 > α4 = 0.8709,

so by Theorem 9.8(c), Q∗4 = 0. Finally, by Theorem 9.8(a), Q∗5 = 0. Therefore,
(9.52) simplifies to

Π̃(Q) =EX

[
α1(Q1 −X1)+ + α2Q2X2 + α3Q3X3

]
− EX,D

[
(Q1 −X1)+ +Q2X2 +Q3X3

]
. (9.53)

Unfortunately, Π̃(Q) is not concave. (An easy way to see this is to note that in the
first line of (9.53),

EX[α1(Q1 −X1)+] = α1EX1 [(Q1 −X1)+] = n̄(Q1),

which is convex.) Moreover, (9.53) is computationally expensive to evaluate. There-
fore, optimizing (9.53) to find Q∗ is nontrivial. In the next example, we consider a
simpler instance whose objective function is concave and can be calculated efficiently.
�

� EXAMPLE 9.10

Suppose that suppliers 1–3 in Example 9.9 are all subject to multiplicative yield
uncertainty, with Xi ∼ N(µi, σ

2
i ). In particular, (µi, σi) = (0.5, 0.1), (0.4, 0.05),

and (0.9, 0.02) for i = 1, 2, 3, respectively. Note that for all three suppliers, the
probability that Xi is outside [0, 1] is negligible. The pdf of the quantity received for
these suppliers, assuming we order 200 units, is plotted in Figure 9.6.

We have

E[W ′3(Q∗3, X3)]α3 = E[X3]α3 = 0.92 · 0.9481 = 0.8722 > 0.8709 = α4,

so by Theorem 9.8, Q∗4 = Q∗5 = Q∗6 = 0. The modified expected profit function is
therefore

Π̃(Q) = EX

[
3∑
i=1

αiQiXi

]
− EX,D

( 3∑
i=1

QiXi −D

)+
 .

Let

Y =

3∑
i=1

QiXi −D.

Since D and each of the Ri are normally distributed, so is Y ; it has a mean
of
∑3
i=1 µiQi − 500 and a variance of

∑3
i=1 σ

2
iQi + 100. (Recall that D ∼

N(500, 1002).) Then we have

Π̃(Q) =

3∑
i=1

αiµiQi − E[Y +] =

3∑
i=1

αiµiQi − nY (0), (9.54)
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Figure 9.6 pdf of quantity received from each supplier in Example 9.10. Assumes Qi = 200 for
all i.

where nY (·) is the loss function for Y . The expression in (9.54) is concave (because
the first term is linear and nY (·) is convex), and it can be evaluated efficiently.
Figure 9.7 plots Π̃(Q) as Q1 and Q2 vary, keeping Q3 fixed at 100.

One can optimize (9.54) using a convex optimization solver (we used MATLAB’s
fmincon function). The resulting optimal solution is

Q∗ = (988.48, 455.45, 60.04)

with objective function Π̃(Q∗) = 466.56. Let FY (·) be the cdf of Y ; then the service
level SL(Q∗) attained by this solution is

P
(∑

QiXi −D ≥ 0
)

= P(Y ≥ 0) = 1− FY (0) = 0.9480.

Therefore, SL(Q∗) ≥ αi and Q∗i = 0 for i = 4, 5, 6, confirming Lemma 9.6(a); and

E[W ′1(Q∗1, X1)]α1 = 0.50 · 0.9628 = 0.4814 ≤ SL(Q∗) ≤ 0.9628 = α1

E[W ′2(Q∗2, X2)]α2 = 0.40 · 0.9502 = 0.3801 ≤ SL(Q∗) ≤ 0.9502 = α2

E[W ′3(Q∗3, X3)]α3 = 0.92 · 0.9481 = 0.8722 ≤ SL(Q∗) ≤ 0.9481 = α3,

confirming Lemma 9.6(b). We haveF (Q∗T ) = F (1503.96) ≈ 1.00, so if allQ∗T units
ordered were actually delivered, there would be virtually no chance of a stockout. In
other words,

SL(Q∗) ≤ 0.9628 = α1 = F (Q0) ≤ 1.0000 = F (Q∗T ),

confirming Theorem 9.7.
Finally, suppose that supplier 3 was perfectly reliable, i.e., thatµ3 = 1 and σ3 = 0.

Then the optimal order quantities are

Q∗ = (985.96, 450.71, 58.06)
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Figure 9.7 Π̃(Q) for Example 9.10, varying Q1 and Q2 while keeping Q3 fixed at 100.

and the corresponding service level is SL(Q∗) = 0.9481 = α3. A small number
of items shift from suppliers 1 and 2 to supplier 3 to take advantage of its perfect
reliability and, as expected from Lemma 9.6(b), the overall service level equals the
service level that would be attained in the classical newsvendor problem with supplier
3 as the only supplier. �

9.4.5 Closing Thoughts

The results discussed above suggest that if a newsvendor’s suppliers differ in terms of
both cost and reliability, cost generally takes precedence over reliability when selecting
suppliers. We rank the suppliers in terms of cost, and then start placing orders, supplier
by supplier. As the total order quantity increases, so does SL(Q∗). We continue adding
suppliers until we reach a supplier j that is either perfectly reliable (by Theorem 9.8) or
for which αj+1 ≤ SL(Q∗) ≤ αj (by Lemma 9.6). The actual order quantities from each
supplier,Q∗1, . . . , Q

∗
j , must be found using numerical optimization, except in special cases.

The overall service level attained by the optimal solution is no greater than the service level
that would be attained if the newsvendor had only a single, perfectly reliable supplier, with
supplier 1’s costs (by Theorem 9.7).

This analysis suggests that an expensive supplier cannot gain activation (i.e., cannot
convince the newsvendor to give it a nonzero order quantity) by improving its reliability,
because reliability does not affect the ranking by αi. An expensive supplier can only gain
activation by improving its cost. In contrast, an unreliable supplier can gain activation by
improving its cost, even if it remains unreliable. Once a supplier is active, however, it can
increase its share of the total order by improving its cost and/or reliability.
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9.5 THE RISK-DIVERSIFICATION EFFECT

9.5.1 Problem Statement

Consider the N -DC system described in Section 7.2, except that now the demand is
deterministic and equal to d per period (µi = d, σ2

i = 0 for all i) but the supply may
be disrupted. All DCs follow a periodic-review base-stock policy, as in Section 9.2.2.
Disruptions follow the same two-state Markov process described in Section 9.2.2, with
disruption probability α and recovery probability β. As before, πn is the pmf of the
disruption process and F (n) is the cdf.

The central question is, would it be preferable to consolidate the N DCs into a single
DC? That is, is a centralized system preferable to a decentralized one? It turns out that
the decentralized system is preferable in this case, but not because it has a lower expected
cost. In fact, the two systems have the same expected cost, but the decentralized system has
a lower variance. Therefore, risk-averse decision makers would prefer the decentralized
system.

This phenomenon—whereby the cost variance (but not the mean cost) is smaller when
inventory is held at a decentralized set of locations—is called the risk-diversification effect.
Intuitively, it occurs because a given DC (or its portion of the central DC) is disrupted the
same number of times, on average, in both systems, but disruptions are more severe in the
centralized system. The supply chain benefits by not having all its eggs in one basket. The
risk-diversification effect was first described by Snyder and Shen (2006), who demonstrated
it using simulation; the theoretical analysis in this section is based on Schmitt et al. (2015).

Note the parallels to the risk-pooling effect: Whereas the risk-pooling effect says that
the mean cost (but not the variance (Schmitt et al. 2015)) is lower in a centralized system
under demand uncertainty, the risk-diversification effect says that the cost variance is lower
(and the mean cost is equal) in a decentralized system under supply uncertainty.

In fact, Snyder and Shen (2006) comment that supply uncertainty (in the form of
disruptions) often has a mirror-image effect in relation to demand uncertainty, and that the
optimal strategy under one type of uncertainty is often the exact opposite of that under
the other type of uncertainty. The risk-diversification effect is an example of this mirror-
image phenomenon, in the sense that supply chains under supply uncertainty behave in
the opposite way to the ways we’ve observed them behaving previously, under demand
uncertainty.

9.5.2 Notation

Let
ĝ(S, n) = h [S − (n+ 1)d]

+
+ p [(n+ 1)d− S]

+

be the cost in a given period in a single-stage system if we use a base-stock level of S and
are in the nth period of a disruption (n ≥ 0). Then from (9.14),

g(S) =

∞∑
n=0

πnĝ(S, n).

Let g∗ = g(S∗) and V ∗ be the mean and variance of the optimal cost:

g∗ = E [ĝ(S∗, n)] = g(S∗)



THE RISK-DIVERSIFICATION EFFECT 385

V ∗ = Var [ĝ(S∗, n)] ,

where the expectation and variance are taken over the disruption state, n. We’ll use
subscripts D and C to refer to the costs in the decentralized and centralized systems,
respectively, and no subscript when we’re discussing a single-stage system. Asterisks
denote optimal solutions.

9.5.3 Optimal Solution

The optimal base-stock level for a single-stage newsvendor system with disruptions is given
by Theorem 9.5:

S∗ = d+ dF−1

(
p

p+ h

)
. (9.55)

(Remember that F−1(γ) is interpreted as the smallest n such that F (n) ≥ γ.)
Now, in the decentralized system, each DC acts like a single-stage system, so the optimal

base-stock level at each DC is S∗D = S∗, where S∗ is given by (9.55). In the centralized
system, the warehouse acts as a single stage facing a demand ofNd. Therefore, its optimal
base-stock level is

S∗C = Nd+NdF−1

(
p

p+ h

)
= NS∗D = NS∗.

Thus, the total inventory is the same in both the centralized and decentralized systems.
(In contrast, the total inventory is smaller in the centralized system under the risk-pooling
effect, assuming h < p.)

9.5.4 Mean and Variance of Optimal Cost

Next, we examine the mean and variance of the cost when we use the optimal base-stock
levels in each system. In the decentralized system, since each DC acts like a single-stage
system, the total expected cost is just N times the total expected cost in a single-stage
system: g∗D = Ng∗. In the centralized system, the optimal cost at the warehouse is
obtained by substituting NS∗ in place of S and Nd in place of d in (9.14):

g∗C =
∞∑
n=0

πn
[
h(NS∗ − (n+ 1)Nd)+ + p((n+ 1)Nd−NS∗)+

]
= N

∞∑
n=0

πn
[
h(S∗ − (n+ 1)d)+ + p((n+ 1)d− S∗)+

]
= Ng∗ = g∗D (9.56)

Therefore, the expected cost is the same in the centralized and decentralized systems when
we set the base-stock levels optimally in each. In both systems, each DC experiences
disruption-related stockouts in the same percentage of periods. Moreover, during nondis-
rupted periods, the two systems have the same amount of inventory. Therefore, the optimal
expected cost is the same in both systems.

Rather than improving the mean cost, decentralization improves the cost variance.
Intuitively, this is because disruptions in the centralized system are less frequent but more
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severe, and therefore, they cause greater variability. To prove this mathematically, first note
that

V ∗D = NV ∗ (9.57)

because the decentralized system consists of N individual single-stage systems. Recall
that Var[X] = E[X2]− E[X]2 and note that, for a single-stage system,

E
[
ĝ(S∗, n)2

]
=

∞∑
n=0

πn

[
h2
(
(S∗ − (n+ 1)d)+

)2
+ p2

(
((n+ 1)d− S∗)+

)2]
. (9.58)

Similarly, in the centralized system,

E[ĝC(S∗C , n)2] =

∞∑
n=0

πn

[
h2
(
(NS∗ − (n+ 1)Nd)+

)2
+ p2

(
((n+ 1)Nd−NS∗)+

)2]
= N2

∞∑
n=0

πn

[
h2
(
(S∗ − (n+ 1)d)+

)2
+ p2

(
((n+ 1)d− S∗)+

)2]
= N2E

[
ĝ(S∗, n)2

]
(9.59)

Then the variance in the centralized system is given by

V ∗C = E[ĝC(S∗C , n)2]− (g∗C)2

= N2E
[
ĝ(S∗, n)2

]
− (Ng∗)2 (by (9.59) and (9.56))

= N2(E
[
ĝ(S∗, n)2

]
− (g∗)2)

= N2V ∗

> NV ∗ = V ∗D

Therefore, the variance is smaller in the decentralized system—this is the risk-diversification
effect. We summarize the preceding results in the following theorem:

Theorem 9.9 For the decentralized N -DC system with supply disruptions and determin-
istic demand, and the centralized, single-DC system formed by merging the DCs:

1. S∗C = NS∗D = NS∗

2. g∗C = g∗D = Ng∗

3. V ∗C = NV ∗D = N2V ∗

9.5.5 Supply Disruptions and Stochastic Demand

Suppose now that demand is uncertain, as in Section 7.2. Disruptions are also still present,
as in the preceding analysis.

Under demand uncertainty, the risk-pooling effect says that centralization is preferable,
while under supply uncertainty, the risk-diversification effect says that decentralization is
preferable. So, if both types of uncertainty are present, which strategy is better? We cannot
answer this question analytically since the expected cost function cannot be optimized in
closed form for either system. Instead, we evaluate the question numerically.
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Most decision makers are risk averse—they are willing to sacrifice a certain amount
of expected cost in order to reduce the variance of the cost. One way of modeling risk
aversion is using a mean–variance objective, popularized by Markowitz in the 1950s:

(1− κ)g∗ + κV ∗, (9.60)

where κ ∈ [0, 1] is a constant. If κ is small, then the decision maker is fairly risk neutral;
the larger κ is, the more risk-averse the decision maker is. Typically κ is less than, say,
0.05.

One can write out g∗ and V ∗ for the systems with disruptions and demand uncertainty,
but we omit the formulas here. Schmitt et al. (2015) perform a computational study to
determine which system is preferable to the risk-averse decision maker. They numerically
optimize (9.60) for both the centralized and decentralized systems and determine which
system gives the smaller optimal objective value.

They find that the decentralized system is almost always optimal, i.e., that the risk-
diversification effect almost always trumps the risk-pooling effect. For example, under a
given set of problem parameters, the decentralized system is optimal whenever κ ≥ 0.0008

and p/(p + h) ≥ 0.5—in other words, whenever the decision maker is even slightly risk
averse and the required service level is at least 50%.

9.6 A FACILITY LOCATION MODEL WITH DISRUPTIONS

9.6.1 Introduction

The uncapacitated fixed-charge location problem (UFLP) introduced in Section 8.2 chooses
facility locations and customer assignments to minimize fixed and transportation costs.
The model assumes that facilities always operate as planned. However, facilities are
occasionally disrupted by weather conditions, labor actions, or natural disasters. These
disruptions may result in increased costs as customers previously served by these facilities
must now be served by more distant ones. The model presented in this section chooses
facility locations to minimize the expected cost after accounting for disruptions. We call
the ability of a system to perform well even when parts of the system are disrupted the
reliability of the system. Our goal is to choose facility locations that are both inexpensive
and reliable.

Figure 9.8 shows the optimal UFLP solution for a data set consisting of the capitals of
the lower 48 United States plus Washington, DC (Daskin 1995). In this solution, the fixed
cost is $348,000, and the transportation cost is $509,000. Now suppose that the facility in
Sacramento, CA, is disrupted. During the disruption, Sacramento’s customers are re-routed
to their nearest open facilities, in Springfield, IL, and Austin, TX (Figure 9.9). This new
solution has a transportation cost of $1,081,000, an increase of 112%.

Table 9.3 lists the disruption costs (the transportation cost when a site is disrupted) of
the five optimal DCs, as well as their assigned demands. From the table, it is evident that
the reliability of a facility can depend either on its distance from other facilities or on the
demand it serves, or both. For example, Sacramento, CA, serves a relatively small portion
of the total demand, but it has a large disruption cost because its nearest “backup” facilities
are far away. Harrisburg, PA, also has a high disruption cost, even though it is relatively
close to two good backup facilities; the high disruption cost occurs because Harrisburg
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Figure 9.8 UFLP solution for 49-node data set. Reprinted by permission, Snyder and Daskin,
Reliability models for facility location: The expected failure cost case, Transportation Science, 39(3),
2005, 400–416. ©2005, the Institute for Operations Research and the Management Sciences, 7240
Parkway Drive, Suite 300, Hanover, MD 21076 USA.

Figure 9.9 UFLP solution for 49-node data set, after disruption of facility in Sacramento. Reprinted
by permission, Snyder and Daskin, Reliability models for facility location: The expected failure cost
case, Transportation Science, 39(3), 2005, 400–416. ©2005, the Institute for Operations Research
and the Management Sciences, 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA.
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Table 9.3 Disruption costs for optimal DCs. Reprinted by permission, Snyder and Daskin,
Reliability models for facility location: The expected failure cost case, Transportation Science,
39(3), 2005, 400–416. ©2005, the Institute for Operations Research and the Management Sciences,
7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA.

Location % Demand Served Disruption Cost % Increase

Sacramento, CA 19 1,081,229 112
Harrisburg, PA 33 917,332 80
Springfield, IL 22 696,947 37
Montgomery, AL 16 639,631 26
Austin, TX 10 636,858 25
Transportation cost w/no disruptions 508,858 0

Figure 9.10 Reliable solution for 49-node data set.

serves one-third of the total demand. Springfield, IL, is the second-largest facility in terms
of demand served, but its disruption cost is much smaller because it is centrally located,
close to good backup facilities.

It is possible to choose facility locations that are more resilient to disruptions—that is,
that have lower disruption costs. For example, suppose we locate facilities in the capitals of
CA, NY, TX, PA, OH, AL, OR, and IA. (See Figure 9.10.) In this solution, every disruption
cost is less than or equal to $640,000. On the other hand, three additional facilities are used
in this solution. Is the improvement in reliability worth the increased facility cost? One
of the goals of the model in this section is to demonstrate that the answer is often “yes.”
In other words, substantial improvements in reliability can often be obtained without large
increases in the UFLP cost. This means that by taking reliability into account at design
time, one can find a near-optimal UFLP solution that has much better reliability.

We will present an extension of the UFLP that minimizes the expected postdisruption
cost, given a certain probability that each facility is disrupted. Multiple facilities may
be disrupted simultaneously. We refer to this model as the reliable fixed-charge location
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problem (RFLP). The model we present is a simplified version of the model introduced
by Snyder and Daskin (2005). A similar model was studied by Berman et al. (2007). For
reviews on facility location models with disruptions, see Snyder et al. (2006) or Snyder and
Daskin (2007).

9.6.2 Notation

As in the UFLP, let I be the set of customers and J the set of potential facility sites. Let hi
be the demand at customer i, cij the transportation cost from facility j to customer i, and
fj the fixed cost to open facility j.

Each facility in J has the same probability q of being disrupted, which is interpreted
as the long-run fraction of time the facility is nonoperational. In some cases, q may be
estimated based on historical data (e.g., for weather-related disruptions), while in others q
must be estimated subjectively (e.g., for disruptions due to labor strikes). We can assume
that facility disruptions follow a two-state Markov process, as in Section 9.2, but the
exact disruption process is not important. It is important, however, that disruptions are
statistically independent from facility to facility.

The assumption that every facility has the same disruption probability q is generally
unrealistic, but it makes the model considerably easier to solve. Several approaches have
been proposed for relaxing this assumption; see, e.g., Berman et al. (2007), Li and Ouyang
(2010), Cui et al. (2010), Shen et al. (2011), and also Problem 9.23.

Associated with each customer i is a cost θi that represents the cost of not serving the
customer—for example, if all open facilities are disrupted—per unit of demand. θi may
be a lost-sales cost, or the cost of serving i by purchasing product from a competitor on an
emergency basis. Instead of modeling this eventuality explicitly, we perform a modeling
trick: We add an “emergency” facility u that cannot be disrupted and we force xu = 1.
This facility has fixed cost fu = 0 and transportation cost ciu = θi for every customer
i ∈ I . From this point forward, the set J is assumed to contain u, as well.

The strategy behind the formulation of the RFLP is to assign each customer to a primary
facility that will serve it under normal circumstances, as well as to a set of backup facilities
that serve it when the primary facility is disrupted. Since multiple disruptions may occur
simultaneously, each customer needs a first backup facility in case its primary facility is
disrupted, a second backup facility in case its first backup is disrupted, and so on.

There are two sets of decision variables in this model:

xj =

{
1, if facility j ∈ J is selected
0, otherwise

yijr =

{
1, if customer i is assigned to facility j as a level-r assignment
0, otherwise

A “level-r” assignment is one for which there are r closer facilities that are open. If r = 0,
this is a primary assignment; otherwise, it is a backup assignment. Each customer i has
a level-r assignment for each r = 0, . . . , |J | − 1, unless i is assigned to the emergency
facility u at level s, where s < r. In other words, customer i is assigned to one facility
at level 0, another facility at level 1, and so on until i has been assigned to facility u at
some level. If a customer is assigned to facility u at a level r, with r < |J | − 1, then it is
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preferable to lose that customer’s demand than to serve it from the remaining facilities if
the first r facilities have failed.

9.6.3 Formulation

The objective function of the RFLP is given by

∑
j∈J

fjxj +
∑
i∈I

∑
j∈J
j 6=u

|J|−1∑
r=0

hicijq
r(1− q)yijr +

∑
i∈I

|J|−1∑
r=0

hiciuq
ryiur.

This expression calculates the fixed cost plus the expected transportation cost. Each
customer i is served by its level-r facility (call it j) if the r closer facilities are disrupted
(this occurs with probability qr) and if j itself is not disrupted (this occurs with probability
1−q, unless j = u, in which case it occurs with probability 1). For notational convenience,
we define

ψijr =

{
hicijq

r, if j = u

hicijq
r(1− q), if j 6= u.

Then the RFLP can be formulated as an IP as follows:

(RFLP)

minimize
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

|J|−1∑
r=0

ψijryijr (9.61)

subject to
∑
j∈J

yijr +
r−1∑
s=0

yius = 1 ∀i ∈ I, r = 0, . . . , |J | − 1 (9.62)

yijr ≤ xj ∀i ∈ I, j ∈ J, r = 0, . . . , |J | − 1

(9.63)
|J|−1∑
r=0

yijr ≤ 1 ∀i ∈ I, j ∈ J (9.64)

xu = 1 (9.65)

xj ∈ {0, 1} ∀j ∈ J (9.66)

yijr ∈ {0, 1} ∀i ∈ I, j ∈ J, r = 0, . . . , |J | − 1
(9.67)

Constraints (9.62) require that for each customer i and each level r, either i is assigned to
a level-r facility or it is assigned to facility u at a level s < r. (By convention we take∑r−1
s=0 yijs = 0 if r = 0.) Constraints (9.63) prohibit an assignment to a facility that has

not been opened. Constraints (9.64) prohibit a customer from being assigned to a given
facility at more than one level. Constraint (9.65) requires the emergency facility u to be
opened. Constraints (9.66) and (9.67) are integrality constraints.

You may be wondering why there are no constraints requiring the assignments to occur
in order of distance—that is, for a customer’s level-r facility to be closer than its level-
(r + 1) facility. It turns out that this assignment strategy is always optimal, so it does not
need to be enforced by constraints.
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Theorem 9.10 In any optimal solution to (RFLP), if yijr = yi,k,r+1 = 1 for i ∈ I ,
j, k ∈ J , 0 ≤ r < |J | − 2, then cij ≤ cik.

Proof. Omitted; see Problem 9.22.

9.6.4 Lagrangian Relaxation

We solve (RFLP) by relaxing constraints (9.62) using Lagrangian relaxation. For given
Lagrange multipliers λ, the subproblem is as follows:

(RFLP-LRλ)

minimize
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

|J|−1∑
r=0

ψijryijr+

∑
i∈I

|J|−1∑
r=0

λir

1−
∑
j∈J

yijr −
r−1∑
s=0

yius

 (9.68)

subject to yijr ≤ xj ∀i ∈ I, j ∈ J, r = 0, . . . , |J | − 1 (9.69)
|J|−1∑
r=0

yijr ≤ 1 ∀i ∈ I, j ∈ J (9.70)

xu = 1 (9.71)

xj ∈ {0, 1} ∀j ∈ J (9.72)

yijr ∈ {0, 1} ∀i ∈ I, j ∈ J, r = 0, . . . , |J | − 1 (9.73)

The portion of the objective function (9.68) other than the fixed costs can be rewritten
as follows:∑

i∈I

∑
j∈J

|J|−1∑
r=0

(ψijr − λir)yijr +
∑
i∈I

|J|−1∑
r=0

λir −
∑
i∈I

|J|−1∑
r=0

r−1∑
s=0

λiryius

=
∑
i∈I

∑
j∈J

|J|−1∑
r=0

(ψijr − λir)yijr +
∑
i∈I

|J|−1∑
r=0

λir −
∑
i∈I

|J|−1∑
s=0

s−1∑
r=0

λisyiur

(by swapping the indices r and s in the last term)

=
∑
i∈I

∑
j∈J

|J|−1∑
r=0

(ψijr − λir)yijr +
∑
i∈I

|J|−1∑
r=0

λir −
∑
i∈I

∑
r=0,...,|J|−1
s=0,...,|J|−1

r<s

λisyiur

=
∑
i∈I

∑
j∈J

|J|−1∑
r=0

(ψijr − λir)yijr +
∑
i∈I

|J|−1∑
r=0

λir −
∑
i∈I

|J|−1∑
r=0

 |J|−1∑
s=r+1

λis

 yiur

Therefore, the objective function can be written as

∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

|J|−1∑
r=0

ψ̃ijryijr +
∑
i∈I

|J|−1∑
r=0

λir, (9.74)
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where

ψ̃ijr =

{
ψijr − λir, if j 6= u

ψijr − λir −
∑|J|−1
s=r+1 λis = ψijr −

∑|J|−1
s=r λis, if j = u

(9.75)

For given λ, problem (RFLP-LRλ) can be solved easily. Since the assignment constraints
(9.62) have been relaxed, customer i may be assigned to zero, one, or more than one open
facility at each level, but it may be assigned to a given facility at at most one level r.
Suppose that facility j is opened. Customer i will be assigned to facility j at level r if
ψ̃ijr < 0 and ψ̃ijr ≤ ψ̃ijs for all s = 0, . . . , |J | − 1. Therefore, the benefit of opening
facility j is given by

βj =
∑
i∈I

min

{
0, min
r=0,...,|J|−1

{ψ̃ijr}
}
. (9.76)

Once the benefits βj have been computed for all j, we set xj = 1 for the emergency facility
u and for any j for which βj + fj < 0; we set yijr = 1 if (1) facility j is open, (2)
ψ̃ijr < 0, and (3) r minimizes ψ̃ijs for s = 0, . . . , |J | − 1. The optimal objective value for
(RFLP-LRλ) is ∑

j∈J
(βj + fj)xj +

∑
i∈I

|J|−1∑
r=0

λir,

and this provides a lower bound on the optimal objective value of (RFLP).
One can obtain upper bounds by first opening the facilities that are open in the solution to

(RFLP-LRλ), then assigning customers to level-r facilities in increasing order of distance.
As in the UFLP, improvement heuristics (e.g., exchange heuristics) can be applied to
improve the solution found.

The Lagrange multipliers are updated using subgradient optimization in a manner very
similar to that described in Section 8.2.3.5. If the procedure terminates without a provably
optimal solution, branch-and-bound can be used to close the gap, as described in Section
D.1.6.

9.6.5 Trade-off Curves

The RFLP can alternately be modeled as a multiobjective optimization problem in which
one objective represents the normal UFLP cost (ignoring disruptions) and the other objec-
tive represents the expected transportation cost (accounting for disruptions). Multiobjective
optimization allows the decision maker to express her preference between the two objec-
tives. For example, a firm that is used to thinking only about the classical UFLP objective
may weight the problem toward this objective, while a firm that is very concerned about
disruptions may favor the other objective.

The two objectives can be formulated as follows:

w1 =
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

hicijyij0

w2 =
∑
i∈I

∑
j∈J

|J|−1∑
r=0

ψijryijr.
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Figure 9.11 Sample RFLP trade-off curve. Reprinted by permission, Snyder and Daskin,
Reliability models for facility location: The expected failure cost case, Transportation Science,
39(3), 2005, 400–416. ©2005, the Institute for Operations Research and the Management Sciences,
7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA.

Objectivew1 calculates the classical UFLP cost of opening facilities and serving customers
from their primary facilities. Objective w2 computes the expected transportation cost,
accounting for both normal and disrupted modes. We can then replace the RFLP objective
function (9.61) with

minimize αw1 + (1− α)w2, (9.77)

where α is a parameter specified by the user, 0 ≤ α ≤ 1. Large values of α place
more emphasis on objective 1, small values on objective 2. (Setting α = 1 is equivalent
to solving the UFLP.) The decision maker might select a single value of α, but more
commonly, the goal is to generate the trade-off curve that depicts the relationship between
the two objectives. In essence, the trade-off curve (also known as the Pareto curve or
efficient frontier) tells us how much of one objective we must sacrifice in order to improve
the other objective.

How can we generate such a trade-off curve? The brute-force approach would be to
simply solve the RFLP (with objective (9.77)) for every value of α between 0 and 1 in
increments of, say, 0.001. But it is preferable to use a much more elegant and efficient
approach called the weighting method. We won’t describe the details of this approach; see
instead Cohon (1978).

The trade-off curve for the 49-node problem discussed in Section 9.6.1 is pictured in
Figure 9.11. Each point represents a different solution to the RFLP, and the axes represent
the two objectives. The left-most point is the UFLP solution (α = 1). The left portion
of the trade-off curve is “steep,” indicating that large improvements in reliability can be
attained with only small increases in the classical UFLP cost. For example, the third point
on the trade-off curve has a 3.1% increase in UFLP cost from the original UFLP solution
but a 13.4% decrease in expected disruption cost, and the fourth point has a 7.3% increase
in cost but a 26.5% decrease in expected disruption cost.



A FACILITY LOCATION MODEL WITH DISRUPTIONS 395

CASE STUDY 9.1 Disruption Management at Ford

Ford Motor Company operates an enormous supply chain. The company procures
materials from over 4000 supplier sites, which in turn procure from hundreds of thou-
sands of suppliers. Ford owns more than 50 facilities, manages 130,000 unique parts,
and spends tens of billions of dollars every year procuring these parts. A disruption in
such a supply chain can have a major impact on the firm’s performance. For example, in
2011, Toyota suffered a loss of output of roughly 150,000 vehicles due to an earthquake
in Japan, and 240,000 more due to flooding in Thailand (Toyota Motor Corporation
2012).

Recognizing the importance of supply chain risk management, Ford and researchers
from the Massachusetts Institute of Technology (MIT) conducted a 3-year research
study to develop and implement models to identify vulnerabilities in Ford’s supply
chain. Their work is described by Simchi-Levi et al. (2015); we summarize it here.

The approach centers around two models. Both models treat the supply chain as
a graph, in which nodes represent parts or processes and edges represent flows among
them (much like the multiechelon inventory models of Chapter 6). They are post-event
models, meaning that they assume that a disruption has already taken place and that
its characteristics are known. However, they can also be used for pre-event planning,
as we discuss below. (The disruption models in this chapter are pre-event models; they
plan for uncertain disruptions that have not yet occurred.)

The first model takes as input the time to recover (TTR), i.e., the time it takes each
disrupted element of the graph to fully recover from the disruption. It optimizes the
firm’s reaction to the disruption by allocating existing inventory and setting production
levels. Since the TTR can be difficult to estimate, the second model calculates the
time to survive (TTS), i.e., the longest disruption of a given node (or nodes) that the
supply chain can endure without any loss of performance. The two models are referred
to as the TTR and TTS models, respectively.

We will only discuss the TTR model here; see Problem 9.24 for the TTS model.
Moreover, we will discuss only a single-echelon version of the TTR model, which con-
siders multiple supply nodes but not the interconnections among them. Simchi-Levi
et al. (2015) also formulate a multiechelon model, but we will omit that model here.

Let J be the set of supply nodes, and let K be the set of vehicles (products). The
model assumes that we are in a certain disruption scenario, denoted s. Let Jks ⊆ J be
the set of nodes that can produce vehicle k in scenario s. Let ts be the TTR for the
disruption in scenario s. Vehicle k ∈ K has a demand of dk per unit time, and each
vehicle produced earns the firm a profit of πk. There are sk units of finished-goods
inventory of vehicle k available. Node j ∈ N has a production capacity of cj vehicles
per unit time. The TTR model has two decision variables: yjks is the number of units
of vehicle k ∈ K produced at node j ∈ J during the disruption, and lks is the number
of units of lost demand for vehicle k, both indexed by scenario s. The model assumes
that lead times are negligible compared to the length of the disruption. It ignores
transportation costs, too, focusing instead on production. The TTR model can then
be formulated as follows:

minimize
∑
k∈K

πklks (9.78)



396 SUPPLY UNCERTAINTY

subject to lks ≥ dkts −
∑
j∈Jks

yjks − sk ∀k ∈ K (9.79)

∑
k:j∈Jks

yjks ≤ cjts ∀j ∈ J (9.80)

yjks, ljs ≥ 0 ∀j ∈ J, ∀k ∈ K (9.81)

The objective function (9.78) calculates the total profit lost due to lost vehicle sales.
Constraints (9.79) sets the number of units of lost demand for vehicle k equal to the
demand for the vehicle during the TTR minus its supply, i.e., minus the number of units
produced and the number of units available in inventory. (The constraint is written as
an inequality but will hold as an equality if the lost sales are positive.) Constraints
(9.80) enforce the capacity at node j during the disruption. Constraints (9.81) are
nonnegativity constraints.

The TTR and TTS models are post-event models: They assume we know what the
disruption has affected and how long it will last. Ford develops a set of scenarios s that
they are interested in—for example, all scenarios in which a single node is disrupted—
and runs the model for each s. This allows Ford to use the models for both strategic and
tactical (pre-event) planning. At the strategic level, Ford uses the models to identify
parts or suppliers that introduce the most risk exposure into the supply chain, i.e., that
have large objective values in the optimization model (9.78)–(9.81). In many cases, the
parts with the largest risk exposure turned out to be low-cost, commodity-type parts,
rather than high-value components such as engines or instrument panels. (This is not
to say that such components are not important, but only that the current supply chain
could withstand a disruption to these parts through existing inventory and production
capacity.) They can then devote resources to prevent or mitigate these disruptions.
Tactically, they use the models to track changes in the risk exposure over time, and to
alert planners to investigate further and take corrective action. And, of course, the tool
can also be used for operational (post-event) planning by optimizing the firm’s reaction
after a disruption. For example, the company recently used the tool to reallocate supply
in response to political instability in one geographical region.

Through this process, Ford identified 2600 supplier sites that, if disrupted, could
cause losses as large as $2.5 billion, and it prioritizes these sites in its risk-planning
process. Moreover, it also identified 400 sites that were previously receiving too much
of Ford’s risk-management resources, allowing it to reallocate those resources to sites
with higher risk exposure. One Ford manager described the models as “key game
changers,” allowing them to allocate their risk-management resources effectively and
accurately.

PROBLEMS

9.1 (Disruption-Prone Bicycle Parts) A bicycle manufacturer buys a particular cable
used in its bicycles from a single supplier located in South America. The manufacturer
follows a periodic-review base-stock policy for its inventory of cables, placing an order
with the supplier every week. The supplier occasionally experiences disruptions due to
hurricanes, labor actions, and other events. These disruptions follow a Markov process



PROBLEMS 397

with disruption probability α = 0.1 and recovery probability β = 0.4. When not disrupted,
the supplier’s lead time is negligible. Cables are used by the manufacturer at a constant
rate of 6000 per week. Inventory incurs a holding cost of $0.002 per cable per week. If the
manufacturer runs out of cables, it must delay production, resulting in a cost that amounts
to $0.05 per cable per week.

a) On average, how many weeks per year is the supplier disrupted? On average,
how long does each disruption last?

b) What is the optimal base-stock level for cables?

9.2 (Disruption-Prone Appliance Parts) An appliance manufacturer buys a particular
gasket used in its dishwashers from a single supplier located in Turkey. The manufacturer
follows a periodic-review base-stock policy for its inventory of gaskets, placing an order
with the supplier every week. The supplier occasionally experiences disruptions that
follow a Markov process with disruption probability α = 0.05 and recovery probability
β = 0.2. When not disrupted, the supplier’s lead time is negligible. Gaskets are used by the
manufacturer at a constant rate of 2400 per week. Inventory incurs a holding cost of $0.55
per gasket per week. If the manufacturer runs out of gaskets, it must delay production,
resulting in a cost that amounts to $2.75 per gasket per week.

a) On average, how many weeks per year is the supplier disrupted? On average,
how long does each disruption last?

b) What is the optimal base-stock level for gaskets?

9.3 (Stocking Latex Gloves) A university health clinic uses exactly 4 boxes of latex
gloves per week and orders gloves once per week. It costs the clinic $0.10 per week to
hold one box of gloves in inventory. If the clinic runs out of gloves before the end of the
week, they must buy more gloves from a local pharmacy at a cost that is $0.50 greater per
box than the cost their normal supplier charges.

The clinic’s normal supplier of gloves is quite unreliable. In any period, there is a
50% chance that the supplier is disrupted and cannot ship any gloves. This probability is
independent of whether the supplier was disrupted in the previous period; that is, α = β =

0.5. What is the optimal base-stock level for the clinic to use when ordering gloves?

9.4 (Random Yield for Steel) Return to Problem 3.1. Suppose that the amount of steel
delivered by the supplier differs randomly from the order quantity, and the auto manufacturer
must accept whatever quantity the supplier delivers. Let Q be the order quantity.

a) Suppose the delivery quantity is given byQ+Y , where−Y ∼ exp(0.02). What
is Q∗?

b) Suppose the delivery quantity is given by QZ, where Z ∼ U [0.8, 1.0]. What is
Q∗?

9.5 (Staffing Truck Drivers) The US trucking industry suffers from notoriously high
employee turnover, with turnover rates often well in excess of 100% (Paz-Frankel 2006).
This makes advance planning difficult since it is difficult to predict how many drivers will
be available when needed. Suppose a trucking company needs 25 drivers every day. If
the company asks S drivers to report to work on a given day, the number of drivers who
actually show up is given by S + Y , where Y ∼ U [−5, 0]. Drivers who report to work
but are not needed must still be paid their daily wage of $150. For each driver fewer than
25 that show up, the company will be unable to deliver a load, incurring a cost of $1200.
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Find S∗, the optimal number of drivers to ask to report to work. (Fractional solutions are
acceptable.) Also report g(S∗), the optimal expected cost per day.

9.6 (Simulating Truck-Driver Staffing) Build a simulation model of the truck-driver-
staffing problem in Problem 9.5. Simulate the system for at least 1000 periods and assume
the company uses S = 27 (which is not necessarily optimal). Report the expected cost per
day. You may use Excel, MATLAB, or another package or language of your choice.

9.7 (EOQD Approximation) Suppose that, in the EOQD model of Section 9.2.1, we
replace ψ (a function of Q) with

ψ̂ =
λ

λ+ µ

(which is independent of Q). Let ĝ be the cost function that results from replacing ψ with
ψ̂ in (9.5). It is known that ĝ is convex (you do not need to prove this).

a) Prove that the derivative of ĝ(Q) is

ĝ′(Q) =
hµ2

2 Q2 + ψ̂dhµQ− (Kdµ+ d2pψ̂)µ

(Qµ+ ψ̂d)2
.

b) Prove that Q̂∗, the Q that minimizes ĝ, is given by

Q̂∗ =
−ψ̂dh+

√
(ψ̂dh)2 + 2hdµ(Kµ+ dpψ̂)

hµ
. (9.82)

9.8 (Implementing EOQD Approximation) Consider an instance of the EOQD with
K = 35, h = 4, p = 22, d = 30, λ = 1, and µ = 12.

a) Find Q∗ for this instance using optimization software of your choice. Report the
expected cost, g(Q∗).

b) Consider the following heuristic for the EOQD:
1. Set Q equal to the EOQ.
2. Calculate ψ using the current value of Q.
3. Find Q using (9.82) from Problem 9.7, setting ψ̂ equal to the current ψ from

step 2.
4. If Q has changed more than ε since the previous iteration (for fixed ε > 0),

then go to 2; otherwise, stop.

Using this heuristic and any software package you like, find a near-optimal Q
using ε = 10−3. Report the Q you found, its cost g(Q), and the percentage
difference between g(Q) and g(Q∗) from part (a).

9.9 (Optimal Cost for Base-Stock Policy with Disruptions) In the base-stock problem
with disruptions discussed in Section 9.2.2, let R be the smallest n such that F (n) ≥
p/(p+ h), where F (x) is as defined in (9.10). Prove that

g(S∗) ≥ d

[
p

∞∑
n=R+1

πnn− h
R∑
n=0

πnn

]
,

and that equality holds if and only if F (R) = p/(p+ h).
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9.10 (Proof of Lemma 9.2) Prove Lemma 9.2.

9.11 (Disruptions = Stochastic Demand?)
a) Develop a stochastic demand process that is equivalent to the stochastic supply

process in the base-stock model with disruptions from Section 9.2.2. In particular,
formulate a demand distribution such that, if the demand is iid stochastic following
your distribution but the supply is deterministic, the expected cost is equal to the
expected cost given by (9.14), assuming we order up to the same S in every
period. Prove that the two expected costs are equal. Make sure you specify both
the possible values of the demand and the probability of each value, i.e., the pmf.

b) In part (a) you proved that, under the optimal solution, the expected cost is the
same in both models. Is the entire distribution of the random variable representing
the cost also the same in both models?

9.12 (Newsvendor with Random Yield and Demand) The additive yield model in
Section 9.3.2.2 assumes the demand is deterministic and equal to d. Suppose instead that
the demand is given by a random variable D ∼ N(d, σ2). The yield, Y , continues to be
random, with a normal distribution, andD and Y are independent. Show that we can solve
this problem either by defining a new random variable that represents the “net demand” and
using the classical newsvendor model, or by defining a new random variable that represents
the “net yield” and using the model from Section 9.3.2.2. Show that these two approaches
are equivalent.

9.13 (Optimal Cost for EOQ with Additive Yield Uncertainty) Prove that, in the
EOQ model with additive yield uncertainty (Section 9.3.1.2), the optimal expected cost is
given by

g(Q∗) = h(Q∗ + E[Y ]).

9.14 (Optimal Cost for EOQ with Multiplicative Yield Uncertainty) Prove that, in the
EOQ model with multiplicative yield uncertainty (Section 9.3.1.3), the optimal expected
cost is given by

g(Q∗) = hQ∗
Var[Z] + E[Z]2

E[Z]
.

9.15 (EOQ with Discrete Yield Uncertainty) Suppose that, in the EOQ models with
additive and multiplicative yield uncertainty, Y and Z are discrete random variables rather
than continuous ones, but that Q may still take continuous values. Show that the expected
cost functions (9.22) and (9.24) remain the same, as do the optimal solutions (9.23) and
(9.25).

9.16 (Production Functions) Provide appropriate definitions of Wi (that is, of Bi and
Xi) to model each of the forms of supplier unreliability listed below for the multisupplier
newsvendor model of Section 9.4. In each case, assume that Y is a nonnegative random
variable with known distribution.

a) The supplier delivers either 90% of the order quantity, or Y , whichever is smaller.
b) If the order is for fewer than Y units, the supplier will deliver the entire order

quantity. If the order is for Y units or more, the supplier will deliver 50% of the
order quantity.
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c) With probability π, the supplier is down and cannot provide any product. With
probability 1− π, the supplier is up. When the supplier is up, it delivers 100Y%
of the order quantity, where 0 ≤ π ≤ 1 and 0 ≤ Y ≤ 1.

9.17 (Multisupplier Model Example) Consider a four-supplier instance of the multi-
supplier newsvendor model of Section 9.4. Let r = 100, v = 20, p = 200, c1 = 40,
c2 = 50, c3 = 60, and c4 = 70. Let the demandD be distributed asN(250, 502). For each
part below, choose supplier production functionsWi (i.e., chooseBi andXi), i = 1, . . . , 4,
such that the optimal Q∗i have the desired property, and argue clearly why your production
functions produce Q∗i with that property.

a) Q∗1, Q∗2 > 0 and Q∗3, Q
∗
4 = 0. (This illustrates Theorem 9.8(a).)

b) One of the suppliers is perfectly reliable and, in the optimal solution, both the
perfectly reliable supplier and another supplier are active. (This illustrates that,
although Theorem 9.8(b) says that all suppliers that are more expensive than the
perfectly reliable supplier must be inactive, cheaper suppliers may be active.)

c) For some i and j with i < j, αj < EXi [W ′i (Q∗i , Xi)]αi and thus, by Theo-
rem 9.8(c), Q∗j = 0.

9.18 (Expected Profit for Multisupplier Model) Prove that the newsvendor’s expected
profit is given by (9.37).

9.19 (Proof of Special Case of Lemma 9.6(b)) Prove Lemma 9.6(b) for the case in
which supplier i has an exogenous production function; that is, Bi(Qi, Xi) = Xi.

9.20 (Optimality Condition for Exogenous Supply) In the multisupplier model of
Section 9.4, prove that, if supplier i has an exogenous production function and Q∗i > 0,
then

EX[F (Qi +WT−i)] = αi, (9.83)

where WT−i =
∑
j 6=iWj(Qj , Xj).

9.21 (Service Level vs. Cost and Reliability) Suppose there is only a single supplier,
and assume it has an exogenous production function as defined in Section 9.4. Suppose
further that the supplier’s production function is characterized by a parameter ρ, with
∂G(x; ρ)/∂ρ < 0, so that as ρ increases, so does the supplier’s reliability. (We’ll omit the
subscript 1 since there is only a single supplier.)

a) Prove that SL(Q∗) increases with α.
b) Prove that SL(Q∗) increases with ρ.

Hint: You may use (9.83).

9.22 (Proof of Theorem 9.10) Prove Theorem 9.10.

9.23 (Facility-Dependent Disruption Probabilities) Suppose we want each facility to
have a different disruption probability qj in the RFLP model from Section 9.6. If we were
to use similar logic as the RFLP, the objective function would become very messy since the
qr terms would be replaced by a product of yijr variables. Develop an alternate formulation
for this problem in which the qj may be different for each j.

a) Write out your formulation. Your formulation must be linear. Define any new
notation that you introduce, and explain the objective function and each of the
constraints in words.
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b) In a short paragraph, discuss the advantages and disadvantages of your formula-
tion versus the original model.

9.24 (Time-to-Survive Model) Using the notation from Case Study 9.1, formulate the
time-to-survive (TTS) model, which calculates the maximum amount of time the firm can
last without losing demand when scenario s occurs. If you introduce any new notation,
define it clearly. Explain the objective function and constraints in words.



CHAPTER 10

THE TRAVELING SALESMAN PROBLEM

10.1 SUPPLY CHAIN TRANSPORTATION

Transportation is arguably the largest component of total supply chain costs. In 2017,
United States businesses spent $966 billion moving freight along roads, rails, waterways,
air routes, and pipelines (Council of Supply Chain Management Professionals 2018a).
Even small improvements in transportation efficiency can have a huge financial impact. A
transportation system has many aspects to optimize, from mode selection to driver staffing
to contract negotiations, and mathematical models have been used for all of these issues
and more. In this chapter and the next, we cover one important aspect of the transportation-
related decisions a firm must make, namely, routing vehicles among the locations they must
visit.

We discuss the famous traveling salesman problem (TSP) in this chapter. The TSP is
important not only because of its practical utility but also because, over the past several
decades, the study of the TSP has spurred many fundamental developments in the theory
of optimization itself. Then, in Chapter 11, we discuss the vehicle routing problem (VRP),
which generalizes the TSP by adding constraints that necessitate the use of multiple routes.

403Fundamentals of Supply Chain Theory, . Lawrence V. Snyder and Zuo-Jun Max Shen. 
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Snyder/SupplyChainTheory
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(a) A Hamiltonian cycle. (b) No Hamiltonian cycle possible.

Figure 10.1 Hamiltonian cycles.

10.2 INTRODUCTION TO THE TSP

10.2.1 Overview

The TSP involves finding the shortest route throughn nodes that begins and ends at the same
city and visits every node. The TSP is perhaps the best-known combinatorial optimization
problem and has been intensely studied by researchers in supply chain management, oper-
ations research, computer science, and other fields. Moreover, it serves as the foundation
for a great many routing problems, and instances of these problems are solved thousands,
if not millions, of times per day by companies and public agencies to plan package and
mail deliveries, optimize robot movements, direct naval vessels, fabricate semiconductor
chips, and more. (See Applegate et al. (2007) for a thorough discussion of applications of
the TSP.)

Closely related to the TSP is the Hamiltonian cycle problem, which asks whether there
exists a tour on a given graph that visits every node exactly once. For example, a Hamil-
tonian cycle is marked on the graph in Figure 10.1(a), while the graph in Figure 10.1(b)
has no Hamiltonian cycle (why?). Finding a Hamiltonian cycle on a general graph is
NP-complete (Garey and Johnson 1979). The TSP is the optimization counterpart of the
Hamiltonian cycle problem, namely, to find the minimum-cost Hamiltonian cycle; the TSP
is therefore NP-hard.

One of the first specific instances of the TSP, and one of the most public, appeared in a
1962 advertisement by Procter & Gamble. The ad offered a $10,000 prize—over $75,000
in today’s dollars—for the person who could find the shortest route through the 33 cities
in Figure 10.2 for police officers Toody and Muldoon from the popular TV series Car 54.1

The optimal solution, depicted in Figure 10.3, was found by several contestants, though at

1A picture of the ad is at http://www.math.uwaterloo.ca/tsp/gallery/igraphics/car54.html. The
distance matrix for this instance is reported by Karg and Thompson (1964).
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Figure 10.2 Car 54 TSP instance.

Figure 10.3 Optimal solution to Car 54 TSP instance. Total distance = 10,861 miles.

the time, it was unknown whether this solution was indeed optimal (Cook 2012). This tour
has a total distance of 10,861 miles.

The question “what is the shortest route?” is documented in writings by salespeople
as early as 1832, but the problem was not stated formally, or given its name, until the
1940s (Cook 2012). Since then, researchers have developed a wide range of algorithmic
methods to solve the TSP—indeed, nearly every exact and heuristic algorithm for discrete
optimization has been applied to the TSP at some point—and a large variety of extensions
and variants. For a more thorough coverage of this research, see the reviews by Laporte
(1992a, 2010), and Hoffman et al. (2013), among others, and the books by Lawler et al.
(1985) and Applegate et al. (2007). We also highly recommend the general-interest book
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by Cook (2012) and its companion website (Cook 2018a), which discuss the TSP’s history,
algorithms, and allure. Bill Cook’s Concorde TSP app for mobile devices implements
many exact and heuristic algorithms for the TSP, plus TSP art and games (Cook 2018b).
There is even a TSP movie, called Traveling Salesman (2012), a political and intellectual
thriller in which a group of mathematicians “solve” the TSP, resolve the P vs. NP question,
and wrestle with the ethical implications of making their algorithm public.

10.2.2 Formulation of the TSP

Let N = {1, . . . , n} be a set of nodes, and let cij be the distance (or transportation cost,
travel time, etc.) from node i to node j. Many of the properties discussed below rely on the
distances satisfying the triangle inequality, i.e.,

cij ≤ cik + ckj ∀i, j, k ∈ N, (10.1)

so we will assume this inequality holds. When the triangle inequality holds, the TSP is
sometimes referred to as the metric TSP. We’ll also assume that the distances are symmetric,
i.e., that cij = cji for all i and j; this means we are considering the symmetric TSP.

Let z(E) be the total length of a set E of edges,

z(E) =
∑

(i,j)∈E

cij ,

and let z∗ = z(Γ∗) be the length of the optimal TSP tour, Γ∗.
Let xij be a decision variable that equals 1 if the tour goes from node i to node j or from

j to i, 0 otherwise. The decision variable xij is only defined for i < j. Since the distances
are symmetric, it doesn’t matter in which direction the tour is oriented. Here is a partial
formulation of the TSP:

minimize
∑
i,j∈N

cijxij (10.2)

subject to
∑
i∈N

xih +
∑
j∈N

xhj = 2 ∀h ∈ N (10.3)

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈ N (10.4)

The objective function (10.2) calculates the total length of the tour. Constraints (10.3)
require the tour to contain exactly two edges that are incident (connected) to node h—in
other words, they require the degree of node h to equal 2, and they are therefore called
degree constraints. Constraints (10.4) are integrality constraints. (Technically, we should
specify that i < j in the summation in (10.2) and the “for all” part of (10.4), and similarly
in the summations in (10.3), but we’ll usually omit that extra bit of notation.)

Unfortunately, constraints (10.3)–(10.4) alone are not sufficient to ensure that the re-
sulting solution is a valid tour. To see why, consider the solution depicted in Figure 10.4.
Every node has degree 2 in this solution, but it is clearly not a TSP tour because it contains
multiple “pieces.” These pieces are called subtours, and they are at the heart of what makes
the TSP difficult.

Our formulation needs to include constraints that prevent subtours—called subtour-
elimination constraints—and ensure that the solution consists of one contiguous tour. How
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Figure 10.4 Subtours.

can we formulate such constraints? Suppose we have a subset S ⊆ N with at least two
nodes. One way to ensure that the edges selected do not contain a subtour on S is to require
that there be at least two edges connecting nodes in S with nodes outside of S:

∑
i∈S,j∈S̄ or
i∈S̄,j∈S

xij ≥ 2 ∀S ⊆ N : 2 ≤ |S| ≤ n− 1, (10.5)

where S̄ ≡ N \ S. (Note that there is no constraint for S = N , since we do want a closed
tour on N .) Equivalently, we can limit the number of edges within S to |S| − 1:

∑
i,j∈S

xij ≤ |S| − 1 ∀S ⊆ N : 2 ≤ |S| ≤ n− 1. (10.6)

Both (10.5) and (10.6) are valid subtour-elimination constraints. We’ll use (10.6). Both
types, unfortunately, consist of O(2n) individual constraints—we’ll discuss a way to deal
with this in Section 10.3.3.

Combining (10.2)–(10.4) and (10.6), we get the following formulation for the TSP:

(TSP) minimize
∑
i,j∈N

cijxij (10.7)

subject to
∑
i∈N

xih +
∑
j∈N

xhj = 2 ∀h ∈ N (10.8)

∑
i,j∈S

xij ≤ |S| − 1 ∀S ⊆ N : 2 ≤ |S| ≤ n− 1 (10.9)

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈ N (10.10)

We discuss exact algorithms for the TSP in Section 10.3. In Sections 10.4 and 10.5,
we discuss construction and improvement heuristics, respectively. In addition to these
heuristics, a large variety of metaheuristics have been proposed for the TSP. These include
genetic algorithms, tabu search, simulated annealing, and others. Some of these methods
produce good solutions, but they typically require longer run times than the construction
and improvement heuristics discussed here. For an overview and experimental comparison,
see Johnson and McGeoch (1997).
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10.3 EXACT ALGORITHMS FOR THE TSP

10.3.1 Dynamic Programming

One of the earliest exact algorithms for the TSP is a dynamic programming (DP) algorithm.
Indeed, this was also one of the earliest applications of DP. The approach was proposed
independently by Bellman (1962) and by Held and Karp (1962).

Let S ⊆ N be a subset of N that does not contain node 1, and let j ∈ S. Define θ(S, j)
as the length of the shortest route that begins at node 1, visits all nodes in S, and ends
at j. If |S| = 1, then there is only one such route—the route 1 → j—so θ(S, j) = c1j .
Suppose |S| > 1 and suppose k comes immediately before j on the optimal route from 1 to
j through S. Then if we remove j from this route, the resulting route must be the optimal
route from 1 to k through S. Therefore, we can calculate θ(S, j) recursively:

θ(S, j) =

c1j , if |S| = 1

min
k∈S,k 6=j

{θ(S \ {k}, k) + ckj}, otherwise. (10.11)

This algorithm runs in exponential time—roughly O(n22n). This is not surprising, since
the TSP is NP-hard. O(n22n) is significantly faster than the O(n!) time required for
complete enumeration of the solution space, but it still renders this method impractical for
all but small instances.

10.3.2 Branch-and-Bound

The first branching algorithm for the TSP was the branch-and-bound algorithm proposed
by Little et al. (1963); in fact, their paper was the first to introduce the term branch-and-
bound. Their algorithm does not solve a relaxation of the TSP to get lower bounds in
the branch-and-bound tree. Instead, it calculates lower bounds by modifying the distance
matrix c. We’ll summarize their approach, and modify it for the symmetric TSP.

Since xij is defined only for i < j, it makes sense to restrict cij to contain elements for
i < j only, as well. Suppose we subtract a constant ρ ≥ 0 from each element in a given row
of this distance matrix. Then the length of any tour Γ will decrease by exactly ρ (why?). In
fact, if we subtract a nonnegative constant ρi from row i (i = 1, . . . , n) and a nonnegative
constant κj from column j (j = 1, . . . , n), the length of any tour will decrease by exactly

h ≡
n∑
i=1

ρi +

n∑
j=1

κj .

Moreover, the optimal tour will not change, only its length. Let c′ be the modified distance
matrix, i.e., let c′ij = cij − ρi − κj for i < j.

Suppose Γ is a tour. Let z(Γ) be the length of the tour under the original matrix and
z′(Γ) be the length under the modified distance matrix c′. Then

z(Γ) = z′(Γ) + h.

If c′ij ≥ 0 for all i < j, then z′(Γ) ≥ 0, and h will be a lower bound on z(Γ) for any Γ,
and hence, it will be a lower bound on the optimal tour length (under the original distance
matrix).
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Theorem 10.1 Let c′ij = cij − ρi − κj for all i < j, where ρi, κj ≥ 0 are constants such
that c′ij ≥ 0 for all i < j. Then

h ≡
n∑
i=1

ρi +

n∑
j=1

κj

is a lower bound on the optimal tour length.

� EXAMPLE 10.1

Consider the instance pictured in Figure 10.5. Distances cij are indicated along the
edges. If there is no edge between i and j, then cij equals the shortest-path distance
from i to j. The complete distance matrix is given by

c =



− 5 21 13 6 15 18 20

− − 16 18 7 12 19 17

− − − 33 16 7 17 11

− − − − 17 26 16 29

− − − − − 9 12 14

− − − − − − 10 5
− − − − − − − 13

− − − − − − − −


(omitting entries for which i ≥ j). Let ρi equal the minimum value in row i; i.e.,
(ρ1, . . . ρ7) = (5, 7, 7, 16, 9, 5, 13). Subtracting these constants from the correspond-
ing rows, we get 

− 0 16 8 1 10 13 15

− − 9 11 0 5 12 10

− − − 26 9 0 10 4

− − − − 1 10 0 13

− − − − − 0 3 5

− − − − − − 5 0

− − − − − − − 0

− − − − − − − −


Now let κj equal the minimum value in column j of the new matrix: (κ1, . . . , κ7) =

(0, 9, 8, 0, 0, 0, 0). Subtracting these constants from the corresponding rows, we get

c′ =



− 0 7 0 1 10 13 15

− − 0 3 0 5 12 10

− − − 18 9 0 10 4

− − − − 1 10 0 13

− − − − − 0 3 5
− − − − − − 5 0

− − − − − − − 0

− − − − − − − −


Since all elements in c′ are nonnegative, we get a lower bound of

∑
i ρi+

∑
j κj = 79.
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Figure 10.5 TSP instance for examples. If no edge is present between nodes i and j, then cij
equals the shortest-path distance from i to j.

�

The branch-and-bound algorithm of Little et al. (1963) branches on the xij variables.
The choice of which (i, j) to branch on is determined using a simple estimate of the increase
in route length that would result from forcing xij = 0. Each time we force an edge into
or out of the solution, we can remove a row and column from c′. At a “leaf” of the
branch-and-bound tree, c′ has only two rows and columns, and the entire corresponding
tour can easily be reconstructed. This is the mechanism by which the algorithm obtains
upper bounds.

This algorithm is an interesting example of a non–LP-based branch-and-bound method,
but it does not play a major role in the way the TSP is solved today.

10.3.3 Branch-and-Cut

A 2-matching is a set M of edges such that every node in N is contained in exactly two
edges. (A 2-matching is a generalization of a perfect matching, which is a set of edges
such that every node is contained in exactly one edge.) In other words, a 2-matching is
a solution to the TSP formulation without the subtour elimination constraints (10.9). The
formulation (10.7)–(10.10) without (10.9) is therefore known as the 2-matching relaxation,
and it provides a lower bound on the length of the optimal TSP tour.

Dantzig et al. (1954, 1959) proposed a method for solving the TSP that involved solving
the LP relaxation of the 2-matching relaxation, and then manually adding violated subtour-
elimination constraints and integrality constraints to coax the solution toward feasibility.
Their approach laid the foundation for the branch-and-cut method that is ubiquitous in
modern methods for solving the TSP, as well as a huge variety of other NP-hard problems.
As Cook and Chvátal (2010) put it, “All successful TSP solvers echo their breakthrough.
This was the Big Bang.”

In a branch-and-cut algorithm, we add cutting planes at one or more nodes of the search
tree to tighten the LP relaxation. A cutting plane (or simply a cut) is a constraint that is
satisfied by the optimal integer solution to an optimization problem but not by the optimal
solution to its LP relaxation. Adding the cut to the LP relaxation makes the original LP
solution infeasible and shrinks the feasible region, thus tightening the LP bound. If we add
enough—and good enough—cuts, the LP feasible region will approximate or even equal
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the convex hull of the IP in the region of the optimal IP solution. In that case, solving the
LP relaxation will be equivalent to solving the IP.

For example, consider the following integer programming problem:

maximize −x1 + 3x2

subject to x1 + 2x2 ≥ 4

−6x1 + 10x2 ≤ 36

4x1 + 2x2 ≤ 25

x1 , x2 ∈ Z+

(10.12)

(Z+ is the set of all nonnegative integers.) The optimal solution to (10.12) is x∗ = (3, 5),
with objective value z∗ = 12. Its LP relaxation, on the other hand, has optimal solution
xLP = (3.42, 5.65), with objective value zLP = 13.54. The LP therefore provides a
reasonably tight upper bound, but not tight enough to prove the optimality of x∗. The
constraints of (10.12) are plotted in Figure 10.6(a), as is the objective function (as a thinner
line). The feasible region of the LP relaxation is shaded, and the feasible integer points are
the integer points within the shaded region.

Now consider the following constraint:

−x1 + 2x2 ≤ 7. (10.13)

Constraint (10.13) is a cut, because it is satisfied by every feasible integer solution for
(10.12) (see the dashed line in Figure 10.6(b)) but not by every feasible solution for the
LP relaxation of (10.12). In particular, xLP violates (10.13). Therefore, adding (10.13) to
the problem shrinks the LP feasible region, and thus tightens the LP bound. The new LP
solution is xLP = (3.6, 5.3), with zLP = 12.3.

Adding the cut (10.13) does not quite reduce the LP feasible region to the convex hull
of the IP feasible set near the optimal solution. But adding one more cut will do the trick:

x1 + x2 ≤ 8. (10.14)

Now we have xLP = (3, 5) = x∗. (See Figure 10.6(c).) In other words, solving the LP
relaxation is equivalent to solving the IP itself.

This raises the question: How do we identify good cuts, i.e., constraints that “separate”
the current LP solution? The problem of finding such a cut is called the separation problem.
In most cutting-plane methods, including those for the TSP, researchers first identify families
of cuts—that is, they identify structures of the cuts but not their coefficients—and then
develop algorithms to solve the separation problem—that is, to determine coefficients so
that the cuts will render the current LP solution infeasible. In some cases, the separation
problem can be solved efficiently (in polynomial time) and exactly, while in others it must
be solved heuristically. The separation problem is typically solved at each node of the
search tree to generate cuts that tighten the LP relaxations. Through a combination of
branching and adding cuts, branch-and-cut guides the solution to the LP relaxation toward
integer feasibility.

Several families of cuts are used in modern branch-and-cut algorithms for the TSP. One
family consists of the subtour-elimination constraints. As we noted in Section 10.2.2,
there are too many subtour-elimination constraints to include all of them explicitly in
the formulation. Therefore, we generate violated subtour-elimination constraints on the
fly during the branch-and-bound process. The separation problem—i.e., the problem of
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Figure 10.6 Cutting planes.
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Figure 10.7 Handle and teeth for 2-matching inequality.

deciding which constraints to add on the fly—can be solved in polynomial time (Crowder
and Padberg 1980, Padberg and Rinaldi 1990a). The basic idea is as follows: Suppose we
solve the LP relaxation of (10.7)–(10.10) with (10.9) replaced by the equivalent constraints
(10.5), but only some of these constraints included. Let xLP be the optimal solution. We
wish to find constraints (10.5) that are violated by xLP . The support graph of this solution
has node set N and edge set {(i, j)|xLPij > 0}, with weight xLPij on edge (i, j). There
is a violated constraint (10.5) if and only if there is an S ⊂ N such that the total weight
on the edges out of S is less than 2—in other words, if there is a cut in the support graph
whose weight is less than 2. Therefore, finding a violated subtour-elimination constraint is
equivalent to solving a minimum-cut problem, which can be done in polynomial time.

A second family of cuts are called 2-matching inequalities, or Blossom inequalities
(Hong 1972). Suppose we have a set H ⊆ N and s pairwise disjoint sets T1, . . . , Ts ⊆ N
such that each Tj contains exactly two nodes, one inH and one not inH , and such that s is
odd and at least 3. (See Figure 10.7 for an illustration.) Anticipating the comb inequalities
discussed next, H is called the handle and the Tk are called teeth. A 2-matching inequality
has the form ∑

i,j∈H
xij +

s∑
k=1

∑
i,j∈Tk

xij ≤ |H|+
1

2
(s− 1). (10.15)

In other words, the number of tour edges contained within the handle plus the number of
edges contained within teeth cannot exceed |H| + 1

2 (s − 1). The next theorem confirms
that (10.15) is a valid inequality for the TSP, i.e., a cut.

Theorem 10.2 For any handle H ⊆ N and teeth T1, . . . , Ts ⊆ N such that

• each Tk contains exactly one node in H and one node not in H ,

• T1, . . . , Ts are pairwise disjoint, and

• s ≥ 3 and odd,

the 2-matching inequality (10.15) is valid for every tour through N .

Proof. Suppose, for a contradiction, that we have a tour such that

∑
i,j∈H

xij +

s∑
k=1

∑
i,j∈Tk

xij > |H|+
1

2
(s− 1).
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It suffices to assume that the violation is as small as possible, i.e., that

∑
i,j∈H

xij +

s∑
k=1

∑
i,j∈Tk

xij = |H|+ 1

2
(s+ 1).

The sum of the degrees of the nodes in H is at least

D ≡ 2
∑
i,j∈H

xij +

s∑
k=1

∑
i,j∈Tk

xij .

(“At least” because there may be additional edges incident to the nodes in H , in addition
to those contained in H or the teeth.) D is minimized when as many of the |H|+ 1

2 (s+ 1)

edges as possible are in the teeth, i.e., when

s∑
k=1

∑
i,j∈Tk

xij = s

∑
i,j∈H

xij = |H| − 1

2
s+

1

2
.

Therefore,

D ≥ 2

(
|H| − 1

2
s+

1

2

)
+ s = 2|H|+ 1.

Since D is a lower bound on the sum of the degrees of the nodes in H , at least one node in
H has degree greater than 2. This contradicts our assumption that x defines a tour.

2-matching inequalities can be written in various other forms. For example, the next
proposition gives an equivalent inequality.

Proposition 10.3 For any handle H ⊆ N and teeth T1, . . . , Ts ⊆ N satisfying the condi-
tions of Theorem 10.2, the following inequality is valid for every tour through N :

∑
i∈H
j 6∈H

xij +

s∑
k=1

∑
i∈Tk
j 6∈Tk

xij ≥ 3s+ 1. (10.16)

Proof. Let Ω be the set of teeth such that the tour travels directly from one node in the
tooth to the other; i.e., Ω = {Tk = (i, j)|xij = 1}. Then∑

i∈H
j 6∈H

xij ≥ |Ω| (10.17)

by the definitions of H and Tk. In fact, if |Ω| = s, then∑
i∈H
j 6∈H

xij ≥ s+ 1 (10.18)

since the left-hand side is even (for every edge that exits H , there must be another that
enters it) but s is odd.
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Moreover, a given tooth Tk either has two edges coming out of it (if Tk ∈ Ω) or four
edges coming out of it (otherwise). Thus,

s∑
k=1

∑
i∈Tk
j 6∈Tk

xij = 2|Ω|+ 4(s− |Ω|) = 4s− 2|Ω|. (10.19)

Therefore, if |Ω| = s,

∑
i∈H
j 6∈H

xij +

s∑
k=1

∑
i∈Tk
j 6∈Tk

xij ≥ s+ 1 + 2s = 3s+ 1

by (10.18) and (10.19), while if |Ω| ≤ s− 1,

∑
i∈H
j 6∈H

xij +

s∑
k=1

∑
i∈Tk
j 6∈Tk

xij ≥ |Ω|+ 4s− 2|Ω| ≥ 4s− (s− 1) = 3s+ 1

by (10.17) and (10.19).

The separation problem for 2-matching inequalities can be solved in polynomial time.
Padberg and Rao (1982) provided the first such algorithm, which relies on solving max-
flow problems on a specialized graph. Subsequent improvements to this algorithm were
proposed by Grötschel and Holland (1987) and Letchford et al. (2004).

If the teeth are allowed to have more than two nodes each—but at least one node in H
and one node not in H—then we have a comb, as depicted in Figure 10.8. Combs give rise
to the following comb inequalities:

∑
i,j∈H

xij +

s∑
k=1

∑
i,j∈Tk

xij ≤ |H|+
s∑

k=1

(|Tk| − 1) +
1

2
(s− 1). (10.20)

As with 2-matching inequalities (10.15), the left-hand side represents the number of edges
of the tour that are contained within the handle or within the teeth. Comb inequalities are
valid inequalities, as the next theorem attests.

Theorem 10.4 For any handle H ⊆ N and teeth T1, . . . , Ts ⊆ N such that

• each Tk contains at least one node in H and one node not in H ,

• T1, . . . , Ts are pairwise disjoint, and

• s ≥ 3 and odd,

the comb inequality (10.20) is valid for every tour through N .

Proof. Omitted; see Problem 10.10.

Comb inequalities can also be written in other forms; for example, (10.16) is valid for
comb inequalities, as well. (See Problem 10.11.)

Grötschel and Padberg (1979) prove that comb inequalities and subtour-elimination
constraints together are facet-defining, which means that if we add all possible comb
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Figure 10.8 Handle and teeth for comb inequality.

inequalities to the feasible region of the LP relaxation of (10.7)–(10.10), the LP relaxation
will equal the convex hull of the IP, and solving the LP relaxation will be equivalent to
solving the TSP itself. Unfortunately, there is no known polynomial-time exact separation
algorithm for comb inequalities, nor is it known whether the separation problem is NP-
hard (Applegate et al. 2007). Therefore, the problem is generally solved heuristically; see,
e.g., Padberg and Rinaldi (1990b), Grötschel and Holland (1991), and Applegate et al.
(1995).

Many other types of cuts have been proposed for the TSP. These include clique-
tree (Grötschel and Pulleyblank 1986), path (Cornuéjols et al. 1985), star (Fleischmann
1988), hypohamiltonian (Grötschel 1980a), chain (Padberg and Hong 1980), and ladder
inequalities (Boyd et al. 1995). See Applegate et al. (2007) for an in-depth discussion of the
branch-and-cut approach for the TSP, including a detailed description of how branch-and-
cut is implemented in the Concorde TSP solver (Applegate et al. 2006), widely recognized
as the most powerful exact TSP solver available.

10.4 CONSTRUCTION HEURISTICS FOR THE TSP

In this section, we discuss construction heuristics for the TSP. For some heuristics, we will
prove that, for all instances,

zH

z∗
≤ η, (10.21)

where zH is the objective value of the solution returned by a given heuristic H , z∗ is the
optimal objective value, and η is a constant. Equation (10.21) provides a fixed worst-case
error bound. If a heuristic executes in polynomial time (as most heuristics do, otherwise an
exact algorithm may be preferable) and a bound of the form in (10.21) exists, the heuristic
is called an approximation algorithm, or sometimes an η-approximation algorithm.

It is nice when such bounds are available, since then we have a guarantee on the perfor-
mance of the heuristic. Unfortunately, not all heuristics have fixed worst-case bounds—
some heuristics may return solutions that are arbitrarily far from the optimal solution. In
fact, the situation is even worse: For general distance matrices (for which the triangle
inequality need not hold), there are no polynomial-time approximation algorithms, unless
P = NP (Sahni and Gonzalez 1976):
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Theorem 10.5 Suppose there exists a polynomial-time heuristic H and a constant η ≥ 1

such that
zH

z∗
≤ η (10.22)

for all instances of the traveling salesman problem. Then P = NP.

Proof. Suppose, for a contradiction, that there is a polynomial-time heuristic H and a
constant η ≥ 1 for which (10.22) holds for all instances. We will use this heuristic to solve
the Hamiltonian cycle problem. Since the Hamiltonian cycle problem is NP-complete and
the heuristic runs in polynomial time, we must have P = NP.

Let N and E be the sets of nodes and edges, respectively, in an arbitrary instance of the
Hamiltonian cycle problem. Consider an instance of the TSP with nodes N and distances

cij =

{
1, if (i, j) ∈ E
nη, otherwise.

If a Hamiltonian cycle exists, then z∗ = n, where z∗ is the optimal objective value of the
TSP instance. If z∗ = n, then by (10.22), zH ≤ nη. On the other hand, if there is no
Hamiltonian cycle, then z∗ ≥ nη + n − 1 > nη, and since zH ≥ z∗, we have zH > nη.
In other words, zH ≤ nη if and only if a Hamiltonian cycle exists. Therefore, H is a
polynomial-time algorithm to solve the Hamltionian cycle problem.

Note that the distance matrix in the proof of Theorem 10.5 may not satisfy the triangle
inequality. This is an important point, because, as we will see, there are polynomial-time
heuristics that have fixed worst-case bounds if the triangle inequality holds.

We now discuss several construction heuristics. The heuristics in Sections 10.4.1–10.4.5
are called insertion heuristics because they begin with an empty tour and iteratively insert
nodes onto the tour. Much the analysis in those sections derives from Rosenkrantz et al.
(1977). The heuristics in Sections 10.4.6 and 10.4.7, in contrast, begin by constructing a
minimum spanning tree and then building a tour based on the tree.

10.4.1 Nearest Neighbor

We begin with a very simple heuristic called the nearest neighbor (NN) heuristic. The
heuristic begins with an arbitrary node. At each iteration, we add the unvisited node that
is closest to the current node (and set that node as the new current node). When all nodes
have been added, we return to the starting node. The NN heuristic executes in O(n2) time,
where n is the number of nodes.

Algorithm 10.1 lists pseudocode for the NN heuristic. In the pseudocode, Θ represents
the set of nodes that are on the current tour and ı̂ represents the current node.

� EXAMPLE 10.2

Consider again the instance in Figure 10.5. Let’s begin the NN heuristic at node 1.
The nearest neighbor to node 1 is node 2, so we add it, followed by 5. The nearest
neighbor to 5 that is not already on the tour is 6. (Nodes 1 and 2 are nearer to 5, but they
are already on the tour.) Continuing in this way, we add nodes 8, then 3, then 7, then
4, and finally back to 1. The complete tour is 1→ 2→ 5→ 6→ 8→ 3→ 7→ 4,
with total distance 83. (See Figure 10.9.)
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Algorithm 10.1 Nearest neighbor heuristic
1: choose arbitrary node i0; Θ← {i0}; ı̂← i0 . Initialization
2: while Θ 6= N do . Main loop
3: k∗ ← argmink∈N\Θ{cı̂k} . Closest node to current node
4: add edge (̂ı, k∗) to tour . Add k∗ to tour
5: ı̂← k∗; Θ← Θ ∪ {k∗}
6: end while
7: add edge (̂ı, i0) to tour . Return to start node
8: return tour
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Figure 10.9 Nearest-neighbor tour beginning at node 1 for the example instance in Figure 10.5.
Total distance = 83.

�

Clearly, the NN heuristic can easily get “boxed into a corner” from which the only escape
is an unattractively long edge (such as (3, 7) in Example 10.2). The NN tour falls into similar
traps in the Car 54 instance, as shown in Figure 10.10. It has a total distance of 13,044
miles (compared to the optimal tour’s distance of 10,861). Although Rosenkrantz et al.
(1977) report good performance of NN on a small computational experiment, subsequent
experiments have reported worse performance compared to other insertion methods (Golden
and Stewart 1985).

We now examine the theoretical worst-case behavior of NN.

Theorem 10.6 Consider ann-node instance of the TSP that satisfies the triangle inequality.
Let z∗ and zNN be the length of the optimal tour and the nearest-neighbor tour, respectively,
for this instance. Then

zNN

z∗
≤ 1

2
(dlog2(n)e+ 1) . (10.23)

Moreover, for any m > 3, there exists an instance with n = 2m − 1 nodes such that

zNN

z∗
>

1

3

(
dlog2(n+ 1)e+

4

3

)
. (10.24)

Proof. Omitted; see Rosenkrantz et al. (1977).

The first part of Theorem 10.6 seems like good news, since (10.23) seems like the type
of bound we try to prove. However, the bound in the right-hand side of (10.23) is not
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Figure 10.10 Nearest-neighbor solution to Car 54 TSP instance. Total distance = 13,044 miles.

fixed—it increases with n. Still, this is just an upper bound; maybe the actual ratio doesn’t
increase with n, leaving open the possibility that some future researcher will prove a fixed
worst-case bound. Alas, the second part of the theorem dashes these hopes by proving that
we can find instances with arbitrarily bad performance.

10.4.2 Nearest Insertion

The nearest insertion (NI) heuristic works as follows: We begin with a tour consisting of an
arbitrary node. At each subsequent iteration, we find the unvisited node k∗ that is closest to
a node m on the tour; node k∗ will be the next node to insert onto the tour. If the tour only
contains one node thus far, we insert k∗ after it; otherwise, we find the tour edge (i∗, j∗)

that minimizes the net change in the tour length due to the insertion, defined by

∆ijk = cik + ckj − cij , (10.25)

and replace edge (i∗, j∗) with edges (i∗, k∗) and (k∗, j∗). (Note that m, the closest tour
node to k∗, will not necessarily equal the i∗ or j∗ that minimize ∆ijk.) We continue in this
way until all cities have been inserted onto the tour. The NI heuristic executes in O(n2)
time. The heuristic is described in pseudocode in Algorithm 10.2.

� EXAMPLE 10.3

Consider again the example in Figure 10.5. Starting at node 1, the NI heuristic
proceeds as follows: The nearest node to 1 is 2, so we have the tour 1 → 2. The
closest node to {1, 2} is node 5, and it doesn’t matter whether we insert it before or
after node 2 (it just changes the direction of the tour), so we’ll insert it before, to get
the tour 1 → 5 → 2. The closest nontour node to a tour node is now node 6. The
three possible insertion edges give the following net changes:

(1, 5) : ∆156 = 15 + 9− 6 = 18
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Algorithm 10.2 Nearest insertion heuristic
1: choose arbitrary node i0; Θ← {i0} . Initialization
2: while Θ 6= N do . Main loop
3: for all k ∈ N \Θ do
4: c∗k ← minm∈Θ{cmk} . Distance from k to tour
5: end for
6: k∗ ← argmink∈N\Θ{c∗k} . Closest node to tour
7: if |Θ| = 1 then
8: add edges (i0, k

∗) and (k∗, i0) to tour . Insert k∗ as second node
9: else

10: for all edges (i, j) on tour do
11: ∆ijk∗ ← cik∗ + ck∗j − cij . Net change due to insertion
12: end for
13: (i∗, j∗)← argmin(i, j) on tour{∆ijk∗} . Best insertion edge
14: remove (i∗, j∗) from tour; add (i∗, k∗) and (k∗, j∗) to tour . Insert k∗

15: end if
16: Θ← Θ ∪ {k∗}
17: end while
18: return tour

(5, 2) : ∆526 = 9 + 12− 7 = 14

(2, 1) : ∆216 = 12 + 15− 5 = 22

Therefore, we insert node 6 into the edge (5, 2) to get the tour 1 → 5 → 6 → 2.
Continuing in this way, we make the following insertions:

• Insert 8 into (5,6); ∆568 = 10; tour = 1→ 5→ 8→ 6→ 2

• Insert 3 into (6,2); ∆623 = 11; tour = 1→ 5→ 8→ 6→ 3→ 2

• Insert 7 into (5,8); ∆587 = 11; tour = 1→ 5→ 7→ 8→ 6→ 3→ 2

• Insert 4 into (5,7); ∆574 = 21; tour = 1→ 5→ 4→ 7→ 8→ 6→ 3→ 2

(See Figure 10.11.) The total distance of this tour is 85.

�

The NI tour in Example 10.3 is actually longer than the NN tour in Example 10.2 (even
though it looks more reasonable). In general though, NI is a more effective heuristic than
NN. For example, the NI tour for the Car 54 instance, shown in Figure 10.12, has a total
distance of 12,588 miles, compared to 13,044 for NN (and 10,861 for the optimal tour).

In fact, unlike NN, NI has a fixed worst-case performance bound:

Theorem 10.7 For every instance of the TSP that satisfies the triangle inequality,

zNI

z∗
≤ 2, (10.26)

where z∗ and zNI are the lengths of the optimal tour and the nearest-insertion tour,
respectively, for this instance.
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Figure 10.11 Nearest-insertion tour beginning at node 1 for example instance in Figure 10.5. Total
distance = 85.

Figure 10.12 Nearest-insertion solution to Car 54 TSP instance. Total distance = 12,588 miles.
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Figure 10.13 TSP instance for proof that NI bound is tight.

Proof. Omitted; see Rosenkrantz et al. (1977).

In practice, the ratio zNI/z∗ is, of course, often much smaller than 2. For example, the
bound for the Car 54 instance is 12, 588/10, 861 = 1.16. This raises the question: Is it
possible to prove a smaller fixed worst-case bound on zNI/z∗ that applies to all instances?
The answer is “no”; the bound of 2 is tight, as the next proposition demonstrates.

Theorem 10.8 The bound of 2 in Theorem 10.7 is tight.

Proof. Consider an n-node instance in which the nodes are spaced evenly along the
perimeter of a circle. (An instance with n = 8 is shown in Figure 10.13(a).) Edges
between consecutive nodes have length 1; edges between nodes that are separated by one
node have length 2; and there are no other edges (or, if you prefer, their lengths are ∞).
Clearly, the optimal tour simply goes consecutively around the circle, with a total distance
of z∗ = n.

Now consider the nearest-insertion tour. Let’s begin with the tour 1→ 2. Nodes 3 and
n are both closest to nodes on the tour; we’ll pick 3 and insert it after node 2. Next, 4 is a
nearest node. We cannot insert it into edge (1, 2) because there is no edge (1, 4), nor can
we insert it into (1, 3) for the same reason, so we must insert it into (2, 3), to obtain the tour
1→ 2→ 4→ 3→ 1. Similarly, we insert node 5 into edge (3, 4), and so on, to obtain the
tour in Figure 10.13(b). This tour has n − 2 “long” edges and 2 “short” edges, for a total
length of 2n− 2. Therefore,

zNI

z∗
=

2n− 2

n
,

which approaches 2 as n→∞.

Note that Theorem 10.8 says that no better bound is possible for the NI heuristic. It does
not say that no heuristic can possibly obtain a better bound. Indeed, Christofides’ heuristic,
discussed in Section 10.4.7, has a fixed worst-case bound of 3/2.

A variant of the NI heuristic, called the cheapest insertion (CI) heuristic, searches over
all k not on the tour and all edges (i, j) on the tour and chooses the insertion with the
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Figure 10.14 Cheapest-insertion solution to Car 54 TSP instance. Total distance = 12,748 miles.

smallest ∆ijk; see Algorithm 10.3. (In contrast, NI first finds the nearest k to the tour,
and then finds the minimum ∆ijk for that k.) CI has a complexity of O(n2 log n), slightly
higher than NI’s O(n2) complexity. Like NI, CI has a fixed worst-case bound of 2, and
this bound is tight (Rosenkrantz et al. 1977). The cheapest-insertion tour for the Car 54
instance is shown in Figure 10.14 and has a total length of 12,748.

Algorithm 10.3 Cheapest insertion heuristic
1: choose arbitrary node i0; Θ← {i0} . Initialization
2: while Θ 6= N do . Main loop
3: if |Θ| = 1 then
4: k∗ ← argmink∈N\Θ{ci0k} . Nearest node to i0
5: add (i0, k

∗) and (k∗, i0) to tour . Insert k∗ as second node
6: else
7: for all k ∈ N \Θ and (i, j) on tour do
8: ∆ijk ← cik + ckj − cij . Net change due to insertion
9: end for

10: k∗, (i∗, j∗)← argmink∈N\Θ, (i, j) on tour{∆ijk} . Best insertion
11: remove (i∗, j∗) from tour; add (i∗, k∗) and (k∗, j∗) to tour . Insert k∗

12: end if
13: Θ← Θ ∪ {k∗}
14: end while
15: return tour

10.4.3 Farthest Insertion

The farthest insertion (FI) heuristic is the same as the NI heuristic except that we choose
the node k not on the tour that is farthest from any node on the tour. We then insert k into
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Figure 10.15 Farthest-insertion tour beginning at node 1 for the example instance in Figure 10.5.
Total distance = 81.

the edge (i, j) that minimizes ∆ijk, as in NI. In Algorithm 10.2, we simply replace argmin

with argmax in line 6. The heuristic has the same complexity as NI: O(n2).
It may seem counterintuitive to choose farthest nodes to insert, since we are aiming for

a shortest tour. But remember that we are only choosing the farthest node to insert—we
still perform the cheapest insertion of that node. The idea is to sketch out the outline of
the tour early in the process, and fill in the details later. We will need to visit every node
eventually, and there is nothing inherently bad about choosing the far nodes early on.

It is not known whether FI has a fixed worst-case bound. The empirical performance of
FI tends to be good, however (Rosenkrantz et al. 1977, Golden and Stewart 1985).

� EXAMPLE 10.4

Returning to the example in Figure 10.5, let’s begin, as usual, at node 1. The farthest
node to node 1 is node 3, so we insert it. The farthest node from {1, 3} is node 7, at
a distance of 17 from node 3. The tour is now 1 → 7 → 3. Node 4 is the farthest
nontour node from the tour, and the three possible insertion edges give the following
net changes:

(1, 7) : ∆174 = 13 + 16− 18 = 11

(7, 3) : ∆734 = 16 + 33− 17 = 32

(3, 1) : ∆314 = 33 + 13− 21 = 25

Therefore, we insert node 4 into the edge (1, 7) to get the tour 1 → 4 → 7 → 3.
Continuing in this way, we make the following insertions:

• Insert 8 into (7,3); ∆738 = 7; tour = 1→ 4→ 7→ 8→ 3

• Insert 5 into (3,1); ∆315 = 1; tour = 1→ 4→ 7→ 8→ 3→ 5

• Insert 2 into (5,1); ∆512 = 6; tour = 1→ 4→ 7→ 8→ 3→ 5→ 2

• Insert 6 into (3,5); ∆356 = 0; tour = 1→ 4→ 7→ 8→ 3→ 6→ 5→ 2

(See Figure 10.15.) The total distance of this tour is 81.

�
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Figure 10.16 Farthest-insertion solution to Car 54 TSP instance. Total distance = 10,998 miles.

The farthest-insertion tour for the Car 54 instance, shown in Figure 10.16, has a total
distance of 10,998 miles—the best tour of any of our heuristics so far, and only 1.3% worse
than the optimal distance of 10,861.

10.4.4 Convex Hull

The convex hull heuristic (Stewart 1977) generates an initial partial tour by computing
the convex hull of the nodes. Then, at each iteration, the heuristic performs the cheapest
insertion, i.e., it finds the nontour node k and the tour edge (i, j) that minimize ∆ijk, and it
inserts k into edge (i, j). Like FI, the idea is to generate an outline of the tour quickly and
then fill in the remaining nodes. Warburton (1993) proves that the convex hull heuristic has
a fixed worst-case bound of 3 for the Euclidean TSP (i.e., the TSP in which distances are
Euclidean), though its performance is usually much better than 3 in practice (Golden and
Stewart 1985).

� EXAMPLE 10.5

The convex hull of the nodes in the network in Figure 10.5 gives the subtour 1→ 2→
3→ 8→ 7→ 4. The cheapest insertion is node 6 into edge (3, 8), with ∆638 = 1.
The only node left is 5, and the cheapest insertion is into edge (2, 3), with ∆523 = 7.
(Recall that edges not pictured have lengths given by shortest-path distances, so
c35 = 16.) The resulting tour has length 82 and is pictured in Figure 10.17.

(Note that we are treating the nodes as points in Euclidean space to compute the
convex hull, but the edge lengths are as given in the figure, not Euclidean distances.)

�

The convex hull heuristic returns a tour of length 11,033 for the Car 54 instance; see
Figure 10.18.
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Figure 10.17 Convex-hull tour for the example instance in Figure 10.5. Total distance = 82.

Figure 10.18 Convex-hull solution to Car 54 TSP instance. Total distance = 11,033 miles.
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A variant is the greatest angle insertion heuristic (Norback and Love 1977): We begin
with the convex hull, and then choose the nontour k and the tour edge (i, j) that maximizes
the angle between (i, k) and (k, j), and insert k into this edge.

10.4.5 GENI

All of the insertion heuristics discussed thus far only allow a node to be inserted into an
existing edge of the tour. The generalized insertion (GENI) heuristic by Gendreau et al.
(1992) relaxes this requirement, allowing a node to be inserted between any two nodes on
the tour.

Suppose we want to insert a node k between nodes i and j on the tour. To do this, we
need to remove one of the edges incident to i and one incident to j and replace them with
edges to k. This leaves two nodes—the former neighbors of i and j—that have degree 1 and
must be reconnected somehow. (See Figure 10.19(a) and (b). The straight lines represent
single edges, while the squiggles represent potentially longer portions of the tour.) The
obvious fix is to connect the two former neighbors to each other, as in Figure 10.19(c),
but this may be a long edge. Or worse, connecting the two former neighbors may result
in two subtours rather than one complete tour, as in Figure 10.19(d). The GENI heuristic
tries to find more effective (though also more complicated) ways to reconnect the tour after
inserting node k.

GENI considers two types of insertions. Type I insertions remove one additional edge,
while Type II insertions remove two additional edges, before reconnecting the tour. We’ll
use subscripts + and − to denote the successor and predecessor, respectively, of a given
node on the tour under a fixed orientation. For example, i+ is the node that comes after i
in the tour.

Let ` be a node on the path from j to i for a particular orientation of the tour, with
` 6= i, j. A Type I insertion involves

• deleting edges (i, i+), (j, j+), and (`, `+), and

• adding edges (i, k), (k, j), (i+, `), and (j+, `+).

A Type I insertion is depicted in Figure 10.20. In the tour resulting from a Type I insertion,
the segments from i+ to j and from j+ to ` are reversed, while the segment from `+ to i
is unchanged. Note that if j = i+ and ` = j+, then a Type I insertion is equivalent to the
standard insertion—inserting a node between two consecutive nodes.

Let ` be a node on the path from j to i and let m be a node on the path from i to j
for a particular orientation of the tour, with ` 6= j, j+ and m 6= i, i+. A Type II insertion
involves

• deleting edges (i, i+), (m−,m), (j, j+), and (`−, `), and

• adding edges (i, k), (k, j), (m, j+), (`−,m−), and (i+, `).

(See Figure 10.21.) Like Type I insertions, Type II insertions result in two tour segments
reversing direction, in this case the segments from i+ to m− and from m to j.

For a given choice of k, there are O(n3) choices for (i, j, `) in a Type I insertion and
O(n4) choices for (i, j, `,m) in Type II, times two possible tour orientations. This is a lot
of combinations to check, so Gendreau et al. (1992) suggest simplifying the search for good
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Figure 10.19 Inserting a node between two nonadjacent nodes in the GENI heuristic.
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Figure 10.20 GENI Type I insertion.
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Figure 10.21 GENI Type II insertion.
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Figure 10.22 4-neighborhood of node 5.

insertions by making use of p-neighborhoods. If node i is on the tour, its p-neighborhood
Np(i) is defined as the p nodes on the tour (excluding i itself) that are closest to i as
measured by cij . If the tour has fewer than p nodes in addition to i, then they are all in
Np(i). For example, in the tour in Figure 10.22, N4(5) = {1, 2, 6, 7}.

The GENI heuristic restricts the possible combinations for Type I and II insertions as
follows:

• i, j ∈ Np(k)

• ` ∈ Np(i+)

• m ∈ Np(j+) (for Type II).

This significantly reduces the number of combinations to check, while targeting new edges
(`, i+) and (m, j+) that are short. p is a parameter of the heuristic, chosen by the modeler,
and is usually relatively small, say, 5.

When inserting k between consecutive nodes i and j, as in the NI and related heuristics,
the total tour length cannot decrease, since ∆ijk ≥ 0 in (10.25) due to the triangle inequality.
Interestingly, however, GENI insertions do sometimes result in a shorter total tour. (See
Problem 10.7.)

The GENI heuristic is summarized in pseudocode in Algorithm 10.4. The heuristic runs
in O(np4 + n2) time. The heuristic is very effective, especially when combined with the
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unstringing and stringing (US) improvement heuristic described in Section 10.5.3. GENI
insertions have also been incorporated into metaheuristics such as tabu search, variable
neighborhood search, and ant colony optimization (Gendreau et al. 1994, Mladenović and
Hansen 1997, Le Louarn et al. 2004).

Algorithm 10.4 GENI heuristic
1: choose 3 arbitrary nodes; construct tour on those nodes . Initialization
2: construct p-neighborhoods
3: while tour does not contain all nodes do . Main loop
4: k ← random node not on tour
5: check all Type I and II insertions for both tour orientations subject to p-

neighborhood restrictions
6: implement least-cost insertion
7: update p-neighborhoods
8: end while
9: return tour

10.4.6 Minimum Spanning Tree Heuristic

The next two heuristics we will discuss begin by finding a minimum spanning tree (MST)
on the nodes and then converting it to a TSP tour. They therefore function differently from
the heuristics described thus far, which iterate through the nodes, inserting one at a time.

Recall that an MST of a network is a minimum-cost tree that contains every node of the
network. Finding an MST is easy using a greedy approach. Prim’s algorithm (Prim 1957)
begins with a single node and, at each iteration, adds the shortest edge that connects a node
not on the tree to a node on the tree. Kruskal’s algorithm (Kruskal 1956) begins with an
empty tree and, at each iteration, adds the shortest edge (whether or not one of its nodes
is contained in the tree) that does not create a cycle. Both algorithms run in O(|E| log n)

time (where E is the set of edges in the network) when implemented using efficient data
structures.

Every TSP tour consists of a spanning tree (in particular, a spanning path) plus one edge.
This suggests we can use MSTs to generate TSP tours, and to derive useful lower bounds.

Lemma 10.9 Let T ∗ be an MST on the nodes of a given TSP instance. Then

z(T ∗) ≤ z∗.

Proof. Let P ∗ be the optimal spanning path through the network and Γ∗ be the optimal
TSP tour. Remove any edge from Γ∗ to obtain a spanning path P ; then

z(P ) ≤ z∗

by the triangle inequality, and since P ∗ is the optimal spanning path,

z(P ∗) ≤ z(P ).

Moreover, since P ∗ is a spanning tree and T ∗ is the optimal spanning tree,

z(T ∗) ≤ z(P ∗).
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Combining these inequalities, we get the desired result.

The minimum spanning tree heuristic for the TSP begins by finding an MST using
Prim’s or Kruskal’s algorithm or any other method. Next, it doubles every edge to create
a network in which every node has even degree. Such a network is called an Eulerian
network and is guaranteed to have an Eulerian tour (a tour that traverses every edge exactly
once but may visit each node multiple times):

Theorem 10.10 An undirected, connected graph has an Eulerian tour if and only if every
node has even degree.

Proof. Omitted; see, e.g., Graver and Watkins (1977).

The Eulerian tour derived from the doubled MST gives us a sequence of nodes (each
potentially appearing multiple times), which the heuristic converts to a TSP tour simply by
skipping any duplicates—this is called shortcutting.

The MST heuristic is summarized in Algorithm 10.5.

Algorithm 10.5 MST heuristic
1: find an MST
2: double every edge in the MST
3: find an Eulerian tour on the network consisting of the doubled MST
4: construct a TSP tour from the Eulerian tour by shortcutting
5: return tour

� EXAMPLE 10.6

Consider again the example in Figure 10.5. An MST is shown in Figure 10.23(a);
this tree has a total length of 55. One Eulerian tour is given by 4 → 1 → 2 →
1 → 5 → 6 → 3 → 6 → 8 → 6 → 7 → 6 → 5 → 1 → 4. We convert
this to a TSP tour by visiting nodes in the same sequence but skipping duplicates:
4 → 1 → 2 → 5 → 6 → 3 → 8 → 7 (Figure 10.23(b)). This tour has a total
distance of 81.

The heuristic is very dependent on the Eulerian tour itself. For example, another
Eulerian tour on the same MST is 1→ 5→ 6→ 8→ 6→ 7→ 6→ 3→ 6→ 5→
1 → 4 → 1 → 2. The resulting TSP tour is 1 → 5 → 6 → 8 → 7 → 3 → 4 → 2,
which has a length of 106.

�

The tour returned by the MST heuristic for the Car 54 instance is shown in Figure 10.24.
The tour has length 14,964 miles. Bentley (1992) confirms the relatively poor empirical
performance of the MST heuristic.

The minimum spanning tree heuristic has a fixed worst-case bound of 2:

Theorem 10.11 For every instance of the TSP that satisfies the triangle inequality,

zMST

z∗
≤ 2, (10.27)
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(a) Minimum spanning tree.
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(b) TSP tour.

Figure 10.23 Tour generated by minimum spanning tree heuristic for instance in Figure 10.5. Total
distance = 81.

Figure 10.24 Tour obtained by applying MST heuristic to Car 54 instance. Total distance = 14,964
miles.
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where z∗ and zMST are the lengths of the optimal tour and the tour returned by the
minimum spanning tree heuristic, respectively, for this instance.

Proof. Let T ∗ and E be the MST and the Eulerian tour found by the heuristic. Since E
traverses every edge in T ∗ exactly twice,

z(E) = 2z(T ∗) ≤ 2z∗,

where the inequality is by Lemma 10.9. By the triangle inequality,

zMST ≤ z(E),

since the minimum spanning tree heuristic replaces edge pairs of the form (i, k), (k, j)

with edges of the form (i, j).

This bound is tight; see Problem 10.12.

10.4.7 Christofides’ Heuristic

Like the minimum spanning tree heuristic, Christofides’ heuristic (Christofides 1976) builds
an MST and then converts it to a TSP tour. The difference is in the way the heuristics
modify the MST to create an Eulerian network. Whereas the minimum spanning tree
heuristic simply doubles every edge, Christofides’ heuristic takes a more sophisticated, and
more effective, approach. By Theorem 10.10, it is the odd-degree nodes that prevent the
MST from having an Eulerian tour. Christofides’s heuristic adds a single edge to each of
these nodes to produce a graph whose nodes all have even degree. It is possible to pair up
the odd-degree nodes because there are always an even number of them:

Lemma 10.12 (Handshaking Lemma) In any undirected graph, the number of odd-
degree nodes is even.

Proof. Omitted; see Problem 10.8.

(This lemma is called the handshaking lemma: If a set of people shake hands at a party,
there must be an even number of people who shook hands with an odd number of people.)

A matching on a set of nodes is a set of edges such that every node is contained in at most
one edge. A perfect matching is a set of edges such that every node is contained in exactly
one edge. (See Figure 10.25.) Christofides’ heuristic finds a minimum-weight perfect
matching on the odd-degree nodes in the MST, where the weights are given by the edge
lengths. A minimum-weight perfect matching can be found in polynomial time (Edmonds
1965). The matching may duplicate edges already in the MST. A perfect matching on the
odd-degree nodes must exist, by Lemma 10.12. When the matching edges are added to the
MST, every node has even degree (since we are adding a single edge to each odd-degree
node), so the resulting network is Eulerian. The heuristic then finds an Eulerian tour and
converts it to a TSP tour by shortcutting, exactly as in the minimum spanning tree heuristic.
The heuristic is summarized in Algorithm 10.6.

� EXAMPLE 10.7
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(a) A matching. (b) A perfect matching.

Figure 10.25 Matchings.

Algorithm 10.6 Christofides’ heuristic
1: find an MST
2: find a minimum-weight perfect matching on the odd-degree nodes in the MST
3: find an Eulerian tour on the network consisting of the MST plus the matching edges
4: construct a TSP tour from the Eulerian tour by shortcutting
5: return tour

Figure 10.23(a) in Example 10.6 shows an optimal spanning tree for the network in
Figure 10.5. In this MST, nodes 1, 2, 3, 4, 7, and 8 have odd degree. The optimal
matching consists of the edges (1, 2), (3, 8), and (4, 7). (See Figure 10.26.) One
Eulerian tour on the edges from the MST and the matching is: 4 → 1 → 2 → 1 →
5 → 6 → 3 → 8 → 6 → 7 → 4. Shortcutting, we get the following TSP tour:
4 → 1 → 2 → 5 → 6 → 3 → 8 → 7 (Figure 10.26(b)). This tour has a total
distance of 81.

�

Christofides’ heuristic produces an 11,654-mile tour for the Car 54 instance (Fig-
ure 10.27), much better than the 14,964-mile tour returned by the MST heuristic (Fig-
ure 10.24) and approximately 7.3% longer than the optimal tour.

Christofides’ heuristic has the best fixed worst-case bound known to date.

Theorem 10.13 For every instance of the TSP that satisfies the triangle inequality,

zCH

z∗
≤ 3

2
, (10.28)

where z∗ and zCH are the lengths of the optimal tour and the tour returned by Christofides’
heuristic, respectively, for this instance.

Proof. Let Γ′ be an optimal TSP tour on the odd-degree nodes in T ∗ (the MST found by
the heuristic). Clearly

z(Γ′) ≤ z∗ (10.29)

by the triangle inequality, since Γ′ is the optimal TSP tour for a subset of N . Γ′ consists
of two disjoint perfect matchings on the odd-degree nodes, each consisting of alternating
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(a) Minimum spanning tree (solid lines) and optimal matching (dashed
lines).
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(b) TSP tour.

Figure 10.26 Tour generated by Christofides’ heuristic for instance in Figure 10.5. Total distance
= 81.

Figure 10.27 Tour obtained by applying Christofides’ heuristic to Car 54 instance. Total distance
= 11,654 miles.
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Figure 10.28 Optimal TSP tour on odd-degree nodes in MST in Christofides’ heuristic, and two
perfect matchings (solid and dashed) that constitute it.

edges in the tour. (See Figure 10.28.) Let M ′ be the shorter of these two matchings.
Clearly

z(M ′) ≤ z(Γ′)

2
.

Let M∗ be the optimal perfect matching on the odd-degree nodes. Since z(M∗) ≤ z(M ′),
we have

z(M∗) ≤ z(Γ′)

2
≤ z∗

2
. (10.30)

Combining Lemma 10.9 and (10.30), we have

z(T ∗) + z(M∗) ≤ 3

2
z∗.

The TSP tour returned by the heuristic is obtained from T ∗ ∪M∗ by shortcutting; by the
triangle inequality,

zCH ≤ z(T ∗) + z(M∗).

The 3/2 bound in Theorem 10.13 is tight; see Problem 10.13.

10.5 IMPROVEMENT HEURISTICS FOR THE TSP

The tours returned by the construction heuristics discussed in Section 10.4 are typically not
optimal. In this section, we discuss improvement heuristics for the TSP that begin with a
complete tour and perform operations on it to try to make it shorter.

10.5.1 k-Opt Exchanges

One can tell just by looking at Figure 10.10 that the nearest-neighbor solution for the Car
54 instance is bad. The most obvious red flag is that the tour crosses itself several times.
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Figure 10.29 Two possible ways to reconnect tour during 2-opt exchange.

Lemma 10.14 If the nodes each have coordinates in R2 and the distance cij is equal to
the Euclidean distance between nodes i and j, then the optimal TSP tour does not cross
itself.

Proof. Omitted; see Problem 10.9.

Of course, the Car 54 distances are not Euclidean (they come from road networks), but
you might still suspect that we can improve the tour in Figure 10.10 by “uncrossing” it. One
mechanism for doing this is called a 2-opt exchange. In a 2-opt, we remove two edges and
replace them with two other edges to form a new tour. For a given pair of edges, there are
two possible ways to reconnect the tour, shown in Figure 10.29. However, the replacement
edges in Figure 10.29(a) are the same as the original edges that were removed, so the
only real option is the strategy in Figure 10.29(b). (Replacing (i, j) and (k, `) with (i, `)

and (j, k) is also not an option since this creates two subtours rather than one contiguous
tour.) The 2-opt idea was introduced by Flood (1956) (in the very first issue of the journal
Operations Research, after it subsumed the Journal of the ORSA) as a way to fix crossing
tours generated by his algorithm; shortly thereafter, Croes (1958) developed a construction
heuristic with 2-opt exchanges as the centerpiece.

To describe the 2-opt exchange more formally, suppose (i, j) and (k, `) are disjoint
edges in the tour and that, for a given orientation of the tour, node i comes before j and
node k comes before `. Then a 2-opt exchange consists of replacing edges (i, j) and (k, `)

with edges (i, k) and (j, `). This also changes the orientation of the j → · · · → k portion
of the tour. For Euclidean problems, a given 2-opt exchange will only reduce the total
length of the tour if edges (i, j) and (k, `) cross each other, since otherwise the new edges
(i, j) and (k, `) will cross each other.

The 2-opt heuristic iterates through all pairs of edges looking for 2-opt exchanges that
improve the objective function. The procedure terminates when no such pairs can be
found. At each iteration, there are

(
n
2

)
∼ O(n2) pairs of edges to consider. The heuristic is

simple and effective. A single 2-opt exchange (exchanging edges (6, 8) and (3, 7) for edges
(6, 3) and (8, 7)) is sufficient to “fix” the nearest-neighbor tour for the 8-node problem in
Example 10.2. When applied to the nearest-neighbor Car 54 solution in Figure 10.10, the 2-
opt heuristic results in the tour shown in Figure 10.30, whose length is 10,944 miles—only
0.76% longer than the optimal tour.

Building on this idea, we can try removing three edges and replacing them with alterna-
tive edges. This is the idea behind the 3-opt exchange (Lin 1965). When we remove three
disjoint edges, there are eight possible ways to reconnect the tour, as shown in Figure 10.31.
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Figure 10.30 Tour obtained by applying 2-opt heuristic to nearest-neighbor tour for Car 54 instance.
Total distance = 10,944 miles.

The first reconnection in Figure 10.31 is identical to the original tour, but the remaining
seven strategies could all potentially result in shorter tours. The 3-opt method is powerful
but also computationally costly: There are

(
n
3

)
∼ O(n3) triplets of edges to consider,

and for each, we must evaluate seven possible reconnections. (Recall that 2-opt requires
considering O(n2) pairs of edges and evaluating one possible reconnection for each.) We
could even try general k-opt exchanges for k = 4, 5, . . ., but the computational burden
makes the search for such exchanges impractical.

The search for higher-order k-opt exchanges is not hopeless, however. The Lin–
Kernighan heuristic (Lin and Kernighan 1973) finds k-opt exchanges by aggregating mul-
tiple 2-opt exchanges, allowing some intermediate exchanges that may even increase the
tour length so long as the ultimate result is an improvement. Johnson and McGeoch (1997)
report computational experiments showing the Lin–Kernighan heuristic to come within
1.5% of the optimal tour, on average, for random instances with up to a million nodes.
The heuristic is so powerful that it is a component of nearly every modern exact algorithm
for the TSP, even though the heuristic itself is over 35 years old (Applegate et al. 2007).
An important enhancement is the chained Lin–Kernighan heuristic by Martin et al. (1991),
which contains a feature for the algorithm to “kick” the tour, i.e., to modify it slightly, when
the search appears to be stuck. The variant on chained Lin–Kernighan by Johnson (1995)
can solve large instances to within 0.1% optimality (Johnson and McGeoch 1997).

10.5.2 Or-Opt Exchanges

An Or-opt exchange (Or 1976) takes a segment of the tour consisting of p consecutive
nodes and moves it to another spot on the tour, possibly reversing the order of the p nodes
as well. A few examples with p = 3 are shown in Figure 10.32. Typically, p is relatively
small; one common implementation searches for exchanges with p = 3, then repeats for
p = 2, then for p = 1, and then terminates. Or-opt can be implemented efficiently, with
O(n2) complexity at each iteration.
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Figure 10.31 Eight possible ways to reconnect tour during 3-opt exchange.

(a) Original tour. (b) A few Or-opt exchanges with p = 3.

Figure 10.32 Or-opt exchanges.
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Figure 10.33 Tour obtained by applying Or-opt heuristic to nearest-neighbor tour for Car 54
instance. Total distance = 11,212 miles.

A single Or-opt exchange—moving node 3 so that it comes after node 6 rather than
node 8 (orienting the tour clockwise)—is sufficient to “fix” the nearest-neighbor tour in
Example 10.2. The iterative approach described above, applied to the Car 54 nearest-
neighbor tour (Figure 10.30), performs one Or-opt with p = 3, three with p = 2, and four
with p = 1. The resulting tour is shown in Figure 10.33 and has a total length of 11,212
miles—not quite as impressive as the 10,944-mile tour found by 2-opt, but close. Actually,
a few 2-opt exchanges applied after the Or-opt procedure would convert the tour to the
10,944-mile solution. The idea of combining Or-opt and 2-opt exchanges is actually quite
powerful, with the ability to generate high-quality tours while being much simpler to code
than Lin–Kernighan and other hybrid exchange heuristics (Babin et al. 2007).

10.5.3 Unstringing and Stringing

Gendreau et al. (1992) propose an improvement heuristic called unstringing and stringing
(US). The idea is to remove a node from the tour and then reinsert it at another spot. (Think
of removing a bead from a string and then replacing it elsewhere on the string.) This sounds
like an Or-opt exchange with S = 1, but the difference is that the tour need not simply close
up around the removed node, and the insertion need not occur between two consecutive
nodes.

In the US heuristic, “stringing” occurs using Type I or Type II GENI insertions (see
Section 10.4.5), while “unstringing” is the reverse. In particular, suppose that the path from
k+ to k− contains nodes called i, j, and `, in that order. (Recall that the superscripts + and
− refer to successors and predecessors.) Then a Type I unstringing of node k removes edges
(k−, k), (k, k+), (i, i+), and (j, j+) and replaces them with (k−, i), (k+, j), and (i+, j+);
see Figure 10.34. A Type II unstringing of node k removes edges (k−, k), (k, k+), (i−, i),
(j, j+), and (`, `+) and replaces them with (k−, `), (j+, i−), (k+, i), and (j, `+); see
Figure 10.35. As in the GENI heuristic, we restrict the possible combinations by making
use of p-neighborhoods; see Gendreau et al. (1992) for details.
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Figure 10.34 US Type I unstringing of node k.
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Figure 10.35 US Type II unstringing of node k.
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Gendreau et al. (1992) recommend combining the GENI construction heuristic and
the US improvement heuristic to obtain—naturally—the GENIUS heuristic. They report
favorable computational results for the GENIUS heuristic compared to several others,
including 2-opt and Lin–Kernighan (though on a rather limited set of instances).

10.6 BOUNDS AND APPROXIMATIONS FOR THE TSP

Using several heuristics, we have found a tour with total distance 81 for the instance in
Figure 10.5. This might suggest that this tour is optimal—but how can we know for sure?
If we did not want to or could not solve the instance using an exact method, an alternative
is to find a lower bound on the optimal tour length. If the lower bound equals 81, then
we know our tour is optimal. If not, then at least we have a benchmark against which to
compare our solution.

Theorems 10.1 and 10.11 provide lower bounds on the optimal TSP tour length. For
the instance in Figure 10.5, these theorems provide bounds of 79 and 55, respectively. In
Sections 10.6.1 and 10.6.2, we discuss two more powerful and flexible lower bounds. We
also discuss the related question of bounding the integrality gap, i.e., the gap between the
TSP and its LP relaxation, in Section 10.6.3. In Section 10.6.4, we discuss approximation
bounds, i.e., bounds on the constant η in (10.21) that can be proven for a polynomial-time
heuristic. Then, in Section 10.6.5, we discuss the asymptotic behavior of the optimal tour
length as n→∞, including the well-known square-root approximation for the TSP.

10.6.1 The Held–Karp Bound

From Lemma 10.9, we know that the total length of the edges in an MST is a lower bound
on that of the optimal TSP tour. This is an interesting fact, but not usually a particularly
strong bound. For example, an MST for the instance in Figure 10.9 has total length 55
(much smaller than our current best solution of 81). Similarly, an MST for the Car 54
instance has total length 9425; it is pictured in Figure 10.36. This bound is 13.2% smaller
than the optimal tour length of 10,861.

One obvious problem with the MST bound is that a spanning tree only has n− 1 edges,
whereas a TSP tour has n. This suggests we can improve the bound by adding another
edge, and indeed, this is the idea behind one of the most important lower bounds that have
been developed, called the Held–Karp bound (Held and Karp 1970). The bound is derived
from a construct that Held and Karp call a 1-tree, defined as a spanning tree on nodes
{2, . . . , n} plus two edges incident to node 1.2

Every TSP tour is a 1-tree, and therefore the problem of finding the minimum-weight
1-tree is a relaxation of the TSP.

Lemma 10.15 Let T̂ ∗ be an optimal 1-tree for a given TSP instance. Then

z(T̂ ∗) ≤ z∗.

2The name 1-tree refers to the special treatment of node 1. It is sometimes casually interpreted as referring to a
spanning tree plus 1 edge, but this definition is too loose—it includes structures that are not 1-trees.
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Figure 10.36 Minimum spanning tree for Car 54 instance. Total distance = 9425 miles.

Moreover, it is easy to find an optimal 1-tree for a given instance: We simply find an
MST on {2, . . . , n} and then add the two shortest edges connecting node 1 to the MST.
Figure 10.37(a) shows the optimal 1-tree for the Car 54 instance. It has a total length of
9866 miles, providing a better bound on the optimal TSP tour than the MST. We can get
even tighter bounds by building optimal 1-trees rooted at each node (that is, labeling each
node “node 1”) in turn; the longest such 1-tree is rooted at Manuelito, TX and has a total
distance of 10,007 miles (Figure 10.37(b)).

But we can do even better. To see how, consider the network in Figure 10.38(a). The
labels on the edges indicate their lengths. Edges that are not included in the figure are
assumed to have a distance of ∞. The optimal TSP length is 20 units, for example, for
the tour 1 → 3 → 2 → 6 → 4 → 5. An optimal 1-tree on this network, shown in
Figure 10.38(b), has a total length of 10. So far, this is not too impressive a bound.

Now suppose we increase the lengths of all edges incident to node 4 by 10 units
(Figure 10.38(c)). This increases the length of any TSP tour by exactly 20 units, since
every TSP tour traverses exactly two of these edges. Therefore, the optimal TSP tour doesn’t
change, though its length does, to 40 units. The optimal 1-tree, shown in Figure 10.38(d),
now has length 40. By Lemma 10.15, 40 is a lower bound on the optimal TSP tour for
the revised network, and since we have a tour of length 40, that tour must be optimal.
Moreover, since the optimal tour for the revised network is also optimal for the original
network, the 1-tree on the revised network provides us a guarantee that our original TSP
tour is optimal.

This idea becomes even more powerful when we add weights (constants) to the edges
incident to multiple nodes—possibly all of them. Suppose we add a weight of λi to all of
the edges incident to node i. (We’ll usually just say “add a weight of λi to node i.”) Let
λ = (λ1, . . . , λn) be the vector of weights. This gives us a revised distance matrix c′ij :

c′ij = cij + λi + λj . (10.31)
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(a) Optimal 1-tree rooted at Chicago. Total distance = 9866 miles.

(b) Optimal 1-tree rooted at Manuelito. Total distance = 10,007 miles.

Figure 10.37 Optimal 1-trees for Car 54 instance.
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(b) Optimal 1-tree on original network.
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(d) Optimal 1-tree on revised network.

Figure 10.38 1-tree example.
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We’ll use z(·) and z′(·) to refer to total distances under the original and revised distance
matrices, respectively.

Lemma 10.16 Let λ ∈ Rn.

(a) If Γ is a TSP tour, then
z′(Γ) = z(Γ) + 2

∑
i∈N

λi.

(b) For any λ ∈ Rn, if Γ∗ is an optimal TSP tour under the distance matrix c, then it is
also optimal under the distance matrix c′.

(c) For any 1-tree T̂ ,
z′(T̂ ) = z(T̂ ) +

∑
i∈N

di(T̂ )λi, (10.32)

where di(T̂ ) is the degree of node i in 1-tree T̂ .

Proof. Omitted; see Problem 10.15.

On the other hand, changing the distance matrix can change not only the weight of the
optimal 1-tree but also the structure of the 1-tree itself. As the weights λ change, the length
of the optimal TSP tour changes in sync, but the length of the optimal 1-tree may “jump,”
providing better bounds.

Theorem 10.17 For any λ ∈ Rn,

z∗ ≥ z(T̂ ∗) +
∑
i∈N

λi

(
di(T̂

∗)− 2
)
, (10.33)

where T̂ ∗ is the optimal 1-tree under the revised distance matrix given by (10.31).

Proof. By Lemmas 10.15 and 10.16,

z′(Γ∗) ≥ z′(T̂ ∗)

=⇒ z(Γ∗) + 2
∑
i∈N

λi ≥ z(T̂ ∗) +
∑
i∈N

di(T̂
∗)λi

=⇒ z∗ = z(Γ∗) ≥ z(T̂ ∗) +
∑
i∈N

λi

(
di(T̂

∗)− 2
)
,

where Γ∗ is the optimal TSP tour.

The right-hand side of (10.33) is the Held–Karp lower bound and is denoted zHK(λ).
This bound holds for any λ; now the question is how to find good values of λ so that the
bound is as tight as possible. Held and Karp (1971) propose using subgradient optimization
to improve λ. We start with an arbitrary vector λ0, and at each iteration t, after calculating
the lower bound, we update λ as follows:

λt+1
i = λti + ∆t

(
dti − 2

)
, (10.34)
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where

∆t =
αt(UB− zHK(λt))∑

i∈N (dti − 2)2
, (10.35)

dti is the degree of node i in the 1-tree found during iteration t (i.e., the optimal 1-tree for
weights λt), and UB is the best upper bound found so far. As usual, αt is a constant that is
halved when a given number of consecutive iterations passes without improving the lower
bound (see page 673).

A set of weights λ tends to provide a better bound if the resulting 1-tree “looks like” a
TSP tour, i.e., its nodes mostly have degree 2. (Why?) One way to think about the update
step (10.34)–(10.35) is that nodes that have degree 1 receive lower weights in the next
iteration (encouraging more edges to be incident to them in the next 1-tree) and nodes that
have degree greater than 2 receive higher weights (encouraging fewer edges).

How tight can the bound be? Held and Karp prove that if we could find the optimal λ,
the resulting bound would equal the LP relaxation bound:

zHK(λ∗) = zLP . (10.36)

(For this reason, the name “Held–Karp lower bound” is often used to refer to the LP
relaxation bound itself.) In practice we can’t usually find the optimal λ, but we can find
good enough λ that the Held–Karp bound is very close to the LP bound—within 0.01% in
computational experiments by Johnson and McGeoch (1997).

If all of this is starting to feel a lot like Lagrangian relaxation, you’re not wrong. Held
and Karp (1970) show that their lower bound is equivalent to the Lagrangian relaxation
bound obtained from the formulation (10.7)–(10.10). The constraints in the Lagrangian
subproblem define a polyhedron whose vertices are the set of all 1-trees. The subproblem
therefore has the integrality property, which explains (10.36). Held and Karp (1971)
propose subgradient optimization to update the multipliers and show how to embed this
approach into a branch-and-bound scheme to find feasible—often optimal—solutions in
addition to the lower bounds. (See also Balas and Toth (1985).)

� EXAMPLE 10.8

Let λ5 = 10 and λi = 0 for the other nodes i in Figure 10.5. Figure 10.39 shows
the revised edge lengths and the resulting optimal 1-tree. The right-hand side of
(10.33) for this 1-tree is 65. This is a lower bound to compare against our best known
solution, from Example 10.4 and others, whose length is 81, but it is quite a weak
lower bound.

An optimal bound results from setting λ = (10, 10, 1, 0, 10, 7, 5, 3). The optimal
1-tree, pictured in Figure 10.40, gives a lower bound of 81, proving (finally!) that
the tour in Example 10.4 is optimal. In fact, the 1-tree in Figure 10.40 is the tour in
Example 10.4.

�

In Example 10.8, the 1-tree problem gave a feasible solution to the TSP, even though it
is a relaxation. This does not happen for every instance, but it is not uncommon. For
example, for the Car 54 instance, a few hundred iterations of the subgradient optimization
procedure described above yield a vector λ whose optimal 1-tree is the optimal TSP tour
in Figure 10.3, with length 10,861.
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Figure 10.39 Optimal 1-tree for instance in Figure 10.5 with λ5 = 10. Resulting lower bound =
65.
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Figure 10.40 Optimal 1-tree for instance in Figure 10.5 with λ(10, 10, 1, 0, 10, 7, 5, 3). Resulting
lower bound = 81.
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(b) Control zones with 2
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j∈N rj = 15.3.

Figure 10.41 Control zones.

10.6.2 Control Zones

Suppose the nodes in N are located on the plane and cij is the Euclidean distance between
nodes i and j—this is the Euclidean TSP. Imagine drawing a disk centered at each node in
N so that the disks do not overlap (Figure 10.41(a)). Any tour must enter and exit disk j
on its way to and from node j, for every j ∈ N . This means that the length of any tour
must be at least 2

∑
j∈N rj , where rj is the radius of disk j. These disks—called control

zones—therefore provide a lower bound on the length of the optimal TSP tour.
In Figure 10.41(a), we have 2

∑
j∈N rj = 12. This is not the only possible “packing”

of control zones around these nodes, and other packings may produce tighter bounds. For
example, the control zones in Figure 10.41(b) have 2

∑
j∈N rj = 15.3, close to the optimal

tour length of 15.7. This gives rise to an optimization problem: We wish to choose radii for
the control zones to maximize twice their sum, while ensuring that no two control zones
overlap:

maximize 2
∑
j∈N

rj (10.37)

subject to ri + rj ≤ cij ∀i, j ∈ N (10.38)

This optimization problem turns out to be the dual of the LP relaxation of the 2-matching
relaxation; that is, if we remove the subtour-elimination constraints from (10.7)–(10.10),
allow the xij to be fractional, and then take the dual, we will get (10.37)–(10.38).

We can’t hope for the optimal control-zone bound to be particularly good, given that it
is two levels of relaxation away from the original TSP. But we can improve it significantly.
Consider the nodes in Figure 10.42(a). The control zones cannot be enlarged further without
overlapping. Any feasible tour must pass through the gap in between the two clusters, but
the control-zone bound will not account for this distance. However, we can draw bands
around the clusters, called moats, such that the bands from two different clusters do not
overlap. (See Figure 10.42(b).) Any tour must pass through every moat twice, once when
approaching the cluster and once when departing it, so we can add twice the sum of the
moat widths to the lower bound. This helps a great deal, resulting in lower bounds that
are often quite tight (Applegate et al. 2007). In effect, adding moats eliminates subtours,
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(a) Gap between control zones.

3
5

(b) Filling the gap with moats.

Figure 10.42 Moats.

bringing the 2-matching relaxation closer to the original TSP and the control-zone bound
closer to the optimal TSP value.

The use of control zones and moats was proposed by Jünger and Pulleyblank (1993). In
addition to providing useful lower bounds, control zones also make for beautiful pictures
when rendered in color—see especially the Concorde iOS app (Cook 2018b) and the
GEODUAL software by Jünger et al. (2009).

10.6.3 Integrality Gap

From Theorem 10.13, we know that

zCH ≤ 3

2
z∗,

where zCH is the length of the tour returned by Christofides’ heuristic. It turns out that
this is true even if we replace the discrete problem (10.7)–(10.10) with its LP relaxation
(Wolsey 1980, Shmoys and Williamson 1990), that is:

zCH ≤ 3

2
zLP . (10.39)

Since z∗ ≤ zCH , this gives a fixed worst-case bound on the integrality gap, defined as the
ratio between the IP value and the LP relaxation value.

Lemma 10.18 For any TSP instance satisfying the triangle inequality,

z∗

zLP
≤ 3

2
.

This bound is not believed to be tight, however. In fact, there are no known instances
whose integrality gap exceeds 4/3. This has given rise to the “4/3 conjecture” (e.g.,
Goemans (1995)):

Conjecture 10.1 For any TSP instance satisfying the triangle inequality,

z∗

zLP
≤ 4

3
.
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Benoit and Boyd (2008) prove that the 4/3 conjecture holds for all networks with up
to 10 nodes. Moreover, they give a family of instances for which z∗/zLP approaches 4/3

asymptotically as the number of nodes increases, which means that no smaller bound than
4/3 is possible. Boyd and Elliott-Magwood (2010) extend this result to networks with up
to 12 nodes.

Recall that the 2-matching relaxation is the formulation (10.7)–(10.10) without the
subtour-elimination constraints (10.9) (Section 10.3.3). Like the LP relaxation, the 2-
matching relaxation provides a lower bound on the optimal TSP length. Boyd and Carr
(1999) prove that the ratio between z2M (the optimal objective value of the 2-matching
relaxation) and zLP is no more than 4

3 . Boyd and Carr (2011) conjecture that this ratio is
in fact 10

9 , and Schalekamp et al. (2014) prove their conjecture, i.e., that

z2M

zLP
≤ 10

9
. (10.40)

10.6.4 Approximation Bounds

From Theorem 10.13, we know that it is possible to find a polynomial-time heuristic with
a fixed worst-case bound of 1.5 (i.e., a 1.5-approximation algorithm) for the metric TSP.
But it is not known whether a better heuristic, with a better bound, is possible. Since the
metric TSP is NP-hard (Papadimitriou 1977), no approximation algorithm can achieve a
bound of 1 (unless P = NP), and in fact it is known that no approximation algorithm can
reduce the bound to 123/122 ≈ 1.008 (Karpinski et al. 2013) (unless P = NP). Whether
the best theoretical bound for an approximation algorithm is 123/122 or 1.5 or somewhere
in between remains an open question.

If the cij equal Euclidean distances—the Euclidean TSP—then we can get arbitrar-
ily close to 1 in polynomial time. Arora (1998) showed that the Euclidean TSP has a
polynomial-time approximation scheme (PTAS)—a family of polynomial-time algorithms
that, for any η > 1, can approximate the problem to within 1 + 1/η. For fixed η, the
algorithm must be polynomial, though the complexity can be different for different η.
Arora’s PTAS for the Euclidean TSP runs in O(n(log n)O(η)) time. So, for example, to
achieve a worst-case bound of 1.008 = 1 + 1/125, the run time would increase roughly as
n(log n)125—still polynomial, but slow. The PTAS is therefore of more theoretical than
practical interest.

Interestingly, even though the Euclidean TSP is a special case of the metric TSP, the
metric TSP does not have a PTAS unless P = NP (Arora et al. 1998).

10.6.5 Tour Length as a Function of n

A common rule of thumb is that the optimal length of a TSP tour through n random points
is proportional to

√
n (as n gets large). Obviously, the constant of proportionality depends

on the size of the region in which the points are located. If the points are located in the unit
square, then the constant of proportionality is denoted β and called the TSP constant. This
result was formalized in a famous result by Beardwood et al. (1959):

Theorem 10.19 Suppose that the node locations in the TSP are uniformly distributed in
the unit square. Let z∗n be the optimal objective function value for the problem with n
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nodes. Then
lim
n→∞

1√
n
z∗n = β (10.41)

almost surely (a.s.).

Proof. Omitted; see Beardwood et al. (1959) or Karp and Steele (1985).

If the nodes are located in a general region with area A, then (10.41) becomes

lim
n→∞

1√
n
z∗n = β

√
A. (10.42)

No one knows the value of β, but Cook (2012) reports on an ongoing experiment in
which he and his colleagues have solved over 600 million randomly generated Euclidean
TSP instances and used the results to estimate that β ≈ 0.712.

Haimovich and Rinnooy Kan (1985) prove that if the nodes in N are contained in a
planar region with area A and perimeter p, then the following upper bound holds on z∗:

z∗ ≤
√

2nA+
3

2
p. (10.43)

This bound is not particularly tight. If the region is the unit square, for example, then the
right-hand side of (10.43) is

√
2n + 6, which is much larger than the estimate 0.712

√
n

from Theorem 10.19.

10.7 WORLD RECORDS

In addition to sparking creativity and dedication among researchers, the TSP has also
ignited their competitive spirit. A quest to solve larger and larger TSP instances has been
ongoing for decades. To count as “solved,” an instance must have both a solution and a
proof of optimality—that is, both a feasible solution and a lower bound with equal value.

A reasonable start date for this friendly competition is 1954, when Dantzig et al. (1954)
solved a 49-node instance consisting of one city from each of the United States (at the
time, there were only 48) plus Washington, DC. Their solution has a total length of (coin-
cidentally) 12,345 miles. They solved the problem by first eliminating seven consecutive
cities from the east coast (since an optimal tour through these cities is easy) and then using
a manual cutting-plane method to solve the remaining 42-node instance. Their 42-node
solution is pictured in Figure 10.43(a).

New records were established gradually over the subsequent decades. Held and Karp
(1971) solved a 64-node random instance using the method described in Section 10.6.1.
Camerini et al. (1975) solved a 67-node random instance. In 1977, Grötschel solved an
instance consisting of 120 German cities using branch-and-cut (reprinted as Grötschel
(1980b)); see Figure 10.43(c). Lin and Kernighan (1973) solved a 318-node instance
derived from a drilling application using their heuristic, discussed in Section 10.5.1; Padberg
and Rinaldi (1987) used branch-and-cut to solve an instance consisting of 532 AT&T
switches in the United States (Figure 10.43(b)); and in 1987, Grötschel and Holland solved
a 666-node instance consisting of locations in the United States (published in Holland 1987,
Grötschel and Holland 1991), again using branch-and-cut. Another major breakthrough
occurred in 1987, when Padberg and Rinaldi announced the solution of a 2392-node instance
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arising from printed circuit board drilling (published in Padberg and Rinaldi 1991); see
Figure 10.43(d). They accomplished this using emerging supercomputing resources as well
as new cutting planes.

The Concorde solver by Applegate et al. (2006) set and shattered a number of records
in the late 1990s and early 2000s. The solver’s first major milestone was the solution of
a 13,509-node United States data set in 1998, using 4.1 years of CPU time in a parallel
computing environment. Concorde’s developers announced the solution of a 15,112-city
German instance (requiring 22.6 CPU years on 110 processors) in 2001 and a 24,978-node
Swedish instance (84.8 CPU years) in 2004. Concorde solved an 85,900-node instance
based on very-large-scale integration (VLSI) design in 2006 (136 CPU years), and this is
the current world record, as of this book’s printing. This instance had been nearly solved
for 15 years: A solution of length 142,514,146 was found in 1991; another of length
142,382,641 (0.09% shorter) was found in 2004; and that solution was proved optimal in
2006.

Several large instances remain unsolved. A 100,000-node instance representing a dis-
cretization of the Mona Lisa has, at the time of this printing, a known solution of length
5,757,191 and a lower bound of 5,757,084, for a 0.0019% optimality gap. A 115,475-node
instance consisting of all US cities has a current best known solution of 6,204,999 miles.
And the massive “World TSP” data set consisting of all populated cities or towns in the
world (plus a few research bases in Antarctica), has 1,904,711 nodes. The current best
solution for this instance, from March 2018, has length 7,515,772,107, and the best known
lower bound is 7,512,218,268, for a 0.0473% optimality gap.

See Cook (2012, 2018a) for much more about TSP world records.

CASE STUDY 10.1 Routing Meals on Wheels Deliveries

The Meals on Wheels (MOW) program delivers hot lunches to the elderly and others
who are unable to shop or cook for themselves. In the early 1980s, MOW (or, more
precisely, Senior Citizens, Inc., a nonprofit organization in Atlanta that delivers MOW),
worked with researchers at Georgia Tech to implement a heuristic for meal-delivery
routes for its drivers. The project was described by Bartholdi et al. (1983), whose
discussion we follow here.

MOW’s client list changes often—roughly 14% each month—as clients fall ill or
recover, move to assisted living facilities or a family member’s home, and so on. More-
over, MOW’s funding is highly variable, and the number of clients that the organization
can serve may increase or decrease sharply with funding levels. This makes planning
meal deliveries challenging, especially since, like most charitable organizations, MOW
has no in-house operations research expertise.

This makes the space-filling curve heuristic by Bartholdi and Platzman (1982) par-
ticularly appealing for MOW. The space-filling curve heuristic can be executed easily
and does not even require a computer. It can easily accommodate changes in the list of
nodes to visit, and it is reasonably accurate, with solutions that are about 25% longer
than optimal, on average. A space-filling curve is a curve that is built recursively in
a fixed region, becoming longer and more intricate at each iteration; in the limit, the
curve fills the entire area of the region. Figure 10.44(a) shows the so-called Hilbert
space-filling curve after four iterations.
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(a) Solution to 42-node reduction of 49-node in-
stance by Dantzig et al. (1954). Adapted from
Dantzig.

(b) Solution to 532-node AT&T instance by Pad-
berg and Rinaldi (1987). Reproduced with per-
mission of Elsevier.

(c) Solution to 120-node German in-
stance by Grötschel (1980b). Repro-
duced with permission of Springer.

(d) Solution to 2392-node circuit board in-
stance by Padberg and Rinaldi (1991). Copy-
right ©1991 Society for Industrial and Ap-
plied Mathematics. Reprinted with permission.
All rights reserved.

Figure 10.43 TSP world records.
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(b) Solution returned by space-filling curve heuristic.

Figure 10.44 Space-filling curve heuristic.

The space-filling curve heuristic first constructs (a few iterations of) a space-filling
curve in the region containing the customer nodes. Each customer node is considered
to lie on the curve, at the point that it is closest to. The nodes are then sequenced
according to their position along the space-filling curve. For example, in Figure 10.44(a),
start following the space-filling curve from the top-left corner. As you travel (with your
eye or finger) along the space-filling curve, the customer nodes are encountered in the
following sequence: 6→ 2→ 5→ 3→ 8→ 4→ 9→ 7→ 1. The heuristic therefore
returns a TSP route consisting of that sequence of nodes; see Figure 10.44(b). (This
solution has a total length of 44.95, which is 22.6% longer than the optimal tour.)

The Georgia Tech team implemented the space-filling curve heuristic for MOW as
follows. First, they plotted the (x, y) coordinates of each of the clients’ homes on the
space-filling curve. They assigned a unique value θ to each client, representing the
relative position of the client on the space-filling curve. For example, a client located
a quarter of the way from the beginning of the curve to the end has θ = 0.25. The
clients were then sorted in order of θ. As clients are added or removed, they can simply
be added to or removed from the sorted list, which MOW maintained easily using a
Rolodex. All of the steps so far—mapping the clients, assigning them θ values, and
sorting them—can be done ahead of time. On each delivery day, all that remains is to
divide the sorted list of clients into (typically) four batches, one for each delivery driver.
The drivers can then simply follow the route order given in the list. The researchers
estimated that the new heuristic saved approximately 13% in total travel distance.

PROBLEMS

10.1 (TSP Construction Heuristics #1) Use each of the construction heuristics listed
below to find solutions for the network shown in Figure 10.45. Begin the insertion heuristics
at node 1.
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Figure 10.45 TSP instance for Problems 10.1 and 10.2. Edges that are not pictured have lengths
given by shortest-path distances.

In the figure, edges that are not pictured have lengths given by shortest-path distances.
The optimal tour on this network is 1 → 2 → 3 → 8 → 7 → 5 → 6 → 4, with total
length 47. For each heuristic, report the tour found and its length. For heuristics for
which worst-case error bounds are available, confirm that the ratio of the length of the tour
returned by the heuristic and the length of the optimal tour is no greater than the bound.

a) Nearest neighbor
b) Nearest insertion
c) Cheapest insertion
d) Farthest insertion
e) Minimum spanning tree
f) Christofides

10.2 (TSP Improvement Heuristics #1) Consider the following tour on the network
given in Figure 10.45: 1 → 6 → 4 → 2 → 3 → 7 → 5 → 8. Perform two iterations of
each of the improvement heuristics listed below (starting from the original tour for each
heuristic). Each iteration consists of one move that improves the solution, but it need not
be the optimal such move. Indicate the nodes and/or edges involved in each move, as well
as the tour that results and its cost.

a) 2-opt
b) 3-opt
c) Or-opt

10.3 (TSP Construction Heuristics #2) Repeat Problem 10.1 using the network given
in Figure 10.46. Edges that are not pictured have lengths given by shortest-path distances.
The optimal tour on this network is 1→ 2→ 3→ 4→ 6→ 7→ 5, with total length 395.

10.4 (TSP Improvement Heuristics #2) Repeat Problem 10.2 to improve the following
tour for the network given in Figure 10.46: 1→ 5→ 4→ 6→ 7→ 2→ 3.

10.5 (TSP Construction Heuristics #3) Repeat Problem 10.1 using the network given
in Figure 10.47. Coordinates for the nodes in the figure are given in Table 10.1. Distances
between nodes are Euclidean. The optimal tour on this network is 1 → 4 → 9 → 10 →
2→ 5→ 8→ 3→ 7→ 6, with total length 33.45.
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Figure 10.46 TSP instance for Problems 10.3 and 10.4. Edges that are not pictured have lengths
given by shortest-path distances.
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Figure 10.47 TSP instance for Problems 10.5 and 10.6. Distances are Euclidean.

Table 10.1 Node coordinates for Problems 10.5 and 10.6.
i xi yi i xi yi

1 8.1 1.6 6 1.0 1.4
2 8.9 9.7 7 2.8 4.2
3 1.3 9.6 8 5.5 9.2
4 9.1 4.9 9 9.6 7.9
5 6.3 8.0 10 9.6 9.2
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Figure 10.48 TSP instance for Problem 10.16. Edges that are not pictured have a length of∞.

10.6 (TSP Improvement Heuristics #3) Repeat Problem 10.2 to improve the following
tour for the network given in Figure 10.47: 1→ 4→ 7→ 6→ 3→ 9→ 5→ 2→ 10→
8. Coordinates for the nodes in the figure are given in Table 10.1. Distances between nodes
are Euclidean.

10.7 (GENI Insertion Can Shorten Tour) Construct a small example that demonstrates
that a GENI insertion can decrease the tour length.

10.8 (Proof of Handshaking Lemma) Prove Lemma 10.12.

10.9 (Proof that Euclidean Tours Do Not Cross Themselves) Prove Lemma 10.14.

10.10 (Proof of Comb-Inequality Theorem) Prove Theorem 10.4.

10.11 (Proof of Alternate Comb Inequality) Prove that the alternate 2-matching in-
equality (10.16) also holds for combs as defined in Theorem 10.4.

10.12 (MST Heuristic Bound is Tight) Prove that the bound of 2 for the MST heuristic
in Theorem 10.11 is tight.

10.13 (Christofides’ Heuristic Bound is Tight) Prove that the bound of 3/2 for Christofides’
heuristic in Theorem 10.13 is tight.

10.14 (Proof that P = NP?) What is the logical flaw in the following argument?

For any distance matrix c that does not satisfy the triangle inequality, we can always
add a sufficiently large constant M to every element in the matrix so that the new
matrix, c′, does satisfy the triangle inequality. Moreover, a tour T1 is shorter than
T2 under c if and only if it is shorter under c′. Apply Christofides’ heuristic on the
revised instance c′; then the resulting solution is no more than 3

2
worse than optimal, by

Theorem 10.13. Since this works for any TSP instance, even those that do not satisfy
the triangle inequality, by Theorem 10.5, P = NP.

10.15 (Proof of Lemma 10.16) Prove Lemma 10.16.

10.16 (Held–Karp Bound #1) Consider the network in Figure 10.48. Edges that are
not pictured have a length of∞.
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Figure 10.49 TSP instance for Problem 10.17. Edges that are not pictured have a length of∞.

a) What is the optimal TSP tour on this network, and what is its total length, z∗?
What is the optimal 1-tree T̂ ∗ on this network (“rooted” at node 1), and what is
its total length, z(T̂ ∗)?

b) Find the best Held–Karp lower bound you can. That is, find weights to add to
one or more nodes so that z∗ and the right-hand side of (10.33) are as close as
possible.

10.17 (Held–Karp Bound #2) Repeat Problem 10.16 for the network in Figure 10.49.

10.18 (TSP with Required Edges) Consider a version of the TSP in which we are given
a set M of edges that must be part of the tour. Assume that M is a matching.

a) Modify Christofides’ heuristic to solve this problem.
b) Show that the performance of your heuristic from part (a) has a fixed worst-case

bound of 3/2.

10.19 (Equivalence of Subtour-Elimination Constraints) Prove that (10.5) and (10.6)
are equivalent.

10.20 (Miller–Tucker–Zemlin Subtour-Elimination Constraints) Miller et al. (1960)
propose introducing new decision variables ui (i = 2, . . . , n) for the TSP and then replacing
the subtour-elimination constraints (10.9) with

ui − uj + (n− 1)xij ≤ n− 2 ∀i, j = 2, . . . , n, i 6= j (10.44)

1 ≤ ui ≤ n− 1 ∀i = 2, . . . , n. (10.45)

Prove that the resulting formulation is valid, i.e., that (10.44)–(10.45) prohibit subtours.
(These constraints are called the Miller–Tucker–Zemlin, or MTZ, subtour-elimination con-
straints.)

10.21 (Stengthened MTZ Constraints) Prove that (10.44) can be replaced with the
tighter constraint

ui − uj + (n− 1)xij + (n− 3)xji ≤ n− 2 ∀i, j = 2, . . . , n, i 6= j (10.46)

in the MTZ subtour-elimination constraints (see Problem 10.20).

10.22 (Sequence of Convex Hull Nodes) Let N ′ ⊆ N be the set of nodes that lie on the
convex hull of N in an instance of the Euclidean TSP. Prove that every optimal tour visits
the nodes in N ′ in the same sequence in which they occur on the convex hull.
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10.23 (Estimating β) Perform a computational experiment to estimate the TSP constant
β from Theorem 10.19 by generating random Euclidean TSP instances on the unit square,
solving them optimally, and calculating the ratio between the optimal tour length and

√
n,

where n is the number of nodes.

10.24 (Nearest Neighbor for Asymmetric TSP) Prove that, for the asymmetric TSP (in
which the distance matrix need not be symmetric) in which the triangle inequality holds,
the nearest neighbor heuristic can produce solutions for which

zNN

z∗
>
n

2
,

where n is the number of nodes.

10.25 (TSP with Pickup and Delivery) Consider the following variant of the TSP. We
must visit a set S of source nodes and a set D of destination nodes, with |S| = |D|,
transporting a single type of item from the source nodes to the destination nodes. Any
source node can supply any destination node. Each source unit has 1 unit of supply, each
destination node demands 1 unit, and the vehicle has a capacity of 1 unit. Adapt the
cheapest insertion heuristic to solve this problem. Explain your heuristic in words as well
as in pseudocode.

10.26 (Prize-Collecting TSP) In the prize-collecting TSP, there is no constraint requiring
every node to be on the tour, but there is a reward πi for visiting node i. The objective is
to minimize the total tour length minus the total rewards for nodes visited.

a) Formulate the prize-collecting TSP as a linear integer programming problem.
b) Propose a construction heuristic for the prize-collecting TSP. Explain your heuris-

tic in words as well as in pseudocode.

10.27 (1-Tree Formulation is a Relaxation) The problem of finding an optimal 1-tree
can be formulated as follows:

minimize
∑
i,j∈N

cijxij (10.47)

subject to
∑
i,j∈N

xij = n (10.48)

∑
i∈N

x1i = 2 (10.49)∑
i∈S,j∈S̄\{1} or
i∈S̄\{1},j∈S

xij ≥ 1 ∀S ⊆ N \ {1} : 1 ≤ |S| ≤ n− 1 (10.50)

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈ N (10.51)

Prove that this formulation is a relaxation of the TSP formulation (10.7)–(10.10).

10.28 (Subtour-Elimination Constraints for |S| = 2) Prove that it is sufficient to
replace the “for all” part of constraints (10.9) with ∀S ⊆ N : 3 ≤ |S| ≤ n− 3.

10.29 (Pseudocode for GENI Insertion) Write pseudocode for the procedure to find
the best Type I GENI insertion; that is, to implement step 5 in Algorithm 10.4 for Type I
insertions.
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Figure 10.50 TSP instance for Problem 10.32. Distances are Euclidean.

10.30 (Pseudocode for Greedy Heuristic) The greedy heuristic for the TSP works as
follows: Initialize the tour with the edge (i, j) that minimizes cij . At each subsequent
iteration, add to the tour the shortest edge that is not on the tour, does not create a subtour,
and does not create a degree-3 node. (See, e.g., Ong and Moore (1984).) Write pseudocode
for this heuristic.

10.31 (Removing Cities from TSP) Suppose we solve the TSP on an arbitrary instance
(which satisfies the triangle inequality but is not necessarily Euclidean) and get the optimal
tour. Now we decide we do not need to visit one of the cities. Prove or disprove the
following claim: The sequence of nodes on the original optimal tour remains optimal after
we remove a city; that is, we can simply “close up” the tour around the city we removed.

10.32 (Optimal Control Zones) Find the optimal control zones for the TSP instance in
Figure 10.50. The nodes are located at integer coordinates, and the distances among them
are Euclidean. Report the radii of each of the control zones, and their sum.



CHAPTER 11

THE VEHICLE ROUTING PROBLEM

11.1 INTRODUCTION TO THE VRP

11.1.1 Overview

The vehicle routing problem (VRP) is concerned with optimizing a set of routes, all begin-
ning and ending at a given node (called the depot), to serve a given set of customers. The
VRP was first introduced by Dantzig and Ramser (1959). It is a multi-vehicle version of the
traveling salesman problem (TSP), and is therefore more applicable in practice since most
organizations with substantial delivery operations use multiple vehicles simultaneously. Of
course, it is also more difficult than the TSP since it involves decisions about how to assign
customers to routes, in addition to how to optimize the sequence of nodes on each route.
As a result, today’s “hard” VRP instances tend to involve, say, hundreds of nodes, whereas
hard instances of the TSP involve thousands or tens of thousands of nodes.

Figure 11.1 shows the optimal solution to a VRP instance called eil51 from the TSPLIB
data set repository (Reinelt 1991) and originally from Christofides and Eilon (1969). The
depot is near the center of the region, marked by a square, while the customers are drawn
as circles. Each node has a coordinate in R2, and the distances between pairs of nodes are
Euclidean. The demands range from 3 to 41, and the vehicle capacity is 160. Note that the
optimal VRP solution involves routes that cross each other. Of course, just as in the TSP, it
is never optimal for an individual route to cross itself if the distances are Euclidean, since
each individual route in a VRP solution is a TSP tour on the nodes in the route.

463Fundamentals of Supply Chain Theory, . Lawrence V. Snyder and Zuo-Jun Max Shen. 
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Snyder/SupplyChainTheory

Second Edition



464 THE VEHICLE ROUTING PROBLEM

Figure 11.1 Optimal solution to eil51 VRP instance. Total distance = 521.

The VRP is used to model less-than-truckload (LTL) deliveries, in which a single vehicle
delivers goods to multiple customer nodes before returning to the depot. In contrast, the
facility location models in Chapter 8 assume truckload (TL) deliveries, in which a vehicle
delivers to only a single node. In addition to differences in the shape of the delivery routes,
TL and LTL shipments have different cost structures for shippers. Typically, when a firm
ships products TL, it pays a fixed cost for the shipment; the fixed cost depends on the origin
and destination points, but not on the quantity of goods being shipped. In contrast, LTL
shipments are charged based on weight or volume, as well as on origin and destination.
Companies such as FedEx and UPS are LTL carriers.

Not surprisingly, the VRP is an immensely important problem for such carriers. For
example, UPS’s route-optimization system, called On-Road Integrated Optimization and
Navigation (ORION), saves the company an estimated $300–$400 million per year and
is sometimes described as the world’s largest operations research project (Holland et al.
2017). UPS and ORION won the prestigious INFORMS Edelman Award in 2016. (See
Case Study 11.1.)

We will formulate the VRP in Section 11.1.3, and then discuss exact and heuristic
algorithms in Sections 11.2 and 11.3, respectively. For a more thorough discussion of
the VRP, see the reviews by Laporte and Nobert (1987), Laporte (1992b), Laporte et al.
(2000) and Cordeau et al. (2002), among others, and the books by Toth and Vigo (2001a) and
Golden et al. (2008). Several web sites compile data sets and other useful information about
the VRP, including the VRP Repository1 and the NEO Research Group at the University
of Malaga.2

1http://www.vrp-rep.org/
2http://neo.lcc.uma.es/vrp/location/
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11.1.2 Notation and Assumptions

We are given a set N = {0, . . . , n} of nodes and a symmetric distance matrix cij that
satisfies the triangle inequality. Node 0 is the depot. Let N− = N \ {0} be the set of
customer nodes. Each node i ∈ N− has a demand di ≥ 0, with d0 = 0. For S ⊆ N−, let

d(S) =
∑
i∈S

di.

Some of the models and algorithms we consider below will assume that there are exactly
K vehicles available at the depot, and that all of them must be used, while others allow the
number of vehicles to be unrestricted. In either case, we assume that the vehicles are all
identical, each with a capacity of C. We assume that di ≤ C for all i ∈ N−; otherwise,
the problem is infeasible.

Other capacity-type constraints are sometimes used instead of, or in addition to, vehicle
capacities. For example, in some models, the total distance or time that a vehicle travels is
constrained. (If there were no capacity-type constraints and the distances satisfy the triangle
inequality, then the VRP would be equivalent to the TSP—why?) The problem we consider
is sometimes called the capacitated vehicle routing problem (CVRP) to distinguish it from
models with these other types of constraints, but we will refer to the problem simply as the
VRP.

Many variations of this basic setup are possible. For example, the vehicles may be
nonidentical in terms of their capacities or other constraints, or we may incur a fixed cost
for each vehicle used. There are more complex extensions, as well, such as:

• Time windows during which vehicles must arrive at each customer.

• Multiple depots that nodes may be served from, with the assignment of nodes to
depots a decision variable.

• Backhauls, in which some customers require product to be delivered, others require
product to be picked up and brought back to the depot, and delivery customers must
come before backhaul customers on a given route.

• Pickups and deliveries, in which customers require their shipment to be picked up at
one location and delivered to another, both by the same vehicle.

• Periodic models in which a given customer must be visited a fixed number of times
per week (or month, etc.).

We will discuss some of these variants and extensions in Section 11.5.

11.1.3 Formulation of the VRP

As in the TSP, we will define a decision variable xij that equals 1 if a route goes from i

to j or from j to i, for i, j ∈ N . For the depot, we allow x0j ∈ {0, 1, 2}, where x0j = 2

indicates a single-customer route. (If single-customer routes are prohibited, we can simply
require x0j ∈ {0, 1}.) The decision variables are defined only for i < j, but, as with the
TSP, we will often omit the requirement i < j when writing summation and constraint
indices.
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In this section, we assume that exactly K vehicles must be used to serve the nodes in
N−. For a subset S ⊆ N−, let v(S) ≥ 1 be the minimum number of vehicles required to
serve all nodes in S. We discuss the calculation of v(S) below.

The VRP can be formulated as an integer programming (IP) model as follows:

(VRP) minimize
∑
i,j∈N

cijxij (11.1)

subject to
∑
i∈N

xih +
∑
j∈N

xhj = 2 ∀h ∈ N− (11.2)

∑
j∈N−

x0j = 2K (11.3)

∑
i,j∈S

xij ≤ |S| − v(S) ∀S ⊆ N− : S 6= ∅ (11.4)

xij ∈ {0, 1} ∀i, j ∈ N− (11.5)

x0j ∈ {0, 1, 2} ∀j ∈ N− (11.6)

(This is a slightly less general version of the formulation presented by Laporte et al. (1985).)
The objective function (11.1) calculates the total length of the routes. Constraints (11.2)
require exactly two edges to be incident to each node except the depot, and constraint (11.3)
requires 2K edges to be incident to the depot. Constraints (11.4) are called capacity-cut
constraints (or sometimes just capacity constraints); they are a generalization of subtour-
elimination constraints. Equivalently, we could use either∑

i∈S,j∈S̄ or
i∈S̄,j∈S

xij ≥ 2v(S) ∀S ⊆ N− : S 6= ∅ (11.7)

or ∑
i∈S,j∈S̄

xij ≥ v(S) ∀S ⊆ N− : S 6= ∅. (11.8)

Constraints (11.5) and (11.6) enforce the integrality and bounds on thexij . This formulation
is known as a two-index formulation since the decision variables each have two indices.

This formulation is remarkably similar to the TSP formulation (10.7)–(10.10), despite
the fact that the VRP allows multiple routes (and must ensure that each is connected to the
depot) and has capacity restrictions. The capacity-cut constraints (11.4) do quite a bit of
heavy lifting, ensuring both the depot-connectedness and the capacity-feasibility of every
route. To see this, suppose first that there is a route that is not connected to the depot—in
other words, a subtour. Let S be the nodes on this route. Then the number of edges
contained within S (the left-hand side of (11.4)) equals |S|, which violates (11.4) since
v(S) ≥ 1. Now suppose that there is a route that violates the capacity constraint. Again,
let S be the nodes on this route, excluding the depot. Then

∑
i,j∈S xij = |S|− 1, but since

the route is over capacity, v(S) ≥ 2 and (11.4) is violated.
The question remains how to calculate v(S). An exact calculation of v(S) requires

solving the bin-packing problem. In the bin-packing problem, we are given a set of objects,
each with a given weight (or other measure of size). The objective is to “pack” the objects
into bins, each of which has a fixed capacity, minimizing the total number of bins used.
Therefore, v(S) is equal to the optimal objective value of the bin-packing problem for a set
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S of objects of weight di and bins of capacity C. Unfortunately, the bin-packing problem
is NP-hard, so it is common to replace v(S) with a lower bound; one easy bound is⌈

d(S)

C

⌉
. (11.9)

In fact, replacing v(S) with the lower bound (11.9) in the capacity-cut constraints (11.4)
or (11.7) retains the validity of the IP formulation (Cornuejols and Harche 1993), though it
weakens its LP relaxation. Obviously, whether we use (11.9) or the bin-packing problem,
it is impractical to calculate v(S) for all S ⊆ N− since there are exponentially many such
sets. Then again, it is impractical to enumerate all of the capacity-cut constraints (11.4)
anyway; so v(S) can be calculated as needed when a given constraint is added.

The two-index formulation (11.1)–(11.6) is simple but fairly inflexible. Although one
could look at a solution and assign trucks to routes or determine the sequence of nodes on
the route, the model itself is not “aware” of these attributes endogenously. Because of this,
it cannot be modified to handle time windows, precedence constraints, nonidentical vehicle
capacities or capabilities, sequence-dependent costs, or a range of other realistic problem
features.

To correct this, we can use a three-index formulation that explicitly keeps track of which
vehicle is assigned to each route. In particular, xijk = 1 if vehicle k travels directly from
i to j, and 0 otherwise. Note that, unlike in the two-index formulation, the x variables
indicate which node (i or j) comes before the other. Therefore, xijk is defined for all
i, j ∈ N , not just for i < j. We also have a binary variable yik that equals 1 if vehicle k
serves node i and 0 otherwise, for i ∈ N−. This gives us the following formulation, which
is based on the formulation by Fisher and Jaikumar (1981):

minimize
K∑
k=1

∑
i,j∈N

cijxijk (11.10)

subject to
K∑
k=1

yik = 1 ∀i ∈ N− (11.11)

K∑
k=1

y0k = K (11.12)∑
i∈N

xihk =
∑
j∈N

xhjk = yhk ∀h ∈ N, ∀k = 1, . . . ,K (11.13)

∑
i∈N

diyik ≤ C ∀k = 1, . . . ,K (11.14)∑
i,j∈S

xijk ≤ |S| − 1 ∀k = 1, . . . ,K, ∀S ⊆ N− : |S| ≥ 2 (11.15)

xijk ∈ {0, 1} ∀i, j ∈ N−,∀k = 1, . . . ,K (11.16)

yik ∈ {0, 1} ∀i ∈ N−,∀k = 1, . . . ,K (11.17)

The objective function (11.10) calculates the total route length. Constraints (11.11) require
every nondepot node to be served by exactly one route. Constraint (11.12) requires the
depot to be contained onK routes. (This constraint can be removed ifK is an upper bound
on the number of vehicles but not all K vehicles need to be used.) Constraints (11.13)
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require yhk to equal 1 if and only if vehicle k traverses exactly one arc into h and one
arc out of h. Constraints (11.14) ensure the vehicle capacity is not exceeded. Constraints
(11.15) are subtour-elimination constraints, and (11.16)–(11.17) are integrality constraints.

This formulation has an explicit capacity constraint (11.14). In the two-index formu-
lation, in contrast, we cannot calculate the total load on a given vehicle endogenously, so
capacity constraints must be imposed via the v(S) parameter in the capacity-cut constraints
(11.4). The three-index formulation can easily handle vehicle-dependent capacities: We
simply change the right-hand side of (11.14) to Ck, where Ck is the capacity of vehicle k.

The three-index formulation is more difficult to solve than the two-index formulation
since there are many more binary variables (O(n2K) vs.O(n2)), but the added complexity
is often compensated for by the increased flexibility. In addition, a three-index model
can be converted to a two-index model by setting xij =

∑K
k=1 xijk; therefore, any valid

inequalities developed for the two-index formulation are also valid for the three-index
formulation.

11.2 EXACT ALGORITHMS FOR THE VRP

11.2.1 Dynamic Programming

Eilon et al. (1971) propose a dynamic programming (DP) algorithm for the VRP. Whereas
the DP for the TSP acts recursively on the nodes, the VRP algorithm acts recursively on
the routes, expressing the optimal distance for a solution that uses k routes in terms of the
distance using k − 1 routes.

For a subset S ⊆ N−, let c(S) be the length of the optimal TSP tour through the depot
and the nodes in S if

∑
i∈S di ≤ C and ∞ otherwise. Define θ(S, k) as the minimum

possible total distance to deliver to the nodes in S using k routes, or∞ if the nodes in S
cannot be feasibly served by k routes. If k = 1, then θ(S, k) = c(S). Suppose k > 1. If
we know that one of the k routes serves a customer set S′ ⊂ S, then the optimal distance is
given by θ(S \ S′, k− 1) + c(S′), where the second term computes the length of the route
through S′ and the first computes the lengths of the remaining k− 1 routes. Therefore, we
can calculate θ(S, k) recursively:

θ(S, k) =

c(S), if k = 1,

min
S′⊂S

{θ(S \ S′, k − 1) + c(S′)} , otherwise.
(11.18)

If the number of vehicles is fixed to K, then the total length of the optimal VRP solution
is given by θ(N−,K). If the number of vehicles is unrestricted, we can choose the k that
minimizes θ(N−, k).

Of course, this is not a computationally efficient way to solve the VRP. Not only do
we need to enumerate all subsets of N−, and all subsets of those sets, and so on, but we
must also solve the TSP for each of those subsets. One alternative is to “relax” the state
space in such a way that the resulting recursion provides a lower bound on the optimal
VRP objective function value. For example, we can define the DP recursion in terms of the
load represented by the customers in S rather than in terms of the customers themselves.
Let θ̂(d, k) be the optimal distance to use k vehicles to deliver to a set of nodes whose
total demand equals d, or∞ if d > kC, i.e., if k vehicles are not sufficient to serve a total
demand of d. Let ĉ(d) be the length of the optimal TSP tour through the depot and a set of
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nodes with total demand d, or∞ if d > C. (Actually, calculating an exact value for ĉ(d) is
itself difficult, so in practice one can replace ĉ(d) by a lower bound on it; see Christofides
et al. (1981).) Note that for any S,

ĉ(d(S)) ≤ c(S) (11.19)

since the optimal TSP tour through S ∪ {0}, which has length c(S), is a feasible solution
for the problem of finding the optimal tour through the depot and a set of nodes with total
demand d(S).

A recursion for θ̂(d, k) is given by

θ̂(d, k) =

ĉ(d), if k = 1,

min
0≤d′≤d

{
θ̂(d− d′, k − 1) + ĉ(d′)

}
, otherwise.

(11.20)

The significance of this relaxation is given by the following proposition.

Proposition 11.1 For any S ⊆ N− and k = 1, . . . ,K (where K is possibly infinite),

θ̂(d(S), k) ≤ θ(S, k). (11.21)

In particular, (11.21) holds for S = N− and k = K, which implies that the relaxed
recursion (11.20) provides a lower bound on the optimal objective function value of the
VRP.

Proof. By induction on k. Let S ⊆ N−. First suppose k = 1. By (11.19),

θ̂(d(S), 1) = ĉ(d(S)) ≤ c(S) = θ(S, 1).

Now suppose (11.21) holds for k > 1; we will show it holds for k + 1. By (11.18),

θ(S, k + 1) = min
S′⊂S

{θ(S \ S′, k) + c(S′)}

≥ min
S′⊂S

{
θ̂(d(S \ S′), k) + ĉ(d(S′))

}
(by the induction hypothesis and (11.19))

= min
S′⊂S

{
θ̂(d(S)− d(S′), k) + ĉ(d(S′))

}
≥ min

0≤d′<d(S)

{
θ̂(d(S)− d′, k) + ĉ(d′)

}
(since d(S′) is feasible for the minimization over 0 ≤ d′ < d(S))

= θ̂(d(S), k + 1),

as desired.

This technique is known as state-space relaxation. It was introduced by Christofides
et al. (1981), who also introduce several other recursions and relaxations that provide
tighter bounds than (11.20). This lower-bounding procedure can be embedded into a
branch-and-bound algorithm.
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11.2.2 Branch-and-Bound

Because the VRP formulations in Section 11.1.3 have an exponential number of constraints,
most branch-and-bound algorithms relax the capacity-cut constraints and solve the resulting
problem to obtain lower bounds on the optimal objective function value. For example,
suppose we relax the capacity-cut constraints (11.4) in the two-index VRP formulation to
obtain the following formulation:

minimize
∑
i,j∈N

cijxij (11.22)

subject to
∑
i∈N

xih +
∑
j∈N

xhj = bh ∀h ∈ N (11.23)

xij ∈ {0, 1} ∀i, j ∈ N− (11.24)

x0j ∈ {0, 1, 2} ∀j ∈ N− (11.25)

Constraints (11.23) combine constraints (11.2) and (11.3) by defining

bh =

{
2, if i ∈ N−

2K, if i = 0.

The model formulated in (11.22)–(11.25) chooses the minimum-cost set of edges such that
every node h has degree bh. This is known as the b-matching problem and is a generalization
of the 2-matching problem; it can be solved efficiently (Miller and Pekny 1995). The b-
matching problem only provides a lower bound since its solutions may be infeasible for
the VRP due to capacity violations or routes that are disconnected from the depot. Miller
(1995) proposes a branch-and-bound algorithm based on this b-matching relaxation.

Another relaxation, due to Fisher (1994a), extends the notion of 1-trees (Section 10.6.1)
to the VRP. He defines a K-tree as a minimum-cost set of n+K edges that contains every
node, and he further focuses on K-trees in which the depot has degree 2K. In every VRP
solution there are n+K edges and the depot has degree 2K, and so the problem of finding
an optimal degree-constrained K-tree is a relaxation of the VRP. This degree-constrained
K-tree problem can be formulated as follows:

minimize
∑
i,j∈N

cijxij (11.26)

subject to
∑
j∈N−

x0j = 2K (11.27)

∑
i∈S,j∈S̄ or
i∈S̄,j∈S

xij ≥ 1 ∀S ⊆ N− : S 6= ∅ (11.28)

xij ∈ {0, 1} ∀i, j ∈ N (11.29)

Constraints (11.27) enforce the degree restriction on the depot, while constraints (11.28)
ensure connectivity (at least one edge comes out of every subset). (This model prohibits
single-customer routes, hence constraints (11.29) apply to the depot, as well.) This formu-
lation can be seen as a relaxation of (11.1)–(11.6) by removing constraints (11.2), using
(11.7) in place of (11.4) and replacing its right-hand side with 1 (which is always less
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than 2v(S)). Fisher (1994b) shows that this problem can be solved in O(n3) time. Fisher
(1994a) uses this lower bound in a branch-and-bound algorithm.

Unfortunately, neither the b-matching bound nor the K-tree bound is very tight, often
falling 20% or more below the optimal VRP objective value (Toth and Vigo 2001b).
Therefore, branch-and-bound methods based on these and other simple relaxations are
generally not effective for any but the smallest problem instances.

11.2.3 Branch-and-Cut

Recall from Section 10.3.3 that a branch-and-cut algorithm involves relaxing certain con-
straints (integrality and/or functional constraints), solving the resulting problem, and then
adding additional constraints (“cuts”) that make the current optimal solution infeasible,
thus tightening the formulation. One obvious choice for VRP constraints to relax is the
capacity-cut constraints, which in this section we will assume are in the form given in
(11.7), that is: ∑

i∈S,j∈S̄ or
i∈S̄,j∈S

xij ≥ 2v(S) ∀S ⊆ N− : S 6= ∅.

As we discussed in Section 11.2.2, relaxing the capacity-cut constraints results in the b-
matching problem, which can be solved efficiently. The question, then, is how to solve
the separation problem—how to identify a violated inequality (a cut) that will render the
solution to the relaxed problem infeasible.

The answer turns out to depend on how tight we wish the capacity-cut constraints to
be. It is difficult to identify violated inequalities of the form (11.7), since calculating v(S)

itself is NP-hard due to its relationship to the bin-packing problem. Ralphs et al. (2003)
propose a heuristic for solving the separation problem in this case. On the other hand, we
noted in Section 11.1.3 that the formulation is still valid if we replace v(S) by dd(S)/Ce.
The separation problem in this case is still difficult, but less so—it is still usually done
heuristically. We can even replace v(S) by the weaker value d(S)/C, which does not
maintain the validity of the IP formulation but is more tractable. The separation problem
for this form of the constraints can be solved in polynomial time (McCormick et al. 2003).

Since the VRP is a generalization of the TSP, any valid inequality developed for the
TSP—for example, those discussed in Section 10.3.3—can be adapted for the VRP (Naddef
and Rinaldi 1993). On the other hand, cuts derived in this way are often not particularly tight
for the VRP, since these inequalities ignore the vehicle capacity. They can be strengthened
by making use of the function v(S)—in essence, combining the capacity-cut inequalities
(which account for the bin-packing aspect of the VRP) with the TSP-derived inequalities
(which account for the routing aspect).

We illustrate this idea using comb inequalities. Recall from Section 10.3.3 that a comb
consists of a set H called the handle and a collection of sets T1, . . . , Ts called teeth, such
that each Tj contains at least one node in H and one node not in H and such that s is odd
and at least 3. A comb inequality for the TSP can be written as in (10.16), that is:

∑
i∈H
j 6∈H

xij +

s∑
k=1

∑
i∈Tk
j 6∈Tk

xij ≥ 3s+ 1.

To adapt this for the VRP, Laporte and Nobert (1984) prove the following:
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Theorem 11.2 For any handle H ⊆ N and teeth T1, . . . , Ts ⊆ N such that

• no Tk contains the depot,

• each Tk contains at least one node in H and at least one node not in H ,

• T1, . . . , Ts are pairwise disjoint,

• s ≥ 3 and odd, and

• v(Tk \H) + v(Tk ∩H) > v(Tk) for all k = 1, . . . , s,

the following inequality is valid for every VRP solution through N :

∑
i∈H
j 6∈H

xij +

s∑
k=1

∑
i∈Tk
j 6∈Tk

xij ≥ s+ 1 + 2

s∑
k=1

v(Tk). (11.30)

Proof. Omitted.

If C = ∞, then v(Tk) = 1 for all k, and (11.30) is identical to (10.16) for the TSP.
Theorem 11.2 can be adapted to the case in which the depot is contained in one of the teeth,
as well.

Another approach to adapting TSP comb inequalities for the VRP is as follows. Suppose
we duplicate the depot so that there are K copies; call this set of depots D. Let cij = ∞
if i, j ∈ D. Then a TSP tour through N− ∪ D is a feasible VRP solution if the total
demand of the nodes between consecutive visits to depot nodes is no greater thanC. A TSP
comb inequality on N− ∪D can be converted to a VRP comb inequality by re-combining
the nodes in D back into the single depot, but we must adapt the definition of a comb to
deal with the fact that the teeth may now intersect (because multiple teeth may contain
the depot). Assume that for some 1 ≤ r ≤ s, teeth T1, . . . , Tr do not intersect, and
teeth Tr+1, . . . , Ts intersect only at the depot. Assume also that r(N− \ Tk) = K for all
k = r + 1, . . . , s; in other words, if tooth Tk contains the depot, then the nodes not in the
tooth require all K vehicles to serve them. Then one can show (see Problem 11.12) that
the following inequality is valid for every VRP solution through N :

∑
i∈H
j 6∈H

xij +

s∑
k=1

∑
i∈Tk
j 6∈Tk

xij ≥ s+ 1 + 2r + 2K(s− r). (11.31)

This inequality can be tighter than (11.30).
For a more thorough review of branch-and-cut approaches for the VRP, see Naddef and

Rinaldi (2001).

11.2.4 Set Covering

Because VRP solutions consist of a set of disjoint routes, the VRP lends itself well to a
set covering/column generation approach, similar to the approach in Section 12.2.7 for the
LMRP and described further in Section D.2.4. This method was proposed by Balinski
and Quandt (1964) and has since been refined by a number of other authors; see, e.g.,
Bramel and Simchi-Levi (2001) for an overview. (Another set of classical approaches,
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called petal heuristics, can be thought of as a simplified and approximate version of the
set covering/column generation approach in which routes are generated heuristically; see,
e.g., Foster and Ryan (1976) and Renaud et al. (1996).)

Suppose for a moment that we could enumerate all feasible routes, i.e., routes that begin
and end at the depot, visit each customer at most once, and do not violate the capacity
constraint. Let R be the set of all feasible routes; for a given route r ∈ R, let cr be the
total length of the route; and let air = 1 if i is on route r, 0 otherwise. Define a decision
variable yr, for r ∈ R, as follows:

yr =

{
1, if route r is in the solution,
0, otherwise.

The set covering formulation for the VRP is as follows:

(VRP-SC) minimize
∑
r∈R

cryr (11.32)

subject to
∑
r∈R

airyr ≥ 1 ∀i ∈ N− (11.33)∑
r∈R

yr ≤ K (11.34)

yr ∈ {0, 1} ∀r ∈ R (11.35)

The objective function (11.32) calculates the total distance of the routes chosen. Constraints
(11.33) require each node to be contained in a chosen route. Constraint (11.34) requires at
most K routes to be used. (Here, we treat K as an upper bound on the number of routes.)
Constraints (11.35) are integrality constraints. Note that, although constraints (11.33) are
written as inequality constraints, they will always hold as equalities in the optimal solution.
(Why?)

Of course, R is exponentially large, so it is not practical to enumerate all feasible
routes for even moderately sized instances. Therefore, the set covering algorithm begins by
enumerating only a (relatively small) subset R′ ⊆ R of feasible routes. This can be done
randomly, or using some heuristic. Let (VRP-SC′) be the problem (VRP-SC) restricted
to R′, and let (VRP-SC′) be its LP relaxation. Since R′ is not too large, (VRP-SC′)
is relatively easy to solve using a standard LP solver. Let ȳ be the optimal solution to
(VRP-SC′). How can we tell whether ȳ is optimal for (VRP-SC) (the LP relaxation of the
original problem, with the full setR)?

To answer this question, we’ll formulate the dual of (VRP-SC), letting π be the dual
variables corresponding to constraints (11.33) and µ be the dual variable for (11.34):

(VRP-SC-D) maximize
∑
i∈N−

πi −Kµ (11.36)

subject to
∑
i∈N−

airπi − µ ≤ cr ∀r ∈ R (11.37)

πi ≥ 0 ∀i ∈ N− (11.38)

µ ≥ 0 (11.39)

Let (π̄, µ̄) be the optimal dual values corresponding to the optimal primal solution ȳ for
(VRP-SC′). If (π̄, µ̄) is feasible for (VRP-SC-D), then it is optimal for (VRP-SC-D)
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(why?) and ȳ is optimal for (VRP-SC). Thus, checking optimality of ȳ for (VRP-SC) is
equivalent to checking feasibility of (π̄, µ̄) for (VRP-SC-D). But checking feasibility is
not straightforward, since (VRP-SC-D) has an exponential number of constraints, most of
which we have not enumerated.

The solution to this challenge is to look explicitly for a violated constraint, i.e., for an
r ∈ R such that ∑

i∈N−
airπ̄i > cr + µ̄, (11.40)

or, equivalently, such that c̄r > 0, where

c̄r = cr + µ̄−
∑
i∈N−

airπ̄i

is the reduced cost of column r. In other words, we want to solve the following column
generation problem:

(VRP-CG) minimize c̄r (11.41)

subject to
∑
i∈N−

airdi ≤ C (11.42)

This problem searches for the tour r ∈ R that minimizes c̄r. If the optimal c̄r is negative,
then we have found a constraint that (π̄, µ̄) violates, and moreover, we have found a new
column that we should add to R′. If the optimal c̄r is nonnegative, then we have proven
that ȳ is optimal for (VRP-SC).

Now the question is how to solve (VRP-CG). This problem itself is NP-hard, because
for a given route r, even evaluating c̄r requires finding an optimal TSP tour through the
nodes on the route. It is usually solved using branch-and-bound or branch-and-cut (Agarwal
et al. 1989, Desrochers et al. 1992, Bixby 1998).

Even after doing all of this, we have still only solved the LP relaxation of (VRP-SC). To
solve (VRP-SC) itself, one approach is to use R′ as a starting point in a branch-and-price
algorithm to solve (VRP-SC) exactly. In this approach, new columns are generated as
needed within the branch-and-bound tree, with the net result of solving (VRP-SC) without
enumerating all of the columns inR explicitly. See Desrochers et al. (1992) for an algorithm
of this type.

Another approach is to solve (VRP-SC′) exactly with the current set of columns, i.e.,
solving the VRP restricted to the routes in R′, by branch-and-cut or another method (see,
e.g., Bramel and Simchi-Levi (2001)). Since we are not solving the full problem to
optimality, this approach is a heuristic.

Both methods are quite effective, in large part due to the fact that the LP relaxation of the
set covering problem tends to be very tight; in fact, it often has all-integer solutions. (We
made a similar observation about the uncapacitated fixed-charge location problem (UFLP)
on page 272.) This has been observed empirically (e.g., Desrochers et al. 1992), and in fact
Simchi-Levi et al. (2013) prove that the LP bound for the set covering formulation of the
VRP approaches the IP value asymptotically as n → ∞. Bramel and Simchi-Levi (1997)
prove this for the more general VRP with time windows.

The set covering/column generation algorithm is summarized in Algorithm 11.1.
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Algorithm 11.1 Set covering-based algorithm for VRP
1: R′← partial enumeration ofR . Initialization
2: repeat . Solve LP relaxation
3: (ȳ, π̄, µ̄)← opt. primal, dual solution to (VRP-SC′) . Solve restricted LP
4: r∗ ← opt. solution to (VRP-CG) with (π̄, µ̄) . Search for new column
5: if c̄r∗ < 0 then
6: R′ ← R′ ∪ {r∗} . Add new column
7: end if
8: until c̄r∗ ≥ 0 . ȳ is now optimal for (VRP-SC)

9: useR′ to find exact (or approximate) optimal IP solution . Solve IP
10: return IP solution

11.3 HEURISTICS FOR THE VRP

The VRP is a particularly difficult combinatorial optimization problem, because of the
need to make simultaneous decisions about both clustering and routing. Moreover, the LP
relaxation bounds from the IP formulations in Section 11.1.3 are not particularly tight, and
it is more difficult to derive strong lower bounds in other ways; therefore, pure branch-
and-bound algorithms do not tend to have acceptable performance, and branch-and-cut
approaches for the VRP have not yet caught up to those for the TSP. For these reasons,
heuristics are of particular importance for the VRP.

In this section, we will discuss several construction heuristics for the VRP. We will
discuss improvement heuristics in Section 11.3.4, but we will spend relatively less effort on
these methods since many of the improvement heuristics for the TSP can also be applied
directly to the VRP.

11.3.1 The Clarke–Wright Savings Heuristic

The Clarke–Wright savings heuristic (Clarke and Wright 1964) is one of the best-known
heuristics for the VRP. The heuristic assumes that the number of vehicles is unrestricted.
It begins by placing each node on its own route and then merging routes when doing so
reduces the total distance.

Consider the two routes shown in Figure 11.2(a). Suppose we were to merge the two
routes by adding an edge from node i to node j, as shown in Figure 11.2(b). The savings
from such a merger is given by

sij = ci0 + c0j − cij . (11.43)

By the triangle inequality, sij > 0.
The savings heuristic builds a savings list of the sij values for all i 6= j ∈ N−, sorted

in descending order. The algorithm then proceeds down the list, implementing, at each
iteration, a merger of two routes at nodes i and j if the following conditions hold:

1. i and j are on different routes.

2. i and j are both adjacent to the depot on their respective routes.

3. The resulting route would be feasible with respect to capacity constraints.
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i j

(a) Routes before merger.

i j

(b) Route after merger.

Figure 11.2 Clarke–Wright savings heuristic.

Once a merger has been considered and either implemented or rejected, it is never considered
again, since none of the conditions above change from false to true during the course of the
heuristic. The algorithm terminates when every merger has been considered. Pseudocode
for the heuristic is given in Algorithm 11.2.

Algorithm 11.2 Clarke–Wright savings heuristic
1: for all i, j ∈ N−, i 6= j do . Build savings list
2: sij ← ci0 + c0j − cij
3: end for
4: sort sij in decreasing order
5: for all i ∈ N− do . Initial routes
6: place i on its own route
7: end for
8: for all i, j ∈ N− do . Route mergers
9: if sij > 0, i and j are on different routes, i and j are adjacent to node 0, and

combined demand of routes containing i and j is ≤ C then
10: merge routes at i and j
11: end if
12: end for
13: return routes

� EXAMPLE 11.1

Consider the instance pictured in Figure 11.3. Each customer’s demand is noted next
to it. The vehicle capacity is C = 5. Distances cij are Euclidean. The complete
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Figure 11.3 VRP instance for examples. Distances are Euclidean.

distance matrix is given by

c =



0.00 1.41 2.24 3.16 3.16 2.83 3.16 3.16 2.83 2.00 3.16

1.41 0.00 3.61 2.00 2.00 3.16 4.00 4.47 3.16 1.41 2.83

2.24 3.61 0.00 5.39 5.00 4.12 2.24 2.24 3.00 4.12 5.00

3.16 2.00 5.39 0.00 2.83 3.16 6.00 5.66 5.10 1.41 2.00

3.16 2.00 5.00 2.83 0.00 5.10 4.47 6.32 3.16 3.16 4.47

2.83 3.16 4.12 3.16 5.10 0.00 5.83 3.16 5.66 2.00 1.41

3.16 4.00 2.24 6.00 4.47 5.83 0.00 4.47 1.41 5.10 6.32

3.16 4.47 2.24 5.66 6.32 3.16 4.47 0.00 5.10 4.24 4.47

2.83 3.16 3.00 5.10 3.16 5.66 1.41 5.10 0.00 4.47 5.83

2.00 1.41 4.12 1.41 3.16 2.00 5.10 4.24 4.47 0.00 1.41

3.16 2.83 5.00 2.00 4.47 1.41 6.32 4.47 5.83 1.41 0.00


(11.44)

The positive entries of the sorted savings list are given in Table 11.1. For example:

s6,8 = c6,0 + c0,8 − c6,8 = 3.16 + 2.83− 1.41 = 4.58

s5,10 = c5,0 + c0,10 − c5,10 = 2.83 + 3.16− 1.41 = 4.58

s3,10 = c3,0 + c0,10 − c3,10 = 3.16 + 3.16− 2.00 = 4.32,

and so on.
We begin by placing each customer on its own route (Figure 11.4(a)). Next, we

consider the first pair on the savings list, (6, 8). Merging the routes containing 6
and 8 is feasible with respect to the conditions on page 475, so we merge them
(Figure 11.4(b)). The next pair—(5, 10)—is feasible as well, so we merge the two
routes (Figure 11.4(c)). The routes containing 3 and 10 cannot be merged because
their total demand is 8, which exceeds the capacity, so we skip that entry in the
savings list. The merger (3, 9) is feasible (Figure 11.4(d)); (9, 10) is not; (3, 4) is
feasible (Figure 11.4(e)), as is (2, 6) (Figure 11.4(f)). The next several mergers are
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Table 11.1 All positive entries of sorted savings list for VRP instance in Figure 11.3.

sij i j sij i j sij i j sij i j

4.58 6 8 2.83 5 9 1.08 1 5 0.36 8 9
4.58 5 10 2.58 1 3 1.08 1 8 0.32 3 6
4.32 3 10 2.58 1 4 0.94 2 5 0.16 5 6
3.75 3 9 2.06 2 8 0.92 7 9 0.16 8 10
3.75 9 10 2 4 9 0.89 4 5 0.11 2 9
3.5 3 4 2 1 9 0.89 3 8 0.1 1 7
3.16 2 6 1.85 4 6 0.89 7 8 0.06 6 9
3.16 2 7 1.85 6 7 0.67 3 7 0.04 1 2
2.83 3 5 1.85 4 10 0.58 1 6 0.01 2 3
2.83 5 7 1.85 7 10 0.4 2 4 —
2.83 4 8 1.75 1 10 0.4 2 10 —

all infeasible, until we get to (1, 8). The remaining mergers are all infeasible or have
0 savings. The solution returned by the heuristic is shown in Figure 11.4(g); it has a
total distance of 33.60. �

The Clarke–Wright solution to the eil51 instance in Figure 11.1 has a total distance of
582 (compared to the optimal distance of 521) and is pictured in Figure 11.5.

A variant of the savings heuristic skips the sorting step (line 4) and instead implements
mergers with positive savings in the order in which they are found. Laporte and Semet
(2001) refer to this variant and the version in Algorithm 11.2 as the sequential and parallel
versions, respectively. (Alternate terms might be first-improving and best-improving.)
They report that the parallel version outperforms the sequential version considerably and
warn that some authors neglect to indicate which version they are using when reporting
computational results.

On the other hand, it is sometimes worthwhile to consider mergers other than the one
with the largest savings through a randomization mechanism. For example, we might
choose randomly from among the ` best feasible mergers to obtain a solution; we can
repeat this several times, possibly with different values of `, and choose the best solution
found. Daskin (2010) proposes an approach like the one listed in Algorithm 11.3. L is
called the randomization depth and M is called the randomization iterations; both are
inputs to the algorithm and are typically small, say, L = M = 5.

Algorithm 11.3 Randomized Clarke–Wright savings heuristic
1: for ` = 1, . . . , L do
2: for m = 1, . . . ,M do
3: run Clarke–Wright savings heuristic in Algorithm 11.2, but at step 10, choose

randomly from among the ` feasible mergers with greatest savings
4: end for
5: end for
6: return solution found with smallest total distance
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(c) After merger (5, 10).
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(d) After merger (3, 9).
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(e) After merger (3, 4).
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(f) After merger (2, 6).
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(g) After merger (1, 8)—final
result. Total distance = 33.60.

Figure 11.4 Clarke–Wright savings heuristic for instance in Figure 11.1.

Figure 11.5 Clarke–Wright solution to eil51 VRP instance. Total distance = 582.
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Sometimes route mergers are selected using a matching algorithm; see, e.g., Desrochers
and Verhoog (1989) and Wark and Holt (1994). These methods tend to be a bit more
accurate than the classical Clarke–Wright algorithm but also significantly slower.

Another variant, proposed by Gaskell (1967) and Yellow (1970), uses a generalized
savings calculation,

sij = ci0 + c0j − λcij ,

where λ is a route shape parameter that allows the user to specify how much emphasis
to place on the distance between the two nodes to be merged. If λ is large, mergers are
penalized if i and j are far from each other. This tends to encourage more compact routes.

11.3.2 The Sweep Heuristic

The sweep heuristic (Wren 1971, Wren and Holliday 1972, Gillett and Miller 1974) builds
clusters of nodes by rotating a ray emanating from the depot, adding nodes as the ray hits
them, and beginning a new cluster when the next node would violate the vehicle capacity.
Routes are then constructed by solving a TSP (exactly or heuristically) for each cluster.
Typically, the number of routes is unrestricted. In the pseudocode for the sweep heuristic in
Algorithm 11.4, (αi, ρi) represents the polar coordinates of node i ∈ N , and Sk represents
cluster k of nodes.

Algorithm 11.4 Sweep heuristic
1: α← arbitrary angle; k ← 1; Sk ← ∅ ∀k . Initialization
2: while some nodes are not in any cluster do . Clustering
3: increase α until it equals αi for some i not in a cluster
4: if

∑
j∈Sk dj + di > C then

5: k ← k + 1

6: end if
7: Sk ← Sk ∪ {i} . Update cluster
8: end while
9: for all k do . Route optimization

10: solve TSP on nodes in Sk
11: end for
12: return routes

Routes produced by the sweep heuristic never overlap, but optimal routes often do.
Therefore, node-exchange improvement heuristics (see Section 11.3.4) can be particularly
useful after the heuristic completes its execution.

The sweep heuristic is an example of a two-phase method in which clustering and
routing are done in two separate steps. Two-phase methods come in two types: cluster-
first, route-second and route-first, cluster-second. The sweep method is an example of the
former type,3 as is the location-based heuristic discussed in Section 11.3.3. In contrast,
route-first, cluster-second methods solve a TSP on the entire node set and then partition
the tour into routes (Beasley 1983). Laporte and Semet (2001) observe that these methods

3Simchi-Levi et al. (2013) disagree with this categorization, classifying the sweep heuristic as a route-first,
cluster-second method since clustering is done on a fixed ordering of the nodes.
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route.
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(e) Final result. Total distance
= 32.77.

Figure 11.6 Sweep heuristic for instance in Figure 11.1.

rarely perform better than cluster-first, route-second approaches, and Li and Simchi-Levi
(1990) provide a theoretical justification.

� EXAMPLE 11.2

Return to the instance pictured in Figure 11.3. Let’s start the sweep heuristic at
α = π (Figure 11.6(a)) and sweep counter-clockwise. We first hit node 7, then node
2, bringing the load of the first route to 5. Obviously, we cannot add node 6 to the
same route, so we start a new one, which can also accommodate 8 (Figure 11.6(b)).
The next four nodes—6, 8, 4, and 1—can all be added to a single route, so we do
(Figure 11.6(c)). Nodes 3 and 9 fit on a route, leaving one unit of capacity, but since
the demand of node 10 is 3, we cannot put it on the same route (Figure 11.6(d)). The
final route consists of nodes 10 and 5, and the resulting soltuion has a total distance
of 32.77 (Figure 11.6(e)). These routes are each already optimal TSP tours, so no
further optimization is performed. �

For the eil51 instance in Figure 11.1, the sweep heuristic returns the solution pictured
in Figure 11.7, which has a total distance of 586.27. (The routes were optimized using the
farthest insertion heuristic rather than with an exact algorithm.)

11.3.3 The Location-Based Heuristic

The location-based heuristic (LBH) of Bramel and Simchi-Levi (1995) approximates the
VRP by the capacitated concentrator location problem (CCLP), a close variant of the ca-
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Figure 11.7 Sweep heuristic solution to eil51 VRP instance. Total distance = 586.27.

Figure 11.8 Approximating the VRP (thick lines) by the CCLP (thin lines) in the location-based
heuristic. = depot, = seed node in CCLP, and = non-seed node in CCLP.

pacitated facility location problem (CFLP) with single-sourcing constraints (Section 8.3.1)
in which the demands are ignored in the transportation costs but not in the capacity con-
straints. The basic idea is to use the CCLP to cluster the nodes and then solve TSPs to
optimize the individual routes; see Figure 11.8. The facilities opened in the CCLP solution
are called “seed nodes.” The choice of seed nodes is actually rather inconsequential; what
is important is the cluster of nodes that are assigned to each seed node (including the seed
node itself), since these will form the node sets for the individual routes. The heuristic
assumes that the number of routes is unrestricted.



HEURISTICS FOR THE VRP 483

We will assume that the sets of customers and potential facility locations (called I and
J in the CFLP) are both equal to N−. We would like the cost of locating a facility at node
j and serving a set Sj of customer nodes in the CCLP to approximate the cost (length) of
a TSP tour through the depot and the nodes in Sj . The LBH divides the cost of this tour
into two components, the portion to and from the depot and the portion among the other
nodes. It includes the length of the former portion in the fixed location cost fj and that of
the latter portion in the transportation costs c̃ij .4 In particular, for each j ∈ N−, we set

fj = 2c0j , (11.45)

and for each i, j ∈ N−, we set c̃ij as either

c̃ij = 2cij (11.46)

or
c̃ij = c0i + cij − cj0. (11.47)

If we locate a facility at node j, then (11.46) approximates node i’s contribution to the TSP
tour length as the distance from j to i and back, while (11.47) approximates it using the
cost to insert node i into the tour that goes from the depot to node j and back. Bramel and
Simchi-Levi (1995) refer to (11.46) as the star connection cost and to (11.47) as the seed
tour cost. We’ll use LBH-SC and LBH-ST to refer to the LBH heuristic using these two
costs, respectively. Neither is meant to model the TSP tour cost exactly; the aim is simply
to find costs for the CCLP that tend to produce solutions that translate to good solutions for
the VRP. The computational tests by Bramel and Simchi-Levi (1995) suggest that LBH-ST
performs somewhat better computationally, but LBH-SC has nice theoretical properties;
see Theorem 11.5 below.

Given these costs, we can formulate the CCLP:

(CCLP) minimize
∑
j∈N−

fjxj +
∑
i∈N−

∑
j∈N−

c̃ijyij (11.48)

subject to
∑
j∈N−

yij = 1 ∀i ∈ N− (11.49)

yij ≤ xj ∀i ∈ N−,∀j ∈ N− (11.50)∑
i∈N−

diyij ≤ C ∀j ∈ N− (11.51)

xj ∈ {0, 1} ∀j ∈ N− (11.52)

yij ∈ {0, 1} ∀i ∈ N−,∀j ∈ N− (11.53)

(CCLP) can be solved using any available method; Bramel and Simchi-Levi (1995) suggest
using the Lagrangian relaxation method described in Section 8.3.1, calculating βj by
solving a 0–1 knapsack problem. To find feasible (upper-bound) solutions to the CCLP,
they open facilities in order of βj , and for each new facility, they assign customers by
solving a new knapsack problem on the customers that have not yet been assigned.

4We will denote the CCLP transportation costs as c̃ij in this chapter to distinguish them from the VRP distances
cij .
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Once we have solved the CCLP, we construct clusters of nodes, each of which consists
of the nodes assigned to a given seed node in the CCLP solution. We then solve a TSP
on the nodes in each cluster, either exactly or approximately. The LBH is summarized in
Algorithm 11.5.

Algorithm 11.5 Location-based heuristic for VRP
1: fj ← 2c0j , c̃ij ← 2cij or c0i + cij − cj0 ∀i, j . CCLP instance
2: solve CCLP with costs fj , c̃ij
3: for all j ∈ N− s.t. xj = 1 in CCLP solution do . Clustering
4: Sj ← {i ∈ N−|yij = 1 in CCLP solution}
5: end for
6: for all j ∈ N− s.t. xj = 1 in CCLP solution do . Routing
7: solve TSP on nodes in Sj
8: end for
9: return routes

An earlier heuristic, by Fisher and Jaikumar (1981), is similar in spirit to the LBH, but
instead of clustering via a facility location problem, it does so by solving a generalized
assignment problem. Fisher and Jaikumar (1981) report good computational results for
their algorithm, but the results have been difficult to replicate (Cordeau et al. 2002).

� EXAMPLE 11.3

Return to the instance pictured in Figure 11.3. For the CCLP, the fixed costs fj
and star connection costs are calculated using (11.45) and (11.46) with the distance
matrix given in (11.44). The solution to the resulting CCLP has x1 = x2 = x5 =

x8 = x9 = 1 (and the remaining xj = 0), and y39 = y41 = y68 = y72 = y10,5 = 1,
in addition to yjj = 1 for all j such that xj = 1. The resulting VRP solution is
pictured in Figure 11.9(a) and has total distance 35.60.

Now suppose we use the seed tour costs:

c̃ =



0.00 2.78 0.25 0.25 1.75 2.25 2.72 1.75 0.83 1.08

4.43 0.00 4.46 4.07 3.53 1.31 1.31 2.41 4.36 4.07

3.75 6.31 0.00 2.83 3.50 6.00 5.66 5.43 2.58 2.00

3.75 5.93 2.83 0.00 5.43 4.47 6.32 3.50 4.32 4.47

4.58 4.72 2.83 4.77 0.00 5.50 2.83 5.66 2.83 1.08

5.75 3.16 6.00 4.47 6.16 0.00 4.47 1.75 6.26 6.32

6.22 3.16 5.66 6.32 3.50 4.47 0.00 5.43 5.40 4.47

4.58 3.59 4.77 2.83 5.66 1.08 4.77 0.00 5.30 5.50

2.00 3.89 0.25 2.00 1.17 3.94 3.08 3.64 0.00 0.25

4.58 5.93 2.00 4.47 1.75 6.32 4.47 6.16 2.58 0.00


The solution to the resulting CCLP has x2 = x3 = x8 = x10 = 1 and y18 =
y43 = y5,10 = y68 = y72 = y93 = 1. The resulting VRP solution is pictured in
Figure 11.9(b) and has total distance 33.60. �

The LBH-SC heuristic is asymptotically optimal as the number of nodes increases. In
other words, as n→∞, the total distance of the solution returned by the LBH-SC heuristic
approaches the optimal VRP distance.
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(b) With seed tour connection costs. Total
distance = 33.60.

Figure 11.9 LBH solution for instance in Figure 11.1.

Before proving the asymptotic optimality of LBH-SC, we return to the connection
between the VRP and the bin-packing problem. Recall that, in the bin-packing problem,
we are given a set of objects, each with a given weight (or other measure of size). The
objective is to “pack” the objects into bins, each of which has a fixed capacity, minimizing
the total number of bins used. Let b∗n be the minimum number of bins of capacityC that are
needed to pack n objects whose weights are drawn from a given probability distribution. It
is well known that b∗n converges to a constant as n increases:

lim
n→∞

b∗n
n

= γ,

where γ is a constant (known as the bin-packing constant) that depends on the probability
distribution of the weights.

Suppose the demands di in the VRP are drawn from a given probability distribution.
Then the problem of minimizing the number of trucks of capacity C required to serve
n nodes (ignoring the routing aspect) is equivalent to the bin-packing problem, and the
minimum required number of trucks is b∗n, which can be approximated by nγ for large
enough n. Bramel et al. (1992) use this fact to characterize the asymptotic behavior of the
optimal VRP objective function value:

Theorem 11.3 Suppose that the node locations in the VRP are drawn iid from a probability
distribution on a compact region with expected distance E[c] to the depot. Suppose that
di/C (the node demand divided by the vehicle capacity) is drawn iid from a probability
distribution F with support on [0, 1]. Let z∗n be the optimal objective function value for the
problem with n nodes. Then

lim
n→∞

1

n
z∗n = 2γE[c] (11.54)

almost surely (a.s.), where γ is the bin-packing constant for distribution F .

Proof. Omitted; see Bramel et al. (1992).

In other words, for sufficiently large n, z∗n can be approximated by 2nγE[c], the cost of
using nγ vehicles and sending each to a node at a distance of E[c] from the depot. This
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approximate value depends on γ (which, in turn, depends on the demand distribution and
vehicle capacity) and the expected distance from the depot to the nodes.

Let zSCn be the total distance of the VRP solution returned by LBH-SC. First note that
this distance is bounded above by zLn , the optimal CCLP cost:

Lemma 11.4 For a VRP instance with n nodes,

zSCn ≤ zLn .

Proof. Omitted; see Problem 11.20.

We are now ready to prove that the LBH-SC heuristic is asymptotically optimal.

Theorem 11.5 Under the same conditions as in Theorem 11.3,

lim
n→∞

1

n
zSCn = 2γE[c] (11.55)

a.s.; i.e., the LBH-SC heuristic is asymptotically optimal.

Proof. We first prove that

lim
n→∞

1

n
zLn = 2γE[c].

We do this by constructing a family of feasible solutions to the CCLP (parameterized by a
constant ε > 0) whose cost divided by n approaches 2γE[c].

Let ε > 0 be a constant. Overlay a grid whose squares have side length ε atop the region
A ⊆ R2 in which the nodes are located, and let {Am}Mm=1 be the subregions of A defined
by this grid. (See Figure 11.10(a).) Let n(m) be the number of nodes located in subregion
Am. Let b∗(m) be the minimum number of bins of capacity C required to pack the n(m)

nodes in subregion Am. Let Nk(m) ⊆ N− be the set of nodes in the kth bin of this
packing and let ik be an arbitrarily selected node in Nk(m), for k = 1, . . . , b∗(m). (See
Figure 11.10(b). Note that the nodes in a given bin need not be clustered geographically,
though we have drawn them in that way for simplicity.)

Construct a feasible solution to the CCLP by establishing a facility (concentrator) at
node ik and assigning the remaining nodes in Nk(m) to ik, for k = 1, . . . , b∗(m). By
(11.45) and (11.46), this solution has cost

M∑
m=1

b∗(m)∑
k=1

2c0ik +
∑

j∈Nk(m)

2cikj

 ,

and the optimal solution has a cost zLn that is less than or equal to this cost. Since Am is
contained in a square of side length ε, cikj ≤ ε

√
2 for all j ∈ Nk(m) \ {ik}, and cikik = 0,

so

zLn ≤ 2

M∑
m=1

b∗(m)∑
k=1

c0ik +
∑

j∈Nk(m)\{ik}

ε
√

2


= 2

M∑
m=1

b∗(m)∑
k=1

(
c0ik + (|Nk(m)| − 1)ε

√
2
)
.
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Let c∗(m) be the distance from the depot to the nearest node in Am. By the triangle
inequality, c0ik ≤ c∗(m) + ε

√
2 for all m = 1, . . . ,M , so

zLn ≤ 2

M∑
m=1

b∗(m)∑
k=1

(
c∗(m) + ε

√
2 + (|Nk(m)| − 1)ε

√
2
)

= 2

M∑
m=1

b∗(m)(c∗(m) + ε
√

2) +

b∗(m)∑
k=1

(|Nk(m)| − 1)ε
√

2


= 2

M∑
m=1

b∗(m)c∗(m) + 2nε
√

2

since
⋃M
m=1

⋃b∗(m)
k=1 Nk(m) = N−. Therefore,

lim sup
n→∞

1

n
zLn ≤ 2 lim sup

n→∞

1

n

M∑
m=1

b∗(m)c∗(m) + 2ε
√

2.

(We need lim sup rather than lim because of the inequality.) Bramel et al. (1992) prove
that

lim sup
n→∞

1

n

M∑
m=1

b∗(m)c∗(m) ≤ γE[c]

a.s. Therefore,

lim sup
n→∞

1

n
zLn ≤ 2

(
γE[c] + ε

√
2
)

a.s. This holds for any ε > 0; therefore,

lim
n→∞

1

n
zLn = 2γE[c], (11.56)

a.s., as we set out to show.
Now, by Theorem 11.3, Lemma 11.4, and (11.56), we have

2γE[c] = lim
n→∞

1

n
z∗n ≤ lim

n→∞

1

n
zSCn ≤ lim

n→∞

1

n
zLn = 2γE[c].

Therefore,

lim
n→∞

1

n
zSCn = 2γE[c].

There is only limited computational evidence concerning the LBH’s performance.
Bramel and Simchi-Levi’s (1995) computational results suggest that the LBH is slower
and less accurate than other heuristics (see also Cordeau et al. 2002), and few, if any,
other computational studies have been published. However, the heuristic has significant
theoretical interest, especially in light of Theorem 11.5.
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(b) Subregion Am packed into bins.

Figure 11.10 Feasible solution for CCLP in proof of Theorem 11.5.

(a) Before exchange. (b) After exchange.

Figure 11.11 Node exchange for VRP.

11.3.4 Improvement Heuristics

Since a solution to the VRP consists of multiple TSP-type tours, any improvement heuristic
for the TSP (Section 10.5)—2-opt, Or-opt, US, etc.—can also be applied to the routes in a
VRP solution.

Another important class of improvement heuristics for the VRP involves moving one or
more nodes from one route to another. One simple approach searches for an individual node
that can be moved to a different route to reduce the total route length (as in Figure 11.11),
and repeats this process until no further exchanges can be found. We can generalize this
considerably to identify multiple consecutive nodes that can be moved to another route—or
exchanged with nodes on that route—to reduce the total length; see, e.g., Thompson and
Psaraftis (1993) and Laporte and Semet (2001).

11.3.5 Metaheuristics

In the past few decades, a class of heuristics called metaheuristics has become very popular,
especially for solving combinatorial optimization problems. Metaheuristics are usually
quite general and can therefore apply to a wide range of problems but require customization
to do so. At the core of a metaheuristic is usually one or more simpler heuristic “moves”
(e.g., adding, dropping, or swapping nodes), and these simpler heuristics are manipulated
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by the metaheuristic itself—hence, “meta.” Many metaheuristics are inspired by natural
phenomena, such as the inheritance of genes, the behavior of ant colonies, the flocking of
birds, and the heating and cooling of metals. These heuristics attempt to mimic nature’s
success in achieving certain goals by modeling their behavior algorithmically. Many
incorporate randomness, just as in nature.

Classical heuristics such as insertion heuristics for the TSP (Sections 10.4.1–10.4.5),
the Clarke–Wright heuristic for the VRP (Section 11.3.1), or the neighborhood search
heuristic for the UFLP (Section 8.2.5) usually progress in a single direction to find a
solution (though they may be randomized, seeded with different initial solutions, etc.,
to develop alternate solutions). In contrast, metaheuristics contain explicit mechanisms
to explore more regions of the solution space, usually by allowing the search to move
in directions toward inferior, or even infeasible, solutions, in the hope of then moving
toward an even better solution. (Think of a mountain climber standing halfway up the
shorter of two neighboring mountains; she has to go lower, first, before climbing the higher
mountain.) One category of metaheuristic, called population search, diversifies the search
by considering many solutions at a time, while another, called local search, does so by
devoting more computational effort to improving one, or a few, solutions at a time. Because
metaheuristics search harder than classical heuristics, they often produce better solutions,
as well as longer computation times.

Because the VRP is so difficult to solve exactly, metaheuristics have become one of the
most popular, and successful, approaches for solving them. In this section, we discuss two
such methods—tabu search and genetic algorithms. For more thorough reviews of these
and other metaheuristics for the VRP, including simulated and deterministic annealing, ant
colony optimization, and neural networks, we refer the reader to Gendreau et al. (2001)
and Vidal et al. (2013). For an overview of metaheuristics in general, see Blum and Roli
(2003), Gendreau and Potvin (2010), and Luke (2013).

The success of a given metaheuristic depends heavily on a number of factors, including
how it is customized for the optimization problem at hand, how it is implemented in code,
and how the user sets the parameters that control its execution. This makes it difficult
to compare metaheuristics to one another in general without focusing on the specific
details of individual researchers’ implementations. Nevertheless, tabu search is generally
considered to be the most successful metaheuristic at solving VRP problems and their
extensions (Gendreau et al. 2001, Cordeau and Laporte 2005). This is not to discount other
metaheuristics, however—a winning simulated annealing heuristic or genetic algorithm
may be just one innovation away.

11.3.5.1 Tabu Search A tabu search heuristic (Glover 1986, 1989, 1990), sometimes
called taboo search, uses one or more “moves” to iterate from one solution to the next.
A move is sometimes made even if it degrades the solution (or makes it infeasible), and
therefore the algorithm needs a way to prevent the search from moving right back to the
original solution at the next iteration. One way to do this would be simply to maintain
a list of all the solutions encountered thus far and to prohibit moves that would return to
one of these solutions, but this would entail an unacceptable memory and computational
burden. Instead, tabu search maintains a tabu list of moves that are prohibited (“taboo”) for
a certain number of iterations. The moves on the tabu list are the reverse of the moves that
were recently implemented. Many tabu search heuristics also incorporate diversification
mechanisms to encourage new areas of the search space to be explored (e.g., by penalizing
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(a) Before λ-interchange. (b) λ1 = 1, λ2 = 0.

(c) λ1 = λ2 = 1. (d) λ1 = 2, λ2 = 1.

Figure 11.12 A few possible λ-interchange moves for VRP, with λ = 2. = node originally on
route A, = node originally on route B.

moves that have been made too many times already) and intensification mechanisms to
improve promising solutions even further (e.g., by performing improvement heuristics on
them). For general references on tabu search, see, e.g., Glover and Laguna (1997), and for
its application to the VRP, see, e.g., Cordeau and Laporte (2005).

Perhaps the most critical decision to make when designing a tabu search heuristic is
how to define the neighborhood of a given solution, that is, the set of solutions that can
be reached from that solution via an allowable move. In the context of the VRP, a simple
neighborhood might consist of all solutions that can be reached from the current solution
by moving a node from its current route to a new one. The two most common moves for
VRP tabu search algorithms are more flexible and powerful than this simple one.

The first is a λ-interchange (Osman 1993), which consists of moving λ1 nodes from
route A to route B and λ2 nodes from route B to route A, where λ1, λ2 ≤ λ for a fixed
integer λ. (See Figure 11.12.) If λ1 or λ2 equals 0, then we are simply moving one or
more nodes from one route to another. The neighborhood of a given solution is defined
as all solutions that can be reached from it via a single λ-interchange. Osman’s algorithm
uses λ = 2 to keep the search manageable. Taillard (1993) adds to this an intensification
mechanism in which the routes are optimized using an exact TSP algorithm. His algorithm
also decomposes the problem geographically so that the search can be parallelized. Rochat
and Taillard (1995) enhance Taillard’s (1993) algorithm using a concept that has come to
be known as adaptive memory, and the resulting algorithm finds the best known solution
for all 14 of the benchmark instances by Christofides et al. (1979).

Moves in the TABUROUTE heuristic (Gendreau et al. 1994) are very simple—they
consist of moving only a single node to another route, a special case of 1-interchanges—
but the heuristic compensates for the simple neighborhood structure through a host of
other features. Most notably, the insertion of the node into its new route is performed
using the GENI heuristic (Section 10.4.5), and intensification occurs via the US heuristic
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(a) Before ejection chain. (b) After ejection chain.

Figure 11.13 Ejection chain move for VRP. = node originally on route A, = node originally
on route B, = node originally on route C.

(Section 10.5.3), both by Gendreau et al. (1992). TABUROUTE also allows infeasible
solutions to be considered during the search. Solutions are evaluated based on a weighted
sum of the usual VRP objective function and terms quantifying the capacity and route-
length constraint violations. The weights on these terms are adjusted dynamically in
the algorithm to nudge the search back toward feasibility if it has found only infeasible
solutions for a certain number of iterations. Toth and Vigo (2003) propose a TABUROUTE-
like algorithm that automatically eliminates long edges, since these are unlikely to appear
in optimal solutions. Their approach, known as granular tabu search, results in shorter run
times with a minor degradation in solution quality.

The second main type of move, called an ejection chain (Rego and Roucairol 1996, Xu
and Kelly 1996), consists of moving nodes from route A to route B, other nodes from B
to C, others from C to D, and so on. (See Figure 11.13.) Ejection chains are therefore
generalizations of λ-interchanges. This mechanism is used in tabu search heuristics by Xu
and Kelly (1996), Rego and Roucairol (1996), and Rego (1998); these heuristics appear
not to perform as well as those using λ-interchanges (Cordeau and Laporte 2005).

11.3.5.2 Genetic Algorithms A genetic algorithm (GA; Holland 1992) is a meta-
heuristic in which solutions to the optimization problem are represented as genes that are
passed from one generation to the next. Through a process that mimics natural selection
(or survival of the fittest), good solutions are more likely to reproduce, and therefore the
population tends to produce fitter and fitter offspring as it evolves.

A GA maintains a current population that consists of multiple chromosomes (or indi-
viduals), each of which corresponds to a solution by representing it as a string of genes. In
each iteration of the GA, several processes (called operators) act on the current population
to create a new one. Common operators include reproduction, in which good solutions
from the current generation are copied to the next; crossover, in which information from
two “parent” solutions is merged to create one or more “offspring” solutions; and mutation,
in which a small number of genes are randomly altered. In many GAs, some or all indi-
viduals from the population are also subjected to improvement heuristics; this approach is
sometimes called a memetic algorithm.

Let’s return to the uncapacitated fixed-charge location problem (UFLP; Section 8.2) to
see how a simple GA might work. Recall that a solution to the UFLP consists of variables
xj and yij that indicate whether facility j is open and whether customer i is assigned to
facility j, respectively. Once we know the facility locations, the optimal assignments are
easy to determine, so it suffices to encode only the xj variables. This can be done quite
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0 0 1 0 0 0 0 0
1 1 0 1 0 0 1 0
1 0 1 1 0 0 0 1
0 1 0 0 1 1 0 1
1 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0

(a) A small population.

1 1 0 1 0 0 1 0
0 1 0 0 1 1 0 1

⇓

1 1 0 0 1 1 0 1

(b) One-point crossover.

1 1 0 1 0 0 1 0
0 1 0 0 1 1 0 1

⇓

0 1 0 0 0 1 0 0

(c) Uniform crossover.

Figure 11.14 A simple genetic algorithm for the UFLP. In (b) and (c), genes selected for inheritance
by the offspring are in boxes.

6 2 1 3 7 4 5 8
7 1 8 4 5 2 6 3

⇓

6 2 1 4 5 2 6 3

Figure 11.15 One-point crossover for VRP leading to infeasible solution.

simply, by setting the gene for facility j equal to xj . A small population for a problem
with |J | = 8 is shown in Figure 11.14(a). Crossover can be performed in a number of
ways. One way is to choose a “crossover point,” and to use the genes from parent A before
the crossover point and from parent B after the crossover point, as in Figure 11.14(b) (the
parents are the second and fourth individuals); this is called one-point crossover. Another
way, called uniform crossover, is to choose a parent randomly and independently with some
probability for each gene, as in Figure 11.14(c).

Neither of these approaches works for the VRP, however. To see why, imagine we
encode solutions by listing the customer nodes in the order they are visited. (For simplicity,
we’ll temporarily assume there is only a single route.) Then the offspring produced by
simple crossover methods such as one-point or uniform crossover are likely to contain some
nodes twice and some nodes not at all. Figure 11.15 illustrates this for one-point crossover.
GAs for the VRP must therefore use more sophisticated crossover mechanisms to ensure
feasibility.

Van Breedam (1996) proposes encoding a solution as a string in which the depot is
repeated each time a new route begins. For example, the string 0 4 6 0 3 5 2 1 represents
two routes, 0 → 4 → 6 and 0 → 3 → 5 → 2 → 1. His crossover mechanism is
based on the partially matched crossover (PMX) operator for the TSP and other sequencing



HEURISTICS FOR THE VRP 493

0 4 7 3 0 2 1 0 5 6 8
0 5 1 0 2 0 6 8 3 4 7

⇓

0 4 6 8 0 2 1 0 5 7 3
0 5 1 0 2 0 7 3 8 4 6

Figure 11.16 PMX-based crossover operator (Van Breedam 1996).

problems (Goldberg 1989). It works by selecting two crossover points and exchanging
the strings between them to produce two new offspring. For example, in Figure 11.16,
nodes 7 and 3 in parent A are swapped with nodes 6 and 8 in parent B, both between the
crossover points and outside of them. He proposes a mutation operator in which two nodes
on different routes are swapped, like a λ-interchange operation with λ1 = λ2 = 1.

A more complex, and effective, crossover operator is used in the memetic algorithm
by Nagata and Bräysy (2009) and based on the edge assembly crossover (EAX) operator
for the TSP (Nagata and Kobayashi 1997). Given two parents, A and B (Figure 11.17(a)),
the operator works as follows:

1. LetGAB be the graph consisting of node setN and edge set (EA∪EB)\(EA∩EB),
where EA and EB are the edges in parents A and B, respectively. That is, GAB
contains all the edges from both parents, excluding edges that they have in common.
(Figure 11.17(b).)

2. Partition GAB into cycles that consist of alternating edges from parents A and B;
these are called AB-cycles.

3. Choose a subset of the AB-cycles; this is called an E-set. (Figure 11.17(c).)

4. Form an intermediate solution by removing from A all edges that are in the E-set
and replacing them with edges from the E-set that came from B. The intermediate
solution may include subtours. (Figure 11.17(d).)

5. Fix infeasibilities with respect to subtours and capacity constraints using moves
similar to 2-opt and λ-interchange.

Their method allows capacity-infeasible solutions to diversify the search space (as in a
tabu search heuristic), with a penalty in the objective function to encourage feasibility.
A local search procedure improves the solutions found by the GA, again using 2-opt
and λ-interchange-type moves. The method found new best known solutions on several
benchmark instances.

Many more varieties of GA (and the more general category of evolutionary algorithms)
have been proposed for the VRP. For a thorough review, see Potvin (2009). For a general
reference on GAs, see, e.g., Goldberg (1989).
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(a) Parents A and B.

(b) Graph GAB . (c) An E-set. (One cycle is drawn heavier to
distinguish it from the cycle it intersects.)

(d) Intermediate solution.

Figure 11.17 EAX-based crossover operator (Nagata and Bräysy 2009).
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11.4 BOUNDS AND APPROXIMATIONS FOR THE VRP

In Section 11.4.1, we discuss bounds that relate the optimal objective function value for
a VRP instance to that of the corresponding TSP instance. Then, in Section 11.4.2 we
discuss the asymptotic behavior of the optimal VRP objective as n→∞. Throughout this
section, we assume that the number of vehicles is unrestricted.

11.4.1 TSP-Based Bounds

Suppose that each customer has a demand of 1, so thatC represents the number of customers
that each vehicle can serve. Let z∗(M) be the total length of the optimal VRP routes through
a set M ⊆ N− of customers, and let zT (M) be the length of the optimal TSP tour through
the nodes in M . Let zT = zT (N), and z∗ = z∗(N−). Haimovich and Rinnooy Kan
(1985) prove the following bounds on z∗:

Theorem 11.6 For a VRP instance on nodes N = {0, 1, . . . , n} with di = 1 for all
i = 1, . . . , n,

max
{

2
n

C
c̄, zT

}
≤ z∗ ≤ 2

⌈ n
C

⌉
c̄+

(
1− 1

C

)
zT , (11.57)

where c̄ = 1
n

∑n
i=1 c0i is the average distance from the depot to the customer nodes.

Proof. We prove the lower bound first. Let Nk be the set of customers served by vehicle k
in the optimal solution. Then

zT (Nk ∪ {0}) ≥ 2 max
i∈Nk
{c0i} ≥ 2

∑
i∈Nk c0i

|Nk|
≥ 2

∑
i∈Nk c0i

C
.

The first inequality follows from the triangle inequality; see Figure 11.18(a). The second
inequality holds because the maximum distance from the depot to nodes in Nk is no less
than the average distance, and the third follows from the capacity constraint |Nk| ≤ C.
Then

z∗ =
∑
k

zT (Nk ∪ {0}) ≥
∑
k

2

∑
i∈Nk c0i

C
=

2

C

∑
i∈N

c0i = 2
n

C
c̄.

Moreover, by the triangle inequality, zT ≤ z∗, so

max
{

2
n

C
c̄, zT

}
≤ z∗,

as desired.
To prove the upper bound, we describe a heuristic that constructs a feasible solution

whose objective function value is at most equal to the right-hand side of (11.57). This
heuristic begins with the optimal TSP tour throughN− and greedily partitions it into routes
that satisfy the capacity constraint, connecting each to the depot. Each route consists of
consecutive nodes from the TSP tour. Let ` =

⌈
n
C

⌉
be the resulting number of routes. This

heuristic is called optimal tour partition (OTP).5 (See Figure 11.18(b).) Note that ` edges

5“Optimal” refers to the optimality of the TSP tour that initializes the heuristic, not to the optimality of the
partition or of the resulting VRP solution, since these may be suboptimal.
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zT (Nk)

m
ax
{c 0
i
}

(a) zT (Nk ∪ {0}) ≥ 2 maxi∈Nk{c0i}. (b) Solution produced by optimal tour parti-
tion heuristic with n = 15, C = 4 =⇒
` = 4.

Figure 11.18 Figures for proof of Theorem 11.6.

in the original TSP tour are omitted from the VRP solution; these are marked as dashed
lines in Figure 11.18(b).

Now suppose that we repeat the OTP heuristic n times, each time starting at a different
customer node, and then choose the best of the n solutions. We use the same orientation
of the tour (clockwise or counterclockwise) each time. Call this the iterated optimal tour
partition (IOTP) heuristic, and let zIOTP be the objective value of the solution it returns;
then

z∗ ≤ zIOTP . (11.58)

Each customer appears first on exactly ` routes and last on exactly ` routes, among all n
solutions produced during the IOTP heuristic. Also, each edge on the TSP tour is omitted `
times and therefore included n− ` times among the n solutions. Therefore, the total length
of all n solutions is equal to

2`
∑
i∈N

c0i + (n− `)zT .

The total length of the best solution must be less than or equal to the average, i.e.,

zIOTP ≤ 2`c̄+

(
1− `

n

)
zT . (11.59)

Combining (11.58), (11.59), and the fact that ` =
⌈
n
C

⌉
, we have the desired upper bound.

The upper bound in Theorem 11.6 consists of two parts; the first roughly corresponds to
the “radial” distance to travel from the depot to the route, while the second represents the
“local delivery” distance once the vehicle has reached the customer area.

Both bounds in Theorem 11.6 are tight—see Problem 11.18. In fact, as C → ∞, the
lower and upper bounds both approach zT—that is, the VRP approaches the TSP, as we
noted in Section 11.1.2.

In the special case in which the customers are uniformly distributed in the unit square and
the depot is located at its center, we can approximate zT ≈ 0.712

√
n using the square-root
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Figure 11.19 Approximate lower and upper bounds on z∗ vs. n for points in unit square and
C = 50.

approximation (10.41). One can show (Finch 2003, p. 479) that the expected distance from
a random point in the unit square to the center of the square is given by

1

6

(√
2 + ln

(
1 +
√

2
))
≈ 0.383. (11.60)

Therefore, Theorem 11.6 suggests that

max
{

0.766
n

C
, 0.712

√
n
}
. z∗ . 0.766

⌈ n
C

⌉
+ 0.712

(
1− 1

C

)√
n (11.61)

for points in the unit square. Here, the notation a . z∗ . bmeans “z∗ is greater [less] than
or equal to a constant that is approximately equal to a [b].” For fixed C, the approximate
bounds diverge as n→∞, as shown in Figure 11.19 for C = 50. Note that for n ≤ 2160,
the square-root term in the lower bound dominates the max, while for n > 2160, the linear
term does.

11.4.2 Optimal Objective Function Value as a Function of n

Recall from Theorem 10.19 that as n gets large, the optimal TSP tour length increases as√
n. In contrast, the optimal VRP objective function value increases linearly as n gets

large. Haimovich and Rinnooy Kan (1985) prove the following:

Theorem 11.7 Suppose that the node locations in the VRP are drawn iid from a probability
distribution on a compact region with expected distance E[c] to the depot. Suppose that
di = 1 for all i ∈ N−. Let z∗n be the optimal objective function value for the problem with
n nodes. Then

lim
n→∞

1

n
z∗n =

2E[c]

C
(11.62)
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(a) Radial distance dominates as n→∞ without
commensurate increase in C.

(b) Local delivery distance dominates as n → ∞
with sufficient increase in C.

Figure 11.20 Asymptotic behavior of VRP solution as n→∞.

almost surely (a.s.).

Proof. Omitted; see Haimovich and Rinnooy Kan (1985).

In other words, for sufficiently large n, z∗n can be approximated by 2E[c]n/C, the cost
of using n/C vehicles and sending each to a node at a distance of E[c] from the depot. (We
discussed a similar, but more general, result by Bramel et al. (1992) in Theorem 11.3, which
allows the demands to be iid rather than equal to 1.) As we discussed in Section 11.4.1, the
first term of the upper bound in Theorem 11.6 is proportional to n and represents the radial
distance to travel to the customers from the depot. The second term represents the local
delivery distance once we reach the set of customers on the route, and by Theorem 10.19,
this term is proportional to

√
n as n gets large. Theorem 11.7, then, says that for fixed C,

the radial distance dwarfs the local delivery distance as n → ∞, for z∗n itself and not just
its upper bound. (See Figure 11.20(a).)

What happens when C increases along with n? The answer depends on the relative
rate of increase in the two parameters. Let Cn be the capacity when there are n nodes.
Haimovich and Rinnooy Kan (1985) prove that, under certain conditions on the probability
distributions, ifC increases much more slowly than

√
n, then the approximate total distance

for large n is still proportional to n, whereas if C increases much more quickly than
√
n,

then the approximate total distance is proportional to
√
n. In other words, as n→∞, if the

capacity does not keep pace with the square root of the number of nodes, then the number of
routes increases and the radial distance dominates, as in Figure 11.20(a); on the other hand,
if the capacity increases faster (or not much slower) than the square root of the number of
nodes, then the number of routes decreases and the local delivery distance dominates, as
in Figure 11.20(b). In the latter case, the solution approaches the TSP solution, which we
know has a length proportional to

√
n as n gets large. In fact, the constant of proportionality

for the VRP distance includes the TSP constant β.

11.5 EXTENSIONS OF THE VRP

In this section, we discuss some of the more important VRP extensions that have been
developed.
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11.5.1 Distance-Constrained VRP

As we noted in Section 11.1.2, the VRP sometimes includes a constraint on the maximum
distance or travel time for each route. In the case of travel time constraints, each node may
also include a time for loading or unloading, which is included in the total travel time of
the route. This variant is known as the distance-constrained VRP (DVRP).

The two-index formulation (11.1)–(11.6) can be adapted to handle the distance con-
straints by modifying the right-hand sides of the capacity-cut constraints (11.4). Calculating
the best right-hand side for the revised constraints, however, is difficult because it requires
solving the TSP, so an approximate value is often used. In the three-index formulation
(11.10)–(11.17), we can enforce distance limits by adding constraints such as∑

i∈N
cijxijk ≤ L ∀k = 1, . . . ,K, (11.63)

where L is the distance limit.
Many of the exact algorithms and heuristics we have discussed for the VRP can be easily

adapted for the DVRP, as well. For example, in the Clarke–Wright savings heuristic, we
can add the distance constraint to the rules for allowing route mergers.

11.5.2 VRP with Time Windows

The VRP with time windows (VRPTW) imposes constraints on the time that a vehicle can
arrive at a given customer. For example, a manufacturing company may require that raw
materials be delivered by a certain time in order to avoid running out of inventory and
shutting down the production process. Or, a supermarket may require that trucks avoid
peak hours so as not to clog up the parking lot during busy times. In some cases, time
windows may be violated, but the shipping company incurs a penalty for doing so—these
are known as soft constraints. Most of the literature, however, has focused on problems
with hard constraints that cannot be violated, and we focus on the same here. See Cordeau
et al. (2001) for a thorough overview of the VRPTW.

Obviously, the VRPTW is NP-hard since it is a generalization of the VRP. However,
it is even NP-complete to find a feasible solution to the VRPTW (Savelsbergh 1985). (In
contrast, it is always easy to find a feasible solution to the VRP, if one exists: We simply
place each customer on its own route.)

The standard formulation for the VRPTW (see, e.g., Cordeau et al. 2001) is nonlinear;
it can be linearized, but only at the expense of adding “big-M” terms, which weaken the
formulation (Problem 11.13). Lower bounds can be obtained from the LP relaxation or
by relaxing the time window and capacity-cut constraints, resulting in a problem that is
easy to solve, but both of these bounds are typically weak. These bounds can be tightened
using decomposition approaches such as Lagrangian relaxation (Kohl and Madsen 1997),
column generation/set covering (Desrochers et al. 1992, Bramel and Simchi-Levi 1997), and
variable splitting (also known as Lagrangian decomposition) (Kohl 1995). In principle, any
of these can be embedded into a branch-and-cut algorithm to find exact optimal solutions,
but the column generation approach lends itself well since, among other reasons, it tends
to produce tighter bounds (Bramel and Simchi-Levi 1997).

Because it is so difficult, many of the algorithms for the VRPTW are heuristics. Solomon
(1987) adapts the Clarke–Wright savings heuristic to handle time windows. Several im-
provement heuristics have been proposed, including some based on k-opt and Or-opt
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exchanges (Russell 1977, Savelsbergh 1985). Bramel and Simchi-Levi (1996) extend their
(1995) location-based heuristic to the VRPTW and show that it is asymptotically optimal.
In addition, a wide variety of metaheuristics have been introduced; see, e.g., Gendreau et al.
(2008) for a review.

11.5.3 VRP with Backhauls

After delivering to its customers, a vehicle might then stop at additional nodes to pick
up items that must be returned to the depot. For example, trucks that deliver products to
individual stores in a supermarket chain may then stop at the chain’s suppliers to pick up
products to replenish the inventory at the depot. Doing so can save time, fuel, and mileage
compared to a strategy in which the two types of customers are visited on separate sets of
routes. This variant of the VRP is called the VRP with backhauls (VRPB). The outbound
customers are called linehaul customers, while the return customers are called backhaul
customers. The VRPB usually assumes that all of the linehaul customers must be served
before any of the backhaul customers can be visited (because of their higher priority and
because of the logistics of loading and unloading trucks).

Construction heuristics for the VRPB include methods based on the Clarke–Wright sav-
ings heuristic (Deif and Bodin 1984) and on the notion of space-filling curves (Goetschalckx
and Jacobs-Blecha 1989). Toth and Vigo (1999) propose an improvement heuristic based
on edge exchanges. Exact algorithms make use of set partitioning (Mingozzi et al. 1999)
and Lagrangian relaxation (Toth and Vigo 1997). See Toth and Vigo (2001c) for a review
of the VRPB.

11.5.4 VRP with Pickups and Deliveries

In the VRP with pickups and deliveries (VRPPD), each customer specifies both a pickup
point and a delivery point, and the same vehicle must visit both points, in order. A typical
example is a courier service. In the important case in which the “cargo” are people, the
problem is known as the dial-a-ride problem, which is often used for transportation systems
for elderly patrons who do not drive and use the service to shop, visit the doctor, and so on.
For this reason, the VRPPD often also includes time window constraints. For a review, see
Desaulniers et al. (2001).

11.5.5 Periodic VRP

In many practical routing problems, customers must receive deliveries with a certain fre-
quency, but they do not specify which time periods must be used. For example, fuel delivery
customers may require service once per month, supermarkets may request deliveries three
times per week, and a university department may receive campus mail delivery twice per
day. The problem of assigning customers to periods and to routes on those periods, and of
optimizing the routes in each period, is called the periodic VRP (PVRP). The problem was
introduced by Beltrami and Bodin (1974). For a review, see Francis et al. (2008).

Russell and Igo (1979) propose a construction heuristic based on the Clarke–Wright
savings heuristic and an improvement heuristic based on the Lin–Kernighan heuristic for
the TSP. Christofides and Beasley (1984) approximate the routing cost of the problem
using a median problem (in a manner reminiscent of the location-based heuristic), but
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even that approximation is solved heuristically, by first assigning customers to periods
and then building the routes. Tan and Beasley (1984) also use a two-phase approach,
first assigning customers to periods and then solving a separate VRP for each period.
Metaheuristics are also popular for the PVRP. For example, Cordeau et al. (1997) propose
a tabu search algorithm that uses moves based on the GENI insertion heuristic, much like
TABUROUTE. Their heuristic also applies to the multidepot VRP (discussed below) and a
periodic version of the TSP. Drummond et al. (2001) propose a genetic algorithm coupled
with a local search procedure, implemented using parallel computing to alleviate the high
computational burden. Francis and Smilowitz (2006) propose a continuous approximation
for a variant of the PVRP.

Only a few exact algorithms have been proposed for the PVRP. Francis et al. (2006)
show that the PVRP can, under certain conditions on the periodic schedules, be simpli-
fied somewhat, and they solve the simplified model using Lagrangian relaxation. The
Lagrangian subproblem decomposes into a capacitated assignment problem and a TSP
variant known as the prize-collecting TSP. They are able to solve small instances of the
problem to optimality. Mourgaya and Vanderbeck (2007) present an approach based on
column generation in which the pricing problem must be solved heuristically.

Another variant of the VRP, called the multidepot VRP (MDVRP), assumes that there
are multiple depots, rather than the single depot assumed in the classical VRP, and chooses
which customers to serve from each depot, as well as the routing of the vehicles from each
depot. Cordeau et al. (1997) show that this problem is actually a special case of the PVRP,
in which the depots in the MDVRP correspond to periods in the PVRP. Any algorithm for
the PVRP can therefore be used to solve the MDVRP.

CASE STUDY 11.1 ORION: Optimizing Delivery Routes at UPS

UPS is one of the largest logistics companies in the world, with annual revenues
topping $50 billion, nearly two-thirds of which comes from its small-package business.
Roughly 55,000 UPS drivers deliver an average of 16 million packages per day in the
United States. UPS has one of the largest corporate industrial engineering (IE) de-
partments in the world and has a long history of using operations research (OR) in its
planning and operations. In 2003, the company began to develop a software package
called On Road Integrated Optimization and Navigation (ORION), which today is used
to optimize delivery routes for UPS’s entire US network. In 2016, UPS and ORION
won the INFORMS Edelman Award for operations research in practice. Holland et al.
(2017) describe the project in detail.

Each morning at each of UPS’s 1400 package centers in the United States, the
packages to be delivered that day are assigned to delivery vans, and the customers
receiving the packages are sequenced into a delivery route. Van-assignment is essentially
the clustering phase of the VRP, while sequencing is the routing phase. UPS separates
these two phases: Once van-assignment is complete, ORION solves a TSP-type problem
to optimize the single route for each van. However, the routes are optimized every
minute as the vans are being loaded, which allows planners to adjust the van assignments
to rebalance the loads. Therefore, the VRP is solved as an iterative process, alternating
between the clustering and routing phases.

The routing problem is solved as a TSP with time windows (TSPTW). Although the
TSPTW can be formulated as a mixed-integer programming (MIP) problem, solving
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such a problem for the 140–160 customers on a typical route would be far too slow.
In fact, none of the TSPTW algorithms in the literature, even heuristics, were fast
enough for UPS’s purposes. This is because the route optimization is not performed
until after the van has been fully loaded, at which point the driver is ready to depart.
If each driver has to wait one minute each day for the route optimization to finish, it
would cost UPS an estimated $15 million per year in lost productivity. Therefore, UPS
wanted to develop very fast heuristics.

After much experimentation, the heuristic finally implemented in ORION contains
aspects of k-opt, Lagrangian relaxation, simulated annealing, and other metaheuristics.
The algorithm implements various side constraints, such as requiring certain stops to
be carried out in a strict order. It also accommodates practical preferences through
penalties in the objective function. For example, the algorithm penalizes routes for
zig-zagging back and forth across a busy street rather than delivering first on one side
and then on another, which improves efficiency as well as driver safety. It also contains
features for ensuring some consistency from one day to the next, a characteristic that
is valued by both drivers and customers.

ORION was developed over roughly 10 years and cost an estimated $295 million to
develop and deploy. The project involved extensive testing, both in computer experi-
ments and on the road, and was rolled out using careful change-management strategies.
Roughly 700 people worked full-time to deploy ORION, in addition to support from 100
others. UPS estimates that ORION will save an estimated $300–$400 million per year.
It will result in 100 million fewer miles driven per year, corresponding to a savings of
10 million gallons of fuel and 100,000 metric tons of CO2 emissions. ORION is run on
300 servers, and another 300 are hosted at a second data center as a backup. This
infrastructure is capable of performing 30,000 route optimizations per minute. It is
fitting that analytics guru Tom Davenport called ORION “arguably the world’s largest
operations research project” (Davenport 2013).

PROBLEMS

11.1 (VRP Construction Heuristics #1) Use each of the construction heuristics listed
below to find solutions for the VRP instance shown in Figure 11.21. Coordinates and
demands for the nodes in the figure are given in Table 11.2. Distances between nodes are
Euclidean. The vehicle capacity is 100. For each heuristic, report the tour found and its
length.

a) Clarke–Wright savings heuristic
b) Sweep heuristic
c) Location-based heuristic

11.2 (VRP Construction Heuristics #2) Repeat Problem 11.1 for the VRP instance
shown in Figure 11.22, consisting of the 20 largest cities in China. Coordinates and
demands for the nodes in the figure are given in Table 11.3. The depot is in Nanjing (node
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Figure 11.21 VRP instance for Problem 11.1. Distances are Euclidean.

Table 11.2 Node coordinates for Problem 11.1.

i xi yi di i xi yi di

0 7.0 6.0
1 8.1 1.6 6.3 6 1.0 1.4 16.8
2 8.9 9.7 38.8 7 2.8 4.2 36.6
3 1.3 9.6 19.4 8 5.5 9.2 21.7
4 9.1 4.9 32.0 9 9.6 7.9 8.3
5 6.3 8.0 5.7 10 9.6 9.2 38.4
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Figure 11.22 VRP instance for Problem 11.2. Distances are great circle distances.

Table 11.3 Node coordinates and demands for Problem 11.2.

i Name Latitude Longitude di

1 Guangzhou 23.1300 113.2590 11,071
2 Shanghai 31.2253 121.4889 22,265
3 Beijing 39.9059 116.3913 19,295
4 Shantou 23.3653 116.6949 1,347
5 Chengdu 30.6766 104.0613 10,358
6 Dongguan 23.0449 113.7525 11,090
7 Hangzhou 30.2757 120.1505 7,677
8 Wuhan 30.5960 114.2993 8,221
9 Shenyang 41.8045 123.4278 6,242

10 Xi’an 34.2192 109.1102 9,781
11 Nanjing 32.0609 118.7916 6,256
12 Hong Kong 22.2793 114.1628 6,501
13 Chongqing 29.5586 106.5493 7,166
14 Quanzhou 24.9039 118.5851 7,055
15 Wenzhou 28.0222 120.6484 7,458
16 Qingdao 36.0895 120.3497 1,398
17 Suzhou 31.2985 120.6222 3,040
18 Harbin 45.7657 126.6161 4,587
19 Qiqihar 47.3385 123.9512 5,349
20 Xiamen 24.4974 118.1356 6,705
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Table 11.4 Node coordinates and demands for Problem 11.3.

i xi yi di

0 1.3 1.1 —
1 4.9 1.1 500
2 3.8 0 800
3 6.2 1.2 350
4 6.4 4.6 500
5 7.8 0.9 850
6 9.3 5.2 500
7 3.8 9.6 750

Table 11.5 Partial savings list for Problem 11.4.

Savings from
i j Merging i and j

6 7 120
3 4 105
2 13 100
1 13 90

10 11 80
8 9 75
7 8 60

11); set the demand for Nanjing to 0. Set cij equal to the great circle distance between
nodes i and j (see Section 8.2.2). The vehicle capacity is 40,000.

11.3 (VRP Construction Heuristics #3) Repeat Problem 11.1 for the 8-node VRP
instance whose x- and y-coordinates are given in Table 11.4. The depot is node 0. The
table also lists the demand for nodes 1–7. The distance cij is the Euclidean distance
between i and j. The vehicle capacity is 1500 units.

11.4 (Clarke–Wright Iterations #1) Consider the instance of the VRP pictured in Fig-
ure 11.23. The truck capacity is 300, and the demand of each customer is indicated next
to it. Suppose we have performed several instances of the Clarke–Wright savings heuristic
and have arrived at the solution pictured in the figure. Draw or write the routes that will
result after proceeding through the portion of the savings list given Table 11.5, and indicate
the total distance of the routes.

11.5 (Clarke–Wright Iterations #2) Repeat Problem 11.4 for the VRP instance shown
in Figure 11.24 using the savings list in Table 11.6. The vehicle capacity is 30.

11.6 (Sweep Heuristic #1) Execute the sweep heuristic for the instance in Problem 11.4.
Draw or write the resulting routes and their total distance.

11.7 (Sweep Heuristic #2) Execute the sweep heuristic for the instance in Problem 11.5.
Draw or write the resulting routes and their total distance.
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Figure 11.23 VRP instance for Problem 11.4.

Table 11.6 Partial savings list for Problem 11.5.

Savings from Savings from
i j Merging i and j i j Merging i and j

8 11 6.55 9 12 5.79
8 10 6.54 1 3 5.73
2 3 6.28 8 12 5.37

10 12 6.26 3 4 5.31
1 11 6.04 2 12 5.03
7 9 5.97 7 10 4.89
5 6 5.83 7 11 4.61
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Figure 11.24 VRP instance for Problem 11.5.

11.8 (Worst-Case Error Bound for IOTP) Prove that

zIOTP

z∗
≤ 1 +

⌈
n

Q

⌉
C − 1

n
,

where zIOTP is the objective function value of the solution returned by the IOTP heuristic
described in the proof of Theorem 11.6 and z∗ is the optimal VRP objective function value.

11.9 (Worst-Case Error Bound for Iterated η-Optimal Tour Partition) Suppose that
we initialize the IOTP heuristic from the proof of Theorem 11.6 with a TSP tour produced
by a heuristic with a fixed worst-case bound of η instead of with an optimal TSP tour. Call
the resulting heuristic the iterated η-optimal tour partition (IηTP) heuristic. Prove that

zIηTP

z∗
≤ η +

⌈
n

Q

⌉
C − η
n

,

where zIηTP is the objective function value of the solution returned by the IηTP heuristic
and z∗ is the optimal VRP objective function value.

11.10 (Upper Bound on Optimal VRP Length) Prove that, if the nodes in N are all
contained in a rectangle with sides a and b, then the total optimal VRP route length satisfies

z∗ ≤
√

2(n− 1)ab+ 2(a+ b).

11.11 (Capacity-Cut Constraints for |S| ≤ 2) Prove that the capacity-cut constraints
(11.4) remain correct even if we change the “for all” part to ∀S ⊆ N− : |S| ≥ 3. That is,
prove that for |S| ≤ 2, the constraint eliminates routes whose nodes are S and which are
either capacity-infeasible or are subtours.

11.12 (Proof of (11.31)) Prove the validity of the comb inequality (11.31).
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11.13 (VRPTW Formulation) In this problem, you will formulate the VRP with time
windows. Suppose the vehicle serving customer i ∈ N− must arrive at node i in the time
window [ai, bi] for parameters ai and bi. Let τij be a parameter indicating the travel time
on edge (i, j). Let ti be a new decision variable that equals the arrival time at customer
i ∈ N−.

Modify the three-index VRP formulation to account for time windows. Write one or
more sets of linear constraints that set ti appropriately and require it to be in [ai, bi] for
all i ∈ N−. Explain your constraints in words. If you define any new notation, define it
clearly.

11.14 (VRP with Precedence Constraints) Modify the three-index VRP formulation to
handle precedence constraints that stipulate that customer imust be visited before customer
j (on the same route) for all i, j ∈ N− for which aij = 1, where aij is a parameter. (Note
that customer i does not need to be served immediately before customer j.)

11.15 (VRP with Conflicting Product Types) Consider a variant of the VRP in which
there are three product types, A, B, and C. Each customer in N− needs one of these three
types; the type is given as an input. Product type A can be transported in a vehicle with
product types B or C, but product types B and C cannot be mixed in the same vehicle.
Modify the Clarke–Wright savings heuristic to handle this problem. Describe your heuristic
in words, as well as in pseudocode.

11.16 (Garbage Pickup for Bethlehem, PA) The city of Bethlehem, PA, does not operate
a centralized garbage collection service. Instead, each household hires a private garbage-
collection company. A city resident claimed that centralizing the garbage collection service
would result in fewer total truck miles than the current decentralized approach. Do you
agree with this claim?

There are approximately 30,000 households in Bethlehem, which occupies approxi-
mately 20 square miles. Assume that each collection company solves a VRP to optimize
its own routes and that a centralized collection service would do the same.

11.17 (Accuracy of ST and SC) Develop a small example (with one depot and no more
than five customers) in which the star connection cost in the LBH, given by

fj +
∑
i∈N−

c̃ij

with fj and c̃ij set using (11.45) and (11.46), respectively, more accurately estimates the
optimal TSP cost through the depot and N− than the seed tour cost, in which c̃ij set using
(11.47). Then modify your example so that the seed tour cost is more accurate than the star
connection cost.

11.18 (Theorem 11.6 Bounds are Tight) Prove that both bounds in Theorem 11.6 are
tight.

11.19 (Numerical Experiment on Theorem 11.6) Generate 50 or more random VRP
instances, solve them optimally, and plot their optimal objective function values, z∗, along
with the upper and lower bounds from Theorem 11.6.

11.20 (Proof of Lemma 11.4) Prove Lemma 11.4.
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11.21 (Bounds on the Search Space for DP) Prove that, in the minimization in (11.18),
it is sufficient to consider S′ ⊆ S such that

d(S)− (k − 1)C ≤ d(S′) ≤ C.

In addition, prove that it is sufficient to calculate θ(S, k) for S and k such that

d(N−)− (K − k)C ≤ d(S) ≤ kC

(assuming the number of vehicles is fixed to K).

11.22 (Generalized Capacity Constraints) Suppose N = (N1, . . . , NT ) is a set of
disjoint subsets of N−, T ≥ 2, with d(Nt) ≤ C for all t = 1, . . . , T . Suppose H ⊆ N−

such that Nt ⊆ H for all t = 1, . . . , T . Let b(H|N ) be the optimal objective value for
a bin-packing problem with bins of capacity C and |H| − t items: for each t = 1, . . . , T

there is an item with weight d(Nt), and for each i ∈ H \
⋃T
t=1Nt, there is an item with

weight di. Prove that the weak generalized capacity inequality is valid:

T∑
t=1

∑
i∈Nt,j∈N̄t or
i∈N̄T ,j∈Nt

xij ≥ 2t+ 2(b(N−|N )−K).



CHAPTER 12

INTEGRATED SUPPLY CHAIN MODELS

12.1 INTRODUCTION

We have discussed various aspects of managing a supply chain, and most of the earlier
chapters focus on one important decision in the supply chain while assuming the other
decisions have already been made. For example, when we discuss inventory models, we
ignore the facility location decision and its associated costs, whereas in the chapters dealing
with location models, we ignore the inventory and shortage costs, as well as the demand
uncertainty and the effects that reorder policies have on inventory and shipping costs. One
reason for this disconnect is that the decision-maker may not possess detailed information
about the future costs and other parameters in the supply chain when making facility location
or network design decisions. Another reason is that the more decisions that are included
in a single model, the more complex and hard to solve the model becomes. On the other
hand, ignoring inventory, transportation, and other costs when making strategic decisions
can lead to suboptimality. Significant cost savings can often be attained by optimizing
several of the major cost drivers that can influence the performance of the supply chain.

Recall from Chapter 1 that supply chain decisions can be classified into three levels:
strategic, tactical, and operational. Often, decisions are made at each level sequentially. For
example, we might first optimize facility locations (a strategic decision) with the expectation
that the facilities we choose will operate for roughly 10 years. Each month, we might make
tactical inventory decisions at the facilities in anticipation of that month’s demand. Finally,
we might optimize vehicle delivery routes (an operational decision) every day. Under

511Fundamentals of Supply Chain Theory, . Lawrence V. Snyder and Zuo-Jun Max Shen. 
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Snyder/SupplyChainTheory

Second Edition
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this sequential approach, higher-level decisions ignore the lower-level considerations (we
ignore inventory when optimizing facility locations, and we ignore routing when optimizing
inventory), whereas the lower level takes the higher-level decisions as inputs (inventory
models assume facility locations are fixed, and routing models assume inventory policies
are fixed). In this chapter, we explore models that make decisions at multiple levels
simultaneously.

When one considers whether to include decisions at multiple levels in the same opti-
mization model, it is important to ask whether the decisions in the lower-level problems
would affect the decisions at the higher level. For example, in Section 12.2, we consider
a model that considers inventory costs when making facility location decisions. We will
show that this model chooses different facility locations than we would obtain if we ignored
inventory when locating facilities, and moreover, that the location-only solution is more
expensive than the joint solution when inventory costs are factored in. This justifies the
increased complexity of a joint location–inventory model and the computational burden
required to solve it. On the other hand, suppose we were considering developing a model
that chooses the locations of facilities simultaneously with the number of restrooms in each
facility. It is unlikely that the locations chosen would be significantly different if each
facility has 2 restrooms than they would if each facility has 12 restrooms. In this case, it
is probably simpler—from both a modeling and a computational perspective—to optimize
the facility locations first, and then optimize the number of restrooms in a separate model.

In this chapter, we discuss three types of integrated models: location–inventory, location–
routing, and inventory–routing. We cover a location–inventory model thoroughly in Sec-
tion 12.2, including details on mathematical formulations, solution approaches, and an-
alytical properties. We then discuss some basic formulations and possible variations of
location–routing and inventory–routing problems in Sections 12.3 and 12.4, respectively.
We refer interested readers to more comprehensive surveys (e.g., Nagy and Salhi (2007),
Shen (2007), Coelho et al. (2013), and Prodhon and Prins (2014)) for more details.

12.2 A LOCATION–INVENTORY MODEL

12.2.1 Introduction

We consider the design of a three-echelon supply chain consisting of one or more suppliers,
distribution centers (DCs), and retailers. Each retailer places random demands to the DC
that supplies it. The problem is to determine how many DCs to locate, where to locate
them, which retailers to assign to each DC, how often to reorder at the DC, and what level
of safety stock to maintain, so as to minimize total location, shipment, and inventory costs,
while ensuring a specified level of service.

We assume that location costs are incurred when DCs are established. Line-haul trans-
portation costs are incurred for shipments from a supplier to the DCs. Local transportation
costs are incurred in moving the goods from the DCs to the retailers. Inventory costs are
incurred at each DC and consist of the holding cost for the average inventory used over
a period of time as well as safety stock inventory carried to protect against stockouts that
might result from uncertain retailer demand. We assume that the retailers maintain only a
minimal amount of inventory, which is ignored in the model below.

In an inventory system, both the cycle stock and the safety stock tend to be concave
functions of the demand served. To take a simple example, suppose the demand is dis-
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tributed as N(ξµ, ξσ2) for ξ ≥ 0. As we increase ξ, we scale both the mean and variance.
If the cycle stock is set using the economic order quantity (EOQ) formula (we will see
below why this is a reasonable assumption), then

cycle stock =
√

2Kξµ/h. (12.1)

And, again for reasons to be discussed below, the safety stock is given by

safety stock = zασ
√
ξ, (12.2)

where α is the desired service level. The right-hand sides of both (12.1) and (12.2) are
concave functions of ξ.

The upshot of this analysis is that, given the choice between many small facilities or few
large facilities to serve a geographically dispersed demand, inventory costs would always
favor the latter—both because of the economies of scale present in cycle stock costs and
because of the risk-pooling effect with regard to safety stock costs (see Section 7.2). Of
course, this doesn’t mean we should always locate only a single DC. Rather, we must
consider the fixed costs of the DCs and their locations (and hence transportation costs)
before deciding how many DCs to open, and where. The location model with risk pooling
(LMRP),1 introduced by Daskin et al. (2002) and Shen et al. (2003), simultaneously
optimizes all of these factors.

As we will see below, the LMRP is structured much like the uncapacitated fixed-charge
location problem (UFLP), with two extra nonlinear terms in the objective function that
represent the cycle- and safety-stock costs. Importantly, these costs are calculated without
including any decision variables to represent inventory decisions. Despite its nonlinear (in
fact, concave) objective function, the LMRP can be solved quite efficiently using extensions
of algorithms for the UFLP.

Imagine a set of retailers, each with random demand. Some of these retailers will be
converted to DCs, which will then serve the non-DC retailers (as well as their own demand).
The discussion of the UFLP in Section 8.2 referred to “customers” instead of “retailers,”
but the terms are interchangeable—both refer to some source of demand. Also, by stating
that some retailers will be “converted” into DCs, we are assuming that I = J (using the
notation of Section 8.2.2). We can make this assumption without loss of generality since if
there is a retailer that is not a potential facility site, we can set its fixed cost to∞, while if
there is a potential facility site that is not a retailer, we can set its demand to 0.

The original motivation for the LMRP was a study of a Chicago-area blood bank system,
in which inventories of blood platelets (an expensive and perishable component of donated
blood) were being stored at individual hospitals, which ordered them from the blood bank’s
main headquarters. The hospitals were doing a poor job of managing these inventories:
Some hospitals were routinely throwing away expired platelets because they had ordered
too much, while others were chronically understocked and were requesting expensive
emergency shipments from the blood bank. The hope was that certain hospitals could be
established as distribution centers that would serve their own demand as well as those of

1The name “location model with risk pooling” is actually a bit misleading, since it suggests that risk pooling of
safety stock is the only inventory aspect considered in the location model. On the contrary, the LMRP considers
economies of scale in both cycle and safety stocks. In fact, the cycle stock costs tend to drive the results of the
LMRP much more than the safety stock costs. However, we refer to the model as the LMRP here, as it is in the
literature, to distinguish it from other location–inventory models.
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nearby hospitals. This would allow the total amount of inventory to remain low while
meeting the same service level requirements, due to the risk pooling effect. Moreover, the
cost of shipments (both regular and emergency) would decrease since hospitals would now
be located closer to their suppliers (Daskin et al. 2002).

The LMRP is not the only location–inventory model in the literature. For example,
Barahona and Jensen (1998) consider a fixed cost to stock a given product at each DC;
they solve their model using column generation. Their model is tractable but does not
capture the costs of cycle and safety stock as accurately as the LMRP. Erlebacher and
Meller (2000) formulate a much richer model, but it is highly nonlinear and they propose
heuristics to solve it. Teo et al. (2001) consider a model that is similar to the LMRP but
without transportation costs; they propose a

√
2-approximation algorithm for it. Nozick

and Turnquist (2001a,b) linearize the inventory costs in their location–inventory models,
and therefore do not capture economies of scale or risk pooling. Teo and Shu (2004)
propose a location–inventory model that is similar to the LMRP except that demands are
deterministic and the inventory costs are calculated using a power-of-two approximation
developed by Roundy (1985). Naseraldin and Herer (2008) use a continuous approximation
in which customers are located along a line segment and facilities have newsvendor-type
costs; they solve their model analytically to determine the optimal number and locations of
facilities on the line segment.

12.2.2 Problem Statement

Let I be the set of retailers, each of which faces normally distributed daily demands.
Demands are assumed to be independent both among retailers and from day to day. The
objective of the LMRP is to determine how many DCs to locate, where to locate them, and
which retailers to assign to each DC to minimize the total expected location, per-unit, and
inventory costs, while ensuring a specified level of service. Each DC receives product from
a single supplier. Each DC is assumed to follow an (r,Q) policy to maintain its inventory,
with a type-1 service level requirement. The cost of such a policy is calculated in the
LMRP using the method described in Section 5.3.1.3: Q is set using the deterministic EOQ
formula, and r is set using (5.21).

12.2.3 Notation

Define the following notation:

Set
I = set of retailers/potential DC sites

Parameters
Demand
µi = mean daily demand of retailer i
σ2
i = variance of daily demand at retailer i

Costs
fj = fixed (daily) cost to open a DC at site j
Kj = fixed cost for DC j to place an order from the supplier, including fixed

components of both ordering and transportation costs
cj = per-unit cost for each item ordered by DC j from the supplier,

including per-unit inbound transportation costs
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dij = per-unit outbound transportation cost from DC j to retailer i
hj = holding cost per unit per day at DC j

Other
Lj = lead time (in days) for orders placed by DC j to the supplier
α = desired fraction of DC order cycles during which no stockout occurs

Decision Variables
xj = 1 if retailer j is selected as a DC, 0 otherwise
yij = 1 if retailer i is served by DC j, 0 otherwise

12.2.4 Objective Function

The objective function will be of the form

minimize [location cost] + [per-unit costs] + [cycle stock cost] + [safety stock cost].

Location Cost: The fixed location cost is given by∑
j∈I

fjxj . (12.3)

Per-Unit Costs: The per-unit costs have two parts: the inbound cost (which includes both
purchase and transportation costs from the supplier), given by∑

j∈I

∑
i∈I

µicjyij , (12.4)

and the outbound cost, given by ∑
j∈I

∑
i∈I

µidijyij . (12.5)

Inventory Costs: Consider a single DC j. We know from (5.22) that, under the expected-
inventory-level (EIL) approximation, the optimal expected cost of an (r,Q) inventory
policy with a type-1 service level constraint at DC j is given by√

2Kjµhj + hjzασ
√
Lj ,

where µ and σ are the mean and standard deviation of the daily demand served by j.
However, µ and σ are not known in advance; they depend on the decision variables. In
particular:

µ =
∑
i∈I

µiyij

σ =

√∑
i∈I

σ2
i yij .

Therefore, the expected inventory cost at DC j is given by√
2Kjhj

∑
i∈I

µiyij + hjzα

√
Lj
∑
i∈I

σ2
i yij . (12.6)
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The first term in (12.6) is the cycle stock cost, while the second is the safety stock cost. Put
another way, the first term represents the economies of scale from consolidating DCs (and
therefore orders), while the second represents the risk-pooling effect: As more demand
is added to DC j, the amount of safety stock increases as the square root of the demand
served. For both terms, adding a new retailer’s demand to DC j moves the cost along the
flatter part of the square-root curve, while establishing the retailer as its own DC starts it
all over again at the steeper part.

Note that this concise formulation for the inventory cost would not be possible if we
didn’t have a closed-form expression for the optimal EOQ cost, as in (3.5), or safety stock
cost, which derives from (4.24). If, to calculate the optimal EOQ cost, it was necessary
to run an algorithm to find Q∗ and then to plug Q∗ into the cost function, then we’d need
to include a variable for Qj and somehow optimize these when we optimize all the other
decision variables. This would complicate the model and algorithm considerably.

Combining (12.3)–(12.6), we get the following objective function:

∑
j∈I

fjxj +
∑
i∈I

µi(cj + dij)yij +

√
2Kjhj

∑
i∈I

µiyij + hjzα

√∑
i∈I

Ljσ2
i yij

 . (12.7)

12.2.5 NLIP Formulation

The LMRP can now be formulated as a nonlinear integer program (NLIP):

(LMRP) minimize
∑
j∈I

fjxj +
∑
i∈I

µi(cj + dij)yij +

√
2Kjhj

∑
i∈I

µiyij

+hjzα

√∑
i∈I

Ljσ2
i yij

 (12.8)

subject to
∑
j∈I

yij = 1 ∀i ∈ I (12.9)

yij ≤ xj ∀i ∈ I, ∀j ∈ I (12.10)

xj ∈ {0, 1} ∀j ∈ I (12.11)

yij ∈ {0, 1} ∀i ∈ I, ∀j ∈ I (12.12)

Constraints (12.9) require each retailer to be assigned to some DC, and constraints (12.10)
require that DC to be open. Constraints (12.11) and (12.12) are integrality constraints.
Notice that the LMRP has the exact same constraints as the UFLP—only the objective
function is different. (Actually, in the UFLP, constraints (8.7) are nonnegativity constraints,
not integrality constraints. But as we said in Section 8.2.2, the nonnegativity constraints
in the UFLP can be replaced with integrality constraints without changing the problem.)
This suggests that the Lagrangian relaxation method described in Section 8.2.3 might be
adapted to solve the LMRP. That is exactly the approach that Daskin et al. (2002) take, and
the approach we discuss in Section 12.2.6. We discuss two more approaches to solving
the LMRP—one based on column generation and one based on conic optimization—
in Sections 12.2.7 and 12.2.8, respectively. Our aim is to demonstrate that many of
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the fundamental tools of optimization can be brought to bear on complex supply chain
optimization problems such as the LMRP.

12.2.6 Lagrangian Relaxation

As in the UFLP, we will solve the LMRP by relaxing the assignment constraints (12.9) to
obtain the following Lagrangian subproblem:

(LMRP-LRλ)

minimize
∑
j∈I

fjxj +
∑
i∈I

µi(cj + dij)yij +

√
2Kjhj

∑
i∈I

µiyij

+hjzα

√∑
i∈I

Ljσ2
i yij

+
∑
i∈I

λi

1−
∑
j∈I

yij


=
∑
j∈I

fjxj +
∑
i∈I

(µi(cj + dij)− λi)yij +

√
2Kjhj

∑
i∈I

µiyij

+hjzα

√∑
i∈I

Ljσ2
i yij

+
∑
i∈I

λi (12.13)

subject to yij ≤ xj ∀i ∈ I, ∀j ∈ I (12.14)

xj ∈ {0, 1} ∀j ∈ I (12.15)

yij ∈ {0, 1} ∀i ∈ I, ∀j ∈ I (12.16)

12.2.6.1 Solving the Subproblem Just like the subproblem for the UFLP, we can
decompose (LMRP-LRλ) by j. Unfortunately, computing the benefit βj is not as straight-
forward as it was for the UFLP because of the square-root terms. Instead, for each j, we
need to solve the following problem:

(Pj) βj = minimize
∑
i∈I

(µi(cj + dij)− λi)yij +

√
2Kjhj

∑
i∈I

µiyij

+ hjzα

√∑
i∈I

Ljσ2
i yij (12.17)

subject to yij ∈ {0, 1} ∀i ∈ I (12.18)

Although (Pj) is a concave integer minimization problem, it can be solved relatively
efficiently—in order O(|I|2 log |I|) time, using an algorithm developed by Shu et al.
(2005). We won’t discuss this algorithm. Instead, we’ll discuss an even more efficient
algorithm that relies on the following assumption:

Assumption 12.1 The ratio of the demand variance to the demand mean is identical for
all retailers. That is, for all i ∈ I , σ2

i /µi = γ for some constant γ ≥ 0.

At first glance, this seems like an unreasonable assumption to make. However, if the
demands come from a Poisson process (as is commonly assumed), Assumption 12.1 holds
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exactly, since the variance of the Poisson distribution equals its mean (hence σ2
i /µi = 1

for all i). Now (12.17) can be rewritten as follows:∑
i∈I

(µi(cj + dij)− λi)yij +

√
2Kjhj

∑
i∈I

µiyij + hjzα

√∑
i∈I

Ljσ2
i yij

=
∑
i∈I

(µi(cj + dij)− λi)yij +

√
2Kjhj

∑
i∈I

µiyij + hjzα

√∑
i∈I

Ljγµiyij

=
∑
i∈I

(µi(cj + dij)− λi)yij +
(√

2Kjhj + hjzα
√
Ljγ

)√∑
i∈I

µiyij

We have gotten rid of one of the square-root terms, which allows us to rewrite (Pj) as:

(P′j) βj = minimize
∑
i∈I

aiyi +

√∑
i∈I

biyi (12.19)

subject to yi ∈ {0, 1} ∀i ∈ I (12.20)

where

ai = µi(cj + dij)− λi

bi = µi

(√
2Kjhj + hjzα

√
Ljγ

)2

yi = yij .

It turns out that (P′j) can be solved even more efficiently than (Pj), in O(|I| log |I|) time.
We will describe the algorithm shortly. First, let I− = {i ∈ I|ai < 0}; that is, I− is the set
of retailers that have negative ai. Let I−1 = {i ∈ I−|bi > 0} and I−2 = {i ∈ I−|bi = 0}.
Note that I−1 ∪ I

−
2 = I− since bi ≥ 0 for all i. We will further assume that the elements

of I−1 are indexed and sorted such that

a1

b1
≤ a2

b2
≤ · · · ≤ am

bm
,

where m = |I−1 |. The algorithm for solving (P′j) relies on the following theorem:

Theorem 12.1 There exists an optimal solution y∗ to (P′j) such that the following property
holds:

(1) y∗i = 0 for all i ∈ I \ I−

Moreover, for every optimal solution y∗ to (P′j), the following two properties hold:

(2) y∗i = 1 for all i ∈ I−2

(3) If y∗k = 1 for some k ∈ I−1 , then y∗l = 1 for all l ∈ {1, . . . , k − 1}

Proof. (1) follows from the fact that for all i, bi ≥ 0; if ai ≥ 0 as well, then the objective
function does not increase when yi = 1 as opposed to yi = 0. (2) follows from the fact
that if bi = 0 and ai < 0, then setting yi = 1 decreases the objective function.
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To prove (3), suppose, for a contradiction, that y∗ is an optimal solution such that y∗k = 1

for some k ∈ I−1 but y∗l = 0 for some l ∈ {1, . . . , k− 1}. Define two new solutions y′ and
y′′ as follows:

y′i =

{
1, if i = l

y∗i , otherwise

y′′i =

{
0, if i = k

y∗i , otherwise

In other words, y′ = y∗ except that y∗l is changed to 1, and y′′ = y∗ except that y∗k is
changed to 0. (See Figure 12.1.) Let z∗, z′, and z′′ be the objective values of y∗, y′, and
y′′, respectively.

Let R = {i ∈ I−1 |y∗i = 1} (see Figure 12.1), and let

B =
∑
i∈R

bi.

Then
z′ − z∗ = al +

√
B + bl −

√
B

and
z∗ − z′′ = ak +

√
B −

√
B − bk.

Next, note that
al
bl
≤ ak
bk

(12.21)

by assumption and that
√
B + bl −

√
B

bl
<

√
B −

√
B − bk

bk
(12.22)

by the strict concavity of the square-root function. Therefore,

z′ − z∗

bl
=
al
bl

+

√
B + bl −

√
B

bl

≤ ak
bk

+

√
B + bl −

√
B

bl
(by (12.21))

<
ak
bk

+

√
B −

√
B − bk

bk
(by (12.22))

=
z∗ − z′′

bk

≤ 0 (since y∗ is optimal and bk > 0).

Since bl > 0, we have that z′ − z∗ < 0. In other words, y′ is a strictly better solution than
y∗, violating the assumption that y∗ is optimal. Therefore, y∗ satisfies (3).

The upshot of Theorem 12.1 is that an optimal solution to (Pj) exists that has the form
shown in Figure 12.2. (Pj) can therefore be solved using Algorithm 12.1. Note that, in
line 5 of the algorithm, we take the sums to equal 0 if r = 0. The step with the most
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R

l k

y∗

y′

y′′

Figure 12.1 Proof of Theorem 12.1(c). Filled circles represent yi = 1; open circles represent
yi = 0.

ai < 0
bi > 0

(sorted by ai/bi)

ai < 0

bi = 0
ai ≥ 0

Figure 12.2 Solution to problem (Pj). Filled circles represent yi = 1; open circles represent
yi = 0.

iterations is the sorting step in line 3, which can be performed in O(|I| log |I|) time. The
algorithm, therefore, can be performed in O(|I| log |I|) time for each j. At each iteration
of the Lagrangian procedure, we must solve (Pj) for each j, so the total effort required at
each iteration is O(|I|2 log |I|). To solve (LMRP-LRλ), we set xj = 1 if βj + fj < 0 and
set yij = 1 if xj = 1 and if yi = 1 in the optimal solution to (P′j).

Algorithm 12.1 Solve (P′j)

1: yi ← 0 ∀i ∈ I \ I− . Set yi for “easy” cases
2: yi ← 1 ∀i ∈ I−2
3: sort elements in I−1 in increasing order of ai/bi . Calculate partial sums
4: for all r ∈ {0} ∪ I−1 do
5:

Sr ←
r∑
i=1

ai +

√√√√ r∑
i=1

bi (12.23)

6: end for
7: r∗ ← argminr{Sr} . Calculate benefit
8: yi ← 1 ∀r = 1, . . . , r∗

9:

βj ←
∑
i∈I

aiyi +

√∑
i∈I

biyi

The proof of Theorem 12.1 did not use any special properties of the square-root function
except its concavity. Therefore, Theorem 12.1 still holds if we replace the square-root term
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in (12.19) with any concave function of the total mean demand served by DC j. (Note that
this square-root term is a concave function not only of

∑
i biyi, but also of

∑
i µiyi, the

total mean demand served by DC j, since bi equals µi times a constant that is independent
of i.) This means that the Lagrangian relaxation algorithm discussed here can be used to
solve (LMRP) if the sum of the square-root terms in the objective function is replaced by
any concave function of the total mean demand served by DC j. This property has allowed
the LMRP to be extended in a number of ways; see, e.g., Qi et al. (2010).

12.2.6.2 Finding Upper Bounds As in the Lagrangian relaxation algorithm for the
UFLP, at each iteration we want to convert a solution to the Lagrangian subproblem into a
feasible solution for the original problem. As before, we start by opening the facilities that
are open in the optimal solution to (LMRP-LRλ). Unlike in the UFLP, however, retailers
are not always assigned to their nearest open facilities in the LMRP since assignment costs
are based on inventory as well as transportation. In other words, the savings from the risk-
pooling effect and economies of scale may outweigh the increased transportation cost if a
retailer is assigned to a more distant facility. (See Problem 12.5.) In fact, it is possible for
the following strange thing to happen in an optimal solution to the LMRP: A DC is opened
in, say, Chicago, but the retailer in Chicago is served by a DC in Minneapolis instead of
the DC in Chicago. This would probably never happen in practice, though, so it’s a little
inconvenient that our model would allow this to be optimal. Fortunately, if Assumption
12.1 holds, it can be shown that this situation is never optimal.

Once we choose which DCs to open, we assign retailers to DCs as follows. First, we loop
through all retailers with

∑
j yij ≥ 1 in the optimal solution to (LMRP-LRλ) (retailers that

are assigned to at least one facility) and assign each retailer to the facility j with yij = 1

that minimizes the increase in cost based on the assignments already made. Next, we loop
through all retailers with

∑
j yij = 0 and assign these retailers to the open facility that

minimizes the increase in cost based on the assignments already made. Note that we only
allow retailers with

∑
j yij ≥ 1 to be assigned to DCs for which yij = 1, while we allow

retailers with
∑
j yij = 0 to be assigned to any open DC.

After assigning retailers to DCs in this manner, we may want to apply two improvement
heuristics:

• Retailer reassignment: For each retailer i, determine whether there is a DC that i
can be assigned to instead of its current DC that would decrease the objective value.
If so, reassign the retailer. If the reassignment means that the old DC no longer has
any retailers assigned to it, it can be closed, saving the fixed cost, as well.

• DC exchange: Loop through the DCs, looking for an open DC j and a closed DC k

such that if j were closed and k were opened (and retailers reassigned as needed), the
objective value would decrease. If such a pair can be found, the DCs are exchanged
and the heuristic continues.

12.2.6.3 Other Aspects of the Algorithm The remaining aspects of the Lagrangian
relaxation algorithm (subgradient optimization, branch-and-bound) are identical to the
algorithm described for the UFLP in Section 8.2.3.
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Figure 12.3 Optimal solution to 88-node LMRP instance. Total cost = $1,057,006.

Table 12.1 Costs for optimal and UFLP-based solution to 88-node LMRP instance.

Cost Type Optimal LMRP Solution ($) UFLP Solution ($) % Difference

Fixed 215,200 262,100 21.8
Transportation 573,275 542,538 −5.4

Cycle stock 200,475 217,806 8.7
Safety stock 68,056 73,940 8.7

Total 1,057,006 1,096,383 3.7

� EXAMPLE 12.1

Return to the 88-node UFLP instance discussed in Example 8.1. Set the demand
means µi equal to the demands from Example 8.1 and the variances equal to the
means (that is, γ = 1). Let Kj = 7500, hj = 150, and Lj = 3 for all j ∈ I .
(Given the magnitude of the demands and costs in Example 8.1—i.e., demands in the
hundreds and transportation costs in the $100s or $1000s per unit—it makes sense
to assume the product units are large, like cases, and the time unit is 1 month. The
parameters given above are consistent with that interpretation.) We’ll set cj = 0 for
all j for similar reasons as we did for the EOQ in Section 3.2.2—if the purchase
cost is the same at all facilities, it does not affect the optimization, but it does inflate
the objective function and water down the difference between the LMRP and the
UFLP. Let α = 0.975, so zα = 1.96. (The full data set is available in the file
88node-lmrp.xlsx on the book’s companion web site.)

The optimal solution for the LMRP for this instance is shown in Figure 12.3.
The solution opens four DCs—one fewer than the optimal UFLP solution in Exam-
ple 8.1—located in Philadelphia, PA; Detroit, MI; Fort Worth, TX; and Fresno, CA.
The solution has a total expected monthly cost of $1,057,006. This cost is broken
down by type in the first two columns of Table 12.1.
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�

12.2.6.4 Computational Results Most papers that introduce Lagrangian relaxation
algorithms test the algorithm on one or more data sets. These data sets may come from
real-life problems, but more commonly, they are randomly generated since real-life data
are hard to come by. There are several performance measures of interest when evaluating
a Lagrangian relaxation algorithm. For example:

• How quickly does the algorithm solve the test problems? CPU times of under a
minute are generally considered to be quite fast, but times of an hour or longer can be
acceptable as well, depending on the context. Some people argue that for strategic
problems like facility location, which might be solved only once every few years, it’s
acceptable for the algorithm to take several hours. Others argue that these models
are typically run many times during the process of fine-tuning the data and running
what-if scenarios, in which case long run times may be unacceptable.

• How large are the test problems? CPU times will be dependent on the size of the test
data sets, so they should be evaluated with this in mind. Ideally, the data sets tested
should include a range of sizes (in this case, number of retailers) so that the reader
gets a sense of how fast the CPU time grows with the problem size and how large a
problem the algorithm can handle before it gets too slow.

• How tight are the bounds achieved by the Lagrangian process, before branch-and-
bound begins (i.e., at the root node of the branch-and-bound tree)? Just like in the
standard LP-based branch-and-bound algorithm, it is important to have tight bounds
at the root node, otherwise too much branching may be required before the optimality
gap is closed.

• How many branch-and-bound nodes are required before the optimal solution is found
(and proven optimal)? This goes hand-in-hand with the previous question, since large
root-node gaps will probably mean that many branch-and-bound nodes are required.
Note that the optimal solution may be found quite early, but many branch-and-bound
nodes may be required to prove optimality. That is, if the root-node gap is large, it’s
possible that we’ve already found the optimal solution but that branch-and-bound
will be required to prove that it is optimal.

The algorithm discussed in this section turns out to be quite efficient by these measures.
Daskin et al. (2002) report that they solved problems with up to 150 nodes in under 20
seconds on a desktop computer, with no more than 3 branch-and-bound nodes required for
each problem. Root-node gaps are generally less than 1%.

The authors report the following managerial insights. First, the optimal number of DCs
increases as the transportation cost increases, and it decreases as the holding cost increases.
(This result is not surprising, but it is important for validating the model.) Second, although
the optimal solution may involve a few retailers that are assigned to facilities other than the
closest (see page 521), forcing retailers to be assigned to their closest facilities (for reasons
of convenience) does not generally increase the cost by too much. Finally, fewer DCs are
located when inventory is taken into account. That is, a firm that solves the UFLP instead
of the LMRP, ignoring inventory, will build too many DCs, because it ignores the tendency
toward consolidation brought about by the economies of scale in inventory costs.
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� EXAMPLE 12.2

Suppose we solve the 88-node LMRP example described in Example 12.1 as a
UFLP—that is, ignoring the inventory costs. From Example 8.1, we know that the
optimal UFLP solution to this instance has five DCs. Assigning retailers as described
in Section 12.2.6.2 and applying the LMRP cost function (12.7), we get a total cost of
$1,096,383—3.7% greater than the optimal LMRP cost (Figure 12.4). See Table 12.1
for a breakdown of this cost by type. The UFLP-based solution has greater fixed
costs (since it opens more DCs) and smaller transportation costs (since the DCs are
closer, on average, to the retailers). It also has greater cycle and safety stock costs,
since it uses more inventory locations. This confirms that ignoring inventory when
making facility location decisions can be costly, since the resulting solution fails to
achieve the economies of scale and risk pooling that a more consolidated solution
could achieve.

The UFLP-based solution includes eight retailers that are assigned to DCs that are
not their closest open DC. One example is Minneapolis, MN, which is 213.9 miles
from the DC in Topeka, KS, but is instead assigned to the DC in Detroit, MI, which
is 268.4 miles away. Why? Suppose we assigned Minneapolis to Topeka, instead.
Doing so would save $0.50 · (268.4−213.9) ·36.8 = $1002.8 in transportation costs
(since hi = 36.8 for this retailer and cij equals half the distance between i and j). On
the other hand, excluding the Minneapolis demand, the Detroit DC has 949.1 units
of demand assigned, and the Topeka DC has 242.3. Reassigning Minneapolis from
Detroit to Topeka would cost an extra

√
2 · 7500 · 150

[(√
242.3 + 36.8−

√
242.3

)
+
(√

949.1− 36.8−
√

949.1
)]

= $805.7

in cycle stock costs and an extra

150 · 1.96
√

3
[(√

242.3 + 36.8−
√

242.3
)

+
(√

949.1− 36.8−
√

949.1
)]

= $273.5

in safety stock costs. Therefore, the extra inventory costs more than offset the savings
in transportation costs.

The push for consolidation can even be strong enough to abandon some of the
DCs altogether. For example, if Kj = 10,000 instead of 7,500, the UFLP-based
solution consolidates all of the demand into four of the five open DCs, leaving the
Topeka DC unused even though its fixed cost is already accounted for.

�

In the next two sections, we discuss two additional methods for solving the LMRP, using
column generation and conic optimization.

12.2.7 Column Generation

Shen et al. (2003) present a different algorithm for solving the LMRP. Their method involves
formulating the problem as a set covering problem and solving it using column generation.
Here’s an overview of how it works. We also refer interested readers to a brief tutorial on
the technique of column generation in Appendix D.2.

First suppose that we could write down every possible subset R ⊆ I . (There are 2|I|

such subsets.) Let R be the collection of all of these subsets. For each subset R ∈ R and
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Figure 12.4 UFLP-based solution to 88-node LMRP instance. Total cost = $1,096,383.

for each facility j ∈ R, let cR,j be the cost of serving all of the retailers in R from a DC
located at j:

cR,j = fj +
∑
i∈R

µi(cj + dij) +

√
2Kjhj

∑
i∈R

µi + hjzα

√∑
i∈R

Ljσ2
i .

Then choose the cheapest facility in R and call its cost cR:

cR = min
j∈R
{cR,j}.

(Note that cR is different from cj : cR is the minimum cost of serving all retailers in R,
whereas cj is simply the per-unit ordering cost at DC j.) The idea behind modeling this
problem as a set covering problem is to choose several sets from R so that every retailer
is contained in exactly one set. Each set corresponds to a group of retailers that will be
served by a single facility; cR represents the cost of this group.

The set covering model has a single decision variable for each R ∈ R:

zR = 1 if set R is in the solution, 0 otherwise

The set covering formulation of the LMRP is as follows:

(LMRP-SC) minimize
∑
R∈R

cRzR (12.24)

subject to
∑

R∈R:i∈R
zR ≥ 1 ∀i ∈ I (12.25)

zR ∈ {0, 1} ∀R ∈ R (12.26)

The objective function (12.24) computes the cost of all of the sets chosen. Constraints
(12.25) say that every retailer must be included in at least one chosen set—that is, every
retailer must be assigned to some open facility. Although (12.25) is written with a ≥,
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any optimal solution will have each retailer assigned to exactly one facility (why?), so the
constraints could be written with an =. This is called a “set covering” problem because the
idea is to choose a number of sets to “cover” every element in I .

It seems we have lost two aspects of the original problem in formulating it as a set
covering problem. First, (LMRP-SC) is linear, while (LMRP) is nonlinear. What happened
to the nonlinearity? Computing each cost cR requires solving a nonlinear problem, so the
nonlinearity in (LMRP) is present in the setup to (LMRP-SC), not in (LMRP-SC) itself.
Second, nothing in the formulation of (LMRP-SC) indicates which j are chosen—only
which sets are chosen. That is, if R = {2, 4, 7, 11} and zR = 1, we know that retailers
2, 4, 7, and 11 are served by the same DC, and that that DC is either 2, 4, 7, or 11, but
which one is it? The answer to this question, too, is hidden in the computation of cR. To
compute cR, we had to compute cR,j for j = 2, 4, 7, 11; whichever was smallest became
cR. Somewhere we would have recorded which j gave the best cost, and we’d use that to
convert a solution to (LMRP-SC) into a solution to the original problem.

In principle, we could solve the LMRP by enumerating all the sets inR and then solving
(LMRP-SC). Unfortunately, there are two problems with this approach. First, there are 2|I|

elements inR—far too many to enumerate. Second, even if we could enumerateR, it’s not
clear how we would solve (LMRP-SC). The solution to the first problem is to enumerate a
small handful of elements ofR first, then identify new elements as needed as the algorithm
proceeds. (How do we do this? We’ll find out below.) The solution to the second problem
is to solve the LP relaxation of (LMRP-SC), then use branch-and-bound if the resulting
solution is not integer. It turns out that the set covering problem usually has a very tight LP
bound. Sometimes the solution to the LP relaxation is naturally all-integer; if not, it doesn’t
usually take much branching to find an optimal integer solution. So in what follows, we’ll
focus on solving the LP relaxation of (LMRP-SC), not (LMRP-SC) itself.

Suppose we have enumerated a subset ofR—call itR′. We might do this by generating
random sets, or using some heuristic. We need to solve the LP relaxation of (LMRP-SC)
including only the sets in R′, not all of R. This problem is called the restricted master
problem; we will denote it by (LMRP-SC):

(LMRP-SC) minimize
∑
R∈R′

cRzR (12.27)

subject to
∑

R∈R′:i∈R
zR ≥ 1 ∀i ∈ I (12.28)

0 ≤ zR ≤ 1 ∀R ∈ R′ (12.29)

Now suppose we solve (LMRP-SC). Let z̄R (R ∈ R′) be an optimal solution. Recall
from basic LP theory that any optimal solution to an LP has a corresponding optimal dual
solution. Let π̄i (i ∈ I) be the optimal dual solution corresponding to z̄. Recall also that
a solution to a minimization LP is optimal if every variable has nonnegative reduced cost
with respect to the dual variables. Therefore, if we were to solve (LMRP-SC) with all of
R instead of justR′, z̄ would still be optimal provided that

cR −
∑
i∈R

π̄i ≥ 0 (12.30)

for each R ∈ R. So even if we didn’t solve (LMRP-SC) over all of R, we can check
whether a given solution is optimal by checking (12.30) for allR ∈ R. Of course, we don’t
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want to check (12.30) for all R ∈ R since we can’t enumerate R. Instead, we search for
an R ∈ R that violates (12.30). But how?

Let R∗j be the set in R that uses j as its designated DC and has the minimum reduced
cost. If R∗j has nonnegative reduced cost for all j ∈ I , then every R ∈ R has nonnegative
reduced cost. For each j, we can find R∗j by solving the following pricing problem:

minimize fj +
∑
i∈I

µi(cj + dij)yij +

√
2Kjhj

∑
i∈I

µiyij

+ hjzα

√∑
i∈I

Ljσ2
i yij −

∑
i∈I

π̄iyij

= fj +
∑
i∈I

(µi(cj + dij)− π̄i)yij +

√
2Kjhj

∑
i∈I

µiyij

+ hjzα

√∑
i∈I

Ljσ2
i yij (12.31)

subject to yij ∈ {0, 1} ∀i ∈ I (12.32)

A solution to this problem can be converted to a set R∗j by setting

R∗j = {i ∈ I|yij = 1};

this set has cost

cR∗j = fj +
∑
i∈I

(µi(cj + dij))yij +

√
2Kjhj

∑
i∈I

µiyij + hjzα

√∑
i∈I

Ljσ2
i yij .

Does this problem look familiar? Of course it does—this is the same problem as (Pj) (see
page 517), plus a constant (fj) and with λi replaced by π̄i. We already know how to solve
this problem.

So, at each iteration of the algorithm, we solve (LMRP-SC), then solve the pricing
problem above for each j. If the objective function is nonnegative for every j, we have
found the optimal solution to (LMRP-SC). If it is negative for some j, then we add the
corresponding set R∗j to R′ and solve (LMRP-SC) again. This method is called column
generation since it consists of generating good variables (columns) on the fly.

12.2.8 Conic Optimization

We now introduce a more general approach to solve the LMRP. The approach is based on
recent developments in conic integer programming. The basic idea is to reformulate the
LMRP as a conic quadratic mixed-integer program (CQMIP), which can then be solved
directly using standard optimization software packages such as CPLEX or Mosek, without
the need for specially designed algorithms, such as the column generation algorithm in
Section 12.2.7 and the Lagrangian relaxation algorithm in Section 12.2.6. Moreover, it
does not require us to make Assumption 12.1 about the variance-to-mean ratio at the
retailers. The approach we discuss was introduced by Atamturk et al. (2012). Classical
facility location problems have also been formulated and solved as conic quadratic programs
(see, e.g., Kuo and Mittelmann (2004)).
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Let t1j , t2j ≥ 0 be auxiliary decision variables that represent the nonlinear terms in the
objective function (12.8):

t1j =

√∑
i∈I

µiyij (12.33)

t2j =

√∑
i∈I

σ2
i yij (12.34)

Then the LMRP can be reformulated as an equivalent CQMIP as follows:

(LMRP-CQMIP)

minimize
∑
j∈I

[
fjxj +

∑
i∈I

µi(cj + dij)yij +
√

2Kjhjt1j + hjzα
√
Ljt2j

]
(12.35)

subject to
∑
i∈I

µiy
2
ij ≤ t21j ∀j ∈ J (12.36)∑

i∈I
σ2
i y

2
ij ≤ t22j ∀j ∈ J (12.37)

t1j , t2j ≥ 0 ∀j ∈ J (12.38)

(12.9)–(12.12)

The objective function is identical to (12.8) except that the nonlinear terms have been
replaced by t1j and t2j . Constraints (12.36) and (12.37) enforce the definitions of these
two variables, as given in (12.33)–(12.34). Note that, since yij ∈ {0, 1}, we have y2

ij = yij .
Moreover, since t1j and t2j have positive coefficients in the objective function, it is sufficient
to use inequalities in (12.36)– (12.37) in place of the equalities in (12.33)–(12.34).

The objective function of (LMRP-CQMIP) is linear, and the constraints are all either
conic quadratic or linear, so (LMRP-CQMIP) fits the general form of a CQMIP model and
can therefore be solved using a general-purpose CQMIP solver. Atamturk et al. (2012)
report that the computational performance of this method is similar to or better than the
Lagrangian relaxation and column generation methods discussed above.

Moreover, this approach is very flexible and can be adapted to handle other extensions
of the LMRP. For example, Ozsen et al. (2008) incorporate capacity constraints into the
LMRP. This is not as straightforward as it is in the capacitated fixed-charge location problem
(Section 8.3.1) because the capacity applies to the maximum inventory level (the inventory
level that occurs immediately after an order arrives) rather than simply to the total annual
throughput, as in the CFLP. Moreover, because there is no closed-form expression for the
optimal expected cost of a capacitated (r,Q) policy (as there is for an uncapacitated policy),
the capacitated LMRP model requires an explicitQj variable to represent the order-quantity
decision. The expected cycle-stock cost is expressed in the objective function as

Kj

∑
i∈I µiyij

Qj
+ hj

Qj
2

(12.39)

(analogous to the EOQ cost function (3.3)), where Qj is a decision variable. The safety-
stock cost is still given by the second term in (12.6). As a result, the capacitated LMRP
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model, as formulated by Ozsen et al. (2008), is neither convex nor concave. Ozsen et al.
(2008) propose a heuristic method based on Lagrangian relaxation to solve it. However,
Atamturk et al. (2012) show that the capacitated LMRP can be reformulated as a CQMIP,
using similar ideas as those given above, and solved using a general-purpose solver. They
also use this approach to solve other variants of the LMRP, such as problems with correlated
retailer demands, stochastic lead times, and multiple commodities.

12.3 A LOCATION–ROUTING MODEL

Location and routing decisions are closely related, since they both depend on the spatial
relationships among the facilities and customers. There is often a cost savings that can
be attained when the two decisions are optimized simultaneously. The model discussed in
this section, which is adapted from Laporte and Nobert (1981) and Laporte et al. (1986), is
only one of many location–routing models in the literature. (For other approaches, see, for
example, Perl and Daskin (1985) or Berger et al. (2007).) However, because it has become
a seminal model, we refer to it as “the” location–routing problem (LRP). For more thorough
reviews of location–routing, see Nagy and Salhi (2007), Prodhon and Prins (2014), and
Drexl and Schneider (2015).

The location–routing model we discuss combines elements of the UFLP and the vehicle
routing problem (VRP). Both the UFLP and the VRP are NP-hard, which makes the
integrated model even more complex. Indeed, since the VRP is a special case of the LRP
(obtained by setting the fixed location costs to 0), the LRP is NP-hard as well.

The LRP aims to make three sets of related decisions: which depots to open, which
customers to assign to each depot, and how to route the vehicles from each depot to its
customers. We assume that the number of vehicles is finite and that each vehicle has a
(possibly finite) capacity.

We use the following notation, which borrows from the notation of both the UFLP
(Section 8.2.2) and the VRP (Section 11.1.3):

Sets
I = set of customers
J = set of potential depot locations
N = set of all nodes: N = I ∪ J
E = set of undirected edges between nodes: E = {(i, j)|i, j ∈ N}

Parameters
Demand and Capacity
di = demand of customer i ∈ I
D = capacity of each vehicle

Costs
fj = fixed cost to open a depot at node j ∈ J
gj = fixed cost per vehicle used at depot j ∈ J
cij = cost to transport one unit of demand along edge (i, j) ∈ E; defined only for i < j

Other
M = an arbitrarily large number
p = pre-specified upper bound on the total number of open depots
mj = pre-specified upper bound on the number of vehicles assigned to depot j ∈ J

Decision Variables
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yj = 1 if a depot is opened at node j ∈ J , 0 otherwise
xij = the number of times edge (i, j) ∈ E is used; xij is not defined if i ≥ j, if

i and j are both in J , or if di + dj > D

mj = number of vehicles assigned to depot j ∈ J

The objective of the LRP is to minimize the sum of three terms: the fixed cost of opening
depots, the fixed cost of using vehicles, and the transportation cost from the vehicle routes.
A feasible solution must satisfy the following constraints: each vehicle route begins and
ends at the same depot; each vehicle performs at most one trip; each customer is served by
a single vehicle; and the total demand of customers visited by each vehicle does not exceed
its capacity.
(LRP) minimize

∑
i,j∈I

cijxij +
∑
j∈J

(fjyj + gjmj) (12.40)

subject to
∑
i∈N

xik +
∑
j∈N

xkj = 2 ∀k ∈ I (12.41)

∑
i∈I

xik +
∑
j∈I

xkj = 2mk ∀k ∈ J (12.42)

∑
i,j∈S

xij ≤ |S| −
⌈∑

k∈S dk

D

⌉
∀S ⊆ I : |S| ≥ 3

(12.43)

xi1i2 + 3xi2i3 + xi3i4 ≤ 4 ∀i1, i4 ∈ J, ∀i2, i3 ∈ I
(12.44)

xi1i2 + xih−1ih + 2
∑

i,j∈{i2,...,ih−1}

xij ≤ 2h− 5 ∀h ≥ 5,∀i1, ih ∈ J,

∀i2, . . . , ih−1 ∈ I
(12.45)

yj ≤ mj ≤Myj ∀j ∈ J (12.46)

0 ≤ mj ≤ mj ∀j ∈ J (12.47)

1 ≤
∑
j∈J

yj ≤ p (12.48)

yj ∈ {0, 1} ∀j ∈ J (12.49)

xij ∈ {0, 1} ∀i, j ∈ I (12.50)

xij ∈ {0, 1, 2} ∀i, j ∈ N : i or j ∈ J
(12.51)

Here, dte is a function that equals the smallest positive integer that is greater than or equal
to t. As in the formulation of the TSP (Section 10.2.2), we have not bothered to add the
requirement that i < j every time xij appears, but this should be understood—for example,
in the first summation in (12.40), in the summations in (12.41) and (12.42), in the “for all”
part of (12.44), and so on.

The objective function (12.40) calculates the total transportation cost plus the total fixed
costs of opening depots and using vehicles. Constraints (12.41) are degree constraints,
specifying that the total number of edges connected to a customer node k ∈ I is 2.
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Constraints (12.42) are also degree constraints, this time for the depot nodes: The number
of edges connected to a depot must equal twice the number of vehicles used at that depot.
Note that the sums are over the set I rather than N since the depot cannot be connected
by edges to other depots. Constraints (12.43) are capacity-cut constraints, analogous to
(11.4) and (11.9) for the VRP, eliminating subtours and ensuring capacity feasibility of the
routes. Constraints (12.44) and (12.45) are called chain-barring constraints, which ensure
that each route starts and ends at the same depot. We refer to Laporte et al. (1986) for
details of the development of these constraints. Constraints (12.46) are linking constraints,
enforcing the relationship betweenmj and yj so that no vehicles can be based at a node that
is not selected as a depot. Constraints (12.47) and (12.48) impose bounds on the number
of vehicles based at node j and the total number of nodes used as depots. Constraints
(12.49)–(12.51) are integrality constraints; note that xij = 2 is allowed if i or j is a depot,
corresponding to a round trip directly between i and j.

This formulation of the LRP contains exponentially many constraints in (12.43)–(12.45),
and hence, it is not easy to solve this problem by directly tackling the explicit version as
an integer program. Laporte et al. (1986) propose an exact algorithm using constraint gen-
eration, in which the capacity-cut and chain-barring constraints are first removed from the
model, and then violated constraints are added back, all within a branch-and-bound frame-
work. Berger et al. (2007) consider a variant of (12.43)–(12.45), which they reformulate
as a set partitioning problem and solve using column generation.

12.4 AN INVENTORY–ROUTING MODEL

Inventory–routing problems combine the VRP with inventory management problems. Their
development was sparked, in part, by the rise of vendor-managed inventory (VMI) arrange-
ments, in which suppliers (vendors) take responsibility for replenishing the inventory of
their products at their customers (that is, at retailers). VMI can be effective in reducing
logistics costs, inventory levels, and the bullwhip effect (see Section 13.3). This brings
about a new challenge for the vendor, which must now route vehicles to deliver products
while also keeping an eye on customers’ inventory levels.

Like location–inventory and location–routing, inventory–routing is really a class of
problems, rather than a single problem. In this section, we discuss a seminal version,
which we will refer to as “the” inventory–routing problem (IRP). We refer interested
readers to Coelho et al. (2013) for a detailed review. Inventory–routing problems are
especially common in maritime logistics, with applications in the chemical, oil, and gas
industries, as well as a wide range of consumer and business goods in both maritime and
non-maritime distribution systems.

The IRP considers three sets of decisions: when to deliver to each customer, how much
to deliver, and how to route vehicles to the customers. The objective is to minimize the
total inventory holding cost and distribution cost, subject to constraints on the inventory
levels at customers and the feasibility of the vehicle routes. Stockouts are not allowed. The
model is dynamic in the sense that it considers the movements of vehicles and inventory
over time, rather than the static approach taken by the LMRP and the LRP. We assume that
the time required for the vehicles to complete their routes is small compared to the length
of one time period. Since the VRP is a special case of the IRP, the IRP is NP-hard.
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Our formulation for the IRP will include an index k on the decision variables to indicate
the vehicle. In this sense, it is similar to the three-index formulation of the VRP (see
Section 11.1.3), whereas the formulation of the LRP in Section 12.3 was similar to the
two-index VRP formulation. Note, however, that the IRP variables will also have an extra
index for the time period. We will use the following notation:

Sets
I = set of customers
N = set of all nodes: 0 is the depot and N = I ∪ {0}
E = set of undirected edges between nodes: E = {(i, j)|i, j ∈ N}
T = set of time periods; T = {1, . . . , T}
K = set of vehicles

Parameters
Supply, Demand, and Capacity
rt = new supply available at the depot in period t ∈ T
dit = demand of customer i ∈ I in period t ∈ T
Ci = inventory holding capacity of customer i ∈ I
Dk = capacity of vehicle k ∈ K

Costs
hi = holding cost per unit of inventory at node i ∈ N per period
cij = cost to transport one unit of demand along (i, j) ∈ E; defined only for i < j

Other
Ii0 = inventory level at node i ∈ N at the beginning of the planning horizon

Decision Variables
xijkt = the number of times edge (i, j) ∈ E is used by vehicle k ∈ K in period t ∈ T ;

defined only for i, j ∈ N such that i < j and di + dj ≤ Dk

yikt = 1 if vehicle k ∈ K visits node i ∈ N in period t ∈ T , 0 otherwise
qikt = number of units delivered to customer i ∈ I by vehicle k ∈ K in period t ∈ T
Iit = inventory level at node i ∈ N at the end of period t ∈ T

The IRP can now be formulated as a mixed-integer programming problem as follows:

(IRP)

minimize
∑
i∈N

∑
t∈T

hiIit +
∑

(i,j)∈E

∑
k∈K

∑
t∈T

cijxijkt (12.52)

subject to I0t = I0,t−1 + rt −
∑
k∈K

∑
i∈I

qikt ∀t ∈ T (12.53)

I0t ≥ 0 ∀t ∈ T (12.54)

Iit = Ii,t−1 +
∑
k∈K

qikt − dit ∀i ∈ I, ∀t ∈ T (12.55)

0 ≤ Iit ≤ Ci ∀i ∈ I, ∀t ∈ T (12.56)∑
k∈K

qikt ≤ Ci − Ii,t−1 ∀i ∈ I, ∀t ∈ T (12.57)

0 ≤ qikt ≤ Ciyikt ∀i ∈ I, ∀k ∈ K,∀t ∈ T (12.58)
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∑
i∈I

qikt ≤ Dky0kt ∀k ∈ K, t ∈ T (12.59)∑
j∈N

xijkt +
∑
j∈N

xjikt = 2yikt ∀i ∈ N, ∀k ∈ K,∀t ∈ T (12.60)

∑
i,j∈S

xijkt ≤
∑
i∈S

yikt − ymkt ∀S ⊆ I, ∀k ∈ K,∀t ∈ T, ∀m ∈ S

(12.61)

xi0kt ∈ {0, 1, 2} ∀i ∈ I, ∀k ∈ K,∀t ∈ T (12.62)

xijkt ∈ {0, 1} ∀i, j ∈ I, ∀k ∈ K,∀t ∈ T
(12.63)

yikt ∈ {0, 1} ∀i ∈ N, ∀k ∈ K,∀t ∈ T (12.64)

Note that, as in the LRP, we are omitting the condition i < j from the formulation, but
it should be understood whenever xijkt or cij is present. The objective function (12.52)
calculates the total inventory-holding and transportation cost for every node, every vehicle,
and every time period. Constraints (12.53) define the dynamics of the inventory level of
the depot: The inventory level at the end of period t equals the inventory level at the end
of period t − 1, plus the new supply available, minus the quantity shipped to customers.
Constraints (12.54) ensure that the depot never stocks out. Constraints (12.55) similarly
define the inventory dynamics at customers: The inventory at the end of period t equals the
inventory at the end of period t− 1, plus the number of delivered items, minus the demand.
Constraints (12.56) ensure that there are no stockouts at the customers and that the inventory
does not exceed the storage capacity. Note that these constraints assume that the ending
inventory does not exceed the capacity, meaning that the capacity might be temporarily
violated before all of the demand has occurred in each time period; this assumption is
typical in IRP models. Constraints (12.57) prevent the total amount delivered to customer
i by all vehicles in period t from exceeding the available storage capacity. Constraints
(12.58) enforce the relationship between the quantities delivered, qikt, and the routing
variables yikt: The quantity delivered to customer i by vehicle k in period t must be 0 if
yikt = 0; if yikt = 1, then the quantity delivered may not exceed the capacity. Constraints
(12.59) ensure that vehicle capacities are not exceeded. Constraints (12.60) and (12.61) are
degree constraints and subtour-elimination constraints, respectively (similar to constraints
(11.13) and (11.15) for the VRP). Constraints (12.62)–(12.64) are integrality constraints.

This formulation contains exponentially many subtour-elimination constraints (12.61).
In practice, it is usually solved by removing these constraints and adding violated constraints
back to the branch-and-bound tree in a constraint generation scheme, similar to the LRP;
see Archetti et al. (2007), Coelho and Laporte (2013), and Adulyasak et al. (2014) for
details.

As we mentioned above, the IRP formulation (12.52)–(12.64) is only one of many
inventory–routing problems that have been proposed. Other such problems differ in
terms of various criteria such as time horizon (single or multiple period), inventory policy
(maximum-level or order-up-to), handling of stockouts (backorders or lost sales), and fleet
composition (homogeneous or heterogeneous vehicles). Moreover, this basic form of the
IRP has been extended to include variants such as the production–routing problem (in which
we make production decisions at the depot), the IRP with multiple products, the IRP with
direct deliveries and transshipments, the multi-item IRP, the IRP with several suppliers and
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customers, and the IRP with heterogeneous fleets. If the customer demands are stochastic,
then we have the stochastic IRP (SIRP). In the SIRP, inventory shortages may occur and a
penalty cost is imposed whenever a customer experiences a stockout. The objective is to
minimize the expected (or sometimes worst-case) total inventory and transportation cost.
In some versions of the problem, the customer demand is gradually revealed over time,
in which case we must solve the problem repeatedly with updated demand information;
this is called the dynamic and stochastic IRP (DSIRP). See Coelho et al. (2013) for further
discussion of these variants.

CASE STUDY 12.1 Inventory–Routing at Frito-Lay

Frito-Lay is a very large manufacturer and distributor of snack foods. Its North
American operations include over 30 factories, hundreds of DCs, and more than 20,000
trucks. The company participates in vendor-managed inventory (VMI) programs in
which it is responsible for managing the inventory at retailers and other downstream
locations, as well as for delivering to those locations. As we noted in Section 12.4, the
inventory–routing problem (IRP) is commonly used in VMI settings. Frito-Lay’s supply
chain, however, is more complex than the system modeled by the IRP in Section 12.4, so
the company worked with researchers at Texas A&M University to build an appropriate
model and algorithm. This research is described by Çetinkaya et al. (2009).

Their model considers a single factory, from which products are shipped to DCs,
distribution points called “bins,” and other factories. Most customers are served by
the DCs and bins, but some larger customers (called “direct-delivery” (DD) customers)
are served directly from the factory. Shipments from the factory are made using large
trucks that make multiple stops, and therefore their routes must be optimized. On the
other hand, shipments from the DCs to non-DD customers are made on smaller trucks
that travel directly to the customer and back; no routing optimization is performed by
the model.

The Frito-Lay model presented by Çetinkaya et al. (2009) differs from the IRP in
Section 12.4 in several ways. The most notable difference is the DC echelon, which
does not exist in the classical IRP. The Frito-Lay model allows inventory to be stored
at the factory and at the DCs and bins, but not at the customers. (In contrast, the IRP
allows inventory at the customers.) It makes production decisions at the factory, an
aspect that is considered an input in the IRP. It also considers multiple products, which
have separate demands but which share production, storage, and shipment capacities.
It considers fixed costs for each shipment, and transportation costs are assessed per
mile, regardless of the load of the vehicle on those miles.

The resulting MIP model cannot be solved exactly using off-the-shelf solvers. In-
stead, Çetinkaya et al. (2009) propose a heuristic that iterates between two subproblems,
which solve the inventory and routing aspects of the problem. The routing problem
optimizes truck routes using the Clarke–Wright savings heuristic (see Section 11.3.1)
and an improvement heuristic based on cheapest insertion (Section 10.4.2). The in-
ventory subproblem determines the production quantities at the factory and the weekly
replenishment and shipment quantities at the DCs, bins, and DD customers, account-
ing for the routing costs that are an output of the routing subproblem. The inventory
subproblem is solved as a MIP using CPLEX.
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Çetinkaya et al. (2009) report that their heuristic executes in about 10 minutes. They
compare the results of their heuristic with two benchmark policies that are meant to
mimic Frito-Lay’s typical decision-making process and find that their solutions are better
by 6%–11%. Compared to the benchmark policies, the solutions from the heuristic have
lower inventory levels, lower handling and transportation costs, and comparable vehicle
utilizations.

PROBLEMS

12.1 (LR Iteration for LMRP) The file LR-LMRP.xlsx contains ai and bi values for a
50-node instance of problem (P′j) ((12.19)–(12.20)) for a single iteration of the Lagrangian
relaxation algorithm described in Section 12.2.6 and for a single value of j. Using the
algorithm described in Section 12.2.6.1, solve this instance of problem (P′j). List the
optimal values of y∗ in column D and the optimal objective value (βj) in cell H2.

12.2 (Nonconvexity of Sr in LMRP Algorithm) Theorem 12.1 allows us to solve
problem (P′j) by first sorting a subset of the i’s and then computing the partial sums given
by (12.23), choosing the r that minimizes Sr and setting yi = 1 for i = 1, . . . , r. It is
tempting to think that Sr is convex with respect to r, since then we could consider each r
in turn as long as Sr is decreasing, and then stop as soon as Sr increases (or use an even
more efficient method like binary search). Unfortunately, this claim is not true. Provide a
counterexample with four variables such that ai < 0 and bi > 0 for all i, and such that

S1 > S2 < S3 > S4 and S2 > S4.

12.3 (Retailer Assignment is NP-Hard) Suppose the facility locations in the LMRP
are already fixed. Prove that the problem of optimally assigning retailers to facilities is
NP-hard.

12.4 (Alternate Proof of Theorem 12.1?) A student once proposed the following
approach to prove Theorem 12.1, part 3: Instead of creating two new solutions y′ and y′′

as in the proof, just create one new solution, defined as follows:

y′i =


1, if i = `

0, if i = k

y∗i , otherwise

Then, prove that z′ < z∗, where z′ and z∗ are the objective function values of the solutions
y′ and y∗, respectively. This would contradict the assumption that y∗ is optimal and thus
complete the proof.

Show that this approach does not work by creating a set I−1 (with ai < 0, bi > 0, and
the elements sorted in increasing order of ai/bi) and a solution y∗ such that:
• |I−1 | ≤ 5

• y∗k = 1, y∗` = 0 for some ` < k

• If we define y′ as above, then z′ > z∗.
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Figure 12.5 3-Node LMRP instance for Problem 12.5.

12.5 (Nonclosest Assignments in LMRP) Consider the 3-node instance of the LMRP
pictured in Figure 12.5. Each circle represents a retailer, and each retailer is eligible to be
converted to a DC. The numbers on the links indicate the transportation cost (dij) between
retailers; the transportation cost between a retailer and itself is 0. Construct an example,
using this instance, for which there is a retailer in the optimal solution that is assigned to
a DC that is not its closest open DC. That is, this problem is asking you to choose values
for the parameters (fj , µi, σi, Kj , etc., but not including dij since those are given in the
diagram) and demonstrate that in the optimal solution, there is a retailer assigned to a given
DC, even though there is another open DC that is closer. You do not need to enumerate
the objective value of every possible solution, but you should argue rigorously that your
candidate solution is optimal.

12.6 (LRP with Distance Constraints) In this problem, you will extend the location–
routing problem (LRP) to consider distance constraints on the length of the vehicle routes,
and you will reformulate the model as a set partitioning problem. In addition to the notation
in Section 12.3, let `ij be the distance between nodes i and j, and let ¯̀ be a prespecified
upper bound on the total distance of each route. Let Rj be the set of all feasible routes
from depot j ∈ J . As in Section 12.3, a route is only feasible if it begins and ends at
the same depot and does not violate its capacity, and now we also require it to satisfy the
distance constraint. Let cjR be the cost of routeR ∈ Rj , which equals the sum of the costs
cij of the edges on the route. Let aijR be a parameter that equals 1 if route R ∈ Rj visits
customer i, and 0 otherwise.

The model aims to choose one route R ∈ Rj for each j ∈ J to minimize the total
cost of the routes. Every customer must be included in exactly one route. The objective
function consists of the total fixed cost of opening depots plus the total routing cost. As
before, yj is a decision variable that equals 1 if depot j ∈ J is opened, and now let zjR be a
new decision variable that equals 1 if route R ∈ Rj is selected and 0 otherwise. You may
assume there is no upper bound on the number of depots open or the number of vehicles
assigned to each depot.

a) Formulate the LRP with distance constraints as a linear integer programming
problem. If you introduce any new notation, define it clearly. Explain the
objective function and constraints in words.

b) Design a heuristic for the LRP with distance constraints that is based on the
greedy-add heuristic we discussed for the UFLP in Section 8.2.5. Write pseu-
docode for your heuristic. You may assume that your heuristic has access to the
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following two black-box functions and may use them as many times as you wish.
(“Black-box” means you don’t know how the functions work, but you may call
them and use their results.)

• Route_Enumerate(j,I) takes as input a candidate depot location j and a
customer set I and returns as output the set Rj of all feasible routes for
depot j. The function also returns, for each route R ∈ Rj , the values of the
parameters cjR and aijR.

• Route_Select(j,I) takes as input a candidate depot location j and a cus-
tomer set I and returns as output a set R̂j ⊆ Rj , which contains the lowest-
cost subset of all feasible routes for depot j such that every customer in I is
visited by exactly one route. The function also returns, for each routeR ∈ R̂j ,
the values of the parameters cjR and aijR.

Note that in both functions, the input parameter I may equal the entire customer
set or only a subset of it.



CHAPTER 13

THE BULLWHIP EFFECT

13.1 INTRODUCTION

In the early 1990s, executives at Procter & Gamble (P&G) noticed a peculiar trend in the
orders for Pampers, a brand of baby diapers. As you might expect, demand for diapers
at the consumer level is pretty steady since babies use them at a fairly constant rate. But
P&G noticed that the orders placed by retailers (e.g., CVS, Target) to distributors were
quite variable over time—high one week, low the next. The distributors’ orders to P&G
were even more variable, and P&G’s orders to its own suppliers (e.g., 3M) were still more
variable. (See Figure 13.1.)

This phenomenon is known as the bullwhip effect (BWE), a phrase coined by P&G
executives that refers to the way a wave’s amplitude increases as it travels the length of
a whip. Sometimes it’s also known as the “whiplash” or “whipsaw” effect. The BWE
has been observed in many industries other than diapers. For example, Hewlett-Packard
(HP) noticed large variability in the orders retailers placed to HP for printers, even though
demand for printers is fairly steady. Similarly, the demand for DRAM (a component of
computers) is more volatile than the demand for computers themselves. Wide swings in
order sizes can cause big increases in inventory costs (for both raw materials and finished
goods), overtime and idling expenses, and emergency shipment costs. These factors are
estimated to increase costs by as much as 12.5–25% (Lee et al. 1997a).

The BWE was described in the literature as early as the 1950s (Forrester 1958). Sterman
(1989) described how the BWE could be caused by irrational behavior by supply chain

539Fundamentals of Supply Chain Theory, . Lawrence V. Snyder and Zuo-Jun Max Shen. 
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Figure 13.1 Increase in order variability in upstream supply chain stages.

managers: for example, overreacting to a small shortage one week by ordering far too
much the next week. His paper uses the now-famous “beer game” to demonstrate this
relationship empirically. Then, two papers by Lee et al. (1997a,b) demonstrated that the
BWE can occur even if all players act rationally—following the logical, optimized policies
of the type we discuss in this book. They identified four primary causes for the BWE:

1. Demand signal processing. Many firms use forecasting techniques to estimate the
mean and standard deviation of current or future demands. Each time a new demand
is observed, the estimates are updated. If the previous period’s demand was high, the
new estimate will be higher than the previous one, thus raising the target inventory
level. The orders will be more exaggerated than the demands. This phenomenon is
amplified by the lead time if the base-stock level is set using (4.46), that is,

µL+ zασ
√
L,

where µ and σ are the mean and standard deviation of the demand per period and
L is the lead time. In practice, the firm doesn’t know µ and σ, so it estimates them
based on historical data. These estimates change periodically, and any change in the
estimates are magnified by the lead time when setting base-stock levels, so long lead
times produce large shifts in order sizes.

2. Rationing game. When distributors don’t have enough inventory to meet retailers’
orders, they often allocate product according to order size: If retailer 1 orders 100
units and retailer 2 orders 150 units, but there are only 200 units available, then the
distributor will give 200×(100/250) = 80 units to retailer 1 and 200×(150/250) =

120 units to retailer 2. If the retailers anticipate the shortage, they may artificially
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inflate their orders to try to get a larger allocation of the inventory. Once the shortage
is over, the retailers’ orders will return to their normal levels, or even lower. Thus,
the variance in retailer orders is larger than the variance in actual demands.

3. Order batching. It is common for all players in a supply chain to place orders
in bulk: Parents buy diapers in packages of 50, retailers buy them by the case,
distributors buy them by the truckload. A theoretical explanation for the optimality
of bulk ordering is that there is a fixed cost to place each order, so it’s better to place
fewer orders if possible. (For parents, the fixed cost is in the form of inconvenience
and time: They don’t want to go to the drug store every time their baby uses
another diaper.) Moreover, bulk buying is encouraged by sellers by offering quantity
discounts, another common practice. But order batching means that orders may be
high one week, then low for the next few weeks as retailers use up the stock they’ve
accumulated. Another reason for order batching is that many firms use material
requirements planning (MRP) software that evaluates the firm’s requirements for
every part it uses and automatically places orders with suppliers once per month.
That means the supplier sees large demand during a few days of the month as its
customers’ MRP systems place orders and small demand for the rest of the month;
this is sometimes known as the “hockey stick” phenomenon.

4. Price speculation. Prices change all the time, and firms tend to stock up while prices
are low and order less when prices are high. This is most pronounced at upstream
stages in the supply chain, whose raw materials are commodities such as plastic, steel,
fuel, and so on—prices for these commodities change constantly, and speculation
is common among buyers. It’s also obvious at the other end of the supply chain,
as customers buy more when retailers offer sales and promotions. In the middle of
the supply chain, sales and promotions are common, too, causing retailers and other
players to stock up when prices drop. All of this leads to large variability in buying
patterns.

In Section 13.2, we’ll discuss mathematical models explaining these causes and demon-
strating that they occur even when each player in the supply chain is a rational “optimizer.”
Then, in Section 13.3, we’ll discuss strategies for reducing the BWE. Finally, in Sec-
tion 13.4, we’ll examine the extent to which sharing demand information with upstream
supply chain members can reduce or eliminate the BWE.

Most of the analysis in this section is adapted from Lee et al. (1997a) and Chen et al.
(2000). For reviews of the literature on the BWE, see McCullen and Towill (2002), Lee
et al. (2004), or Geary et al. (2006).

13.2 PROVING THE EXISTENCE OF THE BULLWHIP EFFECT

13.2.1 Introduction

Consider a serial supply chain like the one pictured in Figure 13.2. We will examine this
system in the context of an infinite horizon under periodic review. Each stage places orders
from its upstream stage and supplies product to its downstream stage. Stage N serves the
end customer.
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1 - 2 - · · · -N − 1 - N - external
demand

Figure 13.2 Serial supply chain network.

Our strategy will be to focus on one stage and to show that the variance of orders it
places to its supplier is larger than the variance of orders it receives from its customer. That,
in turn, implies the BWE as a whole: StageN ’s orders are more variable than its demands,
so stage N − 1’s orders are even more variable, so stage N − 2’s orders are even more
variable, and so on.

Suppose the following conditions hold at each stage:

1. Demands are independent over time, and the parameters of the demand distribution
are known.

2. The stage’s supplier (i.e., its upstream stage) always has sufficient inventory and
satisfies orders with a fixed lead time that is independent of the order size.

3. There is no fixed ordering cost.

4. The purchase cost is constant over time.

If all four of these conditions hold, it is optimal for the stage to follow a stationary base-
stock policy. As we know from Section 4.3, that means that in each period, the order placed
by the stage is exactly equal to the demand seen by the stage in the previous time period,
so the orders placed by the stage and the demand seen by it have the same variance—the
bullwhip effect does not occur.

However, relaxing each of the conditions given above (one at a time) gives us the four
causes of the BWE: demand signal processing (when the demand parameters are unknown
and hence forecasting techniques must be used to estimate them), rationing game (when
supply is limited), order batching (when there is a fixed cost for ordering), and price
speculation (when the purchase price can change over time).

We discuss models for each of these causes next. In each of the four sections that
follows, we will consider only a single stage in the supply chain and show that the orders
placed by the stage to its supplier have larger variance than the demands received by the
stage. Without loss of generality we will refer to this stage as the “retailer.”

13.2.2 Demand Signal Processing

In this section, we relax both parts of assumption #1 in Section 13.2.1: We assume that
the demands are serially correlated—that is, demands in one time period are statistically
dependent on demands in the previous time period—and that the parameters of the demand
process are unknown and must be estimated. Each stage in the supply chain makes its own
estimate of the demand parameters based on the orders it receives. We will show that this
processing of the demand signal can lead to the BWE.
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We assume that the demands seen by the retailer follow a first-order autoregressive
AR(1) process; that is, the demand follows a model of the form

Dt = d+ ρDt−1 + εt, (13.1)

where Dt is the demand in period t (a random variable), d ≥ 0 is a constant, ρ is a
correlation constant with −1 < ρ < 1, and εt is an error term that is distributed N(0, σ2).
If ρ is close to 1, then a large demand tends to be followed by another large demand, while
if ρ is close to −1, then a large demand tends to be followed by a small one.

It’s tempting to think of d as the mean of this process, but it is not, unless ρ = 0. In fact,
it can be shown that

E[Dt] =
d

1− ρ
(13.2)

Var[Dt] =
σ2

1− ρ2
(13.3)

Cov[Dt, Dt−k] =
ρkσ2

1− ρ2
= ρkVar[Dt]. (13.4)

Note that the mean, variance, and covariance are the same in every period. If ρ = 0, the
demands are iid with mean d and variance σ2. These are steady-state values; if we know
Dt−1, then these formulas do not apply. (See, for example, Problem 13.3.)

The retailer follows a base-stock policy. Let DL
t be the lead-time demand for an order

placed in period t; that is,

DL
t =

L−1∑
k=0

Dt+k. (13.5)

If the retailer knew the mean µLt = E[DL
t ] and standard deviation σLt =

√
Var[DL

t ] of
the lead-time demand (which it could calculate if it knew d, σ, and ρ—see Problem 13.3),
then, analogous to (4.46), the optimal base-stock level would be given by

St = µLt + zασ
L
t . (13.6)

However, the retailer does not know µLt and σLt but instead must forecast them based
on observed demands using, for example, one of the methods in Chapter 2. One of the
most common forecasting techniques, and the one we’ll use here, is a moving average
(Section 2.2.1), which simply consists of the average of the demands from the previous m
time periods. The estimate for µLt , computed at time t and denoted µ̂Lt , is

µ̂Lt = L

(∑m
i=1Dt−i

m

)
. (13.7)

As for the standard deviation, it turns out that instead of estimating the standard deviation
of lead-time demand (σLt ), we want to estimate the standard deviation of the forecast error
of the lead-time demand, σLet. (See Section 4.3.2.7.) The estimate of σLet at time t is given
by

σ̂Let = CLρ

√∑m
i=1(et−i)2

m
(13.8)

where
et = Dt − µ̂1

t
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is the one-period forecast error and CLρ is a constant depending on L, ρ, and m; we omit
the derivation of this equation and the exact form of CLρ. The base-stock level is then set
using

St = µ̂Lt + zασ̂
L
et. (13.9)

This policy is optimal for iid normal demands (i.e., if ρ = 0) and is approximately optimal
otherwise. (It is only approximately optimal because these estimates of µLt and σLet do
not take into account the autocorrelation of the demand; that is, they assume that the
demand will have the same distribution in each period of the lead time. It would be more
accurate to account for the correlation, i.e., using (13.1), when estimating the lead-time
demand parameters. This is relatively straightforward to do if d, ρ, and σ are known—see
Problem 13.3—but is quite a bit harder when the parameters are unknown and are estimated
as described above.)

In period t, the retailer computes µ̂Lt and σ̂Let using the previousm periods’ demands, then
sets the base-stock level St using (13.9) and places an order of sizeQt = St−St−1 +Dt−1

(why?). (It is possible thatQt < 0. In this case, we assume that the firm returns−Qt units
to the supplier and receives a full refund for the returned units.) We can write Qt as

Qt = St − St−1 +Dt−1

= µ̂Lt + zασ̂
L
et − (µ̂Lt−1 + zασ̂

L
e,t−1) +Dt−1

= µ̂Lt − µ̂Lt−1 + zα(σ̂Let − σ̂Le,t−1) +Dt−1

= L

(∑m
i=1Dt−i −

∑m
i=1Dt−1−i

m

)
+Dt−1 + zα(σ̂Let − σ̂Le,t−1)

= L

(
Dt−1 −Dt−m−1

m

)
+Dt−1 + zα(σ̂Let − σ̂Le,t−1)

=

(
1 +

L

m

)
Dt−1 −

L

m
Dt−m−1 + zα(σ̂Let − σ̂Le,t−1).

We want to compute Var[Qt] so that we can compare it to Var[Dt] to demonstrate the
BWE. Using the fact that

Var[aX + bY ] = a2Var[X] + b2Var[Y ] + 2abCov[X,Y ], (13.10)

we have

Var[Qt] =Var

[(
1 +

L

m

)
Dt−1 −

L

m
Dt−m−1

]
+ Var

[
zα(σ̂Let − σ̂Le,t−1)

]
+ 2Cov

[(
1 +

L

m

)
Dt−1 −

L

m
Dt−m−1, zα(σ̂Let − σ̂Le,t−1)

]
. (13.11)

Let’s examine the Cov[·] term. Recall that

Cov

 m∑
i=1

aiXi,

n∑
j=1

bjYj

 =

m∑
i=1

n∑
j=1

aibjCov[Xi, Yj ].

Then

Cov[·] =

(
1 +

L

m

)
zαCov[Dt−1, σ̂

L
et]−

(
1 +

L

m

)
zαCov[Dt−1, σ̂

L
e,t−1]
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− L

m
zαCov[Dt−m−1, σ̂

L
et] +

L

m
zαCov[Dt−m−1, σ̂

L
e,t−1]. (13.12)

To evaluate this further, we’ll need the following lemma:

Lemma 13.1 Cov[Dt−i, σ̂
L
et] = 0 for all i = 1, . . . ,m.

Proof. Omitted; see Ryan (1997).

Therefore, the first and last terms of (13.12) are equal to 0. As for the middle terms,

−
(

1 +
L

m

)
zαCov[Dt−1, σ̂

L
e,t−1]

=−
(

1 +
L

m

)
zαCov[d+ ρDt−2 + εt−1, σ̂

L
e,t−1] (by (13.1))

=−
(

1 +
L

m

)
zαρCov[Dt−2, σ̂

L
e,t−1] (since D, ε are independent)

=0 (by Lemma 13.1)

and

− L

m
zαCov[Dt−m−1, σ̂

L
et]

=− L

m
zαCov

[
1

ρ
(Dt−m − d− εt−m), σ̂Let

]
(by (13.1))

=− L

m
zα

1

ρ
Cov[Dt−m, σ̂

L
et] (since D, ε are independent)

=0 (by Lemma 13.1).

Therefore, we can ignore the Cov[·] term in (13.11). Then using (13.10) again, we have

Var[Qt] =

[(
1 +

L

m

)2

Var[Dt−1] +

(
L

m

)2

Var[Dt−m−1]

−2

(
1 +

L

m

)(
L

m

)
Cov[Dt−1, Dt−m−1]

]
+ z2

αVar[σ̂Let − σ̂Le,t−1]

=

(
1 +

2L

m
+

2L2

m2

)
Var[D]−

(
2L

m
+

2L2

m2

)
ρmVar[D]

+ z2
αVar[σ̂Let − σ̂Le,t−1] (by (13.4))

=

[
1 +

(
2L

m
+

2L2

m2

)
(1− ρm)

]
Var[D] + z2

αVar[σ̂Let − σ̂Le,t−1].

This gives us the following theorem:

Theorem 13.2
Var[Q]

Var[D]
≥ 1 +

(
2L

m
+

2L2

m2

)
(1− ρm) (13.13)

The bound is tight when zα = 0.
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Theorem 13.2 demonstrates that demand forecasting in the presence of positive lead
times is sufficient to create the BWE at a single stage. Moreover, it provides a lower bound
on the percentage increase in variability. For shorthand, let B equal the lower bound on
Var[Q]/Var[D], i.e., the right-hand side of (13.13). Theorem 13.2 demonstrates that:

• As m increases, B decreases. This is intuitive since larger m means smoother
forecasts, so less variability in the order sizes.

• As L increases, B increases. This is also reasonable since longer lead times make
it harder to forecast demand, so the forecasts themselves, and hence the order sizes,
will be more variable.

• If ρ ≥ 0 (positively correlated demand), then as ρ increases, B decreases. The intu-
itive explanation is that stronger positive correlation means there is more information
available to make forecasts since each demand observation also provides information
about past and future demands.

• If ρ < 0 (negatively correlated demand), then as |ρ| increases, B decreases if m
is even and increases if m is odd. At first it seems surprising that the directional
change in B should depend on whether m happens to be odd or even, but here is an
explanation. Suppose ρ ≈ −1, so that the demand alternates between large and small
values. If m is even, then the moving average always includes the same number of
large and small values, so the forecast does not change much from period to period.
On the other hand, if m is odd, then the moving average itself will alternate between
large and small values. Therefore, B will be smaller if m is even than if it is odd,
and the difference between these two cases will be more exaggerated as ρ→ −1.

• If zα = 0, then the bound given in Theorem 13.2 is tight. In this case, no safety
stock is held and stockouts occur in 50% of the periods. Simulation results given by
Chen et al. (2000) suggest that even when zα 6= 0, the bound given by the theorem
is reasonably tight.

Theorem 13.2 establishes that the BWE occurs when the demand is autocorrelated and the
parameters are unknown. In fact, either of these conditions, by itself, is sufficient to cause
the BWE. If demands are independent over time (i.e., ρ = 0 and the retailer knows this) but
d and σ are still unknown, then Theorem 13.2 still applies and B > 1, so the BWE occurs.
If, on the other hand, demands are still serially correlated but d, ρ, and σ are known, then
the BWE occurs as well; see Problem 13.4 or Zhang (2004).

13.2.3 Rationing Game

Suppose the supply for a given product may be insufficient to meet the demand from
multiple retailers and that the supplier will ration the available supply according to the
fraction of demand accounted for by each retailer: If a retailer accounted for 8% of the
total demand, it will receive 8% of the available supply. The BWE occurs when retailers
anticipate the shortage since they have an incentive to inflate their orders to try to gain a
larger share of the available supply. This behavior is called the rationing game because
retailers play a “game” (in the game-theory sense) to try to obtain a larger allocation in the
face of the supplier’s rationing.
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We will consider the following simple model. There are two identical retailers, each
facing demand with pdf f(·) and cdf F (·) (the same distribution for both retailers). There
is no inventory carryover between periods and unmet demands at the retailers are lost;
therefore, we can model a single period and treat the multiperiod problem as multiple
copies of the single-period one. Each unit on hand at the end of a period incurs a cost of h,
and each lost sale incurs a stockout penalty of p.

Let Q∗ be the optimal order quantity if the supply were infinite; that is,

Q∗ = F−1

(
p

h+ p

)
(from (4.17)). We assume that the available supply A can take on two quantities: It will
equal A1 with probability r and∞ with probability 1 − r, with A1 < 2Q∗. That is, with
probability r, there will be a supply shortage, and with probability 1 − r, there will be
adequate supply. (Lee et al. (1997a) consider a model with N retailers and a more general
supply process, but the simpler model presented here conveys most of the same insights.)

If a retailer expects a supply shortage, it has an incentive to order more thanQ∗. We will
evaluate the Nash equilibrium solution—the order quantities chosen by the two retailers
such that neither retailer, knowing the other’s order quantity, would want to change its
own. Put another way, a retailer’s Nash equilibrium solution is the order quantity it chooses
assuming it knows the other retailer’s order quantity already.

Let Qi be the order size for retailer i, i = 1, 2. If A = A1, then retailer i will receive
A1Qi/(Q1 +Q2) units. For convenience, define retailer 1’s allocation as

a(Q) =
A1Q

Q+Q2
.

If Q2 is fixed, retailer 1’s expected cost is given by

g1(Q1) =(1− r)

[
h

∫ Q1

0

(Q1 − d)f(d)dd+ p

∫ ∞
Q1

(d−Q1)f(d)dd

]

+ r

[
h

∫ a(Q1)

0

(a(Q1)− d)f(d)dd+ p

∫ ∞
a(Q1)

(d− a(Q1))f(d)dd

]
.

(13.14)

The first term of (13.14) represents the expected cost when A =∞, while the second term
assumes A = A1. An analogous expression describes retailer 2’s expected cost.

Theorem 13.3 Both retailers choose an order quantity Q that is larger than the optimal
newsvendor order quantity, Q∗.

Proof. Retailer 1 minimizes (13.14) by setting its first derivative to 0:

dg1

dQ1
=r

[
h

∫ a(Q1)

0

A1Q2

(Q1 +Q2)2
f(d)dd+ p

∫ ∞
a(Q1)

− A1Q2

(Q1 +Q2)2
f(d)dd

]

+ (1− r)

[
h

∫ Q1

0

f(d)dd+ p

∫ ∞
Q1

−f(d)dd

]
(using Leibniz’s rule (C.49))
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=r

[
(h+ p)

A1Q2

(Q1 +Q2)2
F (a(Q1))− p A1Q2

(Q1 +Q2)2

]
+ (1− r) [(h+ p)F (Q1)− p]

Since retailers 1 and 2 are identical, they will make exactly the same decisions: Q1 =

Q2 = Q. Then a(Q1) = A1/2. Each retailer will set

r
A1

4Q

[
(h+ p)F

(
A1

2

)
− p
]

+ (1− r)[(h+ p)F (Q)− p] = 0.

Now,

F

(
A1

2

)
< F

(
2Q∗

2

)
= F (Q∗) =

p

h+ p

since A1 < 2Q∗ and F (·) is strictly increasing. Therefore,

(h+ p)F

(
A1

2

)
− p < (h+ p)

p

h+ p
− p = 0.

So the optimal Q satisfies

(h+ p)F (Q)− p = [something positive] (13.15)

while the optimal Q from the newsvendor problem satisfies

(h+ p)F (Q)− p = 0. (13.16)

Since F (·) is strictly increasing, it takes a larger value ofQ to satisfy (13.15) than to satisfy
(13.16).

Therefore, in the presence of supply shortages, order quantities will be inflated. However,
this, by itself, does not prove that the BWE occurs in the rationing game, since inflated
order quantities do not necessarily imply inflated variances. However, Lee et al. (1997a)
argue that the theorem

...implies the bullwhip effect when the mean demand changes over time. Retailers’
equilibrium order quantity may be identical or close to the newsvendor solution for low-
demand periods, while it will be larger than the newsvendor solution for high-demand
periods. Hence, the variance is amplified at the retailer.

It takes some additional work to prove this claim rigorously. In fact, it can be shown
that, if the mean demand changes over time as described in the quote above, then there is
no finite Nash equilibrium in the rationing game defined by Lee et al. (1997a). That is, the
retailers will keep inflating their order quantities in response to one another ad infinitum.
However, under some minor modifications, a Nash equilibrium does exist, and its variance
is greater than that of the demand, as suggested in the quote. (See Rong et al. (2017b) for
these results.)

13.2.4 Order Batching

We will model the batching of orders by assuming that a given retailer will not place an
order in every time period. Instead, each retailer uses a periodic-review base-stock policy
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with a reorder interval of R periods—that is, every Rth period, the retailer places an order
whose size is equal to the demand seen by the retailer in the previous R periods. (See
Section 4.3.4.1.) If the supplier serves several retailers, we will show that the variance of
the orders seen by the supplier is larger than the variance of the orders seen by the retailers.

Suppose that there are N retailers; retailer i sees a demand of Dit in period t, with
Dit ∼ N(µ, σ2). Demands are independent among retailers and across time periods. We
consider three cases corresponding to how the retailers’ orders line up with one another:
random ordering, positively correlated ordering, and balanced ordering.

13.2.4.1 Random Ordering Suppose each retailer’s ordering period is chosen ran-
domly from 1, . . . , R with equal probability. Let X be a random variable indicating the
number of orders seen by the supplier in a given time period. Since each retailer orders with
probability 1/R in a given time period, X is a binomial random variable with parameters
N and 1/R, and

E[X] =
N

R

Var[X] =
N

R

(
1− 1

R

)
.

Let Qrt be the total size of the orders received by the supplier in period t. Without loss of
generality, assume that retailers 1, . . . , X are the retailers that order in period t and retailers
X + 1, . . . , N are the retailers that do not. Then

Qrt =

X∑
i=1

t−1∑
k=t−R

Dik.

(The superscript r stands for “random.”) Then

E[Qrt ] = E[E[Qrt |X]] = E[XRµ] = Nµ,

where the notation E[E[Qrt |X]] means we take the expectation ofQrt for fixedX , then take
the expectation over X . Similarly,

Var[Qrt ] = E[Var[Qrt |X]] + Var[E[Qrt |X]]

= E[XRσ2] + Var[XRµ]

= Nσ2 +R2µ2N

R

(
1− 1

R

)
= Nσ2 + µ2N(R− 1)

≥ Nσ2.

(The first equality is a well-known identity for variance.) Therefore, the variance of orders
seen by the supplier is greater than or equal to that of the demands seen by the retailers. Note
that if R = 1 (no order batching: every retailer orders every time period), the variances are
equal, as expected.

13.2.4.2 Positively Correlated Ordering We’ll consider the extreme case in which
all retailers order in the same period. For example, if R is 1 week, then all retailers order
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on Monday (say) and not on other days of the week. This is the MRP “hockey stick” taken
to its extreme. The distribution function of X (the number of retailers ordering on a given
day) is then

P(X = i) =


1− 1/R, if i = 0

1/R, if i = N

0, otherwise,

with

E[X] =
N

R

Var[X] =
N2

R

(
1− 1

R

)
.

Let Qct be the total size of the orders received by the supplier in period t. Then

E[Qct ] = E[E[Qct |X]] = E[XRµ] = Nµ

and

Var[Qct ] = E[XRσ2] + Var[XRµ]

= Nσ2 +R2µ2N
2

R

(
1− 1

R

)
= Nσ2 + µ2N2(R− 1)

≥ Nσ2.

Again, the variance of orders is greater than the variance of demands, unless R = 1.

13.2.4.3 Balanced Ordering Finally, suppose that the retailers’ orders are evenly
spread throughout the R-period reorder interval. We’ll write the number of retailers N as
N = MR + k for integers M and k. M is like N div R and k is like N mod R. For
example, if R = 7 (1-week reorder interval) and N = 38, then M = 5 and k = 3. Three
days a week, six retailers order, and four days a week, five retailers order. More generally,
the retailers are divided into R groups, each ordering on a different day. k of the groups
have size M + 1 and R− k of them have size M .

We get:

P(X = i) =


1− k/R, if i = M

k/R, if i = M + 1

0, otherwise

Then

E[X] = M

(
1− k

R

)
+

(M + 1)k

R
=
N

R

Var[X] =

(
1− k

R

)
M2 +

(M + 1)2k

R
−
(
N

R

)2

=
k

R

(
1− k

R

)
.
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Let Qbt be the total size of the orders received by the supplier in period t. Then

E[Qbt ] = E[E[Qbt |X]] = E[XRµ] = Nµ

and

Var[Qbt ] = E[XRσ2] + Var[XRµ]

= Nσ2 +R2µ2 k

R

(
1− k

R

)
= Nσ2 + µ2k(R− k)

≥ Nσ2.

Once again, the variance of orders is greater than or equal to that of demands. If k = 0

or k = R, then exactly the same number of retailers place orders on each day, and the
variances are equal.

We now have the following theorem.

Theorem 13.4 Let Qrt , Q
c
t , and Qbt be random variables representing the orders received

by the supplier in period t in the cases of random ordering, correlated ordering, and
balanced ordering, respectively. Then:

(a) E[Qct ] = E[Qrt ] = E[Qbt ] = Nµ

(b) Var[Qct ] ≥ Var[Qrt ] ≥ Var[Qbt ] ≥ Nσ2

Proof. The analysis above proves (a) and the last inequality in (b). It remains to show
Var[Qct ] ≥ Var[Qrt ] ≥ Var[Qbt ]:

Var[Qct ] = Nσ2 + µ2N2(R− 1)

≥ Nσ2 + µ2N(R− 1)

= Var[Qrt ]

since N ≥ 1, and

Var[Qrt ] = Nσ2 + µ2N(R− 1)

≥ Nσ2 + µ2k(R− k)

= Var[Qbt ]

since k(R− k) ≤ N(R− 1) for all k = 1, . . . , R.

Therefore, the orders placed to the supplier have the same mean as those placed to the
retailers, but larger variance. Moreover, correlated demand produces the largest BWE, then
random, then balanced.

13.2.5 Price Speculation

We will consider a single retailer whose supplier alternates between two prices, cL and cH ,
with cL < cH . With probability r, the price will be cL and with probability 1− r, the price
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Time
Period

Starting
Inventory Demand

Price
(L/H)

Order
Size

1 100 77 L 77
2 100 67 H 17
3 50 82 L 132
4 100 93 L 93

etc.

Figure 13.3 BWE spreadsheet simulation.

will be cH . The long-run expected discounted cost, over an infinite horizon, can be written
recursively as a dynamic program (DP), similar to (4.36):

θi(x) = min
y≥x
{ci(y − x) + g(y) + γED[rθL(y −D) + (1− r)θH(y −D)]}, (13.17)

where i ∈ {L,H} and, as usual, g(y) is as given by (4.37). Note that we have two
recursive functions, one for each cost level. The recursion (13.17) differs from (4.36) in
two respects. First, the expected future cost contains an expectation over the cost level i.
Second, this is an infinite-horizon recursion, so θi(x) does not have a time-period index,
and the definition of θi(x) depends on itself. Dynamic programming has tools to deal with
this sort of recursion, which we will not explore here. Suffice it to say that the optimal
inventory policy in this case can be shown to be a modified base-stock policy: When the
price is cL, order enough to bring the inventory position to SL, and when the price is cH ,
order enough to bring the inventory position to SH . If the inventory level is greater than the
applicable base-stock level in a given period, returns are not allowed; instead, the retailer
orders 0. It is clear that SH ≤ SL, but finding the optimal SH and SL can be difficult. We
omit the details here. The net result is the following theorem:

Theorem 13.5 Var[Q] > Var[D]

Therefore, price fluctuations produce the BWE.
You can get a feel for how this works by building a spreadsheet simulation model. For

example, Figure 13.3 shows the first few rows of a spreadsheet that has columns for starting
inventory, demand (we used N(80, 100) to generate demand), price (low or high; we used
r = 0.7), and order size (we used SL = 100, SH = 50 to compute these, but these are not
the optimal base-stock levels). The results of the simulation are displayed graphically in
Figure 13.4. The orders clearly display a larger variance than the demands.

13.3 REDUCING THE BULLWHIP EFFECT

A number of strategies have been proposed for addressing the four causes of the BWE. We
discuss some of these next.

13.3.1 Demand Signal Processing

The analysis given above suggests that the BWE is amplified as we move upstream in the
supply chain since stage i uses stage (i+ 1)’s orders as though they were demands, when
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Figure 13.4 BWE caused by price fluctuations.

in fact they are more variable than demands. This can be mitigated by sharing point-of-sale
(POS) demand information with upstream members of the supply chain. That is, when the
retailer places an order with the wholesaler, it relays not only the order size but also the size
of the most recent demands. The proliferation of bar code scanners at checkout lines makes
this technologically easy, but retailers are often reluctant to give demand data, which they
treat as proprietary, to their suppliers. In addition, even if upstream stages see this “sell-
through” data, they may each use different forecasting techniques or inventory policies,
and this will exacerbate the BWE as well. We will analyze the effect of sell-through data
on the BWE in Section 13.4.

Vendor-managed inventory (VMI) is a distribution strategy whereby the vendor (say,
Coca-Cola) manages the inventory at the retailer (say, Walmart). The Coca-Cola company
sets up the Coke displays at Walmart and, more importantly, monitors the inventory level
and replenishes as necessary. In many cases, Coke actually owns the merchandise until it is
sold—Walmart only takes ownership of the product for a split second as it’s being scanned
at the checkout line. Walmart benefits because Coke pays some of the costs of holding and
managing the inventory. Coke benefits because it can keep tighter control over the displays
of its products at stores, and also because its distribution is more efficient when it, not its
customers, decides when to replenish the stock at each store. Moreover, since Coke gets to
see actual sales data, the BWE is reduced.

As we saw earlier, longer lead times make the BWE worse. Therefore, one strategy for
reducing the BWE is to shorten lead times. There are various ways to accomplish this,
though it is often easier said than done.
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13.3.2 Rationing Game

Rather than rationing according to order sizes in the current period, the supplier could
allocate the available supply based on each retailer’s orders in the previous period, or based
on market share or some other mechanism that’s independent of this period’s orders. That
eliminates the incentive to over-order during shortages. Alternatively, the supplier could
restrict each retailer’s orders to be no more than a certain percentage (say 10%) larger
than its order in the previous period, or charge a small “reservation payment” for each
item ordered, whether or not it is received. Finally, the supplier can avoid the rationing
game to a certain extent by sharing supply information with downstream members (note
the symmetry with the demand signal processing case), allowing the retailers to use actual
data instead of conjecture when making ordering decisions.

13.3.3 Order Batching

Recall from the EOQ model (Section 3.2) that as the fixed order cost increases, so does
the order size. The batching of orders, then, can be reduced by reducing the fixed order
cost. Nowadays, most communication uses electronic data interchange (EDI), in which
communication is performed electronically instead of on paper. This reduces the cost in
both time and money of placing each order. Another innovation that reduces the setup
cost of each order is third-party logistics (3PL) providers, which allow smaller companies
to attain larger economies of scale by taking advantage of the 3PL’s size. For example,
if a firm wants to ship a single package to a customer, it doesn’t have to contract for a
full truck—it can just use UPS, one of the world’s largest 3PLs. Since UPS has lots of
packages going all over the world, it attains huge economies of scale and passes some of
these savings to its customers.

Suppliers can also encourage less batching by offering retailers volume discounts based
on their total order, not based on orders for individual products. For example, P&G used to
give bulk discounts if retailers ordered an entire truckload of one product (say, Pampers);
now they give the same discounts even if the truck carries a variety of P&G products. This
allows retailers to order Pampers more frequently (possibly with every order) as opposed
to only ordering Pampers when they need a full truckload.

If batching is unavoidable, suppliers can force the orders to be balanced over time by
assigning each retailer a specific period during which it may place orders. For example,
one retailer might have to place orders only on Tuesdays, while another may place orders
on Thursdays. This strategy will reduce, but not avoid, the BWE, as we saw in Theorem
13.4.

13.3.4 Price Speculation

One way to avoid the variability introduced by price fluctuations is simply to keep prices
fixed. Although this seems obvious, it has introduced a shift in the pricing schemes of many
major manufacturers such as P&G, Kraft, and Pillsbury. The strategy is called everyday
low pricing (EDLP), and the basic idea is that prices stay at a constant low rate: there are
no sales or promotions. EDLP is widely used upstream in the supply chain, but it is also
increasingly used for retail sales. You may have seen stores that advertise “everyday low
prices” and assumed it is merely a marketing ploy, without realizing the substantial benefit
the retailer may be gaining by reducing the BWE.
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In some cases, price fluctuations are unavoidable or desirable, and a natural consequence
is that retailers will buy more when the price is low. The supplier can still reduce the BWE,
however, by proposing contracts in which the retailer agrees to buy a large quantity of
goods at a discount but to spread the receipt of the goods over time. The manufacturer can
plan production more efficiently, but the retailer can continue to buy when prices are low.

13.4 CENTRALIZING DEMAND INFORMATION

In Section 13.3, we suggested that sharing POS demand information with upstream supply
chain members reduces the BWE: Instead of seeing the retailer’s orders, which are already
more variable than the demands, the supplier sees the actual demands and uses these to
make its own ordering decisions. But can this strategy eliminate the BWE entirely? If not,
how much can it reduce the BWE?

In this section, we will analyze the impact of demand sharing on the BWE using the
model introduced in Section 13.2.2, extending the analysis now to multiple stages as
pictured in Figure 13.2. We will consider a centralized system in which each stage sees
the actual customer demands; we will then compare this system to a decentralized system
in which demand information is not shared and each stage sees only the orders placed by
its immediate downstream neighbor.

The lead time for goods being transported from stage i to stage i+ 1 is given by Li+1.
Each stage uses a moving average forecast with m observations. The moving average is
used to compute estimates of the lead time demand mean, µLt , and the standard deviation
of the forecast error of lead-time demand, σLet, which are in turn used to compute the
base-stock levels.

13.4.1 Centralized System

In the centralized system, demand information is available to all stages of the supply chain.
There is no “information lead time”—all stages see customer demands at exactly the same
moment, when the demands arrive. Stage i can build its moving average forecast using
actual customer demands. Its estimates of µLt and σLet will be as given in (13.7) and (13.8),
and it will use these to compute base-stock levels as in (13.9).

Conceptually, there is no difference between (a) goods being shipped from i to i+ 1 to
... to N to the customer, with a total lead time of Li+1 + Li+2 + · · ·+ LN , and (b) goods
being shipped directly from i to the customer with the same lead time. Therefore, we can
think of stage i as serving the end customer demand directly with a transportation lead time
of Li+1 +Li+2 + · · ·+LN . Using the same logic as in Section 13.2, we get the following
theorem, which quantifies the increase in variability between the customer demands and
the orders placed by a given stage:

Theorem 13.6 In a centralized serial supply chain, the variance of the orders placed by
stage i, denoted Qi, satisfies

Var[Qi]

Var[D]
≥ 1 +

2
∑N
j=i+1 Lj

m
+

2
(∑N

j=i+1 Lj

)2

m2

 (1− ρm)

for all i = 1, . . . , N .
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Thus, even if (1) demand information is visible to all supply chain members, (2) all supply
chain members use the same forecasting technique, and (3) all supply chain members use
the same inventory policy, the bullwhip effect still exists. Sharing demand information does
not eliminate the BWE. But does it reduce it? We will answer this question in the next
section by comparing this system to one in which demand information is not shared.

13.4.2 Decentralized System

Consider the same system as in the previous section except that demand information is not
shared: Each stage only sees the orders placed by its downstream stage. For simplicity, we
will assume that ρ = 0 (demands are uncorrelated across time). We will also assume that
zα = 0 (a 50% service level is acceptable), which means no safety stock is held. (Firms
sometimes use inventory policies of this form, inflating Li artificially to provide a buffer
against uncertainty. For example, the firm might increase Li by 7 days, requiring 7 extra
days of supply of inventory to be on hand at any given time. Firms generally refer to this
inflated lead time as safety lead time, but we can think of safety lead time as essentially an
alternate method of setting safety stock.)

The “demands” seen by stage i are really the orders placed by stage i+ 1. The variance
of these orders is at least 1 + 2Li+1/m + 2L2

i+1/m
2 times the variance of the orders

received by stage i+ 1, by Theorem 13.2. By following this logic through to stage N , we
get the following theorem:

Theorem 13.7 In a decentralized serial supply chain with ρ = 0 and zα = 0, the variance
of the orders placed by stage i, denoted Qi, satisfies

Var[Qi]

Var[D]
≥

N∏
j=i+1

(
1 +

2Lj
m

+
2L2

j

m2

)

for all i = 1, . . . , N .

Therefore, the increase in variability is additive in the centralized system but multiplica-
tive in the decentralized system. Sharing demand information can significantly reduce the
BWE. Although our analysis of the decentralized system assumed ρ = zα = 0, the qual-
itative result (additive vs. multiplicative variance increase) still holds in the more general
case, though the math is uglier.

To get a sense of the difference in magnitude between the bounds provided by Theorems
13.6 and 13.7, consider the case in which N = 4, Li = 2 for all i, and ρ = zα = 0. Then
the right-hand sides of the inequalities are given in Table 13.1. Note how much larger the
bounds are for the decentralized system, especially as we move upstream in the supply
chain.

CASE STUDY 13.1 Reducing the Bullwhip Effect at Philips Electronics

High-tech products typically have very volatile demand, long lead times, and short
product lifecycles. Moreover, the manufacture and assembly of many key components
are often outsourced to third parties. As a result, high-tech supply chains tend to
be fragmented, with several independent firms, each optimizing their own objective
functions. This can easily lead to the BWE, if upstream firms have poor visibility
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Table 13.1 Bounds on variability increase: Decentralized vs. centralized.

i Decentralized Centralized

1 12.7 7.2
2 6.7 5.0
3 3.6 3.2
4 1.9 1.9

into downstream demands and if upstream shortages lead to rationing-game behavior
downstream.

In 2000, Philips Electronics began a major project to reduce the bullwhip effect in its
supply chain, as described by de Kok et al. (2005). At the time, Philips was one of the
world’s largest electronics companies, with sales of over $30 billion and over 150,000
employees around the world. Philips Semiconductors (PS) and Philips Optical Storage
(POS) are1 subsidiaries of Philips Electronics (highlighting the fragmented nature of
the supply chain); PS manufactures semiconductors at 20 sites worldwide, and POS
produces DVD drives and other optical storage devices. POS is PS’s customer, and
the BWE was evident in the ordering patterns between these two firms and others
in the supply chain. The two firms decided to implement a collaborative planning
approach across the supply chain to improve visibility and coordination, as well as
to optimize inventory and material-flow decisions. They partnered with researchers
from the Technische Universiteit Eindhoven (Technical University of Eindhoven, the
Netherlands) and a consulting firm to develop the approach.

Figure 13.5 depicts a schematic of the supply chain for DVD drives. Semiconductor
wafers are fabricated by PS and then assembled into integrated circuits (ICs). The
ICs are then sent to POS, which uses them to make optical pickup units (OPUs), and
to various third-party subcontractors, which use them to make flex units and printed
circuit boards (PCBs). POS then assembles the OPUs, flex units, and PCBs (the latter
two of which are sent from subcontractors) into DVD drives. From there, the drives
are sent to both brick-and-mortar and online retailers. The average processing times
at each stage (in weeks) are written below the stages. Inventory buffers exist at each
stage. It is worth noting that in addition to the long processing time, wafer fabrication
is subject to significant yield uncertainty and limited capacity.

Prior to the BWE-reduction project, communication among the stages in the supply
chain was poor, with multiple stages making decisions independently from the decisions
other stages were making. This lack of coordination led to long information lead-times,
with downstream demand changes taking 6 weeks or longer to affect upstream decision-
making. It also led to information distortion, due to lack of visibility, and to rationing
gaming, due to upstream shortages. As a result, each stage tended to hold large
quantities of inventory to buffer against both supply and demand uncertainty, which in
turn led to significant obsolescence risk. Even so, both PS and POS often missed their
delivery deadlines.

1We will use the present tense, though PS and POS both now take different forms, after mergers, spinoffs, and the
like.
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Figure 13.5 Philips Optical Storage’s DVD supply chain network.

The project team chose to use safety lead times to buffer against the uncertainty.
As noted in Section 13.4.2, a safety lead time is an extra quantity of time added to
the regular lead time, which has the effect of creating extra inventory in the system
via formulas like (4.46) or (13.6). They set larger safety lead times at the start of a
product’s lifecycle to protect against unforeseen demand spikes and smaller lead times
later on, as the demand became more predictable. Alternately, the safety lead times
could have been set using multiechelon inventory theory; for example, de Kok and
Visschers (1999) and de Kok and Fransoo (2003) extend the concepts from Chapter 6
to more general supply chain structures.

Let i be a product (stage) in the supply chain, and let Fi be the set of end-products
in which product i is used. For the sake of simplicity, we will assume that each unit of
product k ∈ Fi uses exactly one unit of product i. Let L∗ik and ST ∗ik be the total lead
time and safety lead time, respectively, along the path from i to k (including both i

and k). Finally, let D̂it be the forecast of the demand for product i in period t. Then
the base-stock level for product i is

Si =
∑
k∈Fi

L∗ik+ST∗ik+1∑
t=1

D̂it, (13.18)

where the right-hand side of (13.18) equals the forecast of the lead-time demand for
product i. This is analogous to (4.46), except that (1) the demand for the upstream
product is calculated by aggregating over all downstream products that it is used in,
(2) we are allowing the demand to be nonstationary, and (3) rather than setting the
safety stock level using an estimate of the demand standard deviation, we are using
a safety lead time, which inflates the base-stock level when it gets multiplied by the
demand. However, we can still determine the safety stock: As always, it equals the
expected ending inventory level, i.e., the base-stock level minus the lead time demand:

SSi = Si −
∑
k∈Fi

L∗ik+1∑
t=1

D̂it.

The base-stock levels become inputs to a mathematical optimization problem that
decides the order or production quantities in each period at each stage; for details, see
de Kok et al. (2005).
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The model, algorithm, and collaborative planning process were implemented in 2001.
In the years that followed, stakeholders at PS and POS reported better communication,
shorter information lead times, and greater supply chain visibility. Between 2001 and
2003, the companies reported significant reductions in finished-goods inventory levels
and obsolescence at the end of product lifecycles, with a combined benefit of $5 million.
They also reported increased flexibility in responding to upswings in demand, leading
to a 1.5% increase in profits. Additional benefits included improved delivery reliability,
better supply–demand balance, and a reduction in the bullwhip effect. As de Kok et al.
(2005) conclude, “All this has led to a provably synchronized supply chain from die to
DVD and, for Philips, a solution that finally knocks the bullwhip effect on the head.”

PROBLEMS

13.1 (Stochastic Price Simulation) Suppose that the price of the raw material for a given
product is stochastic, as in Section 13.2.5. The price equals cL = 3 with probability 0.8 and
equals cH = 8 with probability 0.2. Demands in each period are N(100, 202). On-hand
inventory at the end of each period incurs a holding cost of h = 1 per unit. Unmet demands
are backordered with a stockout cost of p = 20 per unit.

The firm uses two base-stock levels, SL and SH , ordering up to the appropriate level in
each period based on the current price. For now, assume SL = 200 and SH = 100.

a) Simulate this system using spreadsheet software for 1000 periods. Build a table
like the one in Figure 13.3 listing the time period, starting inventory, demand,
price, order size, and any other columns you find useful. Also indicate the total
cost in each period, including holding, stockout, and order costs.

b) Using a spreadsheet-based nonlinear optimization package, determine the values
of SL and SH that minimize the average cost per period for the random sample
you have generated. Report the optimal SL and SH and the resulting average
cost per period. Include the first few rows of your spreadsheet in your report.

c) Calculate Var[Q] and Var[D] for your simulation and compare them to verify
that the BWE occurs.

d) Produce a chart like the one in Figure 13.4 plotting the demands and orders across
the time horizon.

13.2 (Batching Simulation) In the one-warehouse, multiple-retailer (OWMR) system
pictured in Figure 13.6, all three retailers, and the warehouse, handle a single product.
Demands at the retailers are normally distributed with means and variances as given in
Table 13.2, which also lists h, p, and K at each retailer. (As usual, h is the holding cost
per item per period, p is the backorder cost per item per period, and K is the fixed cost per
order placed to the warehouse.) Since K > 0, it’s optimal for the retailers to follow an
(s, S) policy rather than a base-stock policy.

a) Compute near-optimal values for s and S for each retailer using the power
approximation from Section 4.4.4.

b) Simulate this system using a spreadsheet or other software package using the
(s, S) values you found in part (a). Simulate at least 1000 periods, with a warm-
up interval of 100 periods. Report the standard deviation of the total demands
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Figure 13.6 One-warehouse, multiple-retailer system for Problem 13.2.

Table 13.2 Data for Problem 13.2.

Retailer µ σ2 h p K

1 50 82 0.6 7 100
2 100 222 0.4 8 100
3 40 32 0.9 4 100

seen by the retailers and the standard deviation of the total demands (retailer
orders) seen by the warehouse. Using these values, verify that the BWE occurs
in this system.

c) In a short paragraph, explain why the retailers’ (s, S) policies cause the BWE.

13.3 (Lead-Time Demand Under Autocorrelation) For the demand process in Sec-
tion 13.2.2, prove that DL

t is normally distributed with mean

µLt =
d

1− ρ

(
L− ρ1− ρL

1− ρ

)
+Dt−1ρ

1− ρL

1− ρ

and standard deviation

σLt =
σ

1− ρ

√
L− 2ρ

1− ρL
1− ρ

+ ρ2
1− ρ2L

1− ρ2
.

(Note that σLt is independent of t.)

13.4 (BWE Occurs Even If Demand Parameters Are Known) Suppose that we know
d, ρ, and σ in Section 13.2.2. Using the results in Problem 13.3, prove that

Var[Q]

Var[D]
= 1 +

2(1− ρL+1)(ρ− ρL+1)

1− ρ
.

(Since this is greater than 1, the BWE occurs even if the parameters are known and therefore
no forecasting is required.)

13.5 (Proving BWE in the Beer Game) In the “stationary beer game” (Chen and Samro-
engraja 2000), a serial supply chain faces normally distributed demands at the downstream
node, and each stage orders from its supplier in each period. The optimal inventory policy
at each stage is a base-stock policy: The size of the order a stage places in a given period
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is equal to the size of the order received by the stage in that period. If each player followed
this policy, there would be no BWE since the variance of outgoing orders would be the
same as that of incoming orders. The beer game is designed to illustrate the irrational
behavior of supply chain managers, who tend to over-react to perceived trends in demand
(even when no actual trend is present) by ordering more than necessary when demands are
high and less than necessary when demands are low. In this problem, you will model this
over-reaction mathematically and prove that it causes the bullwhip effect.

Consider a retailer who faces demand Dt ∼ N(µ, σ2) in period t. Demands are
independent across time periods. The retailer, acting irrationally, over-orders by θ ≥ 0

units for each consecutive period in which the demand was higher than µ, including the
current period. Similarly, it under-orders by θ units for each consecutive period in which
the demand was lower than µ, where θ ≥ 0 is a constant. That is, although the optimal
policy is to set the order size as Qt = Dt, the retailer actually uses

Qt = Dt + θX+
t − θX−t ,

where X+
t is the number of consecutive periods (including t) in which the demand was

greater than µ and X−t is the number of consecutive periods (including t) in which the
demand was less than µ.

a) Prove that E[Q] = E[D] (the retailer’s mean order size is equal to the mean
demand).

b) Prove that
Var[Q]

Var[D]
≥ 1 +

6θ2

Var[D]
.

Hint 1: What probability distribution describes X+
t and X−t ?

Hint 2: Remember that Cov[X,Y ] = E[XY ]− E[X]E[Y ].

13.6 (Beer Game Simulation) In the beer game, players act irrationally (i.e., not fol-
lowing the optimal inventory policy). One model of this irrational behavior is by Sterman
(1989), who suggests that the order quantity placed by stage i (i = 1, . . . , N ) in period t
of the beer game can be described by the following model:

Qit = max
{

0, Q̂i+1
t+1 + αi(ai − ILit) + βi(bi − (IP it − ILit))

}
, (13.19)

where
• ai, bi, αi, and βi are constants for stage i, described in more detail below

• ILit = inventory level (on-hand inventory minus backorders) at stage i after step 2
in the sequence of events given below (i.e., after observing its demand but before
placing its order) in period t

• IP it = inventory position (on-hand inventory plus on-order inventory minus backo-
rders) at stage i after step 2 in period t

• Qit = order quantity placed by stage i in step 3 in period t; if i = N + 1, then Qit
represents demand from the external customer

• Q̂it = forecast of order quantity that will be placed by stage i in period t; this forecast
is calculated by stage i− 1 after step 2 in period t− 1 using exponential smoothing:

Q̂it = ηQit−1 + (1− η)Q̂it−1,
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where η is the smoothing factor, 0 ≤ η ≤ 1.

The constants ai and bi represent target values for the inventory level (ILi) and on-order
inventory (IP i − ILi), respectively, for stage i. The constants α and β are adjustment
parameters controlling the change in order quantity when the actual inventory level and the
on-order inventory, respectively, deviate from the desired targets.

The sequence of events at stage i in each period of the beer game is as follows:

1. The shipment from stage i− 1 shipped two periods ago arrives at stage i. (If i = 1,
stage i− 1 refers to the manufacturing process at the farthest upstream stage.)

2. The order placed by stage i + 1 in the current period is observed by stage i. (If
i = N , stage i+ 1 refers to the external customer.) The order from stage i+ 1, plus
any backorders that stage i + 1 is waiting for, is satisfied using the current on-hand
inventory, and excess demands are backordered.

3. Stage i determines its order quantity and places its order to stage i− 1.

4. Holding and/or stockout costs are incurred.

a) Using MATLAB, Excel, or any other software package of your choice, simulate
the beer game under the assumption that all players use (13.19) to set their order
quantities. Assume that N = 4. Model the demand from the external customer
in each period as an iid random variable distributed as N(50, 102). Set η = 0.1,
ai = 10, bi = 100, and αi = βi = 0.5 for all i. Initialize the system by
assuming that Q̂i1 = 50 and ILi0 = 0 for all i, and that there are 50 units of
in-transit inventory due to arrive in each of period 1 and period 2 for each i.
(That is, assume that each stage has 1 period’s worth of inventory on-hand and in
each in-transit slot.) Report the magnitude of the BWE at each stage, defined as
Var[Qi]/Var[Qi+1].

b) Conduct a numerical experiment to evaluate how the BWE changes as the players’
order behavior changes. At a minimum, use your experiment to answer the
following questions:

• Does the BWE get more or less severe when stages increase the weight αi

they place on the on-hand inventory level?

• Does the BWE get more or less severe when stages increase the weight βi

they place on the on-order inventory?

• Does the BWE get more or less severe when stages increase their target levels
ai and bi?

• Does the BWE get more or less severe when stages increase the smoothing
constant η?

• Suppose stage i uses (13.19) to set order quantities but all other players are
more rational, setting αi = βi = 0. Which produces more severe BWE—
having the “irrational” player upstream or downstream in the supply chain?

Support your analysis with numerical results, preferably in graph (chart) form.



CHAPTER 14

SUPPLY CHAIN CONTRACTS

14.1 INTRODUCTION

Supply chains are typically composed of multiple players, each with competing goals. For
example, the newsvendor wants to pay a small wholesale cost per unit to the supplier, but the
supplier wants a large wholesale cost. If each player acts selfishly, the resulting solution is
generally suboptimal for the supply chain as a whole—the total profit earned by the supply
chain is smaller than if the players could somehow bring their actions in line with one
another. (By “selfishly” we don’t mean they’re behaving meanly or inappropriately—just
that each player naturally acts in his or her own best interest, making decisions to maximize
his or her own profit.)

In the past few decades, a great deal of research has studied contracting mechanisms for
achieving supply chain coordination—for enticing each player to act in such a way that
the total supply chain profit is maximized. The basic idea is that the players agree on a
certain contract that specifies a payment, called a transfer payment, made from one party
to another. The size of the transfer payment can be determined in any number of ways (and
identifying these ways are the focus of much of the research). Many are quite intuitive:
For example, the retailer might pay a wholesale price to the supplier but receive a credit
for unsold merchandise at the end of the period (like the newsvendor’s wholesale price and
salvage value). If these mechanisms are designed correctly, then even when each player
acts in his or her own best interest, the supply chain profit is maximized.

563Fundamentals of Supply Chain Theory, . Lawrence V. Snyder and Zuo-Jun Max Shen. 
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In this chapter, we return to the newsvendor problem, now considering the newsvendor’s
supplier as an active player in the game. We will show that under the assumptions studied
previously, the newsvendor (whom we’ll now refer to as the retailer) does not order enough
inventory to maximize the total supply chain profit. We will then introduce a few contract
types that coordinate the newsvendor model. The material in this chapter originates from
Pasternack (1985) and other sources cited below, as well as Cachon (2003), who reviews
many of the basic ideas of supply chain coordination. We first review some important
concepts from game theory.

14.2 INTRODUCTION TO GAME THEORY

The literature on supply chain coordination draws heavily from game theory. There are
many textbooks on game theory, e.g., Osborne (2003); see also the review of game theory
as it applies to supply chain analysis by Cachon and Netessine (2004). We will not cover
game theory formally here, but it is worth introducing a few terms. A game consists of
two or more players (we will assume exactly two). Each player may choose from a set of
strategies, and a choice of strategies (one for each player) is called an outcome. For each
outcome, there is a payoff to each player.

For example, if there are two players (A and B), each with two strategies (1 and 2),
the payoffs might be as given in Table 14.1. Player A’s payoff is the first number in the
pair, player B’s is the second number. If player A chooses strategy 1 and player B chooses
strategy 2, the payoff is −4 to player A (a loss) and 2 to player B.

Table 14.1 Payoffs for a sample game.

Player B
1 2

Player A 1 (1, 1) (−4, 2)

2 (2,−4) (−2,−2)

Note that there is no randomness in this game. The term “outcome” refers to the
deterministic result of choices that the players make, not to the result of some random
experiment. In the games we will consider, there is also some randomness that determines
the payoffs, in which case the “outcome” represents the expected payoffs to the players.

An outcome is called Pareto optimal if there is no other outcome in which both players
have higher payoffs, or in which one player has a higher payoff and the other player has
the same payoff. For example, in Table 14.1, the outcome in which both players choose
strategy 1 is Pareto optimal, since one player can’t be made better off without making the
other worse off. Pareto optimal outcomes are considered to be “fair” in some sense.

A Nash equilibrium is an outcome such that neither player can change strategies unilater-
ally and improve his or her own payoff. (Nash equilibrium is named after the mathematician
and economist John Nash.) If the players act selfishly, the game will move to a Nash equi-
librium. There is one Nash equilibrium in the game depicted above: Each player chooses
strategy 2. (You should verify that this is the only Nash equilibrium in the game.) However,
this outcome is not Pareto optimal, since both players would be better off if they each chose
strategy 1.
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(The game in Table 14.1 is an example of a prisoner’s dilemma. In a prisoner’s dilemma,
the Nash equilibrium is different from the Pareto optimal solution, so the players will always
find themselves at an undesirable solution (the Nash equilibrium) even though a mutually
better solution (the Pareto optimal solution) is available.)

Now suppose that the players entered into the following simplistic contract: At the end
of the game, the players will equally split any profit or loss. The resulting payoff structure
is given in Table 14.2.

Table 14.2 Payoffs after implementing a contract.

Player B
1 2

Player A 1 (1, 1) (−1,−1)

2 (−1,−1) (−2,−2)

Now the Nash equilibrium is for both players to choose strategy 1 (neither player has
any incentive to change strategies), and this strategy is also Pareto optimal. This is the
outcome the players would have preferred in the original game, but acting individually they
would never have arrived at that outcome. By introducing a simple contract, the players
choose the best solution, even when they act in their own interest.

Notice that the contract does not force any player to choose a strategy other than the
one that maximizes his or her outcome. That is, it does not force the players to choose the
outcome (1, 1). It simply restructures the payoffs so that the players want to choose that
outcome.

In the supply chain context, we will see that the Nash equilibrium outcome, to which the
players would gravitate if acting in their own interest, is generally not Pareto optimal—there
are other outcomes that would improve the payoff to both players. The goal of supply chain
coordination is to change the structure of the payoffs so that the Nash equilibrium is also
Pareto optimal. One important question will be whether, in the resulting Nash equilibrium,
both players earn more than they did without the contract. (If not, one party may refuse
to enter into the contract.) The goal of supply chain contracts is not to force one player to
earn a smaller piece of the pie so that the other player can earn a bigger piece. Rather, it’s
to make the pie bigger so that both players can get bigger pieces than they had before.

The games presented in Tables 14.1 and 14.2 are called static games because the two
players choose their strategies simultaneously (though a player may alter his or her strategy
in response to the other player’s strategy). Supply chain contracts, however, are a different
type of game, namely, a Stackelberg game, in which one player chooses a strategy first and
then the other player chooses one. (Stackelberg games are also known as leader–follower
games.) The models presented below are based on the newsvendor model, and in these
models, the supplier is the leader, setting the parameters of the contract, and the newsvendor
is the follower, setting the order quantity.

14.3 NOTATION

As in the classical newsvendor model, we consider a single-period model with stochastic
demand. LetD be the demand during the period, with mean µ, pdf f , and cdf F . The retail
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price (i.e., revenue per unit sold by the retailer) is r per unit. The supplier’s production
cost is cs per unit and the retailer’s cost is cr per unit. Note that cr does not get paid to
the supplier—it represents the cost of processing, shipping, marketing, etc., at the retailer.
It is incurred when the unit is procured from the supplier, not when it is sold. We assume
cs + cr < r (otherwise the system cannot make any profit).

Unsatisfied demands are lost (since this is a one-period model), incurring a stockout
penalty of pr at the retailer and ps at the supplier. These costs reflect the loss-of-goodwill
that the parties incur; they do not include the lost profit resulting from a lost sale. This
is because the profit is already explicitly calculated in this model, so including lost profit
in pr and ps would double-count this penalty. (Similarly, see the explicit formulation of
the newsvendor problem in Section 4.3.2.4.) For convenience, we let c = cs + cr and
p = ps + pr. Each unsold unit at the retailer at the end of the season can be salvaged for a
salvage value of v per unit, with v < cr. The retailer’s order size is denoted Q.

The notation is summarized in Table 14.3.

Table 14.3 Contracting notation summary.

D ∼ f, F
µ = E[D]
r selling price

cs, cr supplier’s, retailer’s per-unit cost
c = cs + cr

ps, pr supplier’s, retailer’s loss-of-goodwill cost
p = ps + pr
v salvage value
Q retailer’s order size

14.4 PRELIMINARY ANALYSIS

The following sequence of events occurs in the game:

1. The supplier chooses her1 contract parameters. (Each contract type has its own
parameters.)

2. The retailer chooses his order quantity Q and places his order to the supplier; the
order arrives immediately.

3. Demand occurs; as much as possible is satisfied from inventory, and the rest is lost.

4. Costs are assessed and transfer payments are made between the players.

The transfer payment depends on the type of contract, several of which will be explored
below. Note that we are assuming that the supplier offers the contract to the retailer—that
the supplier is the powerful player in the market. This is not necessarily the case, and other
models have explored the newsvendor problem when the retailer is the powerful player.

1We’ll use the common convention in the contracting literature that the supplier is female and the retailer is male.



PRELIMINARY ANALYSIS 567

Our first goal is to formulate the supplier’s and retailer’s expected cost as functions of
Q. To that end, let S(Q) be the expected sales as a function of Q:

S(Q) = E[min{Q,D}]
= E[Q− (Q−D)+]

= Q− n̄(Q), (14.1)

where n̄(Q) is the complementary loss function. The second equality follows from (C.5),
while the third follows from (C.13). Then letting F̄ (Q) = 1− F (Q),

S′(Q) = F̄ (Q) (14.2)

by (C.16). Let I(Q) be the expected inventory on hand at the end of the period:

I(Q) = E[(Q−D)+] = n̄(Q) = Q− S(Q). (14.3)

Let L(Q) be the expected lost sales:

L(Q) = E[(D −Q)+] = n(Q)

= µ−Q+ n̄(Q)

= µ− S(Q). (14.4)

(The third equality follows from (C.14).) Finally, let T be the expected transfer payment
(whose size is yet to be determined).

The retailer’s expected profit function is then

πr(Q) = rS(Q) + vI(Q)− prL(Q)− crQ− T
= rS(Q) + v(Q− S(Q))− pr(µ− S(Q))− crQ− T
= (r − v + pr)S(Q)− (cr − v)Q− prµ− T. (14.5)

πr(Q) is basically just a newsvendor cost function, written in a very different way—
maximizing profit rather than minimizing cost (but the two are mathematically equivalent)
and writing the expectations using the functions S(·), I(·), and L(·). The supplier’s
expected profit function is

πs(Q) = −csQ− psL(Q) + T

= −csQ− ps(µ− S(Q)) + T

= psS(Q)− csQ− psµ+ T. (14.6)

The supply chain’s total expected profit function is therefore

Π(Q) = πr(Q) + πs(Q) = (r − v + p)S(Q)− (c− v)Q− pµ. (14.7)

Let’s find the order quantity Q0 that maximizes the total supply chain profit.

Π′(Q0) = 0

⇐⇒ (r − v + p)S′(Q0)− (c− v) = 0

⇐⇒ S′(Q0) = F̄ (Q0) =
c− v

r − v + p
. (14.8)
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Q0 is a maximizer, not a minimizer, because

Π′′(Q) = −(r − v + p)f(Q) < 0,

so Π is concave.
Equation (14.8) agrees with our previous results from the newsvendor model. In par-

ticular, if we think of the supply chain as a whole acting as the newsvendor, with per-unit
cost c, sales price r, penalty cost p, and salvage value v, then the newsvendor has costs
h′ = c − v and p′ = r − c + p, and h′ + p′ = r − v + p. From (4.17), the optimal
newsvendor order quantity satisfies

F (Q) =
p′

h′ + p′

or

F̄ (Q) = 1− p′

p′ + h′
=

c− v
r − v + p

.

The question now is, does the retailer choose Q0 as his order quantity? And, is this also
the order quantity that the supplier prefers? That is, if Q∗r and Q∗s maximize (14.5) and
(14.6) (respectively), then does Q∗r = Q∗s = Q0?

The supply chain is considered coordinated if Q∗r = Q∗s = Q0. A contract type is said
to coordinate the supply chain if there exist contract parameters such that Q∗r = Q∗s = Q0

and the players each earn positive profit. If the optimal order quantities coincide but one
player earns a negative profit, the player’s willingness to enter into the contract depends on
a number of factors, such as the player’s profit under the status quo (which could, after all,
be even more negative), the other business relationships the players may jointly have, the
players’ relative levels of power, and so on. We ignore these rather messy issues and focus
below on determining which contract types are guaranteed to have parameters such that the
supply chain is coordinated and the players both earn positive profits.

14.5 THE WHOLESALE PRICE CONTRACT

The simplest possible contract is the wholesale price contract, in which the retailer pays
the supplier a given cost w per unit ordered. This is identical to settings we’ve discussed
previously, in which the retailer pays a per-unit purchase cost that goes to the supplier,
except now the purchase cost is the supplier’s decision variable. For a given wholesale cost
w, the transfer payment is given by

Tw(Q,w) = wQ.

The subscriptw identifies the type of contract, while the arguments specify the two decision
variables—order quantity and wholesale cost—one per player.

The retailer’s and supplier’s expected profits are both functions of w and Q:

πr(Q,w) = (r − v + pr)S(Q)− (cr − v)Q− prµ− wQ
= (r − v + pr)S(Q)− (w + cr − v)Q− prµ (14.9)

πs(Q,w) = psS(Q) + (w − cs)Q− psµ (14.10)
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The supply chain is coordinated if there exists a value of w such that Q∗r = Q∗s = Q0,
where Q∗r , Q∗s , and Q0 are the order quantities that maximize πr, πs, and Π, respectively.

It is straightforward to show that πr and πs are both concave functions of Q (assuming
that w is fixed). Therefore, Q∗r and Q∗s satisfy:

∂πr(Q,w)

∂Q

∣∣∣∣
Q=Q∗r

= (r − v + pr)S
′(Q∗r)− (w + cr − v) = 0 (14.11)

∂πs(Q,w)

∂Q

∣∣∣∣
Q=Q∗s

= psS
′(Q∗s) + (w − cs) = 0 (14.12)

The next theorem demonstrates that there exists a value of w such that Q∗r = Q∗s = Q0.
However, for this value of w, the supplier earns a negative expected profit.

Theorem 14.1 Q∗r = Q∗s = Q0 if and only if

w = cs −
c− v

r − v + p
ps. (14.13)

Moreover, the supplier earns a negative expected profit under this wholesale price.

Proof. Suppose (14.13) holds. Then by (14.11),

S′(Q∗r) =
w + cr − v
r − v + pr

=

(
cs − c−v

r−v+pps

)
+ cr − v

r − v + pr

=
(c− v)

(
1− ps

r−v+p

)
r − v + pr

=
c− v

r − v + p

= S′(Q0)

by (14.8). Since S′(Q) is strictly decreasing and continuous, this implies Q∗r = Q0.
Similarly, by (14.12),

S′(Q∗s) =
cs − w
ps

=
cs −

(
cs − c−v

r−v+pps

)
ps

=
c− v

r − v + p

= S′(Q0).

Therefore, Q∗r = Q∗s = Q0. However, since v < cr ≤ c < r by assumption, the
coefficient of ps in (14.13) is negative, which means that w < cs. Therefore, the retailer
earns a negative expected profit.
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From (14.12) one can show (see Problem 14.1) that if w < cs − ps, then πs is strictly
decreasing in Q; if cs − ps < w < cs, then πs is first increasing and then decreasing; and
if w > cs, then πs is strictly increasing. Thus, for sufficiently large w, Q∗s = ∞ since
the supplier earns a positive margin on items sold to the retailer, and she pays no penalty
for overage at the retailer. For moderate values of w (cs − ps < w < cs), Q∗s is finite:
Although the supplier earns a negative margin on each unit sold to the retailer, she still
prefers a nonzero order quantity since small order quantities cause stockouts, for which the
supplier incurs a goodwill cost. Her expected profit is still negative, but Q∗s minimizes the
losses. Finally, for small values of w, the supplier’s margin is so negative that it more than
offsets the goodwill cost, and she sets Q∗s = 0.

The phenomenon evident in Theorem 14.1 is known as double marginalization (Spengler
1950): When both players add their own margin (markup) to their costs, the supply chain
is not coordinated since the players ignore the total supply chain profit when making their
individual decisions. If, on the other hand, the retailer has a positive margin but the supplier
has a negative one, the supply chain is coordinated. However, the supplier clearly would
not enter into this arrangement, so the wholesale price contract is not considered to be a
coordinating one. Nevertheless, there are still several interesting things to say about it.

Suppose thatw > cs, so that the supplier earns positive profit but the supply chain is not
coordinated. We first examine the retailer’s and supplier’s optimization problems and then
discuss how close the wholesale price contract comes to coordinating the supply chain.

Theorem 14.2 Under the wholesale price contract, if w > cs, then Q∗r < Q0.

Proof. Omitted; see Problem 14.6.

Theorem 14.2 says that, assuming the supplier earns a positive profit, the retailer will
under-order. This happens because the retailer is absorbing all of the risk of overage, but
only part of the risk of underage (since the supplier pays a stockout penalty). Therefore,
the retailer orders less than the supplier (and the supply chain as a whole) wants him to.
In the contracting mechanisms discussed in later sections, the supplier absorbs some of the
risk of overage, thus giving the retailer the flexibility to increase his order quantity. If the
contract parameters are set correctly, he’ll increase it so that it equals Q0.

Now let’s turn our attention to the supplier’s optimization problem. For givenw, (14.12)
determines the supplier’s optimal order quantity. But what if the supplier could choose
whateverw she wants? In order to choosew, she must anticipate theQ that the retailer will
choose for each value of w. Put another way, the supplier can entice the retailer to choose
whatever Q she wishes by selecting the unique wholesale price, call it w(Q), that makes
Q optimal for the retailer. In particular,

w(Q) = (r − v + pr)F̄ (Q)− (cr − v) (14.14)

(from (14.11)).
Which Q does the supplier want the retailer to choose? The supplier’s profit function is

now a function of Q and the corresponding w(Q):

πs(Q,w(Q)) = psS(Q) + (w(Q)− cs)Q− psµ (14.15)

The supplier wishes to maximize this function. The question is, does it have a unique
maximum? If the function is strictly concave, it does, but in general πs(Q,w(Q)) is
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not concave. But it is usually close enough. Before we explain further, we need to
introduce a new property that is important in contract analysis: Demand distributions for
which Qf(Q)/F̄ (Q) is increasing are called increasing generalized failure rate (IGFR)
distributions (Lariviere and Porteus 2001, Lariviere 2006, Banciu and Mirchandani 2013).
Many common distributions are IGFR, including normal, exponential, and gamma. Only a
few families of distributions are not IGFR; these include Gumbel and generalized logistic
(Paul 2005).

In the next theorem, we show that if the demand distribution is IGFR, then πs(Q,w(Q))

is unimodal—that is, there is a valueQ∗ such that the derivative of πs(Q,w(Q)) is positive
to the left of Q∗ and negative to the right. This implies that the function has a unique
maximum. Unimodality (sometimes called quasiconcavity) is similar to strict concavity
but is weaker: Every strictly concave function is unimodal, but not every unimodal function
is concave.

Theorem 14.3 If the demand distribution f(·) is IGFR, then πs(Q,w(Q)) is unimodal and
therefore has a unique maximum.

Proof. The derivative of πs(Q,w(Q)) is given by

π′s(Q,w(Q)) =psS
′(Q) + w(Q)− cs + w′(Q)Q

=psF̄ (Q) + (r − v + pr)F̄ (Q)− (cr − v)− cs
− (r − v + pr)f(Q)Q

=(r − v + pr)F̄ (Q)

(
1 +

ps
r − v + pr

− Qf(Q)

F̄ (Q)

)
− (c− v). (14.16)

In (14.16),

1 +
ps

r − v + pr
− Qf(Q)

F̄ (Q)
(14.17)

is positive for Q ≈ 0 (since F̄ (Q) ≈ 1) and negative for Q → ∞ (see Problem 14.16).
Since the derivative is continuous, there must be some value Q∗ at which the derivative
equals 0. We need to prove that there is only one such value. To do so, it suffices to show
that πs(Q,w(Q)) > 0 for all Q < Q∗ and πs(Q,w(Q)) < 0 for all Q > Q∗.

We know that F̄ (Q) is decreasing and positive, and that (14.17) is decreasing (since
f(·) is IGFR) and positive when Q = Q∗ (otherwise, the right-hand side of (14.16) could
not equal 0). Therefore, as Q decreases from Q∗, both F̄ (Q) and (14.17) increase; so
π′s(Q,w(Q)) > 0 for Q < Q∗. And as Q increases from Q∗, both F̄ (Q) and (14.17)
decrease, so π′s(Q,w(Q)) decreases if (14.17) is positive. On the other hand, (14.17) could
be negative; but in this case π′s(Q,w(Q)) < 0 since F̄ (Q) > 0. Therefore, πs(Q,w(Q))

is unimodal.

In what follows, we will assume that the demand distribution is IGFR. Henceπs(Q,w(Q))

is unimodal, and there is a unique order quantity that maximizes the supplier’s profit. (Note
that this is the order quantity the supplier would choose if she can also choose w. This is
not the same as Q∗s as defined in (14.12), which is the supplier’s optimal quantity for fixed
w.) Of course, the supplier does not set this order quantity directly; she sets w to w(Q∗s)

and waits for the retailer to set the order quantity to Q∗s .
For contracts such as the wholesale price contract that do not coordinate the supply

chain, we’d like to know how close they come. This is measured by the efficiency of the
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contract: the proportion of the optimal supply chain profit attained by the Nash equilibrium
order quantity, or Π(Q∗s)/Π(Q0). The greater the efficiency, the closer the contract is
to achieving coordination. Another important measure is the supplier’s profit share: the
percentage of the total profit captured by the supplier, or πs(Q∗s, w(Q∗s))/Π(Q∗s). Both
players would like the efficiency to be high, but only the supplier would like the supplier’s
profit share to be high. Experimental tests using the power distribution show the efficiency
to be around 75% and the supplier’s profit share to be in the range of 55–80% (Cachon
2003). Perakis and Roels (2007) examine the efficiency of the wholesale price contract in
a variety of settings.

It is worth noting that the wholesale price contract is considered to be noncoordinating
because there is no value of w that (1) makes Q∗r = Q∗s = Q0 and (2) guarantees both
players positive profits. In contrast, the contract types we discuss in the next sections
are considered to be coordinating because there always exist some values of the contract
parameters for which both (1) and (2) hold, even though not all parameter values do the
trick.

� EXAMPLE 14.1

Matilda’s Market sells bagels that are made by Jeffrey’s Bakery. Bagels sell for $1.
Each bagel that the market buys from the bakery costs the bakery $0.50 to make and
costs the market $0.25 in processing costs. Daily demand for bagels is distributed as
N(100, 202). Unmet demands incur a loss-of-goodwill cost of $0.20 for each party.
Unsold bagels must be thrown out at the end of each day, with no salvage value.
Currently, Jeffrey’s Bakery charges Matilda’s Market a wholesale price of $0.60 per
bagel. What is Matilda’s Market’s optimal order quantity? What is each company’s
profit, and what is the profit of the supply chain as a whole?

We have r = 1, cs = 0.5, cr = 0.25, pr = ps = 0.2, v = 0, and w = 0.6. From
(14.2) and (14.11), Q∗r satisfies

F (Q∗r) = 1− 0.85

1.2

=⇒ Q∗r = 89.03.

From (14.1), (C.22), and (C.32) one can calculate S(89.03) = 85.3648. From (14.9),
(14.10), and (14.7),

πr(89.03, 0.6) = 1.2S(89.03)− 0.85 · 89.03− 0.2 · 100 = 6.7627

πs(89.03, 0.6) = 0.2S(89.03) + 0.1 · 89.03− 0.2 · 100 = 5.9759

Π(89.03) = 6.7627 + 5.9759 = 12.7386.

How does this compare to the optimal total profit? From (14.8),

F (Q0) = 1− 0.75

1.4

=⇒ Q0 = 98.21.

We have S(Q0) = 91.0927, so from (14.7), the total profit is

Π(Q0) = 1.4S(98.21)− 0.75 · 98.21− 0.4 · 100 = 13.8744.
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Figure 14.1 Supplier’s expected profit function πs(Q,w(Q)) for Example 14.1.

Therefore, the total profit under this wholesale price contract is less than the optimal
supply chain profit.

Now suppose that Jeffrey’s Bakery can choose whichever w it wants. What w
will it choose, what Q will Matilda’s Market choose as a result, and what will be the
resulting profits?

The supplier’s profit function, πs(Q,w(Q)), is plotted in Figure 14.1. Note that it
is unimodal, as promised by Theorem 14.3, but is not concave. The expected profit
is only positive for a relatively narrow range of Q values.

From (14.16), theQ that maximizes Jeffrey’s Bakery’s profit is theQ that satisfies

1.2F̄ (Q)

(
1 +

0.2

1.2
− Qf(Q)

F̄ (Q)

)
− 0.75 = 0.

The reader can verify that this equation is satisfied (within rounding error) by Q =

70.23. Therefore, Jeffery’s Bakery will choose

w(Q) = 1.2F̄ (70.23)− 0.25 = 0.8680

and Matilda’s Market will choose Q = 70.23. Note that S(70.23) = 69.6283. The
profits will be

πr(70.23, 0.8680) = 1.2S(70.23)− 1.1180 · 70.23− 0.2 · 100 = −14.9652

πs(70.23, 0.8680) = 0.2S(70.23) + 0.3680 · 70.23− 0.2 · 100 = 19.7723

Π(70.23) = −14.9652 + 19.7723 = 4.8072.

Jeffrey’s Bakery may like this arrangement, but it is clearly bad for Matilda’s Market,
and it is also suboptimal for the supply chain as a whole.

�
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14.6 THE BUYBACK CONTRACT

We now examine a contract type that does coordinate the supply chain. In the buyback
contract (Pasternack 1985), the supplier charges the retailer w per unit purchased, but pays
the retailer b for every unit of unsold inventory at the end of the period:

Tb(Q,w, b) = wQ− bI(Q) = bS(Q) + (w − b)Q.

We assume
0 ≤ b ≤ r − v + pr, (14.18)

otherwise it is better for the retailer not to sell an on-hand item to satisfy a demand (thereby
earning b+ v but paying pr) than to sell it (earning r). We also assume

b ≤ w + cr − v, (14.19)

otherwise, the retailer incurs no overage risk since his revenue for salvaging an item (b+v)
is more than what he paid for it (w + cr).

The name “buyback” is a little misleading, because usually the retailer does not physi-
cally return the products, he just receives a credit from the supplier. The supplier is offering
to share some of the risk of overage with the retailer in exchange for higher supply chain
profits.

Many suppliers offer buyback credits as a way to prevent the unsold goods from being
sold at a steep discount. For example, high-fashion clothing makers don’t want to see their
products on the bargain rack at Marshall’s at the end of the season, so they give high-end
retailers a credit to prevent them from unloading unsold merchandise to discounters.

Letting T = Tb(Q,w, b) in (14.5), the retailer’s profit function becomes

πr(Q,w, b) = (r − v + pr)S(Q)− (cr − v)Q− prµ− [bS(Q) + (w − b)Q]

= (r − v + pr − b)S(Q)− (cr − v + w − b)Q− prµ. (14.20)

The Q that maximizes the retailer’s profit satisfies

∂πr(Q,w, b)

∂Q
= (r − v + pr − b)F̄ (Q)− (cr − v + w − b) = 0

⇐⇒ F̄ (Q) =
cr − v + w − b
r − v + pr − b

. (14.21)

Now, the supplier can, of course, choose any values for w and b (subject to (14.18) and
(14.19)). However, it turns out that for a given b, the “correct” value of w (i.e., the one that
will coordinate the supply chain) is given by

w(b) = b+ cs − (c− v)
b+ ps

r − v + p
. (14.22)

(It should not yet be obvious how we get this value of w(b).) Note that w(b) is increasing
in b (since r > c). Therefore, in exchange for receiving a more generous buyback credit,
the retailer must pay a higher wholesale price.

Ifw and b satisfy (14.18) and (14.22), then they also satisfy (14.19). (See Problem 14.7.)
Therefore, we can ignore (14.19) and assume only that the feasible region for b is [0, r −
v + pr].
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Theorem 14.4 establishes that, if the parameters are set appropriately, then the optimal
order quantities coincide. Moreover, by Theorem 14.5 below, there exists a b such that both
parties earn positive profit. Therefore, the buyback contract coordinates the supply chain.

Theorem 14.4 Under the buyback contract, for any b satisfying (14.18), if w(b) is set
according to (14.22), then Q∗r = Q∗s = Q0.

We’ll present two proofs of this theorem. The first is more straightforward than the second,
but the second is quite elegant and can also be applied in more general settings.

Proof #1. Substituting w(b) into (14.21), we get

F̄ (Q) =
cr − v +

[
b+ cs − (c− v) b+ps

r−v+p

]
− b

r − v + pr − b

=
(c− v)

[
1− b+ps

r−v+p

]
r − v + pr − b

=
(c− v) r−v+pr−b

r−v+p

r − v + pr − b

=
c− v

r − v + p
.

This is the same Q that maximizes the total supply chain expected profit (see (14.8)), so
Q∗r = Q0. Therefore, from the retailer’s perspective, the supply chain is coordinated. It
remains to show that the supplier also prefers this same Q.

Letting T = Tb(Q,w, b) in (14.6), the supplier’s profit function is

πs(Q,w, b) = psS(Q)− csQ− psµ+ [bS(Q) + (w − b)Q]

= (ps + b)S(Q)− (cs − w + b)Q− psµ. (14.23)

The Q that maximizes πs satisfies

∂πs(Q,w, b)

∂Q
= (ps + b)F̄ (Q)− (cs − w + b) = 0

⇐⇒ F̄ (Q) =
cs − w + b

ps + b
. (14.24)

Letting w = w(b) as defined in (14.22), we get

F̄ (Q) =
cs −

[
b+ cs − (c− v) b+ps

r−v+p

]
+ b

ps + b

=
(c− v) b+ps

r−v+p

ps + b

=
c− v

r − v + p
.

Therefore, Q∗s = Q0.
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Before introducing the second proof, we can answer the question of how to determine
w(b) (if it wasn’t already given by (14.22)): It’s the only value of w that makes the
conditions ∂πr/∂Q = 0 and ∂πs/∂Q = 0 both reduce to F̄ (Q) = (c − v)/(r − v + p).
The value of w(b) can be “backed out” from these conditions.

In general, we can use the approach from Proof #1—setting ∂πr/∂Q and ∂πs/∂Q

to 0 and showing that Q∗r = Q∗s = Q0—to prove that a given contracting mechanism
coordinates the supply chain. However, there’s another elegant way to accomplish this, and
this approach is taken by Proof #2.

Proof #2. Let
λ =

r − v + pr − b
r − v + p

. (14.25)

Then

λ = 1− b+ ps
r − v + p

=
c− v − (c− v) b+ps

r−v+p

c− v

=
b+ cs − (c− v) b+ps

r−v+p − b+ cr − v
c− v

=
w(b)− b+ cr − v

c− v
(14.26)

In other words, λ is equal to the fractions in both (14.25) and (14.26). (This is a result of
our definition of w(b).) Since pr ≤ p and b ≥ 0, λ ≤ 1. Also, since b ≤ r − v + pr (by
(14.18)), λ ≥ 0.

From (14.20), the retailer’s profit under a buyback contract is

πr(Q,w, b) = (r − v + pr − b)S(Q)− (w − b+ cr − v)Q− prµ
= λ(r − v + p)S(Q)− λ(c− v)Q− prµ
= λΠ(Q) + µ(λp− pr), (14.27)

where Π(Q) is the total supply chain profit as defined in (14.7). Since λ ≥ 0, the same
Q minimizes (14.7) and (14.27), so Q∗r = Q0. The same argument applies to the supplier
since

πs(Q,w, b) = Π(Q)− πr(Q,w, b) = (1− λ)Π(Q)− µ(λp− pr) (14.28)

and λ ≤ 1.

As λ increases, the retailer’s profit increases and the supplier’s profit decreases, so in
a sense λ represents the division of profit between the players. One would like to know
whether any division is possible—that is, is there some value of λ such that the supplier
captures all of the profit and another value such that the retailer captures all of the profit?
(Keep in mind that λ is not a parameter of the contract—the supplier does not actually
choose λ. But by choosing b, the supplier automatically chooses λ given (14.25).) If so,
then there is also a value that gives any desired mix. As the next theorem demonstrates,
this is indeed possible.
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Theorem 14.5 If w(b) is set according to (14.22), then the retailer’s [supplier’s] profit is
decreasing [increasing] in b ∈ [0, r − v + pr]. Moreover, let

b1 =r − v + pr − (r − v + p)
Π(Q0) + µpr
Π(Q0) + µp

(14.29)

b2 =r − v + pr − (r − v + p)
µpr

Π(Q0) + µp
. (14.30)

Then 0 < b1 < b2 < r − v + pr, and:

1. If 0 ≤ b < b1, then the supplier earns negative profit (and the retailer earns more
than Π(Q0)).

2. If b = b1, then the retailer earns the entire supply chain profit.

3. If b1 < b < b2, then the profits are shared by the players.

4. If b = b2, then the supplier earns the entire supply chain profit.

5. If b2 < b ≤ r− v+ pr, then the retailer earns negative profit (and the supplier earns
more than Π(Q0)).

Proof. We first prove 0 < b1 < b2 < r− v + pr. The second and third inequalities follow
immediately from the fact that v < r. To prove 0 < b1, first suppose that the demand is
deterministic; then the supply chain earns a profit of µ(r − c) since there is no overage or
underage. This provides an upper bound on the maximum possible expected profit under
stochastic demand, i.e., Π(Q0) ≤ µ(r−c). Since v < cr ≤ c, we have Π(Q0) < µ(r−v),
and therefore

µ(r − v) + µpr
µ(r − v) + µp

>
Π(Q0) + µpr
Π(Q0) + µp

.

Thus, b1 > 0.
It remains to prove items 1–5. By (14.27) and (14.28), the retailer’s profitπr(Q0, w(b), b)

is an increasing function of λ and the supplier’s profit πs(Q0, w(b), b) is a decreasing
function of λ. By (14.25), λ is a decreasing function of b. Therefore, the retailer’s
[supplier’s] profit is a decreasing [increasing] function of b. Since the sum of their profits
is fixed (to Π(Q0)), to prove the theorem it suffices to prove items 2 and 4.

If b = b1, then

λ =
r − v + pr − b1
r − v + p

=
Π(Q0) + µpr
Π(Q0) + µp

(14.31)

=⇒ Π(Q0) = λΠ(Q0) + µ(λp− pr) = πr(Q
0, w(b), b)

by (14.27). Similarly, if b = b2, then

λ =
µpr

Π(Q0) + µp
(14.32)

=⇒ Π(Q0) = (1− λ)Π(Q0)− µ(λp− pr) = πs(Q
0, w(b), b)

by (14.28).

At first it may seem surprising that the supplier’s profit is increasing in b, since b is
a payment made to the retailer. However, w(b) is increasing in b, and increases in the



578 SUPPLY CHAIN CONTRACTS

buyback credits paid to the retailer are more than offset by increased revenue from the
wholesale price.

One consequence of Theorem 14.5 is that, for any noncoordinating contract, there exist
b and w(b) such that neither player has a lower profit under the buyback contract, and at
least one player has a strictly higher profit. Therefore, the supplier can always choose b
and w(b) such that both players prefer the buyback contract to the status quo if the supply
chain is not currently coordinated.

Which value of b will she choose? We can’t solve this as an optimization problem as we
did for the wholesale price contract because the supplier’s profit is an increasing function
of b. Left to her own devices, she would choose a large b that gives the retailer negative
profit. Instead, the choice of b is the result of some sort of negotiation process that reflects
the relative power of the two players as well as other factors, which we ignore. The contract
types discussed in the following sections are similar in this regard.

� EXAMPLE 14.2

Return to Example 14.1 and suppose that Jeffrey’s Bakery offers a buyback contract
to Matilda’s Market with b = 0.6. What w will coordinate the supply chain, and
what are the resulting profits?

From (14.22),

w(0.6) = 0.6 + 0.5− 0.75 · 0.6 + 0.2

1− 0 + 0.4
= 0.6714.

Since the contract coordinates, both players will choose Q = Q0 = 98.21. From
(14.20) and (14.23),

πr(98.21, 0.6714, 0.6) = 0.6S(98.21)− 0.3214 · 98.21− 0.2 · 100 = 3.0890

πs(98.21, 0.6714, 0.6) = 0.8S(98.21)− 0.4286 · 98.21− 0.2 · 100 = 10.7854.

The two profits sum to 13.8744, confirming that the supply chain is coordinated.
Figure 14.2 plotsw, πr(Q0, w(b), b), πs(Q0, w(b), b), and Π(Q0) as a function of

b. Note that when b = 0.3197, the retailer (Matilda’s Market) earns all of the profit
and when b = 0.6803, the supplier (Jeffrey’s Bakery) earns all of the profit. The
reader can confirm that these values equal b1 and b2 from Theorem 14.5. The figure
therefore confirms the behavior described in the theorem. �

14.7 THE REVENUE SHARING CONTRACT

In the revenue sharing contract (Cachon and Lariviere 2005), the supplier charges the
retailer a wholesale price of w per unit and the retailer gives the supplier a percentage of
his revenue. All revenue is shared, including both sales revenue and salvage value. Let φ
be the fraction of revenue the retailer keeps and 1− φ the fraction he gives to the supplier.
The transfer payment is then

Tr(Q,w, φ) = wQ+ (1− φ)rS(Q) + (1− φ)vI(Q)

= (w + (1− φ)v)Q+ (1− φ)(r − v)S(Q). (14.33)
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Figure 14.2 Wholesale price and profits as a function of buyback credit.

Again, we magically determine the “correct” value of one contract parameter (w) for a
given value of the other (φ):

w(φ) = −cr + φv + (c− v)
φ(r − v) + pr
r − v + p

. (14.34)

If we define w(φ) in this way, then the supply chain is coordinated. The next theorem
demonstrates this; its proof uses a method similar to Proof #2 in Section 14.6, but it could
also be proven using a method similar to Proof #1 (see Problem 14.13).

Theorem 14.6 Under the revenue sharing contract, for any 0 ≤ φ ≤ 1, if w(φ) is set
according to (14.34), then Q∗r = Q∗s = Q0, i.e., the supply chain is coordinated.

Proof. The retailer’s profit function is

πr(Q,w, φ) =(r − v + pr)S(Q)− (cr − v)Q− prµ
− [(w + (1− φ)v)Q+ (1− φ)(r − v)S(Q)]

=(φ(r − v) + pr)S(Q)− (w + cr − φv)Q− prµ. (14.35)

Let

λ =
φ(r − v) + pr
r − v + p

≤ 1; (14.36)

then also (by virtue of the relationship between w and φ),

λ =
w + cr − φv

c− v
≥ 0. (14.37)
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(Recall that v < cr.) Then

πr(Q,w, φ) = λΠ(Q) + µ(λp− pr). (14.38)

Since λ ≥ 0,Q∗r = Q0, and the revenue sharing contract coordinates the supply chain from
the retailer’s perspective. Since the total supply chain profit is the sum of the retailer’s and
the supplier’s, the supplier’s profit is

πs(Q,w, φ) = Π(Q)− πr(Q,w, φ) = (1− λ)Π(Q)− µ(λp− pr). (14.39)

Therefore, Q∗s = Q0 since λ ≤ 1.

The retailer’s profit is increasing in λ and the supplier’s profit is decreasing in λ. Since
λ is increasing in φ, the retailer’s profit increases and the supplier’s profit decreases as
the retailer’s revenue fraction φ increases. One can prove a theorem that is analogous to
Theorem 14.5 demonstrating that any allocation of profits is possible under the revenue
sharing contract. In particular, the retailer earns the entire profit if

λ =
Π(Q0) + µpr
Π(Q0) + µp

(14.40)

and the supplier earns the entire profit if

λ =
µpr

Π(Q0) + µp
. (14.41)

(Note the similarity to (14.31) and (14.32).)
Revenue sharing and buyback contracts are actually quite similar. For the sake of clarity,

denote the wholesale price under the buyback contract and the revenue sharing contract
as wb and wr, respectively. We can think of a buyback contract as requiring the retailer
to pay wb − b per unit purchased and an additional b per unit sold. (This is equivalent
to paying wb per unit purchased and receiving b per unit unsold.) In a revenue sharing
contract, the retailer pays wr + (1 − φ)v per unit purchased and (1 − φ)(r − v) per unit
sold. Then a revenue sharing contract with parameters wr and φ is equivalent (in the sense
that it generates the same profits no matter what the demand is) to a buyback contract if the
parameters of the buyback contract satisfy

wb − b = wr + (1− φ)v

b = (1− φ)(r − v),

that is,

wb = wr + (1− φ)r (14.42)

b = (1− φ)(r − v). (14.43)

However, in more complicated settings (for example, with more than one retailer), the two
contracts are not equivalent.
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� EXAMPLE 14.3

Return to Example 14.1 and suppose that Jeffrey’s Bakery offers a revenue sharing
contract to Matilda’s Market with φ = 0.4. What w will coordinate the supply chain,
and what are the resulting profits?

From (14.34),

w(0.4) = −0.25 + (0.75)
0.4(1) + 0.2

1 + 0.4
= 0.0714.

Since the contract coordinates, both players will choose Q = Q0 = 98.21. From
(14.35) and (14.39),

πr(98.21, 0.0714, 0.4) = 0.6S(98.21)− 0.3214 · 98.21− 0.2 · 100 = 3.0890

πs(98.21, 0.0714, 0.4) = Π(Q0)− πr(98.21, 0.0714, 0.4) = 10.7854.

These are the same profits as under the buyback contract in Example 14.2. This is to
be expected, since the parameters of the two contracts satisfy (14.42)–(14.43).

Other profit allocations are possible, of course. For example, if φ = 0.6803

and w = 0.2216, then the retailer earns the entire profit, and if φ = 0.3917 and
w = 0.0284, the supplier does. �

14.8 THE QUANTITY FLEXIBILITY CONTRACT

We next introduce the quantity flexibility contract (Tsay 1999). The quantity flexibility
contract is similar to the buyback contract in that the retailer pays a wholesale price per unit
purchased and the supplier reimburses the retailer for unsold goods. The difference is that,
in the buyback contract, the supplier partially reimburses the retailer for every unsold item,
whereas in the quantity flexibility contract, she fully reimburses the retailer for a portion of
his unsold items.

In particular, the quantity flexibility contract has two parameters, w and δ (0 ≤ δ ≤
1). The retailer pays the supplier w per unit ordered, and the supplier pays the retailer
(w+ cr − v) min{I, δQ}, where I is the on-hand inventory at the end of the period. Thus,
the supplier agrees to protect the retailer against only a portion of his order: She will
reimburse him for his losses on unsold merchandise (which equal w+ cr − v per unit), but
only up to a maximum of δQ units.

The quantity flexibility contract coordinates the supply chain from the retailer’s end (his
optimal order quantity is also the supply chain’s optimal order quantity). However, unlike
the contracts in Sections 14.6 and 14.7, the quantity flexibility contract only coordinates
the supplier’s decision for certain values of the parameters.

The transfer payment in the quantity flexibility contract is

Tq(Q,w, δ) = wQ− (w + cr − v)

[∫ (1−δ)Q

0

δQf(d)dd+

∫ Q

(1−δ)Q
(Q− d)f(d)dd

]
(14.44)

= wQ− (w + cr − v)

∫ Q

(1−δ)Q
F (d)dd. (14.45)
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(See Problem 14.10).
Let w(δ) be defined as

w(δ) =
(r − v + pr)F̄ (Q0)

F̄ (Q0) + (1− δ)F ((1− δ)Q0)
− cr + v. (14.46)

Theorem 14.7 Under the quantity flexibility contract, for any 0 ≤ δ ≤ 1, if w(δ) is set
according to (14.46), thenQ∗r = Q0, i.e., the supply chain is coordinated from the retailer’s
perspective.

Proof. The retailer’s profit function is

πr(Q,w, δ) =(r − v + pr)S(Q)− (cr − v)Q− prµ

−

[
wQ− (w + cr − v)

∫ Q

(1−δ)Q
F (d)dd

]
=(r − v + pr)S(Q)− (w + cr − v)Q− prµ

+ (w + cr − v)

∫ Q

(1−δ)Q
F (d)dd. (14.47)

In order forQ0 to maximizeπr(·, w(δ), δ), it is necessary (but not sufficient) that∂πr/∂Q =

0 when Q = Q0. (It’s not a sufficient condition because we also need to check that the
second partial derivative is negative, i.e., that πr is concave with respect to Q.)

∂πr(Q,w(δ), δ)

∂Q
=(r − v + pr)S

′(Q)− (w(δ) + cr − v)

+ (w(δ) + cr − v) [F (Q) + (1− δ)F ((1− δ)Q)]

(using (C.48))

=(r − v + pr)F̄ (Q)

− (w(δ) + cr − v)[F̄ (Q) + (1− δ)F ((1− δ)Q)]. (14.48)

When Q = Q0, (14.48) equals 0 by (14.46).
It remains to show that πr is concave when w = w(δ), i.e., that its second partial

derivative is nonpositive.

∂2πr(Q,w(δ), δ)

∂Q2
=− (r + pr − w(δ)− cr)f(Q)

− (w(δ) + cr − v)(1− δ)2f((1− δ)Q). (14.49)

This is nonpositive if
v − cr ≤ w(δ) ≤ r + pr − cr,

which is true for all 0 ≤ δ ≤ 1 because

w(0) = (r − v + pr)F̄ (Q0) + v − cr ≥ v − cr
w(1) = r + pr − cr
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and w(δ) is increasing in δ. Therefore, Q0 maximizes πr(·, w(δ), δ), provided that w(δ) is
set according to (14.46).

We also need to check whether Q0 is optimal for the supplier; if it is not, the contract
does not coordinate the supply chain. The supplier’s profit function is

πs(Q,w, δ) = psS(Q) + (w − cs)Q− psµ− (w + cr − v)

∫ Q

(1−δ)Q
F (d)dd. (14.50)

One can show that ∂πs/∂Q does equal 0 when Q = Q0. (See Problem 14.11.) However,
forQ0 to be a maximizer, the second partial derivative must be nonpositive. This derivative
is

∂2πs(Q,w(δ), δ)

∂Q2
= −w(δ)

[
f(Q)− (1− δ)2f((1− δ)Q)

]
− psf(Q). (14.51)

Unfortunately, this expression is not always nonpositive. For example, suppose D ∼
N(100, 252), r = 10, cr = cs = 1, and pr = ps = v = 0. If δ = 0.2, then (14.51) equals
−0.0028 (soQ0 is a local max), but if δ = 0.1, then (14.51) equals 0.0015 (soQ0 is a local
min).

All of this means that the quantity flexibility contract coordinates the supply chain from
the retailer’s point of view but not necessarily from the supplier’s. In other words, when the
retailer places an order of sizeQ0, the supplier might wish to deliver an order of a different
size Q′. The supplier can certainly not force the retailer to accept a larger order than he
placed, so if Q′ > Q0 there’s nothing the supplier can do about it. But if Q′ < Q0, the
supplier wants to deliver an order smaller than the order placed by the retailer.

The attitude of the model toward this behavior is called the compliance regime. If
the supplier is allowed to deliver less than the order size, the regime is called voluntary
compliance. If the supplier is forced to deliver the entire order (because failing to do so
would expose the supplier to a court action or to too much loss of goodwill, for example),
it’s called forced compliance. Since the supplier’s optimal decision was also supply chain
optimal in the coordinating contracts we’ve studied so far, the two regimes have been
equivalent—the supplier wants to comply, even if she’s not forced to do so. In the quantity
flexibility contract, the supplier may not voluntarily comply.

Assuming that the supplier complies (either because she is forced to or because the
parameters are such that her profit function is concave), the quantity flexibility contract,
like the others, can allocate the profits in any way we like. (See Problem 14.12.)

� EXAMPLE 14.4

Return to Example 14.1 and suppose that Jeffrey’s Bakery offers a quantity flexibility
contract to Matilda’s Market with δ = 0.15. What w will coordinate the supply
chain, and what are the resulting profits?

First note that

F̄ (Q0) = 0.5357

F ((1− δ)Q0) = F (83.4761) = 0.2044∫ Q0

(1−δ)Q0

F (d)dd = n̄(Q0)− n̄((1− δ)Q0) = 4.8193.



584 SUPPLY CHAIN CONTRACTS

(The last equality follows from (C.13).) From (14.46),

w(0.15) =
1.2 · 0.5357

0.5357 + 0.85 · 0.2044
− 0.25 = 0.6562.

Since the contract coordinates, both players will choose Q = Q0 = 98.21. From
(14.47) and (14.50),

πr(98.21, 0.6562, 0.15) =1.2S(98.21)− 0.9062 · 98.21

− 0.2 · 100 + 0.9062 · 4.8193 = 4.6844

πs(98.21, 0.6562, 0.15) =0.2S(98.21) + 0.1562 · 98.21

− 0.2 · 100− 0.9062 · 4.8193 = 9.1900

If φ = 0.0888 and w = 0.5450, then the retailer earns the entire profit, and if
φ = 0.1827 and w = 0.7123, the supplier does. For all three values of φ discussed
in this example, ∂2πs/∂Q

2 < 0, so Q0 is a maximum of πs for all three contracts,
as desired. �

CASE STUDY 14.1 Designing a Shared-Savings Contract at McGriff Treading Company

Roughly half of all truck tires sold in the United States are retreaded tires (“re-
treads”), used tires in which the treads have been replaced with new ones. Retreads
are less expensive than new tires, are more environmentally friendly, and have similar
safety records. Trucking fleet operators use retreads as a way to reduce their tire-
related costs, which constitute approximate 3% of their total operating costs (Yadav
et al. 2003).

Both the retreading company and the fleet operator (trucking company) have ways
to improve the useful life of a tire, as measured by the number of miles before the tire
must be replaced. Retreaders can use higher-quality materials and enhancements to
the production process, while fleet operators can provide financial incentives to drivers
to exercise proper braking, turning, and tire inflation. Of course, in both cases, these
measures come at a cost. Traditionally, retreaders sell retreads to fleet operators on a
per-tire basis. This gives the retreader no explicit incentive to exert any effort to improve
the durability of the tire. (Of course, there is an indirect incentive, since durability is
one factor that fleet operators use when deciding whom to buy retreads from.) Another
option that some retreaders have considered is to allow fleet operators to outsource all
of their tire-related activities to the retreader, for a fixed annual fee. However, this
arrangement has the opposite effect: Now, fleet operators have no incentive to expend
any effort to reduce tire wear.

McGriff Treading Company wanted to find a contract structure that would give both
parties an incentive to improve tire life, thus reducing costs for both parties. The
company partnered with researchers at the University of Alabama to design such a
contract structure. Their study is described by Yadav et al. (2003). At the time of
the study, McGriff was one of the five largest independent truck tire retreaders in the
United States, with roughly 200 employees and four retreading facilities, and a client
list that included some of the world’s largest fleet operators.

This is a different type of supply chain than those discussed earlier in this chapter:
Rather than a supplier selling to a retailer facing random demand, we instead have
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a supplier selling an item to a company that uses it as an indirect material when
providing a service that it sells to its customers. Thus, the contract has a different
type of structure. Like the tire-outsourcing service described above, the tire retreader
agrees to provide all of the fleet operator’s tire-related service, for a fixed annual fee.
(This is expressed in $/mile.) In addition, however, both parties split the savings that
result from efforts to improve tire durability. The savings is measured by the difference
between the retreader’s total cost under the contract and its total cost if the fleet
operator exerted no effort. The contract has two parameters, the per-mile price for
tire-service outsourcing and the fraction of the savings earned by the fleet operator.
Each player also has an additional decision variable representing the amount of effort
expended to reduce tire wear.

Let s and r represent the the retreading company (the supplier) and the fleet operator
(not really a retailer, but we will use the symbol r anyway, for consistency). Let cs be
the retreading company’s cost per tire and let w be the per-unit cost that the retreader
charges the fleet operator; we’ll assume cs < w. The players each decide the effort they
will exert to reduce tire wear; this effort is a decision variable and is denoted es and er
for the retreader and fleet operator, respectively. Effort levels es and er cost the players
κs(es) and κr(er), respectively, and both functions are increasing. These effort levels
result in an annual usage of u(es, er) tires per vehicle mile, which is decreasing and
concave in both es and er. Assume that the fleet operator earns an annual revenue of
R, which is independent of the decisions made in the model but is used to formulate the
profit function. Finally, let F be the fixed fee, expressed in $/mile, that the retreader
charges the fleet operator for tire-service outsourcing, and let ω be the fraction of the
savings that the fleet operator earns; these are the parameters of the contract.

Under the traditional selling arrangement, in which fleet operators simply buy tires
at a per-unit cost, the two parties have profit functions

π0
s(es, er) = (w − cs)u(es, er)− κs(es) (14.52)

π0
r(es, er) = R− wu(es, er)− κr(er). (14.53)

(Note that these are deterministic profit functions since there are no random variables
in this model.) Since cs < w, u(es, er) is decreasing in es, and κs(es) is increasing, it
is optimal for the retreader to exert no effort: e0

s = 0. (The fleet operator’s optimal
effort is found by setting ∂π0

r/∂er = 0, but we will not need this quantity.)
Now consider the tire-service outsourcing contract, but without the shared-savings

component, i.e., ω = 0. The profit functions are given by

πns (es, er, F ) = F − csu(es, er)− κs(es) (14.54)

πnr (es, er, F ) = R− F − κr(er). (14.55)

(The superscript n denotes “no sharing.”) In this case, the fleet operator has no
incentive to exert effort, since R and F are constants and κr(er) is increasing; thus

enr = 0. We can find the retreader’s optimal effort by setting ∂πs(es,0)
∂es

= 0, but we will
not need this value either.

Finally, consider the tire-service outsourcing contract with shared savings. The total
savings is defined as

∆(es, er) = cs [u(ens , 0)− u(es, er)] ,
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that is, the difference between the retreader’s cost under the shared-savings contract
and the no-shared-savings contract. Since a fraction ω of the savings goes to the fleet
operator and 1− ω goes to the retreader, the profit functions are then given by

πss(es, er, F, ω) = F − csu(es, er)− κs(es) + (1− ω)∆(es, er) (14.56)

πsr(es, er, F, ω) = R− F − κr(er) + ω∆(es, er). (14.57)

(The superscript s is for “sharing.”) For a given value of F , we can find the value
ω(F ) that satisfies the first-order conditions; then we can use the first-order conditions
again to find the F that the retreader should select.

In practice, McGriff does not have all of the data (R, κ(·), etc.) required to calibrate
this model precisely. Therefore, the firm opted to present potential clients with a menu
of contract options consisting of a few values of F and the corresponding ω values.

PROBLEMS

14.1 (Existence ofQ∗s under Wholesale Price Contract) Prove that, under the wholesale
price contract, πs(Q,w) is:
• strictly decreasing in Q if w < cs − ps
• first increasing and then decreasing in Q if cs − ps < w < cs
• strictly increasing in Q if w > cs.

14.2 (Wholesale Price Contract for Breach of Contract) A new novel, the legal thriller
Breach of Contract, will begin to be sold at your local bookstore next month. The bookstore
must decide how many copies of the book to order, and it cannot reorder again after the
initial order. The book will be sold for a certain duration (say, 6 months), after which all
copies will be removed from the shelves and sold to a paper-recycling company as scrap.

Breach of Contract will be sold to consumers for $18.99 per copy. The publisher
charges the bookstore a wholesale price of $11.00 per copy. For each copy purchased by
the bookstore, the publisher incurs raw-material costs of $3.75, and the bookstore incurs
shipping and handling costs of $1.20. (This is not paid to the publisher.) The total demand
for the book during the selling season is expected to be normally distributed with a mean of
1200 and a standard deviation of 340. Unmet demands are lost, incurring loss-of-goodwill
costs estimated at $9.00 for the bookstore and $4.00 for the publisher. Unsold books are
sold to the recycling company for $0.65 each.

a) What is the bookstore’s optimal order quantity?
b) What is the order quantity that maximizes the total expected profit for the supply

chain, and what is the optimal total expected profit?
c) What is each company’s expected profit, and what is the total expected profit for

the supply chain? What is the efficiency of the contract?
d) Suppose the publisher can choose any wholesale price it wishes. What wholesale

price will it choose? What order quantity will the bookstore choose as a result?
What will be the resulting profits? What will be the efficiency of the contract?

14.3 (Buyback Contract for Breach of Contract) Consider the supply chain discussed
in Problem 14.2. Suppose the publisher offers the bookstore a buyback contract with a
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buyback credit of $8. (Buyback contracts are common in the publishing industry. However,
since it is expensive to ship books, it is common practice for the publisher to require the
bookstore to return only the cover of the book, and to destroy the rest of the book (Chopra
and Meindl 2001).)

a) What w will coordinate the supply chain, and what will be the resulting profits?
What is the supplier’s percentage of the profit?

b) What value of b will give the retailer all of the profit? What value will give the
supplier all of the profit?

14.4 (Revenue Sharing Contract for Breach of Contract) Consider the supply chain
discussed in Problem 14.2. Suppose the publisher offers the bookstore a revenue sharing
contract in which the bookstore keeps 60% of its revenue and gives 40% to the publisher.

a) What w will coordinate the supply chain, and what will be the resulting profits?
What is the supplier’s percentage of the profit?

b) What value of φ will give the retailer all of the profit? What value will give the
supplier all of the profit?

14.5 (Quantity Flexibility Contract for Breach of Contract) Consider the supply chain
discussed in Problem 14.2. Suppose the publisher offers the bookstore a quantity flexibility
contract with δ = 0.4.

a) What w will coordinate the supply chain, and what will be the resulting profits?
What is the supplier’s percentage of the profit? Does the supply-chain-optimal
order quantity also maximize the publisher’s profit function?

b) What value of δ will give the retailer all of the profit? What value will give the
supplier all of the profit?

14.6 (Retailer Under-Orders) Prove Theorem 14.2.

14.7 (Redundancy of (14.19)) Prove that if b and w satisfy (14.18) and (14.22), then
they also satisfy (14.19).

14.8 (Theater Ticket Returns Policies) A school is planning a class trip for its first-
grade students to see a play at a local children’s theater. There are 85 students in the first
grade. The school will buy tickets in advance for $10 each. On the day of the play, if some
children are sick and absent from school, the theater will not allow the unused tickets to be
returned or exchanged. Therefore, the school is planning to buy Q < 85 tickets. However,
if more than Q students show up to school on the day of the play, some of the children will
have to stay at school, incurring a child-care cost (paid by the school) of $13 per student.
Assume that a given student will be absent from school with probability 0.05, and that
absences are statistically independent across students.

a) What is the optimal number of tickets for the school to purchase? What will be
the theater’s revenue (ticket sales)?

Hint: Use the normal approximation to the binomial distribution. You may
assume that fractional ticket sales are possible.

b) Suppose the theater implements a policy under which they will refund the school
$6 for each unused ticket. Now what is the optimal number of tickets for the
school to purchase? What will be the theater’s expected net revenue (ticket sales
minus refunds)?
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14.9 (Buyback Parameters Are Valid) Prove that, for any revenue sharing contract
(wr, φ), the equivalent buyback parameters defined in (14.42)–(14.43) satisfy (14.22).

14.10 (Quantity Flexibility Transfer Payment) Prove (14.45), taking (14.44) as given.

14.11 (First-Order Condition for Quantity Flexibility) Prove that

∂πs(Q,w(δ), δ)

∂Q

∣∣∣∣
Q=Q0

= 0

in the quantity flexibility contract. That is, Q0 is a stationary point for the supplier’s profit
function.

14.12 (Profit Allocation Under Quantity Flexibility Contract) Prove that, under the
quantity flexibility contract, for any 0 ≤ α ≤ 1, there exists a δ such that the supplier
receives exactly α proportion of the total profit; that is, all possible allocations of the profit
are possible.

14.13 (Alternate Proof of Theorem 14.6) Prove Theorem 14.6 using a method similar
to Proof #1 of Theorem 14.4; that is, use the first-order conditions directly to show that
Q∗r = Q∗s = Q0.

14.14 (A Simpler Contract?) A student once made a comment along the lines of, “Why
bother with this contracting stuff? If the supply chain profit is not maximized when the
retailer orders Q∗r instead of Q0, why don’t the parties just agree that the retailer will order
Q0 and then they’ll split the extra profits somehow?”

In essence, this student has proposed an alternate, potentially simpler, contracting mech-
anism. Suppose the parties decide to split the profits by bringing the retailer’s profit up to
the profit he’d earn if he’d ordered Q∗r instead of Q0. That is, the supplier agrees to pay
the retailer πr(Q∗r)− πr(Q0) per period if the retailer orders Q0. In addition, let’s assume
there’s a wholesale price of w per unit, which is fixed (not a parameter of the contract), and
that w > cs.

In other words, the transfer payment T is given by

T =

{
wQ− (πr(Q

∗
r)− πr(Q0)), if Q = Q0

wQ, if Q 6= Q0,

where πr is as defined in (14.9).
a) Write the retailer’s expected profit function under this simple contract (call it

πsr(Q)). You may express πsr(Q) in terms of πr(Q).
b) Prove that, under this contract, the retailer is indifferent between orderingQ0 and

Q∗r—both maximize his expected profit.
c) Write the supplier’s expected profit function under the new contract (call it
πss(Q)). You may express πss(Q) in terms of πr(Q) and πs(Q), where πs(Q) is
as defined in (14.10) .

d) Prove that the supplier prefers the retailer to order Q0 (instead of Q∗r) if and only
if

πs(Q
0)− πs(Q∗r) > πr(Q

∗
r)− πr(Q0).

(If the supplier prefers Q∗r , then the contract fails to coordinate the supply chain,
since the supplier wouldn’t even propose the contract to begin with.)
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e) Prove that the condition in part (d) always holds.

14.15 (Second Ordering Opportunity) Consider a supply chain with a single supplier
and a single retailer. The retailer has two opportunities to order items from the supplier:
once before he knows the actual demand and once after. All demands must be satisfied;
therefore, the size of the second order is equal to any shortfall from the first order. However,
any demands that are not met after the first order incur a loss-of-goodwill cost p per item
since customers will have to wait until the second order is placed before receiving their
products.

Demands are random with pdf f , cdf F , and mean µ. LetQ be the size of the first order.
The selling price is r per item regardless of when the demand is satisfied. The supplier
charges the retailer a wholesale price of w per item for both the first and second orders.
Unsold merchandise at the end of the period may be salvaged for a salvage value of v per
unit.

The manufacturer produces to order; that is, she produces exactly the number of units
requested by the retailer in each order and does not hold inventory between orders. She
incurs a production cost of c1 for items produced for the first order and c2 for items produced
for the second order. Since the second order typically requires smaller production runs,
you can assume c1 < c2. You can also assume that v < c1 and c2 < w.

The sequence of events in the time period is as follows: The retailer places his first
order. The order is delivered immediately. Demand is realized, and all demands that can be
met from stock are satisfied; the remaining demands are put on hold until the second order.
If any demands are on hold, the second order is placed (for exactly the number of units on
hold). The second order arrives immediately, and the on-hold demands are satisfied. If the
demand was smaller than the first order, any unsold items are salvaged.

a) Write expressions for the retailer’s, supplier’s, and supply chain’s expected profit
as a function of Q, denoted πr(Q), πs(Q), and Π(Q), respectively.

Hint: To check that you have the correct formulas before you use them in the
subsequent parts, we’ll tell you the following: Assuming that

r = 100 w = 50

p = 125 c1 = 25

v = 20 c2 = 35

Q = 300

and demand is distributed N(200, 502), then

πr(Q) = 6934.2

πs(Q) = 7506.4

Π(Q) = 14, 440.6.

b) Prove that the retailer’s optimal order quantity is strictly smaller than the supply
chain’s optimal order quantity. (Therefore, the supply chain is not coordinated.)

c) Consider a buyback contract in which the retailer pays the supplier a wholesale
price of w (replacing the wholesale price w used in the original model) and the
supplier pays the retailer a subsidy of b for every unit of unsold merchandise at
the end of the period. Prove that if the wholesale price is given as a function of b
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by

w(b) = b+ v + p
c1 − v

p+ c2 − c1
,

then the supply chain is coordinated. Make sure you verify all relevant necessary
and sufficient conditions.

d) In a few sentences, explain why the original supply chain was not coordinated,
and why the buyback contract coordinates the supply chain.

14.16 (Completing the Proof of Theorem 14.3) Fill in the missing step in the proof of
Theorem 14.3 by showing that

lim
Q→∞

1 +
ps

r − v + pr
− Qf(Q)

F̄ (Q)
= −∞.

You may assume that the demand is normally distributed and use the fact that for aN(µ, σ2)
distribution, f ′(x) = −f(x)x−µσ .



CHAPTER 15

AUCTIONS

15.1 INTRODUCTION

Auctions have been around for centuries and the mathematical analysis of auctions dates
back decades. But they have enjoyed growing popularity in recent years because the Internet
has made efficient implementation of auctions, even complex ones, possible. Consumer
auctions like eBay have become household names, but business-to-business (B2B) auctions
have grown even more quickly. B2B auctions are mainly procurement auctions in which
there is a single buyer and multiple sellers (the reverse of most consumer auctions; in fact,
such auctions are called reverse auctions). For example, auto manufacturers have set up
auctions in which thousands of potential suppliers bid for contracts; the auto company
chooses the suppliers with the lowest prices. Clearly, such an undertaking would be much
more cumbersome without the Internet. We will consider auctions with a single seller and
multiple potential buyers.

There are many types of auctions, each with various properties in terms of consumer
behavior, efficiency, and so on. Here are just a few types of auctions that have been
introduced in the literature and in practice:

• English: Perhaps the most familiar type, with each bidder publicly announcing his
bid and the price rising until only a single bidder remains. The highest bidder wins
and pays his bid.

591Fundamentals of Supply Chain Theory, . Lawrence V. Snyder and Zuo-Jun Max Shen. 
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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• Sealed-bid first price: Bids are made privately and simultaneously by all bidders.
The bidder with the highest bid wins and pays his bid.

• Sealed-bid second price: Sometimes known as a Vickrey auction, this auction type is
like the sealed-bid first price auction except that the winner pays the second-highest
bid, not his own bid (though the bidder with the highest bid is still the winner).
Second price auctions encourage higher bidding since the winning bidder pays a
lower price than his own bid.

• Dutch: In the Dutch auction, the price starts high and the auctioneer announces
successively lower prices. As soon as one bidder accepts the current price, that
bidder wins and pays the price, and the auction ends.

In addition to deciding the auction type, the auction designer (who may be the buyer, seller,
or a third party like eBay) must decide aspects of the auction structure like how bidders
may bid on multiple units (e.g., as a package or individually), what information is available
to the bidders (e.g., the bids that have been placed by other bidders), and so on.

Auctions can be seen as mechanisms for supply chain coordination since they give
buyers and sellers an opportunity to negotiate a mutually beneficial agreement. Game-
theoretic issues appear in auction analysis, too; for example, players may have an incentive
to misrepresent their objectives through misleading bids.

In fact, there are several important properties that are desirable for auctions to have.
These desirable properties include:

• Strategy-proof: In a strategy-proof auction, truthful bidding is never worse than
untruthful bidding, for each buyer and seller. A related, but weaker, concept is
incentive-compatibility, which means that truthful bidding is a (Bayesian) Nash
equilibrium.

• Ex post individually rational: An auction is ex post individually rational if each
buyer and each seller do at least as well if they participate in the auction (under any
auction outcome) than if they don’t participate.

• Ex post budget-balanced: An auction is ex post budget-balanced if the auctioneer’s
payoff is nonnegative for all possible outcomes; therefore, the auctioneer can hold
the auction without an outside subsidy.

• Optimal or efficient: An optimal auction implements an allocation that maximizes
expected revenue (the sum of the expected payments of the buyers), while an efficient
auction maximizes social welfare (i.e., achieves the highest possible set of awarded
valuations).

Any mechanism must be individually rational and budget balanced to make an auction
practical. Moreover, strategy-proofness is desired, since each agent may not know enough
information about the other agents to determine his or her optimal strategy. Unfortunately,
it is not possible to design an auction mechanism that is efficient, individually rational, in-
centive compatible, and budget balanced—at least one of these must be sacrificed (Myerson
and Satterthwaite 1983).

In Section 15.2, we will analyze a simple English auction and show that the auction
itself can be thought of in terms of a linear program and its dual. Then, in Section 15.3
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we will discuss a more complicated auction with multiple products and investigate the
allocation problem faced by the auctioneer. Finally, in Section 15.4, we analyze the famous
Vickrey–Clarke–Groves (VCG) auction.

15.2 THE ENGLISH AUCTION

In an English auction, there is a set of bidders (also called agents), each bidding on a
single item. The price begins low and gradually increases. At each price announced by
the auctioneer, all bidders announce whether they are still willing to bid on the item at
the current price (for example, by raising their hands), and the auction ends when only a
single bidder remains. In this section, we analyze such an auction. Our analysis is adapted
from Kalagnanam and Parkes (2004).

Let N be the set of agents. Agent i ∈ N has a valuation vi that she has assigned to the
item: vi is the maximum she’d be willing to pay for it. Paying vi is like breaking even,
so she’d prefer to pay less. The auctioneer knows vi for each bidder. His goal is to award
the item to the bidder with the highest valuation. (This also maximizes the auctioneer’s
revenue, assuming he is the seller. However, under this auction, the auctioneer will not
necessarily receive vi for the winning bidder.)

In other words, the auctioneer needs to solve the following problem:

(IP) maximize
∑
i∈N

vixi (15.1)

subject to
∑
i∈N

xi ≤ 1 (15.2)

xi ∈ {0, 1} ∀i ∈ N (15.3)

where xi = 1 if agent i is awarded the item. The constraint says that at most one agent may
be assigned the item. The English auction is one way of solving this problem. Another
way is simply to ask each bidder for his or her valuation and to award the item to the bidder
with the highest valuation, but bidders may prefer the English auction since it allows them
to win the item without paying their maximum valuation.

The following problem is also equivalent to (IP):

(LP) maximize
∑
i∈N

vixi (15.4)

subject to
∑
i∈N

xi + y = 1 (15.5)

xi ≤ 1 ∀i ∈ N (15.6)

xi, y ≥ 0 ∀i ∈ N (15.7)

In this formulation, a new variable y is added that represents the auctioneer not assigning
the item to any bidder. Then the constraint can be written as an equality instead of an
inequality. Furthermore, in this formulation the integrality restriction has been dropped.
We can do this because although problem (IP) is an integer program, it always has an
optimal solution in which the xi are integer. Therefore, it is equivalent to its LP relaxation.
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Now consider the LP dual of (IP), with p the dual variable for constraint (15.5) and πi
the dual variable for constraint (15.6):

(D) minimize p+
∑
i∈N

πi (15.8)

subject to πi ≥ vi − p ∀i ∈ N (15.9)

p ≥ 0 (15.10)

πi ≥ 0 ∀i ∈ N (15.11)

Note that p is nonnegative (constraint (15.10)) since the coefficient of y in (15.4) is 0, while
the nonnegativity of πi (constraints (15.11)) follows from the inequality constraints (15.6).

Suppose p is fixed. The optimal values of πi are given by πi = max{0, vi − p}. A
primal solution x and a dual solution (p, π) are optimal for their respective problems if the
complementary slackness conditions hold:

p > 0 =⇒
∑
i

xi + y = 1 (CS1)

πi > 0 =⇒ xi = 1 ∀i ∈ N (CS2)

xi > 0 =⇒ πi = vi − p ∀i ∈ N (CS3)

y > 0 =⇒ p = 0 (CS4)

The dual variables p and πi have a natural interpretation in the context of the auction: p
is the selling price of the item and πi is the payoff (valuation minus price) to agent i under
price p. The complementary slackness conditions are then interpreted as follows:

• If the price is positive, then by CS1 either someone gets it or no one gets it. By CS4,
if no one gets it, then the price must be 0. So taken together, CS1 and CS4 mean if
the price is positive, someone gets the item.

• By CS3, if agent i wins the auction, then the price must equal vi − πi; since πi ≥ 0

by (15.11), this means the winning agent pays no more than his valuation.

• By CS2, any agent not receiving the item (xi = 0) must have πi = 0; this means
vi ≤ p by (15.9), i.e., the price is greater than the losing agent’s valuation.

Notice that these are exactly the conditions under which the auction ends.
The simplex method is called a primal algorithm for solving LPs because it maintains

a primal solution at all times and tries to improve it until it finds the optimal solution.
Other methods, called primal–dual algorithms, maintain both a primal and a dual solution
at all times and attempt to move toward optimal solutions by fixing violations in the
complementary slackness conditions.

This is exactly the process taken by the English auction! In a sense, the auction is
nothing more than a big LP solver in which the actions of the players correspond to steps
in the algorithm. In particular, interpret the dual variable p as the current price and the
dual variables πi as the corresponding payoffs for each agent. Interpret the primal variable
xi as indicating whether agent i is the current “provisional” winner of the auction, chosen
arbitrarily from among the bidders that are still interested in the item at the current price
p. Interpret y as indicating that no bidders are still interested in the item at the current
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price. Throughout the auction, the primal and dual solutions are both feasible for their
respective problems. When the complementary slackness conditions hold, the auction
ends, the optimal solutions having been found. Note that in every round, CS1, CS3, and
CS4 hold in the auction: If the price is positive, some agent must be the current provisional
winner (CS1 and CS4), and the price is less than the value of the provisional winner (CS3).
CS2 might not hold since there may be nonwinners who still have a positive payoff, that
is, whose valuations are less than the current price. The primal-dual approach works by
increasing p until CS2 holds.

15.3 COMBINATORIAL AUCTIONS

English auctions involve only a single item for sale. In this section, we will discuss auctions
in which there are a number of heterogeneous items for sale. In such an auction, bidders
may want to bid on combinations of items instead of individual items. For example,
suppose you attend an auction of some antique furniture. You might be interested in buying
the bed and matching dresser if you could buy them together, but might not be interested
in buying only one of them. Or, you might be interested in buying one bed or another,
but not both. Valuation, then, is assigned to subsets of items (called bundles) rather than
to individual items. This makes the auction itself, as well as the auctioneer’s allocation
problem, considerably more complex. Such auctions are called combinatorial auctions.
Our analysis of combinatorial auctions is adapted from de Vries and Vohra (2003). For
further discussion of combinatorial auctions in practice, see Harstad and Pekeč (2008).

A famous example of a combinatorial auction is the occasional auction of telecommu-
nications spectrum rights held by the US Federal Communications Commission (FCC). A
cell phone carrier, for example, might want to buy one license in each market it’s interested
in. Bidding for individual licenses misses the point since the value of one license depends
on which other licenses the company holds. In the FCC’s first auction, in 1994, they
allowed bids on individual licenses only (though steps were taken to help bidders obtain
bundles they were interested in), thinking it would be too cumbersome to allow bids on
bundles. However, in 2003, the FCC held its first auction in which bidders could bid on
combinations of licenses.

Another example of a practitioner of combinatorial auctions is JUNAEB, the agency
responsible for providing free meals to low-income schoolchildren in Chile. Since 1980,
the agency has used auctions to select private companies to provide these meals throughout
the country. Companies place bids that indicate the geographic region they will serve, the
services they will provide, and the price they will charge. Prior to 1997, bids were chosen
more or less independently, without considering the interdependencies among the bids.
But in 1997, JUNAEB began using combinatorial auctions to allocate bids. Each company
can submit multiple bids, for example, covering different combinations of geographical
regions. The new auction mechanism saves JUNAEB an estimated US$40 million per
year and has also improved the quality of the food, the geographic scope of the assistance
program, and the transparency of the entire bidding process (Epstein et al. 2004).

15.3.1 The Combinatorial Auction Problem

Let M be the set of objects being auctioned off, and let N be the set of bidders. For any
bundle S ⊆ M , let biS be the bid that agent i has announced he is willing to pay for S.
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Note that b is different from v since it represents announced bids, not valuations; an agent’s
bid for a bundle might be less than his valuation. In an auction of any reasonable size, it
would be impossible for an agent to specify a bid for all 2|M | possible bundles, so you can
think of b as a function that takes a bundle suggested by the auctioneer and returns a bid
for that bundle. Without loss of generality we can assume biS ≥ 0 for all i, S. Let yiS be
1 if agent i is assigned bundle S ⊆M and 0 otherwise.

The auctioneer’s problem is to allocate the bundles to agents in order to maximize
her revenue. This problem is known as the combinatorial auction problem (CAP) and is
formulated as follows:

(CAP) maximize
∑
i∈N

∑
S⊆M

biSyiS (15.12)

subject to
∑
S3j

∑
i∈N

yiS ≤ 1 ∀j ∈M (15.13)

∑
S⊆M

yiS ≤ 1 ∀i ∈ N (15.14)

yiS ∈ {0, 1} ∀i ∈ N, ∀S ⊆M (15.15)

The objective function maximizes the revenue to the seller. (If the bids are equal to the
actual valuations, then this formulation also maximizes the “efficiency” of the auction—
assigning bundles to the agents that value them the highest.) Constraints (15.13) ensure
that no two bundles assigned to agents contain the same item. (The summation over S 3 j
is a summation over all S ⊆M that contain j.) Constraints (15.14) prevent an agent from
receiving more than one bundle. This is necessary to ensure that the auctioneer does not
decide to assign bundles S and T to bidder i, instead of S ∪ T , if biS + biT > bi,S∪T .
However, we will restrict ourselves to cases in which a bid for a bundle is no smaller than
the sum of bids of subsets of the bundle; that is, bi,S∪T ≥ biS + biT for all S, T ⊆ M .
Bid functions for which this property holds are called superadditive. If the bid functions
are superadditive, then constraints (15.14) are no longer needed since it is always to the
seller’s advantage to award an agent a single bundle rather than two separate ones.

We now reformulate (CAP) as an instance of the set packing problem (SPP), in which
there is a set M of elements and a collection V of subsets of M with nonnegative weights;
the objective is to choose the largest-weight collection of subsets such that every element
is contained in at most one subset. (The SPP is like the inverse of the set covering problem
(Section 8.4.1), in which we want to choose subsets such that every element is contained
in at least one subset. If every element must be contained in exactly one subset, we have
the set-partitioning problem.)

Let V be the collection of all subsets of M , and let k be an individual bundle (subset).
Define

bk = max
i∈N
{bik},

that is, bk is the maximum bid any agent would be willing to pay for bundle k. Let aik = 1

if bundle k contains item i, 0 otherwise. Finally, let xk = 1 if bundle k is selected, 0
otherwise. The problem now reduces to one of partitioning the items into bundles; the
actual assignments can be done after the fact based on which agent maximized bik for each
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selected bundle k. The CAP can be reformulated as:

(SPP) maximize
∑
k∈V

bkxk (15.16)

subject to
∑
k∈V

ajkxk ≤ 1 ∀j ∈M (15.17)

xk ∈ {0, 1} ∀k ∈ V (15.18)

Constraints (15.17), like constraints (15.13), prohibit the bundles from overlapping. We
will focus on this formulation of the CAP in what follows.

15.3.2 Solving the Set-Packing Problem

Unlike the auctioneer’s problem in the English auction, the CAP does not naturally have all
integer solutions; that is, it is not equivalent to its LP relaxation. Therefore, we can’t use LP
duality to solve the problem. However, we will use Lagrangian relaxation (which provides
a different type of duality) to solve it and show that, like the LP dual, the Lagrangian
formulation has a natural interpretation in the auction context.

Let’s relax constraints (15.17) in the SPP using Lagrange multipliers λ. The resulting
subproblem is

(SPP-LRλ) zLR(λ) = maximize
∑
k∈V

bkxk +
∑
j∈M

λj

(
1−

∑
k∈V

ajkxk

)

=
∑
k∈V

bk −∑
j∈M

λjajk

xk +
∑
j∈M

λj (15.19)

subject to xk ∈ {0, 1} ∀k ∈ V (15.20)

Solving (SPP-LRλ) is easy: For each k ∈ V we set xk = 1 if

bk −
∑
j∈M

λjajk > 0

and 0 otherwise. Since (SPP) is a maximization problem, for a given λ, zLR(λ) provides
an upper bound on that of (SPP), and our goal is to find better (i.e., smaller) upper bounds
by solving

(SPP-LR) min
λ≥0

zLR(λ).

Note that λ is restricted to be nonnegative; see Section D.1.5. Problem (SPP-LR) is
sometimes known as the Lagrangian dual, because in many ways it behaves like an LP
dual. (SPP-LR) can be solved approximately using subgradient optimization, as we did
when using Lagrangian relaxation in Chapter 8. A solution to (SPP-LRλ) can be converted
into a feasible solution for (SPP) using some heuristic; this feasible solution then provides
a lower bound.

Our interest is not so much in this solution method as in its auction interpretation. The
Lagrange multiplier λj represents the price on an individual item set by the auctioneer.
The agents have already announced their bids for each bundle k ∈ V , the maximum of
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which is bk. If bk >
∑
j∈M ajkλj , then, according to the solution to (SPP-LRλ), xk is set

to 1—the bundle is temporarily included in the group of bundles to be sold. Presumably,
the bundles in that group may overlap (constraints (15.17) may be violated), in which case
the auctioneer must adjust the prices λ using subgradient optimization. Prices for items
that are included in too many bundles would increase, while prices for items that are in no
bundles would decrease.

As in the English auction, feasible solutions to the dual problem represent prices, while
feasible solutions to the primal problem represent tentative assignments of items to agents.
A primal-dual pair is optimal if something akin to the complementary slackness conditions
hold:

• If λj > 0, then
∑
k∈V ajkxk = 1, i.e., item j is contained in exactly one allocated

bundle. Another way of saying this is that if j is not included in any bundle, then it
is a worthless item, so λj = 0.

• If xk > 0, then
∑
j∈M λjajk ≤ bk, i.e., the bundle is worth at least the asking price

to some bidder.

15.3.3 Truthful Bidding

In the combinatorial auction described above, the seller allocates bundles to maximize her
revenue based on the bids. But there is no guarantee that the bids accurately reflect the
bidders’ valuations of the items, and bidders may have an incentive to lie. For example,
suppose there are three bidders (1, 2, and 3) and two items (A and B). The bidders’
valuations of the three possible bundles are given in Table 15.1.

Table 15.1 Valuations that induce nontruthful bidding.

Bundle
Bidder A B A,B

1 0 0 100
2 75 75 0
3 40 40 0

The bidders do not need to place bids equal to their valuations. If they did bid truthfully,
the auctioneer should award A to 2 and B to 3 (or vice-versa), for a revenue of 115. However,
if bidder 2 assumes that bidder 3 will continue to bid truthfully, he has an incentive to reduce
his bid on A and B, say, to 65. Bidders 2 and 3 still win the auction, but bidder 2 pays less.
Bidder 3 can reason the same way—but if they both reduce their bids, bidder 1 might win
the auction.

If bidders 2 and 3 could collude on their bids, they could ensure that they win the auction,
as long as the sum of their bids (for each item) is greater than 100, though this leaves a
profit of 15 that they need to decide how to share.

Obviously, it is to the auctioneer’s advantage if the agents bid truthfully. She can’t
force them to do so, but she can design the auction mechanism so that the bidders’ optimal
strategy is to bid truthfully. This is very similar to the supply chain contracts discussed
in Chapter 14: By structuring the payoffs carefully, the mechanism designer motivates the
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players to behave in a particular way, even when they are acting selfishly. In the case
of auctions, however, the auctioneer is trying to manipulate the game so that the agents
maximize her own revenue, while in supply chain contracting, the contracts are designed
to maximize the common revenue.

15.4 THE VICKREY–CLARKE–GROVES AUCTION

15.4.1 Introduction

In this section, we discuss an auction mechanism in which it is to the agents’ benefit to
bid truthfully. The auction is called the Vickrey–Clarke–Groves (VCG) auction, after the
researchers who proposed and studied it. The VCG auction is a single-round sealed-bid
auction. (If there is only a single item, it is equivalent to a sealed-bid second-price auction.)
It works as follows:

1. Agent i reports his valuation viS for all S ⊆ M . There is nothing to prevent the
agents from misreporting their valuations, but it turns out to be optimal for them to
be truthful.

2. The auctioneer solves the following problem:

V = maximize
∑
i∈N

∑
S⊆M

viSyiS

subject to
∑
S3j

∑
i∈N

yiS ≤ 1 ∀j ∈M

∑
S⊆M

yiS ≤ 1 ∀i ∈ N

yiS ∈ {0, 1} ∀i ∈ N, ∀S ⊆M

Note that this is just (CAP) with b replaced by v. Let y∗ be the optimal solution.

3. The auctioneer solves the following problem for each agent k ∈ N :

V −k = maximize
∑
i∈N\k

∑
S⊆M

viSyiS

subject to
∑
S3j

∑
i∈N\k

yiS ≤ 1 ∀j ∈M

∑
S⊆M

yiS ≤ 1 ∀i ∈ N \ k

yiS ∈ {0, 1} ∀i ∈ N \ k,∀S ⊆M

This is the allocation problem assuming that player k does not participate in the
auction.

4. Bundles are awarded to agents according to y∗. The payment that agent k pays is
equal to

V −k −

V − ∑
S⊆M

vkSy
∗
kS

 . (15.21)
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Note that the VCG auction awards bundles in the same manner as the combinatorial auction
in Section 15.3.1, but the payments are different.

Here is the logic behind (15.21). V −k is the “welfare” of the other agents when agent
k is excluded from the auction. The term inside the brackets is the welfare of the other
agents when agent k participates. So agent k’s payment is equal to the difference in the
other agents’ welfare without him and with him. In other words, agent k reimburses the
system for the value that he has taken away by winning his bundle.

Why does agent k have an incentive to tell the truth when he reports vkS? First notice that
changing vkS doesn’t affect V −k since the V −k auction excludes agent k. Moreover, the
term inside the brackets in (15.21) is equal to the optimal objective value of the allocation
problem minus agent k’s payment. So that term is independent of vkS . Therefore, a
winning agent’s payment will not change if he under- or over-states his valuation. Finally,
if an agent over-states his valuations in the hope of winning a bundle that he wouldn’t have
won under truthful bidding, then he will pay more for this bundle than his valuation—see
Problem 15.4. Therefore, agents have no incentive to misrepresent their valuations when
they bid.

If the seller implements the VCG auction, her total revenue will be

∑
k∈N

V −k −
∑
k∈N

V − ∑
S⊆M

vkSy
∗
kS

 =
∑
k∈N

∑
S⊆M

vkSy
∗
kS +

∑
k∈N

(V −k − V )

= V +
∑
k∈N

(V −k − V ). (15.22)

If the number of bidders is large, then V will tend to be very close to V −k since no single
agent would have too large an effect on the auction. Therefore, the seller’s revenue is close
to V , which is the maximum revenue any auction could earn.

� EXAMPLE 15.1

Suppose first that a single item—an antique book by Jane Austen—is being auctioned
off. Three bidders are competing to buy the book. Their valuations, as reported in Step
1 of the VCG auction, are listed in Table 15.2. (The subscriptA stands for “Austen.”)
The optimal allocation in Step 2 is to award the book to the highest bidder, bidder 2,
for a total valuation of V = 120. In Step 3, the optimal allocation if bidders 1 or 3 are
removed from the auction is still to award the book to bidder 2, with total valuation
120. If bidder 2 is removed, then the item goes to the second-highest bidder, bidder
1, for a valuation of 100. So the V −i values are 120, 100, 120 (respectively). Bidder
2’s payment is therefore V −2 − [V − v2,Ay

∗
2,A] = 100− [120− 120] = 100. Note

that 100 is also equal to the second-highest bid, confirming that the VCG auction
operates as a sealed-bid second price auction in this case.

Now suppose that two books, one by Jane Austen and one by William Blake,
are being auctioned off. The bidders’ valuations for these items, and for the bundle
consisting of both of them, are given in Table 15.3. (Subscript B is for “Blake.”)
The optimal allocation in Step 2 is to award the Austen book to bidder 2 and the
Blake book to bidder 1, for a total valuation of V = 220. If bidder 1 is removed
from the auction, the optimal allocation is to award Austen to 2 and Blake to 3, so
V −1 = 190. If bidder 2 is removed from the auction, the optimal allocation is to
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Table 15.2 Single-item VCG auction for Example 15.1.

Bidder (i) vi,A vi,Ay
∗
i,A V −i Payment

1 100 0 120 0
2 120 120 100 100
3 10 0 120 0

V = 120 100

award both books (the bundle AB) to bidder 1, so V −2 = 200. And if bidder 3 is
removed, the optimal allocation is unchanged, so V −3 = 220. Therefore, bidder 1
pays V −1 − [V −

∑
S v1Sy

∗
1S ] = 190− [220− 100] = 70 for the Austen book and

bidder 2 pays V −2 − [V −
∑
S v2Sy

∗
2S ] = 200 − [220 − 120] = 100 for the Blake

book. The total payment is 170.

Table 15.3 Two-item VCG auction for Example 15.1.

Bidder (i) vi,A vi,B vi,AB
∑
S viSy

∗
iS V −i Payment

1 100 100 200 100 190 70
2 120 0 0 120 200 100
3 10 70 120 0 220 0

V = 220 170

�

It is well known that the VCG mechanism is strategy proof, ex post individually rational,
and efficient. However, the VCG mechanism is not budget balanced; that is, it is possible
that the auctioneer may receive a negative payoff. In a one-sided auction such as the one
discussed here (with a single seller and multiple buyers), the budget imbalance arises from
the fact that the auctioneer’s valuations for the items are not considered in the allocation
problem or payment calculation, and therefore the auctioneer could receive payments that
fall short of her valuation for the items sold. (In Example 15.1, if the auctioneer’s total
valuation for the two books is 200, then she receives a negative payoff.) The same is true
for VCG mechanisms in more complicated settings, such as double auctions (with multiple
buyers and sellers).

Recently, there has been a focus on using auctions for supply chain procurement and
trading in e-marketplaces. The benefits of auctions include lower information, transaction,
and participation costs; increased convenience for both sellers and buyers; and, conse-
quently, better market efficiency. While research and practice in operations management
have emphasized optimizing the total supply chain, classical auction theory does not con-
sider the operational costs associated with integrating a supply chain, such as logistics
and inventory management costs. More recent work attempts to include these costs into
the auction design. For example, Chen et al. (2005) consider combinatorial procurement
auctions in supply chain settings. They incorporate supply chain costs (e.g., transportation
costs in a complex supply chain network) into VCG auctions. Chu and Shen (2006, 2008)
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propose several double-auction mechanisms for e-marketplaces. Under their proposed
double-auction mechanisms, bidding one’s true valuation is the optimal strategy for each
individual buyer and seller, even when shipping costs and sales taxes are different across
various possible transactions. The proposed mechanism also achieves budget balance and
asymptotic efficiency (that is, the auction approaches the maximum social welfare as the
number of buyers and/or sellers approaches infinity). Furthermore, these results not only
hold for an environment in which buyers and sellers exchange identical commodities,
but also can be extended to more general environments, such as multiple substitutable
commodities and bundles of commodities.

15.4.2 Weaknesses of the VCG Auction

Despite its impressive theoretical virtues of being strategy-proof, ex post individually
rational and efficient, the VCG auction also suffers from several weaknesses that limit its
usefulness in practice. In this section, we demonstrate some of these weaknesses using
examples adapted from Ausubel and Milgrom (2006).

The first weakness of the VCG auction is that the auctioneer’s revenues can be very
low or zero, even when the items are valuable and the there are many competing bidders.
We already know from Section 15.4.1 that the auctioneer’s payoff—her revenue minus
valuation—could be negative. Here we are arguing that her revenue could even be very
small. The next example illustrates this.

� EXAMPLE 15.2

Suppose three bidders are bidding for two parcels of land, denoted A and B. The
bidders’ valuations (in $M) of the three possible bundles are given in Table 15.4. In
Step 1 each bidder reports its values truthfully, and the optimal allocation in Step 2 is
to award A to bidder 2 and B to bidder 3 (or, A to bidder 3 and B to bidder 2, which
leads to a similar outcome). But the auctioneer’s revenue is $0, even though the total
welfare of the bidders is maximized and the outcome is efficient. (In contrast, if the
auction had been run as an English auction with a single item, the bundle AB, then
all three bidders would have bid $2 million, so the final price would have been $2
million.)

Table 15.4 Valuations that induce zero revenue in the VCG auction.

Bidder (i) vi,A vi,B vi,AB
∑
S vi,Sy

∗
i,S V −i Payment

1 0 0 2 0 4 0
2 2 2 2 2 2 0
3 2 2 2 2 2 0

V = 4 0

�
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Since the final auction revenue is one of the most important attributes for the auctioneer,
the fact that the VCG auction can result in such small revenues for the auctioneer is a huge
strike against it in practice.

Not only can the auctioneer’s revenue be small, it is not, in general, monotonic in either
the number of bidders or their valuations. We would expect that when the number of
bidders increases, or their bids increase, the auctioneer’s revenue should also increase, but
this is not necessarily the case, as the next example demonstrates. Therefore, in the VCG
auction, the auctioneer may prefer to prevent new bidders, or high-valuation bidders, from
entering the auction, which is counterintuitive.

� EXAMPLE 15.3

Suppose that bidder 3 were to drop out of the auction described in Example 15.2, or
equivalently, that his bid for bundle AB drops from 2 to 0; see Table 15.5. In this
case, it is optimal to award both items to either bidder 1 or bidder 2, and in either case
the auctioneer’s revenue is $2 million—an increase from Example 15.2, in which
there were more bidders (or equivalently, higher bids).

Table 15.5 Valuations that induce nonmonotonicity in the VCG auction.

Bidder (i) vi,A vi,B vi,AB
∑
S vi,Sy

∗
i,S V −i Payment

1 0 0 2 0 2 0
2 2 2 2 2 2 2
3 0 0 0 0 2 0

V = 2 2

�

Third, although we know from Section 15.4.1 that truthful bidding is a dominant strategy
for each individual bidder in the VCG auction, it turns out that losing bidders can sometimes
profit by colluding to deviate from their true valuations. In general, it is undesirable for an
auction mechanism to incentivize collusion—another strike against VCG.

� EXAMPLE 15.4

Suppose that the valuations of bidder 1 are unchanged from Example 15.2, but the
valuations of bidders 2 and 3 are reduced as shown in Table 15.6. If these bidders
report their valuations truthfully, the VCG auction awards both items to bidder 1;
bidders 2 and 3 lose the auction. However, suppose bidders 2 and 3 were to collude
in advance to bid 2 for each item and for the bundle AB; then we have the auction in
Example 15.2, for which we know that bidders 2 and 3 will each win one item, at a
price of 0. Therefore, these bidders have an incentive to collude to misreport their
true valuations.

Note that the collusion is essential here. For example, suppose bidder 2 continues
to report her true valuation but bidder 3 misreports his valuations as 2 for every item
and bundle; see Table 15.7. (Bidder 3 still values the items as in Table 15.6 but
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Table 15.6 Valuations that induce collusion in the VCG auction.

Bidder (i) vi,A vi,B vi,AB
∑
S vi,Sy

∗
i,S V −i Payment

1 0 0 2 2 1 1
2 0.5 0.5 1 0 2 0
3 0.5 0.5 1 0 2 0

V = 2 1

reports them as in Table 15.7.) Then bidder 3 is awarded an individual item and pays
1.5 for it, even though his valuation for it is only 0.5.

Table 15.7 Noncollusive bids that fail to game the VCG auction.

Bidder (i) vi,A vi,B vi,AB
∑
S vi,Sy

∗
i,S V −i Payment

1 0 0 2 0 2.5 0
2 0.5 0.5 1 0.5 2 0
3 2 2 2 2 2 1.5

V = 2 1

�

A fourth weakness of the VCG auction is that it is vulnerable to bidders establishing
multiple identities, i.e., a single bidder representing herself as multiple bidders. The next
example demonstrates.

� EXAMPLE 15.5

Suppose that there are only two bidders, 1 and 2, with the valuations given in
Example 15.4; see Table 15.8. Then the VCG auction will award both items to bidder
1, at a price of 1; bidder 2 loses the auction. However, suppose bidder 2 creates a
fake identity (e.g., a fake user account on the auctioneer’s website) called “bidder 3”
and submit the bids in Table 15.4 for both identities. From Example 15.2 we know
that this will result in bidders 2 and 3 being awarded one item each but paying 0.
Therefore, the “real” bidder 2 now becomes a winner; in fact, she will win both items,
for free.

�

In summary, in addition to the computational complexity of solving the CAP, the exam-
ples above reveal important defects of the VCG auction—revenue deficiency, nonmono-
tonicity of the auctioneer’s revenue, and a vulnerability to both collusion and multiple
identities—that make it unappealing for most practical applications. For further discussion
of these and other defects, see Ausubel and Milgrom (2006).
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Table 15.8 Valuations that induce multiple identities in the VCG auction.

Bidder (i) vi,A vi,B vi,AB
∑
S vi,Sy

∗
i,S V −i Payment

1 0 0 2 2 1 1
2 0.5 0.5 1 0 2 0

V = 2 1

An important question is, under what conditions can these defects be eliminated? We
will characterize one such condition from the perspective of game theory in the next section.

15.4.3 VCG Auction as a Cooperative Game

The examples in Section 15.4.2 demonstrate that the auctioneer’s revenue in the VCG
auction can be very low, even when the bidders’ valuations for the items are high. A
natural question is, how much revenue is acceptable for the auctioneer if we regard both the
auctioneer and the bidders as players in a cooperative game? To answer this question, we
will analyze the core of the game, which contains the payoff vectors from which no subset
of the players—called a coalition—has an incentive to deviate. The core thus generalizes
the concept of Nash equilibrium in a noncooperative game, which is a payoff vector from
which no single agent has an incentive to deviate. Therefore, if the payoff vector (or
allocation) of the VCG auction lies in the core, we consider the corresponding auctioneer’s
revenue to be acceptable.

In what follows, we first formulate the VCG auction as a cooperative game and show
that the payoff vector is beneficial for the bidders. Next, we introduce a submodularity
condition that guarantees that the VCG payoff vector lies in the core, and thus the whole
coalition won’t break. Finally, we briefly discuss a condition on the bidders’ preferences
that ensures that the submodularity condition holds, and therefore that the weaknesses
discussed in Section 15.4.2 will never occur.

As usual, let N be the set of bidders and let M be the set of objects being auctioned
off. Let 0 represent the auctioneer, and denote the set of all players as L = {0} ∪N . The
coalitional value function is defined for coalitions T ⊆ L as the maximum total value the
coalition can create by trading among themselves, if the coalition includes the auctioneer;
otherwise, the function equals zero. Here, we implicitly assume that the valuation of the
auctioneer for any bundle is zero. Mathematically, for any T ⊆ L such that 0 ∈ T , the
coalitional value function is

V (T ) = maximize
∑
i∈T\0

∑
S⊆M

viSyiS

subject to
∑
S3j

∑
i∈T\0

yiS ≤ 1 ∀j ∈M

∑
S⊆M

yiS ≤ 1 ∀i ∈ T \ 0

yiS ∈ {0, 1} ∀i ∈ T \ 0, ∀S ⊆M,
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where, as usual, viS is the valuation of bidder i for bundle S. In other words, V (T ) is the
optimal objective function value of the auctioneer’s problem in the VCG auction, with N
replaced by T \ 0.

The core of a game with player set L and coalitional value function V (·) is defined as
follows:

C(L, V ) =

{
π : V (L) =

∑
i∈N

πi, V (T ) ≤
∑
i∈T

πi ∀T ⊂ L

}
.

The core contains all payoff vectors π so that the coalitional value function of the whole
player set equals the sum of the payoffs, and so that no smaller coalition could do any better
than π if they excluded the other players. In other words, any payoff vector in the core
is feasible, and the corresponding outcome is stable, in the sense that there is no coalition
with the desire to change the outcome of the game. Thus, any payoff vector in the core
is also referred to as a competitive outcome, for which it is impossible for the auctioneer
and a subset of bidders to block the auction by defecting and negotiating an outcome with
higher payoffs for themselves. Classical economic theory typically treats the core as the
solution to a game-theoretic problem. From the perspective of game theory, a given type of
auction is no more than a way to determine the payoff allocations in a game consisting of
the auctioneer and bidders. In what follows, we discuss under what conditions the payoff
vector of the VCG auction lies in the core. Our analysis is adapted from Ausubel and
Milgrom (2006).

Let π̄ = (π̄k)k∈L be the VCG payoff vector. Specifically, π̄k is the payoff of bidder
k ∈ N :

π̄k =
∑
S⊆M

vkSy
∗
kS −

V (L \ k)−

V (L)−
∑
S⊆M

vkSy
∗
kS

 = V (L)− V (L \ k).

(15.23)
(Recall that the payoff is the valuation minus the price. The first term in (15.23) is the
bidder’s valuation, and the second is the price, from (15.21).) Similarly, π̄0 is the payoff of
the auctioneer, 0:

π̄0 = V (L) +
∑
k∈N

(V (L \ k)− V (L)) = V (L)−
∑
k∈N

π̄k. (15.24)

(See (15.22).)
The following Lemma shows that the coreC(L, V ) is nonempty, and that every bidder’s

payoff in the VCG auction is the greatest among all points in the core of C(L, V ).

Lemma 15.1 C(L, V ) 6= ∅, and π̄k = max{πk : π ∈ C(L, V )}, for all k ∈ N .

Proof. For any k ∈ N , consider a payoff vector π defined by π0 = V (L \ k), πk =

V (L) − V (L \ k), and πl = 0 for any l 6= k. From the definition of V (·), it is clear that
π ∈ C(L, V ). Furthermore, we have π̄k = πk ≤ max{πk : π ∈ C(L, V )}.

Now suppose there exists a payoff vector π ∈ C(L, V ) such that πk > π̄k for some
k ∈ N . Then

∑
l 6=k πl = V (L)−πk < V (L)− π̄k = V (L\k), which contradicts the fact

that π ∈ C(L, V ). Hence, for any π ∈ C(L, V ) and k ∈ N , π̄k ≥ πk, which completes
the proof.

We say that a payoff vector π is bidder dominant if it lies in the core and if, for any
π′ ∈ C(L, V ), we have πk ≥ π′k for every bidder k ∈ N . In other words, π is bidder
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dominant if it is in the core and if it is at least as good as every other vector in the core, for
every bidder. From Lemma 15.1, we have the following result.

Theorem 15.2 If the VCG payoff vector π̄ lies in the core, then it is the bidder-dominant
point; otherwise, there is no bidder-dominant point in the core, and the auctioneer’s VCG
payoff is strictly less than the smallest of the auctioneer’s core payoffs.

Proof. The first part of the theorem follows from Lemma 15.1. Conversely, suppose
π̄ /∈ C(L, V ) and consider any π̂ ∈ C(L, V ). By Lemma 15.1, π̂l ≤ π̄l for any l ∈ N .
Since π̂ 6= π̄, there exists a bidder k ∈ N such that π̂k < π̄k. So, π̂0 = V (L)−

∑
l∈N π̂l >

V (L)−
∑
l∈N π̄l = π̄0. Consider the payoff vectorπ ∈ C(L, V ) defined byπ0 = V (L\k),

πk = V (L)− V (L \ k) = π̄k, and πl = 0 for any l 6= k. We have π̂k < πk, and thus π̂ is
not bidder dominant.

Theorem 15.2 shows that the auctioneer’s revenue from the VCG auction is strictly
smaller than his revenue in any competitive outcome, unless the VCG payoff vector lies in
the core.

Next we give conditions on the coalitional value function that ensure that the VCG
payoff vector lies in the core, regardless of which potential bidders decide to participate in
the auction. To that end, define π̄(S) as a payoff vector in the game in which the players
are exactly the members of coalition S:

π̄k(S) = V (S)− V (S \ k) for k ∈ S \ 0

π̄0(S) = V (S)−
∑
k∈S\0

π̄k(S).

We say that the coalitional value function V (·) is bidder-submodular if, for all k ∈ L\0

and all coalitions S and S′ such that 0 ∈ S ⊂ S′,

V (S ∪ {k})− V (S) ≥ V (S′ ∪ {k})− V (S′).

The following theorem shows that bidder-submodularity is a necessary and sufficient con-
dition such that the VCG payoff vector lies in the core, and thus the auctioneer’s VCG
payoff meets the competitive benchmark.

Theorem 15.3 The following three statements are equivalent:

(i) The coalitional value function V (·) is bidder-submodular.

(ii) For every coalition S 3 0, C(S, V ) = ΠS , where

ΠS =

{
πS :

∑
k∈S

πk = V (S), 0 ≤ πk ≤ π̄k(S) ∀k ∈ S \ 0

}
.

(iii) For every coalition S 3 0, π̄(S) ∈ C(S, V ).

Proof. (i) ⇒ (ii): From Lemma 15.1, C(S, V ) ⊆ ΠS . Next we show that for any
πS ∈ ΠS , we have πS ∈ C(S, V ), and hence ΠS ⊆ C(S, V ). To this end, we only
need to verify the blocking inequalities, that is, for any S′ ⊆ S,

∑
k∈S′ πk ≥ V (S′). If
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0 /∈ S′, we have
∑
k∈S′ πk ≥ 0 = V (S′); otherwise, without loss of generality, suppose

S = {0, 1, . . . , s} and S′ = {0, 1, . . . , s′} (s ≥ s′). Then:∑
k∈S′

πk = V (S)−
s∑

l=s′+1

πl

≥ V (S)−
s∑

l=s′+1

π̄l(S)

= V (S)−
s∑

l=s′+1

(V (S)− V (S \ l))

≥ V (S)−
s∑

l=s′+1

(V ({0, 1, . . . , l})− V ({0, 1, . . . , l − 1}))

= V (S)− [V (S)− V (S′)]

= V (S′),

where the first inequality follows from πk ≤ π̄k(S) and the second inequality follows from
bidder-submodularity.

(ii)⇒ (iii) follows from the fact that
∑
k∈S π̄k = V (S).

(iii)⇒ (i): Suppose V is not bidder-submodular. Then, there exists a player i such that
V (T )−V (T \ i) is not weakly decreasing in T . That is, there is a coalition S including the
auctioneer and bidders i, j ∈ S \ 0 such that V (S)−V (S \ i) > V (S \ j)−V (S \ {i, j}).
Hence, ∑

l∈S\{i,j}

π̄l(S) = V (S)− π̄i(S)− π̄j(S)

= V (S)− [V (S)− V (S \ i)]− [V (S)− V (S \ j)]
= V (S \ i) + V (S \ j)− V (S)

< V (S \ {i, j}).

Thus, the payoff vector π̄(S) is blocked by coalition S \ {i, j}. Therefore, there exists a
coalition S 3 0, such that π̄(S) /∈ C(S, V ), which contradicts (iii).

Theorem 15.3 shows under what conditions on the coalitional value function the (re-
stricted) VCG payoff vector lies in the core. Unfortunately, it is difficult for the auctioneer
to know the coalition value function in advance. Therefore, it is worth investigating condi-
tions under which the individual preferences guarantee that the VCG payoff vector lies in
the core. See Ausubel and Milgrom (2006) for a further discussion of this issue.

CASE STUDY 15.1 Procurement Auctions for Mars

Mars, Inc. is a global manufacturer of candy, pet food, beverages, and other con-
sumer goods, with over $30 billion in sales in 2015. The food and pet food industries
typically have lower profit margins than other consumer goods, meaning that low-cost
procurement (purchasing) is critical for Mars’s profitability. Mars decided to use reverse
auctions to procure some of its raw materials rather than the more traditional one-on-
one negotiations that Mars’s buyers typically engaged in with its suppliers. In a reverse
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auction (also known as a procurement auction), there is one buyer and many suppliers,
and the suppliers compete for the buyer’s business. Mars partnered with experts at
IBM T.J. Watson Research Center to develop the optimization models, algorithms, and
web-based implementation of these auctions. Their project is detailed by Hohner et al.
(2003).

Many of Mars’s suppliers provide quantity discounts, like those discussed in Sec-
tion 3.4, in order to encourage large purchases and to exploit the suppliers’ economies
of scale. In other cases, suppliers prefer to supply multiple items simultaneously—such
as multiple sizes or colors of the same type of packaging. This allows them to take
advantage of economies of scope—for example, by reducing setups on the production
line that prints the packaging labels. Mars introduced two types of reverse auctions
to accommodate these supplier preferences: supply-curve auctions (in which suppliers’
bids take the form of supply curves, i.e., a set of quantity ranges and associated prices)
and combinatorial auctions (similar to the mechanism discussed in Section 15.3). We
discuss their combinatorial auction here; see Hohner et al. (2003) for details about the
supply-curve auction.

The combinatorial auction described in Section 15.3 involves a single round: Bidders
submit their bids, and the auctioneer allocates the items. However, it was important to
Mars to have an iterative process consisting of multiple rounds; in each round, suppliers
submit bids, Mars announces provisional winning bids, and the suppliers can revise their
bids if they wish. This process has several advantages over the single-round approach:
It avoids the need for suppliers to bid on all of the exponentially many possible bundles;
it fosters increased competition among suppliers; and it allows suppliers to correct their
bids based on updated information. Mars also imposed a number of side constraints on
the auction, which constrain the number of winning suppliers as well as the quantity
procured from each winning supplier.

Mars’s combinatorial auction works as follows. (1) First, Mars posts a request for
quote (RFQ) for a set M of items, as well as the quantity Qj required of each j ∈M .
(2) Next, supplier i ∈ N is allowed to submit up to Ki bids, where N is the set of
suppliers. Supplier i’s kth bid specifies a bundle S ⊆ M and a price bik at which
supplier i ∈ N would be willing to supply all of each item contained in bundle S. We
let aijk = 1 be a constant that equals 1 if supplier i’s kth bid includes item j ∈ M ,
i.e., if item j is contained in the bundle specified in that bid. (3) Periodically, Mars
solves the winner-determination problem (i.e., the auctioneer’s problem, analogous to
the CAP). The winner-determination problem uses two sets of decision variables: yik
equals 1 if supplier i wins its kth bid, and 0 otherwise; and xi equals 1 if supplier i
wins any bid. The formulation is:

minimize
∑
i∈N

Ki∑
k=1

bikyik (15.25)

subject to
∑
i∈N

Ki∑
k=1

aijkyik ≥ 1 ∀j ∈M (15.26)

W−i xi ≤
∑
j∈M

Ki∑
k=1

aijkQjyik ≤W+
i xi ∀i ∈ N (15.27)
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Y − ≤
∑
i∈N

xi ≤ Y + (15.28)

xi ≤
Ki∑
k=1

yik ∀i ∈ N (15.29)

xi ∈ {0, 1} ∀i ∈ N (15.30)

yik ∈ {0, 1} ∀i ∈ N, ∀k = 1, . . . ,Ki (15.31)

The objective function (15.25) minimizes the total cost of the bids selected. Constraints
(15.26) require every item to be contained in at least one winning bid (excess items are
allowed), while (15.31) are integrality constraints. (So far, this formulation resembles
a set covering problem and is similar to the formulation of the CAP except that it is
indexed over the bids, rather than over the exponentially many bundles, since not all
bundles will receive bids.) The remaining constraints are the side constraints: (15.27)
ensures that the quantity awarded to each supplier i that wins a bid is between the
constants W−i and W+

i ; (15.28) ensures that the total number of suppliers awarded
bids is between the constants Y − and Y +; (15.29) ensures that xi does not equal 1
if i is not awarded any bids; and (15.30) are integrality constraints on x. Mars solves
the winner-determination problem using an off-the-shelf IP solver, which can efficiently
solve problems with hundreds of items and thousands of bids. (4) Mars announces
the provisional winning bundles and their associated prices. (5) Suppliers may use that
information to revise their bids. (6) The process repeats until no suppliers wish to revise
their bids, at which point the auction ends and the contracts are awarded. The whole
process typically takes less than one hour.

Mars reported that the auctions led to considerable cost savings and that it recouped
its investment in developing the auctions within a year. Moreover, Mars’s savings did
not come at the expense of suppliers’ margins; in fact, supplier margins increased. The
improved efficiencies in matching supply and demand led to this win–win result. This
echoes the insight from Chapter 14 that improved supply chain coordination can lead
to increased profits for both players—supply chain profits are not a zero-sum game.

PROBLEMS

15.1 (Nonoptimality of the English Auction) Suppose you have decided to sell a
valuable collection of baseball paraphernalia. You have identified N potential buyers
for the collection. In this problem, you will consider two alternate ways of selling the
collection, one involving an auction and one not. You are selling the collection as a whole,
not as individual parts.

Each of the N bidders has a valuation vi for the collection. You do not know the vis for
each bidder, but you do know that each bidder’s valuation is independently and uniformly
distributed on [0, 1].

Your first idea involves simply setting a price p and offering the collection for sale at that
price. If some bidder wants to buy the item at that price (i.e., if p < vi for some bidder), he
or she buys the item. If there are multiple such bidders, one is chosen randomly. If there
are no such bidders, the sale ends unsuccessfully.
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Table 15.9 Valuations for English auction in Problem 15.1.

Bidder (i) Valuation (vi)

1 100
2 120
3 135
4 85
5 90

a) Let γ(p) be the probability that you sell the collection if you set the price to p.
Calculate γ(p). (Your answer should be in terms of N .)

b) Write your expected revenue as a function of p.
c) Calculate the optimal price p∗, the probability of selling the collection at this

price, and the corresponding expected revenue.
d) Show that the optimal revenue is strictly increasing in N .

Next you consider selling the collection using an English auction, in which you start the
price at $0 and gradually increase it until only one bidder remains. Assume that you
increase the price continuously (infinitesimally), and that a bidder will not bid if the price
equals his or her valuation (only if it’s strictly less).

e) Argue that the English auction always results in the winning bidder paying the
second-highest valuation.

f) The expected value of the second largest ofN random variables that are iidU [0, 1]

is equal to (N−1)/(N+1). Use this fact to show that the expected revenue from
the English auction is smaller than that from the nonauction method if N = 1 or
2 and is larger if N ≥ 3. Therefore, the English auction is not optimal from the
seller’s perspective if N < 3.

g) Prove that, in the optimal solution to problem (D) on page 594 for this auction, p
is equal to the second-highest valuation vi.

h) Verify the result from part (g) by solving problem (LP) for the data in Table 15.9
using an LP solver of your choice. That is, verify that xi = 1 for the bidder with
the highest valuation but that p, the dual value for constraint (15.5), equals the
second-highest valuation.

15.2 (LP Relaxation of (CAP)) Construct a small example (using as few bidders and
items as possible) for which the LP relaxation of (CAP) does not have an integer optimal
solution.

15.3 (VCG Auction for Candy Shipments) The Truck o’ Treats Company, a shipping
company that specializes in refrigerated shipments of candy, will send a truck next week
from Bethlehem, PA, to Chicago, IL, and from there to Berkeley, CA. The current load
is insufficient to fill the truck, and the company plans to use a VCG auction to sell the
remaining 1000 cubic feet of capacity to a candy company that needs to ship goods along
those routes. (The remaining capacity is the same on both legs of the route because the
truck will make a delivery in Chicago but pick up an equal volume of goods for shipment
to Berkeley.)
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Four candy companies each have 1000 cubic feet of candy to ship and are considering
bidding for the routes. Horseshoe Candy needs to ship candy from Bethlehem to Chicago
and is willing to pay up to $900 for this leg; however, they have no product to ship
to Berkeley and do not wish to bid for the second leg. Ares Chocolates, in contrast,
has product to ship from Chicago to Berkeley (for which it is willing to pay $1150) but
nothing to ship from Bethlehem to Chicago. Valhalla Chocolates has goods to ship to both
destinations; it is willing to pay $600 to ship from Bethlehem to Chicago and $1200 to ship
from Chicago to Berkeley; however, if they can do both, they are willing to pay $2000 to
avoid the hassle of using two separate shipments. Similarly, W&W Candies is willing to
pay $800 for the Bethlehem–Chicago leg, $950 for Chicago–Berkeley, and $1900 for both.

What leg(s) will be awarded to each company in the outcome of the VCG auction, and
what will each winning bidder pay? What will be the total revenue to Truck o’ Treats?
Construct a table like Table 15.3 that lists the bids, values of awarded items, V −i values,
and payments.

15.4 (Misrepresenting Valuations in the VCG Auction) Prove that, in the VCG auction,
a bidder does not have an incentive to bid greater than his valuation (in an attempt to win a
bundle that he otherwise would not have won). In particular, suppose that bidder k is not
awarded a particular bundle T ⊆ M if all bidders state their true valuations. Prove that if
bidder k over-states his valuation for bundle T to such an extent that he is now awarded
bundle T , then the price he pays for bundle T will be greater than or equal to vkT , his true
valuation for bundle T .

To keep things simple, you may assume that bidder k does not receive any bundle when
all bidders state their true valuations, and that when bidder k over-states his valuation for T ,
the rest of the bundles are awarded to the same bidders that they were awarded to originally;
that is, the allocation of bundle T may change, but no other bundles. Furthermore, assume
the partitioning of items into bundles does not change.

Hint: First prove the result for a single-item, second-price auction.

15.5 (Double Auctions) A double auction consists of multiple buyers and multiple
sellers. Potential buyers submit their bids and potential sellers simultaneously submit their
ask prices to an auctioneer. The auctioneer first eliminates some sellers who ask too much
and some buyers who offer too little, and then decides which of the remaining buyers and
sellers will transact with each other, and at what price. Transactions incur costs, which may
represent costs associated with transportation, quality, lead time, customization, and the
buyer–vendor relationship. The transaction costs are assumed to be common knowledge.

Suppose there are multiple commodities to be exchanged in the auction. There is a
collection of sellers, each of whom offers for sale a single unit of a single commodity,
facing a collection of buyers, each interested in buying a bundle consisting of multiple
commodities, but at most one of each. Formulate the problem of maximizing social
welfare assuming all agents bid truthfully. Use the following notation:

I set of buyers
J set of sellers
C set of indivisible commodities
fi bid price of buyer i for her bundle
gj ask price of seller j for his item
qi = (qci )c∈C , a bundle of goods that buyer i (i ∈ I) wants to procure;

qci = 1 if buyer i wants to procure one unit of commodity c and 0 otherwise
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g1 = 86

g2 = 85

f1 = 97

f2 = 95

f3 = 96

Figure 15.1 Bidders’ valuations in double auction in Problem 15.6.

qj = (qcj)c∈C , supply offered by seller j (j ∈ J);
qcj = 1 if seller j supplies one unit of commodity c and 0 otherwise

dijc transaction cost when buyer i purchases commodity c from seller j

15.6 (Single-Commodity Double Auctions) Consider a simpler version of the double
auction in Problem 15.5 in which there is only a single commodity. Assume that when
buyer i trades with seller j, transaction cost dij is incurred.

a) Formulate the single-commodity double auction.
b) Show that the simplified formulation can be solved efficiently.
c) Consider an example with two sellers and three buyers. The transaction cost

matrix is given in Table 15.10. The agents have an incentive to truthfully bid their
valuations, which are shown in Figure 15.1. Determine which buyer(s) transact
with which seller(s) in the efficient allocation. How much should the winning
buyers pay? How much should the winning sellers receive?

Table 15.10 Transaction costs for double auction in Problem 15.6.

dij 1 2

1 4 7
2 6 4
3 9 6

15.7 (VCG Payoff Vector and Core) Consider a combinatorial auction with three items
and four bidders. The bidders’ valuations of the possible bundles are given in Table 15.11.

a) Suppose all bidders state their true valuations. Compute the auctioneer’s revenue
from the VCG auction, the bidders’ payments, and the VCG payoff vector.

b) Does the VCG payoff vector lie in the core? If not, identify a coalition that will
block this result.
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Table 15.11 Valuations for VCG auction in Problem 15.7.

Bidder (i) vi,A vi,B vi,C vi,AB vi,AC vi,BC vi,ABC

1 4 2 2 4 4 3 8
2 3 5 2 3 5 5 8
3 4 2 6 4 5 3 7
4 2 2 2 3 4 4 10



CHAPTER 16

APPLICATIONS OF SUPPLY CHAIN
THEORY

16.1 INTRODUCTION

Supply chain management is one of the domains in which the tools of operations research
(OR) are most widely and successfully applied. But in the past few decades, the theory
of supply chain management has matured to the point where it is now applied to other
industries and application areas. That is, while supply chain theory is an application of the
methodologies of OR, the methodologies of supply chain theory themselves are applied in
many other domains. These include energy, health care, disaster relief, the environment,
and nonprofit operations. In this chapter, we discuss some of the ways that the tools of
supply chain theory—the tools that we have discussed in this book—have been applied
to some of these areas. For additional discussion of how supply chain optimization, in
particular, has been applied to energy, health care, and humanitarian relief, see Snyder
(2017), Wu and Ouyang (2017), Zhao (2017), and Çelik et al. (2017).

16.2 ELECTRICITY SYSTEMS

Historically, electricity grids have functioned like the ultimate just-in-time supply chains,
with no (or very little) inventory and almost instantaneous delivery of goods (i.e., energy).
However, the modernization of electricity grids will provide new opportunities for opti-
mizing their design and operation. Tomorrow’s grids are likely to look a lot like today’s
supply chains, with inventories (in the form of large-scale batteries and other storage de-
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vices), supply uncertainty (from volatile renewable generation sources such as wind and
solar), demanding customer service requirements (as electricity markets continue to be-
come deregulated and new competitors enter the marketplace), and novel pricing schemes
(enabled by new communication infrastructure that can communicate pricing information
in real time). In addition, classical principles of facility location will play a role in designing
these grids, as will newer models for robust and resilient network design, as it becomes
increasingly important to protect the grid from accidental or intentional disruptions that can
affect the lives and livelihoods of millions of people. By viewing the grid as a supply chain
network, we can leverage existing tools to develop a new generation of electricity systems.

Electricity grids are arguably the systems in which OR is most frequently used and plays
the most critical role. Every 5–15 minutes, electricity system operators around the world
solve an optimal power flow (OPF) problem to decide how much electricity each generator
should produce for the next few minutes in order to meet the current demand and avoid
overloading the power lines. The OPF problem is a nonlinear optimization problem (NLP),
though it is often solved in a linearized form as a linear program (LP). And every day,
these same operators solve the unit commitment (UC) problem, a thorny mixed-integer
programming (MIP) problem, to determine which generators (units) should be operating
during which hours in the next day. The Midwest Independent System Operator (MISO)
won the prestigious INFORMS Edelman Award in 2011 for using UC problems to optimize
energy markets (INFORMS 2011, Carlson et al. 2012). Many of these system operators
also use optimization to solve auction problems, similar to those discussed in Chapter 15,
to determine which generators should be used each day and at what rates they should be
reimbursed.

However, since our focus is on applications of supply chain theory, and not of OR in
general, we will not discuss these ubiquitous models; for reviews, see Frank et al. (2012a,b),
Padhy (2004), and Ventosa et al. (2005), among others. Instead, we will discuss models
for energy storage, transmission capacity planning, and power network design, which are
built upon the tools of supply chain theory that are discussed in this book.

16.2.1 Energy Storage

Until the past few years, electricity could not be stored at a large scale—the supply of
electricity had to balance the demand at all times. More recently, however, grid-scale
energy storage has become technologically possible and financially practical. We can think
of energy storage systems as large batteries, though other means for storing energy, such as
flywheels, compressed air, and capacitors, are also being developed; see Akhil et al. (2013)
for an in-depth discussion. Some of these methods (e.g., capacitors) store electrical energy,
while others (e.g., batteries) convert electricity to chemical or other forms of energy and
then convert it back when needed.

Energy storage is playing an increasingly important role in modern electricity grids. For
example, although renewable energy such as wind and solar provides cheap, environmen-
tally friendly power, it is also unpredictable—the energy production changes stochastically
as the wind speed changes or the cloud cover moves. This poses problems for an electricity
system operator, which needs predictability in order to manage the grid efficiently. More-
over, wind power tends to be highest at night, while the demand for electricity is highest
during the day. System operators can alleviate both the unpredictability and the timing
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mismatch using energy storage: The storage system is charged when energy is plentiful
and discharged when the energy is needed to meet the demand.

In the near future, electricity consumers may use energy storage in their own homes.
Home energy storage systems can be charged at night (when electricity rates are often
lower) and discharged during the day to power the home’s appliances and devices. Homes
that have solar panels or other forms of renewable energy can use storage to buffer against
the uncertainty from these sources, as discussed above. And energy storage can also be
used to buffer against uncertainty in the home’s demand for electricity. These systems
may be standalone storage systems, or even the batteries of plug-in hybrid electric vehicles
(PHEVs), when the energy is not fully needed for travel. This is sometimes referred to as
“behind-the-meter” energy storage since it operates on the consumer’s side of the electricity
meter, rather than on the power grid side.

One can think of an energy storage system as an inventory system in which the product
being stored is energy, rather than some physical item. Therefore, many of the models
for managing energy storage are based on the fundamental inventory optimization models
discussed earlier in this book. On the other hand, energy storage systems usually have more
decisions to make; for example, in addition to deciding how much “inventory” to buy (as
in classical inventory models), we might also choose how much to sell and at what price.
In this section, we discuss two inventory-like energy storage models: A behind-the-meter
model for an electricity consumer and a model for a wind farm operator using storage to
bid into an electricity market.

16.2.1.1 Behind-the-Meter Energy Storage Consider a large-scale battery located
at a home (or an office building, university campus, etc.) that is capable of storing energy
purchased from the grid. Energy that is stored in the battery can then be discharged, either
to provide power for the devices in the home or to sell back to the grid. We will formulate
an optimization model to decide how much energy to buy from and sell to the grid, and
how much energy to charge and discharge the battery by, over a fixed planning horizon.

The amount of energy stored in the battery is called the state of charge and is expressed
in units of kilowatt-hours (kWh). The battery has a fixed capacity (in kWh). It is also
common to assume there is a limit on how much energy (kWh) can be charged to or
discharged from the battery per unit time, but for the sake of simplicity, we will ignore this
constraint. Another important aspect of energy storage models is the energy losses that
result from charging or discharging the battery, or even when storing energy over time, due
to inefficiencies in the storage and energy conversion processes. We will ignore this aspect
of the model too, but it is not difficult to include it.

We will assume that the time horizon is divided into discrete periods. The demand for
energy in each period is random, with a known probability distribution. (It is straightforward
to modify this model to handle uncertainty in other aspects of the system, such as electricity
prices.) Although energy is being bought, sold, and used continuously throughout each
period, and the demand uncertainty is being revealed continuously, we will assume instead
that everything happens in discrete periods, with the following sequence of events:

1. We decide how much energy to purchase from or sell to the grid.

2. We observe the random demand.

3. We charge/discharge the battery to make up any discrepancy between the energy
purchased and the demand. If the energy purchased plus the battery state of charge is
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insufficient to meet the demand, we incur an unmet-demand penalty. If the demand
plus the remaining battery capacity is insufficient to absorb all of the energy purchased
from the grid, the extra energy is lost; there is no explicit penalty, except that we pay
for the energy even though we don’t use it.

Note that other sequences of events are possible. For example, we might learn the demand
before making buy/sell and charge/discharge decisions, in which case we have more infor-
mation available when we optimize. In practice, the grid and battery decisions are made
in nearly continuous time, so any discrete-time model is an approximation anyway. The
sequence of events is a modeling decision and, as always, depends on a balance of realism
and tractability.

Our goal is to maximize the expected profit (the expected revenue from selling energy
minus the expected cost of purchasing it and the expected unmet-demand penalty) over the
horizon. (We will actually formulate the problem as minimizing the negative of the profit.)
We will use the following notation:

Parameters
T = number of time periods in horizon
c+t = price of energy, per kWh, when buying from grid in period t
c−t = price of energy, per kWh, when selling to grid in period t
πt = penalty per kWh of unmet demand in period t
B = capacity of battery, in kWh
x0 = initial state of charge, in kWh, in period 1

Random Variable
Dt = demand for energy, in kWh, in period t; dt is its realized value

Decision Variables
zt = energy purchased from (> 0) or sold to (< 0) grid in period t
xt = state of charge of battery at the end of period t

So, if zt > 0, then we purchase zt kWh from the grid in period t, and if zt < 0, then we
sell −zt kWh to the grid. In other words, z+

t is the energy purchased from the grid and z−t
is the energy sold to it.

Once zt has been chosen (step 1) and the actual demand dt has been observed (step 2),
the battery charge/discharge quantity and the possible unmet demand are fully determined.
In particular, if we know xt, the state of charge at the beginning of period t, then:

1. If zt ≥ dt: We charge min{zt − dt, B − xt} kWh to the battery; there is no unmet
demand.

2. If zt < dt and zt + xt ≥ dt: We discharge dt − zt kWh from the battery; there is no
unmet demand.

3. If zt + xt < dt: We discharge xt kWh from the battery; there is dt − (zt + xt) kWh
of unmet demand.

We can combine these three cases to calculate the charge/discharge quantity and the unmet
demand as follows:

charge/discharge quantity = max{min{zt − dt, B − xt},−xt} (16.1)

unmet demand = (dt − (zt + xt))
+
. (16.2)
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(You should convince yourself that these equations correctly capture the logic described
above.)

The problem of optimizing the buy/sell and charge/discharge decisions in this system and
others like it can be modeled and solved as a multistage stochastic optimization problem;
see, e.g., Korpaas et al. (2003), Castronuovo and Lopes (2004), and Brown et al. (2008).
Alternately, one can use Markov decision processes (MDP), also known as stochastic
dynamic programming; see, e.g., Kim and Powell (2011), Harsha and Dahleh (2015), and
Zhou et al. (2018). This is the approach we will take, and you will find it very similar to
the approach used in Section 4.3.3 for inventory systems.

Let θt(x) be the optimal total expected cost in period t through the end of the horizon,
given that we start period t with a state of charge of x. Let θT+1(x) be the terminal cost
function: If there are x kWh in the battery at the end of period T , we incur a cost of
θT+1(x). Then θt(x) can be expressed recursively as follows:

θt(x) = min
z

{
c+t z

+ − c−t z− + EDt
[
πt(Dt − (z − x))+

]
+ EDt [θt+1 (x+ max{min{z −Dt, B − x},−x})]

}
. (16.3)

The first two terms inside the {·} are the grid purchase cost and sales revenue. The third
term is the expected unmet-demand penalty, using (16.2). The fourth term is the expected
cost for the rest of the horizon, given that we start with a state of charge of x and then
charge/discharge by max{min{z −Dt, B − x},−x}, from (16.1).

The recursion (16.3) is very similar to (4.36), except that (1) the decision variable in
the minimization is z, the power bought or sold, rather than y, the new inventory level; (2)
power may be bought or sold, so there is no constraint such as y ≥ x, as in (4.36); and (3)
the per-unit coefficient c depends on whether we buy (z > 0) or sell (z < 0) power. It can
be solved very similarly, using Algorithm 4.1 with suitable modifications.

16.2.1.2 Energy Storage for a Wind Farm Operator Consider a wind farm oper-
ator that wishes to sell power to the electricity grid. Assume that there are two markets for
buying and selling energy, a day-ahead market and a real-time market. (Many electricity
systems around the world work this way.) In the day-ahead market, firms bid by indicating
how much electricity they are willing to provide during each time interval (say, each hour) in
the next day, and at what prices. The system operator then determines which bids to accept,
typically by solving a UC problem, and the firms whose bids are accepted are obligated
to provide the electricity they committed to, at prices that are determined by the system
operator based on the bids. In contrast, the real-time market has no advance commitments;
firms buy and sell electricity based on current prices, which change throughout the day.

Since wind power producers are typically small relative to the system as a whole, it is
reasonable to assume that the wind farm operator has no control over the prices (the price
component of its bid is irrelevant). Moreover, since wind is among the cheapest forms of
electricity, we can also assume that bids from wind producers are always accepted. We
will also make the simplifying assumption that tomorrow’s day-ahead prices are known
deterministically.

Our wind farm operator wishes to decide how much to bid into the day-ahead market
for each hour tomorrow. The difficult issue here is that the wind power is stochastic, and
moreover, if the firm cannot meet its bid during a given hour (because the actual wind power
is insufficient), it must make up the difference in some other way, typically by buying power
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on the real-time market. Real-time prices are often lower than day-ahead prices—so the
firm may actually come out ahead in this case—but they sometimes spike much higher
than day-ahead prices, in which case the firm incurs significant costs. This problem is
particularly acute for renewable energy producers, since the output of conventional energy
generators can be controlled, while that of renewables is stochastic and largely out of the
control of the operator.

In the models below, we will assume that the firm cannot sell to the real-time market,
though this assumption can be relaxed (see Problems 16.3 and 16.4).

Suppose first that the wind farm has no energy storage available. Therefore, the 24 hours
in tomorrow’s day-ahead market are decoupled from each other, and we can solve each
individually. Let Y be the wind power produced in a given hour; Y is a random variable
with pdf fY (·) and mean µY . Let c be the day-ahead price for that hour, which we assume
is deterministic, and let R be the real-time price, which we assume is a random variable
with pdf fR(·) and mean µR. Our goal is to choose a value of Q, the bid quantity.

We can write the expected cost function as follows:

g(Q) = −cQ+ EY,R[R(Q− Y )+]

= −cQ+ µREY [(Q− Y )+]. (16.4)

The first term represents the revenue, which we treat as a negative cost, while the second
represents the expected cost of buying power from the real-time market to make up any
shortfall between the bid and the wind power produced. The second equality follows from
the fact that Y and R are independent. The cost function in (16.4) is equivalent to the
newsvendor cost function, plus a constant, and so can be solved easily; see Problem 16.2.

Now suppose that the wind farm has an energy storage system similar to that discussed
in Section 16.2.1.1. The time periods are now coupled and must be solved simultaneously.
We’ll again use DP for this purpose, adding subscripts t to the notation defined above. Let
θt(x) be the optimal total expected cost in period t through the end of the horizon, given
that we start period t with a state of charge of x, and let θT+1(x) be the terminal cost
function.

As in Section 16.2.1.1, once we choose the bid Qt and observe the wind power yt
in period t, the battery charge/discharge quantities are determined, as is the amount of
electricity that must be purchased on the real-time market. In particular, if xt is the state of
charge at the beginning of period t, then:

1. If yt ≥ Qt: We charge min{yt −Qt, B − xt} kWh to the battery and purchase no
electricity from the real-time market.

2. If yt < Qt and xt + yt ≥ Qt: We discharge Qt − yt kWh from the battery and
purchase no electricity from the real-time market.

3. If xt+yt < Qt: We discharge xt kWh from the battery and purchaseQt− (xt+yt)

kWh from the real-time market.

Therefore, the charge/discharge quantity and the quantity purchased from the real-time
market are as follows:

charge/discharge quantity = max{min{yt −Qt, B − xt},−xt} (16.5)

real-time market quantity = (Qt − (xt + yt))
+
. (16.6)
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Then the recursion for θt(x) is given by:

θt(x) = min
Q≥0

{
−ctQ+ EYt

[
µR,t(Q− (x+ Yt))

+
]

+ EYt [θt+1 (x+ max{min{Yt −Q,B − x},−x})]
}
. (16.7)

The first term inside the {·} is the revenue from selling power on the day-ahead market,
while the second is the expected cost of buying power on the real-time market, from (16.6).
The third term is the expected cost for the rest of the horizon, given that we start with a
state of charge of x and then charge/discharge by max{min{Yt − Q,B − x},−x}, from
(16.5). Once again, the recursion is very similar to the inventory recursion (4.36) and can
be solved using a modification of Algorithm 4.1.

16.2.2 Transmission Capacity Planning

Wind farms are often located in geographical areas with low population density, far from
major load (demand) centers, and cannot be directly integrated into the existing electricity
transmission network. As a result, long-distance transmission lines must be constructed to
deliver electrical power from remote wind farms. In this section, we discuss a model for
optimizing the capacity of such a transmission line. Our model is based on the work of Qi
et al. (2015), though they model and solve the problem directly, whereas we will treat it as
a newsvendor problem.

Suppose that a planner wishes to decide the capacity of the transmission line that connects
a remote wind farm to the existing power grid. The system operator has implemented a feed-
in tariff policy, a multiyear contract in which the wind farm is paid c per kWh transmitted
to the grid, regardless of the quantity. Thus, the price is independent of quantity, as in
Section 16.2.1.2, but unlike in that section, here the wind farm operator does not need to
commit to a generation quantity in advance.

The wind farm is equipped with an energy storage system (battery) like that discussed
in Section 16.2.1.2. We assume that the battery has effectively infinite capacity. Because
of this, and because the feed-in tariff means there is no incentive to use storage to take
advantage of price changes over time, we can ignore many of the details we modeled in
Section 16.2.1.2.

Intuitively, the trade-off faced by the transmission line planner is that as the line capacity
increases, so does the construction cost, but the energy losses decrease. The energy loss
is due to the dissipation in energy due to friction as the battery is charged and discharged.
(We ignored these energy losses in earlier sections.)

To quantify this trade-off, denote the transmission line capacity S kW. The annualized
cost to build the transmission line is linear in the capacity, given by KS, where K > 0

is the cost per kW of capacity.1 Let the charge and discharge efficiency of the battery be
α, β ∈ (0, 1), respectively. In other words, if 1 kWh of energy is charged to the battery,
the battery actually “receives” α kWh, and if 1 kWh is discharged from the battery, the
transmission line actually “receives” β kWh from the battery. Thus, if we charge 1 kWh
and subsequently discharge it, the net energy received from this “round trip” is αβ. The

1Generation and storage are measured in units of kWh, while transmission capacity is measured in kW. You can
think of the line as transmitting S kWh per hour, i.e., S kW.
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1−αβ kWh of energy that are lost to friction represent lost revenue. A larger transmission
line capacity might have avoided this lost revenue, but would of course have cost more.

We can model this decision as a newsvendor problem. As in Section 16.2.1.2, let Y
be a random variable that equals the wind power generated in one hour. For each kWh of
difference between the wind power generated, Y , and the line capacity, S, we incur either
a holding (overage) or stockout (underage) cost.

In particular, suppose the capacity is greater than the wind power in a given hour
(S > Y ). If we had built one fewer kW of capacity, we would have saved Kδ in this hour,
where δ = 1/(24 · 365) converts the construction cost from years to hours. Therefore, the
holding cost, the cost of building too much transmission capacity, is h = Kδ.

Now suppose instead that the capacity falls short of the wind energy (S < Y ). The
surplus energy is charged into the battery and then discharged at some future time. Each
kWh of surplus energy results in an energy loss of 1−αβ and a revenue loss of c(1−αβ). On
the other hand, each kWh of surplus energy saved us Kδ in transmission line construction
costs for this hour. Therefore, the stockout cost, the cost of building too little transmission
capacity, is p = c(1− αβ)−Kδ.

Let F (·) be the cdf of Y , and let µ and σ2 be its mean and variance. Then, from (4.16),
the optimal capacity, S∗, solves

F (S) =
p

p+ h
=
c(1− αβ)−Kδ

c(1− αβ)
. (16.8)

If Y has a normal distribution, we can use (4.24) to get an explicit expression for S∗.
However, wind power is often modeled using the Weibull distribution, typically with
parameters that do not follow µ � σ and therefore are not conducive to approximating it
with the normal distribution.

Instead, we can approximate the wind power distribution as Y ∼ U
[
µ− σ2

2 , µ+ σ2

2

]
,

which has been shown numerically to provide a good fit (Qi et al. 2015). The cdf of a
U [a, b] random variable is F (x) = (x− a)/(b− a). Therefore, (16.8) becomes

S −
(
µ− σ2

2

)
σ2

=
c(1− αβ)−Kδ

c(1− αβ)

⇐⇒ S − µ
σ2

+
1

2
= 1− Kδ

c(1− αβ)

⇐⇒ S =
σ2

2
+ µ− σ2Kδ

c(1− αβ)
.

However, the transmission line capacity must be greater than or equal to the mean wind
power, µ, otherwise the battery storage level will increase to infinity over time. Therefore,
we have

S∗ = max

{
µ,
σ2

2
+ µ− σ2Kδ

c(1− αβ)

}
=

{
µ+

(
1
2 − θ

)
σ2, if θ < 1

2

µ, otherwise,

where
θ =

Kδ

c(1− αβ)
.
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Figure 16.1 Two arcs with different capacities.

The constant θ captures the trade-off between the transmission capacity and the storage
efficiency. IfK is large—say, because the transmission line is long, or because construction
is very expensive—or if the battery is efficient so that αβ ≈ 1, then θ will be close to 1,
and it will not be cost-effective to invest in extra transmission capacity (over and above µ).

16.2.3 Electricity Network Design

Electricity networks are fundamentally different from supply chain networks. In supply
chain or other transportation networks, we can decide how much flow to send on each
arc in the network (subject to capacity constraints). However, in electricity networks, it
is the laws of physics, rather than our own decisions, that dictate these flows. We can
decide how much electricity to inject into the network at generator nodes and how much
to withdraw from the network at demand nodes, but after those decisions are made, the
flows are determined by Kirchhoff’s laws. One way to think about this difference is that in
supply chain networks, we can control quantities on arcs, whereas in electricity networks,
we can only control quantities at nodes. This makes designing and operating electricity
networks more mathematically complex than doing the same for supply chain networks.

For a simple example, see the network in Figure 16.1. The node on the left supplies
150 units, while the node on the right demands 150 units. The upper and lower arcs have
a capacities of 100 and 50, respectively, but are identical in all other respects. In a supply
chain network, we can simply ship 100 units on the upper arc (road) and 50 on the lower.
But in an electricity network, since the two arcs (power lines) have identical characteristics,
75 units will flow on each line, violating the capacity of the lower one.

In this section, we discuss a model for constructing a new electricity network. The model
is based on the arc design model in Section 8.7.2 but accounts for the electricity flows.
Many electricity network design models assume that a portion of the network has already
been constructed, and we are deciding which additional links to add—they are network
expansion rather than network design models—but we will omit this extra complication
and assume that we are designing the network from scratch. It is straightforward to modify
the model to account for existing links.

The terminology of electricity grid analysis differs somewhat from that of supply chain
networks. Nodes are known as buses, and arcs or edges are known as lines. LetN be the set
of buses and E be the set of potential lines. Demands are called loads, and demand buses
are load buses. Each bus i has a voltage. Voltages are represented by complex numbers, and
the relationship between power flows and voltages is nonlinear and nonconvex. However,
we will instead consider the so-called linearized or DC power flow model, which ignores
the imaginary component of the complex voltage and focuses instead on the so-called real
power.
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Bus i is assigned a voltage angle θi. The line between buses i and j (called line (i, j))
has a susceptance bij ; very roughly speaking, when the susceptance is larger, power flows
more easily through the line. In particular, the power pij that flows on line (i, j) is given
by

pij = bij(θi − θj). (16.9)

If pij > 0, then power is flowing from i to j, and vice versa. Bus i’s total power is given by

pi =
∑
j∈N:

(i,j)∈E

pij ; (16.10)

if pi > 0, then power is flowing out of bus i, and vice versa. The power at bus i is bounded
above and below:

p
i
≤ pi ≤ pi; (16.11)

if i is a load bus, then p
i

= pi (and both are negative). Finally, the power flowing on line
(i, j) is bounded by the line capacity, denoted sij :

pij ≤ sij . (16.12)

Constraints (16.9)–(16.12) constitute the DC power flow model. The OPF problem dis-
cussed above has an objective function of minimizing the total generation cost and has
(16.9)–(16.12) as constraints. But our interest is in using (16.9)–(16.12) to model the
power flows in the network design problem.

To that end, let fij be the fixed cost to construct line (i, j), and let xij = 1 if we construct
the line and 0 otherwise. The other decision variables in the model are pij , pi, and θi. Then
the electricity network design problem is:

minimize
∑

(i,j)∈E

fijxij (16.13)

subject to |pij − bij(θi − θj)| ≤M(1− xij) ∀(i, j) ∈ E (16.14)∑
j∈N:

(i,j)∈E

pij = pi ∀i ∈ N (16.15)

p
i
≤ pi ≤ pi ∀i ∈ N (16.16)

pij ≤ sijxij ∀(i, j) ∈ E (16.17)

xij ∈ {0, 1} ∀(i, j) ∈ E (16.18)

Constraints (16.14)–(16.17) are the power flow constraints, modified to account for the
construction variables xij . In (16.14), M is a large constant. If xij = 1, then we construct
line (i, j), and (16.14) is equivalent to (16.9); otherwise, the constraint has no effect. This
constraint is nonlinear because of the absolute value, but it can be linearized using standard
methods. Similarly, if xij = 1, then (16.17) bounds the power flow on line (i, j) by the
capacity, whereas if xij = 0, then pij is forced equal to 0. Finally, constraints (16.18) are
integrality constraints. Note that pij is unrestricted in sign.

Electricity network design problems can be solved using various MIP optimization
techniques such as Benders decomposition (Oliveira et al. 1995, Binato et al. 2001), dynamic
programming (Dusonchet and El-Abiad 1973), or metaheuristics (Romero et al. 1995), or
using off-the-shelf solvers (Alguacil et al. 2003).
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16.3 HEALTH CARE

The United States spends over $3 trillion on health care per year, representing over 17%
of gross domestic product (GDP) (Hartman et al. 2018), and health care costs continue
to grow. The health care system encompasses many complex supply chains, and there
are many opportunities to improve the operations of these supply chains using the tools
discussed in this book. Moreover, there are “virtual” supply chains within the health care
system—flows of people, expertise, money, and other resources whose behavior can be
modeled using many of the same techniques. In addition, the health care system consists
of a huge number of individual parties—hospitals, doctors, insurers, pharmaceutical and
device companies, patients—with often conflicting objectives. Coordination models of
the type covered in this book will be useful tools for ensuring that the net result of the
interactions among these parties is beneficial to patients and to society as a whole.

It has been estimated that between $0.30 and $0.40 of every dollar spent on health care—
more than half a trillion dollars per year—is due to “overuse, underuse, misuse, duplication,
system failures, unnecessary repetition, poor communication, and inefficiency” (Lawrence
2005). In 2005, the U.S. National Academy of Engineering and Institute of Medicine
(now called the National Academy of Medicine) issued a report calling for the use of
systems engineering, operations research, industrial engineering, and related engineering
fields in health care delivery systems (National Academy of Engineering (US) and Institute
of Medicine (US) Committee on Engineering and the Health Care System 2005). As the
report notes:

The experiences of other major manufacturing and services industries, which have relied
heavily on systems-engineering concepts and tools to understand, control/manage, and
optimize the performance of complex production/distribution systems to meet quality,
cost, safety, and other objectives, can provide valuable lessons for health care.

In this section, we discuss two areas of health care in which the tools of supply chain
theory specifically have been applied: production planning and contracting for influenza
vaccines and inventory management for blood platelets.

16.3.1 Production Planning and Contracting for Influenza Vaccines

Influenza (flu) is a respiratory illness that spreads easily from person to person. Each year,
millions of people worldwide get seriously ill with influenza, and hundreds of thousands
die from the disease (World Health Organization 2018). Vaccination is the most effective
means for controlling the disease.

Influenza vaccines can be thought of as newsvendor-type products, with a single selling
season. This is because the strains of the influenza virus that are included in the vaccine
change each year, based on analysis by the World Health Organization (WHO) of the virus
strains that are most prevalent at the time. Therefore, last year’s vaccines cannot be used this
year. Vaccines that are administered year-round without seasonal effects, such as childhood
vaccines for polio, measles, and the like, are also perishable (they have expiration dates).
But their compositions do not change annually, and their shelf lives are typically longer
than their ordering cycles. Therefore, their inventories can be managed using modified
EOQ-type models.

On the other hand, the influenza vaccine has two key differences from the classical
newsvendor assumptions: yield uncertainty and nonlinear sale value. Yield uncertainty
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(Section 9.3) arises from the fact that the yield attained from the manufacturing process—
which takes place largely inside embryonated chicken eggs—is difficult to predict and
depends significantly on the virus strains that are included in the vaccine. The nonlinear
sale value is a result of the epidemiology of the flu, namely, that the incremental benefit of
one additional person vaccinated depends on the number of people who have already been
vaccinated—it is not a constant.

Chick et al. (2008) introduce a model for the Stackelberg game that occurs when a large
buyer (e.g., a government) purchases vaccines from a supplier. We present a simplified
version of their model here.

In this Stackelberg game, the buyer (the government) is the leader and the supplier is
the follower. (Note that this is the opposite of the sequence considered in the Stackelberg
models in Chapter 14.) The government wishes to purchase enough vaccine to vaccinate a
fraction f of its population ofN individuals; the government’s decision variable is f . Each
individual to be vaccinated requires δ doses of the vaccine. Therefore, the government’s
total demand is fNδ.

The supplier then decides how many eggs to inject with the virus, Q. The number
of vaccine doses produced is given by the multiplicative yield QZ, where Z is a random
variable with pdf fZ . Each egg injected costs the supplier cs. The government paysw to the
supplier for each dose it purchases, and it also incurs a cost of cg per individual vaccinated.
Finally, there is a cost of b per infected individual, which can include treatment costs, lost
wages, etc. Although b is a societal cost, we will assume it is borne by the government.

If we vaccinate a fraction f of the N individuals in the population, then the function
T (f) measures the expected number of individuals that will have been infected by the end
of the influenza season. T (f) can be calculated using epidemiological models; in this
case, we use a standard model called the SIR model, where the acronym stands for the
three “compartments” of individuals: susceptible, infectious, and recovered (Anderson and
May 1992). Susceptible individuals are vulnerable to becoming infected with the disease;
infectious individuals have the disease and can communicate it to others; and recovered
individuals are no longer infectious (or were immune to begin with). Under standard
assumptions, we get that T (f) = pN , where p, the “attack rate,” satisfies

p = S(0)

(
1 +

S(0)

I(0)
− e−R0p

)
, (16.19)

S(0) and I(0) are the initial numbers of susceptible and infectious individuals at the start
of the season, and R0 is the “basic reproduction number,” i.e., the number of new cases
generated by each new case, on average. For influenza, R0 is roughly 2–3.

The function T (f) is plotted in Figure 16.2. Clearly, it is nonlinear. This function
indicates the value that the government gets as a function of its decision variable, which is
why the problem has a nonlinear sale value, unlike the classical newsvendor problem. The
nonlinearity itself is not necessarily a major impediment for the newsvendor problem, but
the fact that p must be characterized implicitly (it appears on both the left- and right-hand
sides of (16.19)) is.

On the other hand, T (f) can be approximated well by a simple piecewise-linear function,
also plotted in Figure 16.2. The breakpoint occurs at f = f0, where f0 is the “critical
vaccination fraction,” i.e., the smallest value of f that brings R0 down to 1. The value of
f0 is straightforward to calculate in the SIR model.
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Figure 16.2 Exact and approximate T (f) function for epidemiological model usingR0 = 2.0 and
N = 106, with S(0) = 0.99(1 − 0.9f) and I(0) = 0.01(1 − 0.9f). Vertical dotted line indicates
f0 = 0.56.

Let’s first look at the supplier’s problem. Since the government acts first, the supplier
already knows that the government’s demand is fNδ. It faces multiplicative yield un-
certainty in a newsvendor-type setting. The actual number of doses produced, QZ, may
be greater than, less than, or equal to fNδ. Each dose of vaccine that is produced but
not used incurs a cost of h = cs, whereas each unit of unmet demand incurs a cost of
p = w− cs. (This is the supplier’s stockout cost—the government’s, and the population’s,
cost of vaccine shortages is quite different.)

The supplier’s expected cost function is given by

gs(Q, f) = csQ− wE [min{QZ, fNδ}] . (16.20)

The first term represents the cost of injecting Q eggs. The second represents the sales
revenue, since the supplier sells the government either the number of doses produced or the
government’s order quantity, whichever is smaller. One can rewrite gs(Q, f) as

gs(Q, f) = cs(1− E[Z])Q− (w − cs)fNδ
+ csE

[
(QZ − fNδ)+

]
+ (w − cs)E

[
(fNδ −QZ)+

]
. (16.21)

(See Problem 16.5.) Compare (16.21) to the single-period newsvendor problem with
deterministic demand and multiplicative yield uncertainty in Section 9.3.2.3. The last
two terms are equivalent to (9.30) with h = cs (because each dose of the vaccine that is
produced but not used incurs a cost of cs), p = w − cs (for each unit of unmet demand,
the supplier incurs a lost profit of w − cs), and d = fNδ. However, by setting h = cs,
we are implicitly assuming that we only pay for units that are produced. But the supplier
in the vaccine model pays for every egg used, whether or not it yields a dose of vaccine.
Therefore, we must add the expected cost of the eggs that are injected but do not yield
vaccine doses; this is the first term in (16.21). Finally, the second term is similar to the
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additive constant that converts between the explicit and implicit versions of the newsvendor
cost function; see Section 4.3.2.4 and Problem 4.15.

From (9.31), we get

dgs(Q, f)

dQ
= cs(1− E[Z]) + csE[Z]− w

∫ fNδ/Q

0

zfZ(z)dz

= cs − w
∫ fNδ/Q

0

zfZ(z)dz.

Therefore, for a given f , the optimal quantity Q(f) satisfies∫ fNδ/Q(f)

0

zfZ(z)dz =
csE[Z]

w
.

Now consider the government’s problem. The government wishes to choose f to
minimize the total expected cost of infections and of purchasing and administering vaccines:

gg(Q, f) = E
[
bT

(
V

Nδ

)
+ wU + cgV

]
, (16.22)

where

U = min{QZ, fNδ}
V = min{QZ, fNδ, f0Nδ}.

U is the number of vaccine doses purchased: the minimum of the production yield and
the number ordered. V is the number of doses administered: If the number purchased
is less than f0Nδ, we only administer f0Nδ, because administering more doses is not
cost-effective. (We omit the justification for this latter claim; see Chick et al. (2008).) The
three terms in (16.22) represent the expected costs of infections, vaccine purchases, and
vaccine administration, respectively. When the government chooses f , it knows that the
supplier will choose Q(f), so it can replace Q with Q(f) in (16.22).

The arrangement described above is a wholesale price contract. The supplier’s optimal
production quantity, Q∗s , under this contract is smaller than the system-optimal quantity
Q0, i.e., the quantity that a centralized decision-maker would choose in order to minimize
the total cost system-wide cost. Therefore, the supply chain is not coordinated. The
under-production occurs because the supplier bears all of the risk of arising from the yield
uncertainty.

Chick et al. (2008) introduce a contract called a cost-sharing contract in which the
government pays the supplier an additional cost per egg injected, in addition to the cost that
it pays per vaccine dose delivered. The government therefore assumes some of the risk of
excess production, inducing the supplier to increase its production quantity. If the contract
parameters are set appropriately, the new production quantity is system-optimal, and the
supply chain is coordinated.

16.3.2 Inventory Management for Blood Platelets

Blood platelets are used during many types of surgeries and are part of the treatment regimen
for patients with leukemia and other cancers, as well as for a wide range of other medical
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conditions. The management of the inventory of platelets is particularly difficult because (1)
platelets are usually in short supply, since donating platelets is much more time-consuming
than regular blood donations; (2) demand for platelets is random and nonstationary, e.g.,
with less demand on weekends; and, most importantly for our purposes, (3) platelets are
highly perishable. Platelets have a shelf life of only 5 days from the time of donation; and
since the first 2 days are taken up by transportation, testing, and processing, the shelf life
is really only 3 days once the platelets reach a hospital.

Most hospitals order platelets from blood banks every 1–2 days. If they only ordered
every 3 days, the inventory problem would be easy—it would be equivalent to an infinite-
horizon newsvendor problem, since the inventory in each replenishment order expires just
before the next order is placed. But the fact that the order interval is shorter than the shelf
life complicates the analysis.

As a starting point, consider the periodic-review models of Section 4.3. The infinite-
horizon model (Section 4.3.4) is not appropriate here because it assumes the demands are
stationary. Therefore, the finite-horizon model (Section 4.3.3) will be the basis for our
platelet model.

First consider a generic model for a product that has a shelf life ofm periods: Items that
arrive in period t expire at the end of period t+m− 1. (So, for the newsvendor problem,
m = 1.) All inventory arrives new, and inventory is used according to a first-in, first-out
(FIFO) policy, i.e., oldest first. This model was introduced by Nahmias (1975).

We’ll consider the lost sales case, which makes the accounting a bit easier, but the
model can be modified for backorders if desired. In addition to the usual per-unit ordering,
holding, and stockout costs, there is a cost of b per item that expires, called the outdate
cost. We will use the same sequence of events as in Section 4.3. With the nonstationarity of
platelet use in mind, one could also allow the demand distribution to vary over time, with
ft(·) representing the pdf of the demand in period t, though we will assume stationarity to
keep things simpler.

Let xi be the inventory on hand at the beginning of a given period that will expire
in exactly i periods (we call these “type-i” units), and let x = {x1, . . . , xm−1} be the
corresponding vector. Thus, the inventory vector at the start of period t is x, then x1 units
will expire at the end of period t, x2 will expire at the end of t+ 1, and so on. To formulate
the DP recursion, we will need to know the starting inventory vector for period t+ 1, given
x, the order-up-to quantity y, and the demand d. This vector is given by a (vector-valued)
function denoted s(x, y, d), which is characterized in the next lemma. That lemma also
identifies the number of units that expire in each period, which we need in order to calculate
the outdate cost.

Lemma 16.1 Let x be the inventory vector at the start of period t. Suppose we order up
to y in period t and experience a demand of d. Then, for all 1 ≤ i ≤ m:

(a) The number of units of type-i inventory remaining at the end of period t is

xi −
d− i−1∑

j=1

xj

++

.
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If i = 1, then these units expire. If i > 1, then

si−1(x, y, d) =

xi −
d− i−1∑

j=1

xj

++

.

(b) After using the type-1 through type-i units to satisfy demands in period t (following
the FIFO policy), there are d− i∑

j=1

xj

+

units of demand still remaining. If i = m, these demands become stockouts.

We interpret xm (which occurs when i = m in parts (a) and (b)) as the number of units that
were ordered in period t, i.e., xm = y −

∑m−1
j=1 xj . These “fresh” units will expire at the

end of period t+m− 1. In part (a), if i = 1, then the sum
∑i−1
j=1 xj is taken to equal 0.

Proof. By induction on i. First consider the base case, i = 1. There are x1 type-1 units on
hand. After using some to satisfy the demand, there will be (x1 − d)+ left, and they will
expire, proving the base case for part (a). Moreover, (d− x1)+ demands will still remain,
to be filled (to the extent possible) by the remaining types of inventory; this proves the base
case for part (b).

Now suppose the lemma holds for some i, 1 ≤ i ≤ m− 1; we will show they hold for
i + 1. By the induction hypothesis for part (b), after the type-1 through type-i units have
been used in period t, there are d− i∑

j=1

xj

+

demands remaining to be satisfied. Type-(i+ 1) units will be used next, after which there
will be xi+1 −

d− i∑
j=1

xj

++

type-(i + 1) units still in inventory. At the start of period t + 1, these units age by one
period, becoming type-i units. That is,

si(x, y, d) =

xi+1 −

d− i∑
j=1

xj

++

,

confirming the induction step for part (a). Next, the number of demands remaining after
type-1 through type-(i+ 1) units have been used is given by

d− i∑
j=1

xj

+

− xi+1

+

=

d− i+1∑
j=1

xj

+
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by (C.7). Finally, if i = m − 1 (so i + 1 = m), then these demands become stockouts
because there are no more types of inventory that can be used to meet the demand. This
proves the induction step for part (b).

Note that if i = m, then Lemma 16.1(b) just says that the number of stockouts in period
t is (d − y)+, as usual. Similarly, the period-t ending inventory is simply (y − d)+, as
usual. In other words, the function g(y) from (4.37) still gives the expected holding and
stockout cost. By Lemma 16.1(a), the expected outdate cost is

bED[(x1 −D)+] = b

∫ x1

0

(x1 − d)f(d)dd.

Let θt(x) be the optimal total expected cost in periods t, . . . , T if we start period t with
inventory vector x. Then, using the ideas in Section 4.3 and Lemma 16.1, we can express
θt(x) recursively as

θt(x) = min
y≥x

{
c(y − x) + g(y) + b

∫ x1

0

(x1 − d)f(d)dd+ γED [θt+1 (s(x, y,D))]

}
.

(16.23)
(As usual, x represents the starting inventory, i.e., x =

∑m−1
i=1 xi.)

Equation (16.23) seems familiar, with a few new twists, most notably the use of the
function s(·) to relate the ending inventory in period t to the starting inventory in period
t+1. Moreover, Nahmias (1975) proves that the function inside the {·} in (16.23) is convex
in y (although, unlike in the model in Section 4.3, θt(x) is not convex in x!). Therefore, the
form of the optimal policy can be characterized (see Nahmias (1975)), though its structure
can be quite complex.

This should all be good news. Unfortunately, however, things are not so simple, because
of the curse of dimensionality: The size of the state space explodes rapidly withm, since the
state space has dimensionm−1. For example, fresh milk has a shelf life at the grocery store
of roughly 2 weeks. If the grocery store never orders more than, say, a dozen cartons of milk
per day (i.e., xi ≤ 12), then the state space has 12m−1 = 1213 = 106,993,205,379,072

elements! And for each possible state, we need to solve the minimization problem in
(16.23), and we need to do this for every period in the time horizon.

For this reason, the model above, introduced in 1975, is not often implemented in prac-
tice. Some simpler settings have been considered: For example, Nahmias and Pierskalla
(1973) considerm = 2, which means the state variable has only one dimension. Heuristics
have also been developed for the m-period problem (Nandakumar and Morton 1993). And
of course, if m = 1, then we simply have a newsvendor problem.

All of which brings us back to blood platelets. Since platelets have a shelf life of 3
days, we have a reasonable value of m, making Nahmias’s (1975) model practical. Zhou
et al. (2011) study the inventory of platelets specifically, assuming that the hospital places
“regular” replenishment orders for platelets every 2 days but can also place “emergency”
orders on the off-days. They use this model to provide guidance to hospitals about whether
they should order every day or every 2 days, based on the demand and cost parameters.
See also Prastacos (1984) for a review of OR models for blood inventory management.
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Figure 16.3 Typical disaster-relief supply chain.

16.4 PUBLIC SECTOR OPERATIONS

Disaster relief, homeland security, public services planning, and other types of public
sector operations have become important applications of OR and of supply chain theory
in particular. These problems involve complex networks, allocation of scarce resources,
movements of physical goods, and inherent uncertainty—all characteristics that the tools
of supply chain theory are well suited to address. In this section, we discuss three topics
that make use of these tools. For further reading, see the reviews by Wright et al. (2006),
Altay and Green (2006), Johnson and Smilowitz (2007), Caunhye et al. (2012), Çelik et al.
(2012), and McLay (2015).

16.4.1 Disaster Relief Routing

After a natural or manmade disaster, it is critical to distribute emergency supplies to
affected people quickly and efficiently. The supply chain that enables this distribution is
usually established, at least in part, in real time immediately following the disaster. Further
complicating the planning process are logistical complications such as limited resources,
damaged roads, and multiple agencies coordinating (sometimes poorly) to provide relief.

Figure 16.3 depicts a typical disaster-relief supply chain. Supplies arrive in the affected
country from around the world via a port of entry, from which they are shipped to a central
warehouse. From there, supplies are shipped to local distribution centers (LDCs), which are
often established in makeshift locations such as schools or warehouses, or even temporary
facilities such as tents. Deliveries are made from LDCs to the recipients of emergency aid
via less-than-truckload (LTL) shipments consisting of multiple stops per route. This last
portion of the supply chain is referred to as last-mile distribution.

Balcik et al. (2008) introduce a model for last-mile disaster relief distribution. Their
model considers both resource allocation (how many supplies to deliver to each de-
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mand node, and when) and vehicle routing (how to route the delivery vehicles to the
demand nodes). Because of the resource allocation component, their model resembles the
inventory–routing problem (IRP) from Section 12.4 more closely than the vehicle routing
problem (VRP) from Chapter 11. However, unlike the IRP formulation in Section 12.4,
which makes yes/no decisions for individual edges of the network in order to construct the
routes, the model by Balcik et al. (2008) assumes the potential routes have already been
identified, and it selects routes from among them. This is especially practical in developing
countries in which the road network is not highly connected, so that the total number of
potential routes is not large (VonAchen et al. 2016).

Assume that a set of demand nodes has already been assigned to each LDC, so that we can
solve the problem for each LDC separately. The model considers a finite planning horizon,
during which we may make one or more deliveries to each demand node. Emergency
supplies are often categorized as either Type 1 items such as tarps and blankets, which are
delivered once at the beginning of the horizon, or Type 2 items such as food and water,
which are consumed and therefore must be delivered throughout the horizon. Balcik et al.
(2008) consider both types of supplies in their model, but for the sake of simplicity, we will
consider only Type 2 items. We will consider a single product, which is used to model all
Type 2 items in aggregate.

In disaster relief supply chains, there is an insistence on equity in resource allocation and
a priority placed on serving vulnerable groups. In this model, unmet demands are assumed
to be lost, rather than backordered, but the stockout penalty is based on the maximum
weighted unmet demand fraction among all demand nodes. Thus, it is considered preferable
for every node to have 10% of its demands unmet than for one node to have 20% of its
demands unmet and every other node to have all of its demands satisfied. This type of
objective would be unusual in commercial supply chains, which are typically driven by
cost or revenue, not equity. Moreover, the model allows some nodes to be weighted more
than others when calculating the maximum unmet demand fraction, so that priority may
be placed on, for example, vulnerable populations. (See Huang et al. (2012) for further
discussion of equity in disaster relief routing.)

A second characteristic of disaster relief distribution problems that differs from commer-
cial supply chains is the inherent uncertainty in demands, supplies, and even the duration of
the planning horizon itself. Rather than modeling this uncertainty explicitly using scenarios
(as in Section 8.6), Balcik et al. (2008) propose a rolling-horizon approach in which we
solve the model for a finite horizon, implement the solution for the first period, then update
the estimates of the uncertain parameters, shift the horizon by one period, and solve the
model again.

Another difference between relief and commercial supply chains is that in a disaster,
it is not always possible to use larger, more cost-effective trucks to deliver all supplies,
since those trucks may not be able to travel on certain roads that have been damaged by
the disaster. To model this, we assume that each vehicle in the fleet has its own capacity,
speed, and ability to travel on each link.

The model assumes that all possible clusters of demand nodes have been enumerated,
and for each cluster, a traveling salesman problem (TSP) has been solved to determine the
shortest route through those nodes beginning and ending at the LDC. (Of course, this is
only practical if the number of demand nodes is reasonably small; otherwise, heuristics can
be used to identify good clusters, and good routes for each.) The resulting list of routes is
an input to the model. We assume that each vehicle can complete multiple routes in one
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period, and each demand node can be visited multiple times in one period. Each route
is included in the list multiple times, once for each time it can be traveled in one period.
For example, if one period is 24 hours long, then a 15-hour route is included once, but a
10-hour route is included twice.

The costs of the model include transportation costs from the LDC to demand nodes,
as well as a stockout cost for unmet demand (which is assumed to be lost rather than
backordered). Excess inventory can be held at a demand point from one period to another,
but the holding cost is assumed to be negligible compared to the other costs and is therefore
ignored.

We use the following notation:

Sets
I = set of demand nodes
K = set of available vehicles
R = set of routes
I(r) = set of demand nodes included on route r ∈ R
T = set of time periods

Parameters
Costs
crk = cost of route r ∈ R for vehicle k ∈ K
pit = stockout weight at node i ∈ I in period t ∈ T

Other
hit = demand of node i ∈ I in period t ∈ T
at = supply delivered to LDC at the beginning of period t ∈ T
Dk = capacity of vehicle k ∈ K
τrk = fraction of one period that route r ∈ R requires when using vehicle k ∈ K

Decision Variables
xrtk = 1 if route r ∈ R is traveled by vehicle k ∈ K in period t ∈ T , 0 otherwise
yirtk = amount of supplies delivered to node i ∈ I by vehicle k ∈ K via route r ∈ R

in period t ∈ T
wt = stockout penalty in period t ∈ T
sit = fraction of demand at node i ∈ I that is unsatisfied in period t ∈ T
Iit = on-hand inventory at location i ∈ I at the beginning of period t ∈ T

The relief routing problem can then be formulated as follows:

minimize
∑
t∈T

∑
r∈R

∑
k∈K

crkxrtk+
∑
t∈T

wt (16.24)

subject to
∑
r∈R

∑
i∈N(r)

t∑
s=1

∑
k∈K

yirsk ≤
t∑

s=1

as ∀t ∈ T (16.25)

wt ≥ pitsit ∀i ∈ I, ∀t ∈ T (16.26)

1

hit

hit − ∑
r:i∈N(r)

∑
k∈K

yirtk − Iit + Ii,t+1

 = sit ∀i ∈ I, ∀t ∈ T (16.27)
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∑
i∈N(r)

yirtk ≤ Dkxrtk ∀r ∈ R,∀t ∈ T, ∀k ∈ K

(16.28)∑
r∈R

τrkxrtk ≤ 1 ∀t ∈ T, ∀k ∈ K (16.29)

Iit, sit ≥ 0 ∀i ∈ I, ∀t ∈ T (16.30)

yirtk ≥ 0 ∀i ∈ I, ∀r ∈ R,∀t ∈ T,
∀k ∈ K (16.31)

xrtk ∈ {0, 1} ∀r ∈ R,∀t ∈ T, ∀k ∈ K
(16.32)

The objective function (16.24) calculates the total transportation and stockout cost.
Constraints (16.25) enforce the available supply at the LDC in every time period: The total
amount shipped to every demand node by every vehicle on every route in every period
up through time t cannot exceed the total supply delivered to the LDC up through time t.
Constraints (16.26) set the stockout penalty in period t, wt, equal to the maximum of the
weighted stockout fraction over all nodes in period t. Note that sit is a fraction, but pit can
be scaled up or down to convert the stockouts to an equivalent value in currency so that it
can be added to the objective function.

The quantity inside the parentheses in constraints (16.27) is equal to the unmet demand
at node i in period t: It equals the demand minus the starting inventory and arriving
shipments, adding back any units that are reserved for period t + 1. Constraints (16.27)
therefore set sit equal to the fraction of node i’s demand that is unmet in period t.

Constraints (16.28) enforce the vehicle capacity, while constraints (16.29) ensure that the
routes traveled by vehicle k in a given period do not exceed the period length. Constraints
(16.30)–(16.32) are nonnegativity and integrality constraints.

Balcik et al. (2008) solve the model using an off-the-shelf MIP solver. Even for small
instances, though, the model takes a few hours to solve.

16.4.2 Passenger Screening

Consider an aviation security agency, such as the United States Transportation Security
Administration (TSA), that wishes to determine which security classes to assign passengers
to. A class consists of the equipment (such as metal detectors) and procedures (such as
manual baggage inspections) that will be used to screen passengers assigned to that class.
Each class that is selected for use involves a fixed cost to purchase the equipment, train the
security agents, and so on, as well as a per-unit cost for each passenger assigned to that
class.

For example, one class might consist of screening the passenger using a metal detector,
screening the passenger’s carry-on baggage using an x-ray machine, and screening his or
her checked bags using an explosive detection system (EDS). Another class might consist
of the same three screenings, plus a hand-wand inspection for the passenger and a detailed
hand search of the carry-on baggage. A third class might consist of the same as the first
class plus an open-bag trace (in which the bag is tested for traces of explosive-related
chemicals using a swab) for the carry-on baggage and an open-bag trace plus a detailed
hand search for the checked baggage. The agency may choose to employ some or all of
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these classes but can only assign passengers to a class that has been chosen. There is a fixed
cost for each class chosen, which implicitly assumes that each class has its own dedicated
equipment; if two classes each use an EDS, for example, they must each have their own
dedicated EDS equipment.

Assume that the agency knows the number of passengers traveling through a given
airport at a typical peak hour, as well as the assessed threat level of each passenger. (How
these threat levels are assessed is a highly sensitive subject, and rife with controversy, but is
outside the scope of our discussion.) The agency’s goal is to decide which security classes
to use, and which passengers to assign to each class, in order to maximize the security
provided while respecting a budget constraint.

In this section, we will formulate a discrete optimization model to solve this problem.
The model was introduced by McLay et al. (2006). This and other related papers provided
the analysis that laid the groundwork for the TSA’s PreCheck program (McLay 2015).

Let I be the set of passengers in a typical hour and let J be the set of potential security
classes. Let ai be the assessed threat level of passenger i, and let sj be the security level
achieved by class j. If passenger i is assigned to class j, the resulting security level is
calculated as aisj , and our goal is to maximize the sum of this value over all passengers.
Therefore, the objective encourages passengers with high assessed threat levels to be
assigned to classes with high security levels.

The fixed cost for security class j is denoted by fj , and the per-passenger cost is cj .
The fixed cost includes the initial investment cost, divided by the total number of hours in
the equipment’s expected useful life, plus the hourly cost to operate the equipment. The
agency has a fixed budget of b available to spend on these costs per hour.

There are two sets of decision variables in the model:

xj = 1 if class j is chosen, 0 otherwise
yij = 1 if passenger i is assigned to class j, 0 otherwise

maximize
∑
i∈I

∑
j∈J

sjaiyij (16.33)

subject to
∑
j∈J

yij = 1 ∀i ∈ I (16.34)

yij ≤ xj ∀i ∈ I, ∀j ∈ J (16.35)∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

cjyij ≤ b (16.36)

xj , yij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (16.37)

The objective function (16.33) maximizes the total security level. Constraints (16.34)
require every passenger to be assigned to a class, and constraints (16.35) prevent a passenger
from being assigned to a class that has not been chosen. Constraint (16.36) is the budget
constraint. Constraints (16.37) are integrality constraints.

This model is very similar to the uncapacitated fixed-charge location problem (UFLP)
from Section 8.2. The main differences are that the total cost is bounded in the constraints,
rather than minimized in the objective, and that the objective instead maximizes the security.
The per-unit cost is also slightly different, since it depends only on the screening class and
not on the passenger; that is, it is written cj instead of cij . Moreover, there is no hi term, as
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in the UFLP, because the passengers are assumed to be enumerated in the set I . We could
instead define I as the set of passenger types, in which case hi might represent the number
of passengers of each type, and we would multiply the objective function (16.33) and the
per-unit cost in (16.36) by hi.

On the other hand, the presence of the budget constraint (16.36) makes this problem
harder to solve than the UFLP. McLay et al. (2006) propose a greedy heuristic to solve the
problem, as well as a dynamic programming (DP) algorithm that can be used when the
number of classes is relatively small.

The model above is static, in the sense that it considers a single time period and assumes
that passenger threat levels are known. In contrast, dynamic screening models assume
a sequential process in which a passenger’s threat level is not determined until she or
he reaches a security checkpoint. McLay et al. (2009, 2010) and Nikolaev et al. (2007)
formulate such models as MDPs.

16.4.3 Public Housing Location

Public housing authorities (PHAs) provide affordable housing for low-income residents of
a city or other area. For many years, the predominant strategy used by PHAs in large cities
in the United States was to build large, high-rise housing developments. Such developments
were cheaper to build and maintain due to economies of scale, but they gained a reputation
for fostering crime and gang violence, as well as leading to increased racial and socio-
economic segregation. More recently, U.S. PHAs have favored lower-density housing
projects that are spread more widely throughout the city.

Although PHAs have not typically used OR methods for decision-making, the problem
of deciding where to locate public housing throughout a city is a natural facility location
problem. It is made more complicated by the fact that the decision involves multiple
stakeholders with competing objectives: The PHA might want fewer, larger projects; the
residents want locations that offer good schools and other benefits; society as a whole wants
integrated, diverse communities; while at the same time, many neighbors of potential
housing projects do not want the project to be built at all. The political forces, social
controversy, and moral questions surrounding public housing are very difficult to quantify,
but once an attempt has been made to do so, OR can offer tools to help navigate these issues
in choosing project locations.

Johnson (2006) introduces a multiobjective facility location model to choose where to
locate public subsidized housing projects and how many housing units to build at each
location. The first objective is the economic efficiency, defined as the difference between
the costs of constructing the facilities and the economic benefits accrued by the residents,
the neighboring community, and society as a whole. (The costs may be straightforward
to measure, but the benefits, of course, are not. They also tend to be nonlinear, but we
will treat them as linear.) The second objective is the perceived equity among the various
stakeholders—another metric that is difficult to quantify and that is typically nonlinear.
Johnson (2006) proposes, as a proxy, a dispersion objective, i.e., maximizing the distances
among the projects located. (See Section 8.5.1.)

Let J be the set of potential locations for the housing projects, and let djk be the distance
between locations j and k in J . Let fj be the fixed cost to build a project at location j,
and let bj be the net economic benefit for each unit built there. (That is, bj is the benefit
accruing from one unit of housing built in a project at location j minus the cost of building
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the unit.) Assume that the PHA wishes to build a total ofH units, and that at mostHj units
can be built at location j.

The model uses decision variables xj , which equals 1 if we build a project at location
j ∈ J , 0 otherwise; and yj , which is the number of units to build at location j. It also uses
a set of auxiliary variables δjk, which equals djk if we build projects at both locations j
and k, and equals a large number otherwise.

Johnson (2006) formulates the public housing location problem as follows:

minimize
∑
j∈J

(fjxj − bjyj) (16.38)

maximize min
j,k∈J

{δjk} (16.39)

subject to δjk = djk +M(1− xj) +M(1− xk) ∀j ∈ J, ∀k ∈ J (16.40)∑
j∈J

yj = H (16.41)

yj ≤ Hjxj ∀j ∈ J (16.42)

xj ∈ {0, 1} ∀j ∈ J (16.43)

yj ≥ 0 ∀j ∈ J (16.44)

The model contains two objective functions. The first (16.38) calculates the economic
efficiency of the projects and units that are built. The second (16.39) maximizes the
minimum distance between any two housing projects. By constraints (16.40), δjk = djk if
xj = xk = 1, and δjk equals a large number otherwise. (M is a large constant.) Thus, if
xj or xk equals 0, δjk has no effect in (16.39). Constraint (16.41) ensures that exactly H
units will be built. Constraints (16.42) enforce the capacity-type restriction that no more
than Hj units can be built at location j if a project is located there (xj = 1) and prevents
any units from being built there if xj = 0. Constraints (16.43) and (16.44) are integrality
and nonnegativity constraints.

To transform this model into a single-objective model that can be solved using an off-
the-shelf MIP solver, Johnson (2006) proposes using the weighting method (Cohon 1978),
in which the two objectives are combined into a single objective function by taking a linear
combination of them. (We discussed a similar approach in Section 9.6.5.) By varying the
weight systematically, we obtain a trade-off curve.

This model is NP-hard and is much more difficult to solve, computationally, than many
other NP-hard facility location problems such as the UFLP (Section 8.2). Johnson (2006)
reports CPLEX computation times of 4 hours or more for a case study with |J | = 50.
That case study uses economic data for Cook County, Illinois to explore the model and its
outcomes. The resulting trade-off curve, unfortunately, does not contain as many points as
the curve in Figure 9.11, meaning that decision-makers have less flexibility in navigating
the competing objectives. It also does not have as sharp an “elbow,” i.e., it requires more
of a sacrifice in one objective in order to improve the other. Nevertheless, the model is still
valuable as a planning tool and can allow PHAs to make data-driven decisions in a flexible
and equitable framework.
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CASE STUDY 16.1 Optimization of the Natural Gas Supply Chain in China

Natural gas has become an important energy resource and economic driver, especially
in China. The annual growth rate of China’s natural gas industry is roughly 14%.
Rapid increases in the rates of production and consumption have made supply chain
management a significant issue in the natural gas industry. The supply chain of natural
gas includes many of the functions discussed in this book, such as production, storage,
network design, transportation, and sales. In China, decision makers make centralized
decisions about all of these elements of the supply chain.

The management of China’s natural gas supply chain is complex for two main rea-
sons. First, there are thousands of demand nodes in the network, and the network itself
is interconnected and contains many cycles. Second, the physical laws governing the
relationship between flow and pressure in a pipeline are highly nonlinear and nonconvex.
(This echoes the laws governing power flows in electricity systems from Section 16.2.)
This makes it difficult to answer even simple questions about the system, such as
whether the network has sufficient capacity to meet the nation’s increasing demand.

The China National Petroleum Corporation (CNPC), China’s largest oil and natural
gas producer and supplier, controls 75% of the country’s natural gas resources and
pipeline network. Yet planners at the company were conducting most of their planning
manually using spreadsheets, a process that tended to result in large optimization errors,
increased costs, and wasted resources. Therefore, CNPC partnered with researchers
at the University of California, Berkeley and at Tsinghua University to develop and
implement software to optimize the country’s pipeline. Their work was a finalist for the
INFORMS Edelman Award in 2018 (INFORMS 2018). We summarize the model here;
for more details, see Han et al. (2019). We focus on the optimization of production,
procurement, transmission, and sales, given a fixed pipeline network topology.

The optimization of natural gas transmission is similar to conventional transportation
or network flow problems—such as the problem that arises in arc design problems (Sec-
tion 8.7.2) after the yes/no decisions on the arcs have been made—because both prob-
lems involve flow-balance constraints, such as (8.144). However, natural gas pipeline
flows are much more complex than in classical network flow problems because we must
explicitly model the pipeline’s flow rates as a function of the pressure and temperature
in the network, while satisfying other network flow constraints and pipeline constraints.

We consider the optimization problem from a central planner’s perspective. The
planner decides how much gas to purchase or produce at each location. Our goal is
to maximize the total profit, which can be calculated as the sales revenue minus the
production cost:

maximize
∑
i∈Nd

cdi (−si)−
∑
i∈Ns

csi si,

where we use the following notation:

Sets
N = set of nodes in the network
Ns, Nd = sets of supply and demand nodes (respectively); Ns, Nd ⊆ N
A = set of arcs in the network
Ap, Ac, Ar = sets of pipelines, compressors, and regulator valves (resp.);

Ap, Ac, Ar ⊆ A
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Parameters
csi = cost per unit to produce or purchase natural gas at node i
cdi = revenue per unit to sell natural gas at node i
si, si = lower and upper bounds (resp.) on supply or demand at node i
p
i
, pi = lower and upper bounds (resp.) on pressure at node i

αij = parameter related to change of elevation on pipeline (i, j) ∈ Ap
βij = parameter related to flow resistance on pipeline (i, j) ∈ Ap

Decision Variables
si = net supply: gas produced/purchased (> 0) or sold (< 0) at node i
pi = natural gas pressure at node i
πi = square of pressure at node i
fij = natural gas volumetric flow per unit of time on arc (i, j) ∈ A

The constraints consist of network flow constraints and pipeline constraints. Network
flow constraints ensure that the gas flow balances at each node, that the supply and
demand fall into the right ranges, and that the gas flow and pressure are controlled
within safety ranges: ∑

j:(i,j)∈A

fij −
∑

j:(j,i)∈A

fji = si ∀i ∈ N (16.45)

si ≤ si ≤ si ∀i ∈ N (16.46)

p2
i
≤ πi ≤ p2

i ∀i ∈ N (16.47)

Constraints (16.45) are the flow balance constraints and are similar to (8.144) in the
arc design model and (16.15) in the electricity network design model. Similar to the
variable pij in that model, the variable fij here can be positive or negative, and the
sign indicates the direction of flow: If fij > 0, then gas is flowing from i to j. Using
πi, rather than p2

i , in (16.47) and other constraints below helps to avoid squared terms
where possible.

In the network, special types of arcs are used to change the pressure of natural gas:
Compressors add pressure, while regulator valves reduce it. We simplify the relationship
between the pressure at the two end nodes of a compressor or regulator valve by
formulating them as linear constraints:

πi ≤ πj ∀(i, j) ∈ Ac (16.48)

πi ≥ πj ∀(i, j) ∈ Ar. (16.49)

The flow rate on a pipeline can be expressed as a function of the pressure and tem-
perature of the natural gas at the two ends of the pipeline. Engineers describe the
relationship among flow rates, pressure, and temperature of natural gas along a pipeline
(i, j) as follows:

λ̃Z̃∆̃T̃ L̃
[
1 + α̃

2L̃

∑ñ
j=1

(
h̃j + h̃j−1

)
L̃j

]
10512d̃5

f2
ij = p2

i −
(

1 + α̃∆h̃
)
p2
j (16.50)

All of the parameters with tildes in (16.50) have physical meanings. For example, h̃
represents the height of a node; ∆h̃, L̃, and d̃ represent the elevation change, length,
and diameter of the pipeline, respectively; and λ̃, Z̃, and ∆̃ are related to the state
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of the natural gas. We simplify (16.50) by replacing the fraction on the left-hand side
with βij and the term inside the parentheses on the right-hand side with αij . We also
replace the square of the pressure, p2

i , with πi, to get the following constraint, which
is included in the optimization model:

βijf
2
ij = πi − αijπj ∀(i, j) ∈ Ap. (16.51)

In practical settings, βij changes with the pressure and temperature at the two end
nodes and is iteratively updated when solving the problem.

De Wolf and Smeers (2000) and Babonneau et al. (2012) propose a piecewise-linear
approximation method that can be modified and used to deal with the nonlinearity of
(16.51); see Han et al. (2019). The basic idea is to find several initial breakpoints
using a special initialization model and then piecewise-linearize the f2

ij terms. The
initialization problem is the dual of the original model with only the constraints on the
flow rates of natural gas, which is called the energy minimization problem. The set
of breakpoints is updated iteratively to narrow the gap between the resulting solutions
and the optimal ones.

Han et al. (2019) also introduce a three-stage convex relaxation method to deal
with the nonconvexity of (16.51). In the first stage, (16.51) is relaxed to an inequality,
and the relaxed (convex) model is solved. If the results are infeasible, then an energy
minimization model is solved to obtain feasible flow rates. In the third stage, the
pressure and temperature of natural gas are determined given the flow rates from the
second stage.

CNPC implemented the model developed by the Berkeley and Tsinghua researchers
at the end of 2014. Since then, CNPC has realized roughly $330 million in direct
savings. In addition, the increased efficiency of the pipeline system has enabled CNPC
to delay further pipeline expansions, saving billions of additional dollars.

PROBLEMS

16.1 (Single-Period Behind-the-Meter Problem) Show that the behind-the-meter en-
ergy storage problem from Section 16.2.1.1 is equivalent to a newsvendor problem (possibly
plus a constant) if T = 1.

16.2 (Single-Period Wind Farm Problem) Show that the expected cost function (16.4)
is equivalent to a newsvendor problem (possibly plus a constant) by giving values for h
and p, in terms of the notation in Section 16.2.1.2, that make the two cost functions equal
(except for an additive constant). What is the optimal bid quantity?

16.3 (Selling on the Real-Time Market) Modify the single-period wind farm problem
from Section 16.2.1.2 to allow the wind farm operator to sell power to the real-time market
if the observed wind power is greater than its bid on the day-ahead market. Is the problem
still equivalent to a newsvendor problem? If so, what is the optimal solution?

16.4 (Multi-Period Selling on the Real-Time Market) Modify the recursion (16.7) to
allow the wind farm operator to sell power to the real-time market in each period if it
wishes.
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16.5 (Vaccine Supplier’s Expected Cost Function) Prove that (16.21) equals (16.20).

16.6 (System-Optimal Solution for Vaccine Problem) In the vaccine model in Sec-
tion 16.3.1, suppose that the function T (f) is approximated using the following piecewise-
linear function:

T (f) =

{
M −Nψf, if 0 ≤ f ≤ f0

0, if f0 ≤ f ≤ 1,
(16.52)

where M and ψ are nonnegative constants. (This is the function plotted in Figure 16.2.)
Assume that ψb− cgδ > 0 (so that the expected benefit from vaccination exceeds the cost).

a) Prove that the system objective function G(Q, f) (i.e., G(Q, f) = gs(Q, f) +

gg(Q, f)) is given by

G(Q, f) = csQ+ E
[
bT

(
V

Nδ

)
+ cgV

]
,

where
V = min{QZ, fNδ, f0Nδ}.

Now, let (Q∗, f∗) be the solution that minimizes G(Q, f).

b) Prove that all values of f∗ in [f0, 1] are optimal for the system.
c) Prove that Q∗ satisfies∫ f0Nδ/Q∗

0

zfZ(z)dz =
cs

ψb/δ − cg
.

16.7 (Shared Security Equipment) The passenger screening model in Section 16.4.2
assumes that each security class uses its own dedicated equipment. Relax this assumption
by assuming that there is a set of equipment types and that each security class uses a
predefined subset of those types. The fixed and per-unit costs apply to the equipment,
rather than to the classes. Formulate a model that decides what equipment to purchase and
which classes to assign each passenger to, in order to maximize the total security, while
respecting a budget constraint. You will have to introduce new notation; define it clearly.
Explain your objective function and constraints in words.

16.8 (Integral Number of Housing Units) In the public housing location problem in
Section 16.4.3, we defined yj , the number of housing units to build at location j, as a
continuous decision variable. Does there always exist an optimal solution to this model in
which yj will be a nonnegative integer? Justify your answer.
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PROBLEMS

A.1 (Worst-Case Bound for Deterministic Newsvendor Approximation) As noted in
Section 5.3.2, the papers by Zheng (1992) and Axsäter (1996) suggest bounds on the error
that results from approximating a stochastic inventory model (the model of Section 5.1,
for which an (r,Q) policy is optimal) by a deterministic one. Suppose we do the same
thing for the newsvendor model, setting S equal to the optimal solution to the deterministic
problem, i.e., S = µ. Assume the demand is distributed N(µ, σ2).

a) Prove that

ρ ≡ g(µ)

g(S∗)
≈ 0.3989

φ(zα)
,

where g(S) is the expected newsvendor cost if S is the order-up-to level and
α = p/(h+ p).

b) Is it possible to identify a fixed worst-case bound ρ̄ that holds for any values of
the parameters h, p, µ, and σ? Explain your answer.

A.2 (Optimizing Compost Inventory) The compost facilities in Greentown move fin-
ished compost (organic matter that has completed the composting process) from the pro-
cessing area to a large pile in the pick-up area for residents of the town to pick up for use
in their gardens, free of charge.
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Table A.1 Demand for finished compost for Problem A.2(b).

Cumulative
d Probability f(d) Probability F (d)

0 0.12 0.12
1 0.05 0.17
2 0.07 0.24
3 0.11 0.35
4 0.24 0.59
5 0.17 0.76
6 0.11 0.87
7 0.07 0.94
8 0.04 0.98
9 0.02 1.00

a) At the compost facility in the Appleville neighborhood of Greentown, residents
pick up compost at a steady rate of 700 cubic yards per week. The facility has
committed to keeping the pick-up area stocked, i.e., never having residents arrive
to find no compost there.

Finished compost is moved from the processing area to the pick-up area by
truck, and each time the facility wishes to do this, it must hire a truck driver for a
day. This costs $320, and once the driver is hired, the facility can move as much
finished compost as it wishes. You can assume it takes negligible time to move
the compost. Finished compost that remains in the pick-up area must be tended
by the staff (e.g., cleaning up spills), at a cost of $0.05 per cubic yard per day.

Using the EOQ model, calculate the optimal order quantity, Q∗, and the
optimal average cost per week, g(Q∗).

b) At the compost facility in the Beantown neighborhood of Greentown, the daily
demand for compost is stochastic (unlike at the Appleville facility), with proba-
bilities given in Table A.1. At this facility, the staff moves finished compost from
the processing site to the pick-up site every morning, before the facility opens to
customers. The truck drivers are staff members and so no additional labor charge
is incurred for these activities.

If the pick-up area runs out of compost, for the remainder of the day the staff
must deliver compost directly to customers’ vehicles, at a cost of $0.25 per cubic
yard. The staff do not tend to the pick-up area during the day (as they do at the
Appleville facility), but if there is any finished compost in the pick-up area when
the facility closes at the end of the day, they must move it back to the processing
area, at a cost of $0.10 per cubic yard.

What is the optimal number of cubic yards of finished compost to move to the
pick-up area each morning?

A.3 (Inventory Optimization for Deterministic Bass Demands) A new model of wire-
less router will be introduced shortly. An electronics retail chain expects the aggregate
demand for the router at its stores to follow a discrete-time Bass diffusion process (2.50)
with parameters m = 100, 000, p = 0.01, and q = 0.3. Each time period represents one
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week. The retail chain holds inventory of the routers at its central warehouse and has an
opportunity to place a replenishment order once per week. Each order incurs a fixed cost
of $800, and each router held in inventory incurs a holding cost of $0.04 per week. The
planning horizon is 52 weeks; any demand after the horizon ends can be ignored. In which
weeks should the retailer place orders for routers, and what are the optimal order quantities?
What is the total cost?

A.4 (Inventory Optimization for Stochastic Bass Demands) Suppose that the demand
for wireless routers in Problem A.3 is now stochastic. The demand in period t is normally
distributed with a mean of dt and a standard deviation of

√
dt, where dt is given by the

discrete-time Bass model (2.50). Unmet demands are backordered, incurring a stockout
cost of $1.25 per router per week. Assume c = 0 and γ = 1. The other cost parameters, and
the Bass parameters, are as given in Problem A.3. Although we assumed in Section 4.5.2.2
that the demand process is stationary, an (s, S) policy is still optimal for this problem with
nonstationary demands. Determine the optimal parameters, s∗t and S∗t , for every period,
and report the values for periods t = 1, 12, 22, 32, 42, and 52.

A.5 (Subscription-Selling Newsvendor) Suppose that, rather than selling individual
newspapers, the newsvendor sells subscriptions to the newspaper. The subscription is a
little unusual and works as follows: There areN customers, and the newsvendor must decide
which customers to select. Customers typically request multiple newspapers each day, and
customer i’s daily demand isDi ∼ N(µi, σ

2
i ). Demands are statistically independent from

one customer to another. If customer i is selected, the newsvendor earns a subscription
revenue of ri per day. This revenue is independent of the actual demand.

Just like in the classical newsvendor problem, our newsvendor must decide at the
beginning of the day how many newspapers to stock. During the day, random demands
are observed from each of the newsvendor’s selected customers. At the end of the day, the
newsvendor incurs a holding cost of h per unsold newspaper and a stockout cost of p per
unmet demand.

Note that the newsvendor must choose his customers, and his order quantity, before
demands are observed.

a) Formulate a mathematical programming model to choose customers in order to
maximize the expected profit (revenue minus costs) per day. If you introduce any
additional notation, define it clearly.

Hint: Your model should not need a decision variable that represents the order
quantity.

b) Formulate a polynomial-time algorithm that solves this problem exactly (i.e., not
a heuristic). Describe your algorithm step-by-step and explain clearly why it
produces the optimal solution every time.

c) What is the complexity of your algorithm (e.g., O(N2))?
d) Suppose h = 1 and p = 18. The table below lists parameters for four customers.

Using your algorithm, determine the optimal set of customers to serve. Report
the optimal set of customers and the resulting expected profit.

A.6 (EOQ with Market Selection) Consider a single production stage that manufactures
a single item. (We can equivalently view this “production stage” as a retail ordering process
that plans orders for a single item.) Let I = {1, . . . , n} denote a set of potential markets,
indexed by i. Producing the product results in a setup cost K and a variable cost c per item
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Table A.2 Customer parameters for Problem A.5(d).

i ri µi σi

1 10 40 8
2 8 20 3
3 3 25 9
4 11 16 3

procured. Inventory costs are assessed at a rate of h dollars per unit per year. Market i has
a constant and deterministic annual demand rate, λi. We let ri denote the per-unit revenue
from market i less any variable production and (possibly market-specific) delivery costs.
Unlike the standard EOQ model, the producer can choose whether or not to satisfy each
market’s demand. If the producer chooses to supply a certain market, then it must satisfy
all of the demand for that market. Rather than minimizing the average annual cost, as in
the EOQ model, we maximize the average annual net contribution to profit.

a) Write an expression for the average annual net contribution to profit and discuss
how to solve the corresponding optimization problem. Define any new notation
that you introduce.

b) Suppose that we begin with an n-market problem for which an optimal solution
selects markets 1, . . . , k, where k < n, and then consider the same problem with
a single additional new market, n+ 1. Prove the following proposition:

Proposition A.1 An optimal solution exists for the new (n+1)-market problem that selects
at least markets 1, . . . , k. If this new solution does not select market n+1, then the optimal
solution is the same for both the n-market and (n+ 1)-market problems.

A.7 (EOQ with Random Half Orders, Take 2) Solve Problem 3.25, reinterpreting it
as a yield uncertainty problem and using the results of Section 9.3. (Hint: Problem 9.15
justifies the use of the yield uncertainty results even for discrete yield distributions.)

A.8 (Finite-Horizon Transshipments) Consider a finite-horizon version of the (infinite-
horizon) transshipment problem discussed in Section 7.4. In the finite-horizon version of the
problem, the long-run expectations we calculated in Section 7.4 are no longer applicable;
instead, we can only calculate expectations for individual periods, given the retailers’
inventory levels at the start of the period. Dynamic programming is an appropriate tool for
solving this problem. Assume the periods are numbered 1, . . . , T .

The sequence of events given in Section 7.4.2 applies to this finite-horizon problem
as well. Let xi be the starting inventory level for retailer i in step 1 of the sequence of
events, and let yi be the order-up-to level for retailer i in step 2; that is, yi = xi +Qi. Let
x = (x1, x2) be the vector of starting inventory levels and y = (y1, y2) be the vector of
order-up-to levels.

To keep things simple, assume that retailer 2’s demand is deterministic and equal to
d2 in each period. Assume further that retailer 2 always chooses an order-up-to level y2

that is at least equal to d2, so that it never experiences stockouts. This also means that
transshipments only ever go in one direction: from retailer 2 to retailer 1.

a) Let gi(y) be the expected holding and stockout costs for retailer i in a given
period assuming that y is the vector of order-up-to levels chosen in step 2. Then
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Table A.3 Vni values for Problem A.9.

Souvenir Vni

Hat 0.48
T-shirt 0.34
Puffy hand 0.21

an expression for g2(y) is:

g2(y) = h

[
F1(y1)(y2 − d2) +

∫ y1+(y2−d2)

d1=y1

(y2 − d2 − (d1 − y1))f1(d1)dd1

]
.

Write an expression for g1(y).
b) Let Γ(y) be the expected transshipment costs in a given period assuming that y

is the vector of order-up-to levels chosen in step 2. Write an expression for Γ(y).
c) Let θt(x) be the optimal expected cost in periods t, . . . , T if retailer i begins

period t with inventory level xi (and each retailer acts optimally thereafter).
Write an expression for θt(x). Your expression should make use of the functions
defined above, as well as θt+1(x).

A.9 (Using Discrete Choice to Forecast Demand) A minor-league baseball stadium has
sold 8000 tickets to tonight’s baseball game. The stadium sells three kinds of souvenirs:
hats, T-shirts, and puffy hands. Each person who attends the game will buy exactly one
souvenir. From historical data, the concession manager at the stadium has developed an
estimate, Vni, of the utility that each attendee n derives from each of the souvenirs, for
i = 1, 2, 3. These Vni values are given Table A.3.

a) Assume that the actual utilities Uni differ from the estimated utilities Vni by
an additive iid error term that has a standard Gumbel distribution. Using the
multinomial logit model, calculate the expected demand for each souvenir.

b) LetX be a random variable representing the total number of people who buy hats.
What is the probability distribution of X? Specify the name and the parameters
of the distribution.

c) The concession manager replenishes the inventory of hats before the game, and
any unsold hats after the game incur an opportunity cost of $0.25. Unmet demands
for hats incur a stockout cost (including lost profit and loss of goodwill) of $1.75
per hat. How many hats should the manager stock for tonight’s game?

Note: You may solve this problem using the discrete demand distribution you
identified in part (b), or you may approximate this distribution with a continuous
distribution. If you take the latter approach, justify your approximation carefully.

A.10 (Base-Stock Policies with Disruptions) Consider a finite-horizon, periodic-review
inventory system with stochastic demand and no fixed cost, for which we proved in Sec-
tion 4.5.1.2 that a base-stock policy is optimal. There are T periods, the lead time is 0, the
demand per period is random with pdf f(·) and cdf F (·), the holding cost is h per item per
period, the backorder cost is p per item per period, the per-unit ordering cost is c, and the
discount factor is 0 < γ ≤ 1. If the inventory level is x at the start of period T , we incur a
terminal cost of θT+1(x), a convex function.
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Now suppose that the supplier is unreliable, and that when an order is placed, the
supplier delivers it with probability q (0 < q ≤ 1). With probability 1− q, the supplier is
disrupted—it’s as though the order had never been placed, and the firm must wait until the
next time period to order again. Evidently, the order placed in the next time period will be
larger to make up for the failed order. (This is a special case of the model in Section 9.2.2
in which disruptions follow an iid Bernoulli process.)

a) Write an expression for θt(x), the expected cost in periods t, . . . , T if we begin
period twith an inventory level equal to x and act optimally in every period. Your
expression should be analogous to (4.85) and may use the functionHt(y). If you
modify the definition of Ht(y), explain your modifications carefully.

b) Prove that a base-stock policy is optimal in every period t.
Note: If you use any results from Section 4.5.1.2 to prove this, argue why

these results are still true under your revised cost functions.
c) Suppose θT+1(x) = −cx. We know from Section 4.5.1.2 that the same S is

optimal in every period if q = 1. Do you think the same statement is true if
q < 1? Explain your answer.

A.11 (Coordinating the Unreliable Supply Chain) Consider the newsvendor problem
with disruptions discussed in Section 9.2.2. In this problem, you will extend this model to
consider the unreliable supplier and the coordination between the two players.

The supplier holds no inventory and has a lead time of 0 when operational. But the
supplier is subject to disruptions, and when a disruption occurs, the supplier cannot provide
any items. The retailer acts like a newsvendor with deterministic demand of d per period.
Excess inventory at the end of the period is held over until the next period at a cost of hr
per unit per period, and unmet demands are backordered, incurring a stockout penalty of
pr per unit per period for the retailer and ps for the supplier. Let p ≡ pr + ps.

The supplier’s disruption probability is α and its recovery probability is β. The steady-
state probability of being in a disruption that has lasted for n periods is πn, and the
cumulative probability of being in a disruption lasting n periods or fewer is F (n), as in
(9.10).

Suppose the supplier and retailer have agreed upon a contract that specifies a transfer
payment to be made from the retailer to the supplier in an amount based on the current state
of the system. From (9.14), the retailer’s expected cost can be expressed as a function of
its base-stock level S as follows:

gr(S) = hr

S/d−1∑
n=0

πn[S − (n+ 1)d] + pr

∞∑
n=S/d

πn[(n+ 1)d− S] + T, (A.1)

where T is the expected transfer payment. Similarly, the supplier’s expected cost is given
by

gs(S) = ps

∞∑
n=S/d

πn[(n+ 1)d− S]− T (A.2)

and the total supply chain expected cost is given by

G(S) = hr

S/d−1∑
n=0

πn[S − (n+ 1)d] + p
∞∑

n=S/d

πn[(n+ 1)d− S]. (A.3)
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Let S∗r , S∗s , and S0 be the retailer’s, supplier’s, and supply chain optimal base-stock level,
respectively.

Note that this model is expressed in terms of costs, not profits, and that it assumes
backorders, not lost sales; both are changes from the assumptions in Chapter 14.

a) Suppose T = 0. Prove that S∗r ≤ S0, and that for some instances, the inequality
is strict (in which case the supply chain is not coordinated).

b) In one or two sentences, explain why the retailer tends to under-order in part (a).
c) Now consider a buyback contract in which the retailer pays the supplier w per

unit ordered and the supplier pays the retailer b per unit on-hand at the end of
each period. (Note that the items remain on-hand; they are not sent back to
the supplier or destroyed. They can, rather, be used to satisfy demand in future
periods.) Write expressions for gr(S,w, b), gs(S,w, b), and G(S,w, b) under
this contract.

d) Write the optimal base-stock levels S∗r , S∗s , and S0 under this contract.
e) Find a value for b in terms of the other problem parameters such that S∗r = S0.
f) Show that, using the b you found in the previous part, S∗s = S0. Thus, the supply

chain is coordinated.
g) You should have found that b and the optimalS values don’t depend onw. Explain

in one or two sentences why this makes sense.

A.12 (An Approximate Location–Routing Problem) Consider a facility location prob-
lem in which the customers assigned to each facility are served via a single truck whose
route is determined by solving a traveling salesman problem (TSP). The length of the opti-
mal TSP tour through n points located in an areaA is often approximated as k

√
nA, where

k is a constant. This approximation is called the “square-root rule.” (See Section 10.6.5.)
a) Formulate the problem of locating facilities to minimize the sum of the fixed cost

and transportation cost, which is approximated using the square-root rule. Make
the (unrealistic) assumption that we know, in advance, that if facility j is opened,
then the area of the region it will serve is equal to Aj , where Aj is a parameter of
the model.

b) Propose an algorithmic method to solve this problem.

A.13 (A Location–Flexibility Design Problem) We wish to locate facilities and decide
which facilities will produce which products. Let P be the set of products. Customer
demands are stochastic and are described by scenarios; let S be the set of scenarios and let
qs be the probability that scenario s ∈ S occurs. There is a fixed cost kjp if facility j is
configured to produce product p ∈ P . Facility j ∈ J has a fixed capacity of vj , and it takes
one unit of capacity to produce one unit of product p, for all p ∈ P . Transportation costs are
product-specific. We choose facility locations and capabilities (i.e., assignments of products
to facilities) before the scenario is observed, and we set the production quantities, shipment
quantities, and assignments of customers to facilities after the scenario is observed.

a) Formulate a linear mixed-integer programming model to minimize the expected
cost of this system. Define any new notation clearly. Explain the objective
function and each of the constraints in words.

b) Sketch an idea for an algorithm to solve this problem.
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A.14 (Flying across the United States) Suppose you would like to fly to each of the 48
continental United States in your private airplane. You don’t care where you go in each
state; your only requirement is that you land your airplane in one airport per state and then
return to the starting airport. Your goal is to minimize the total distance you fly. (The
distance does not include the flight from your home airport to the starting airport on your
route.)

This problem is an example of the generalized traveling salesman problem (GTSP). In
the GTSP, the set of nodes is partitioned into subsets, called clusters. We must choose
exactly one node from each cluster, as well as a route that visits each of the chosen nodes
once and returns to the starting node, in order to minimize the total distance traveled. The
GTSP therefore combines elements of facility location problems (choosing the nodes) and
vehicle routing problems (choosing the route).

Use the following notation. (Do not define any new notation.)

Sets
N = set of nodes
Nr = a cluster, r = 1, . . . , R; the clusters do not overlap and their union equals N

Parameters
cjk = distance between nodes j and k; assume the distances are symmetric (cjk = ckj)

Decision Variables
yi = 1 if node i ∈ N is selected to be part of the tour, 0 otherwise
xij = 1 if the tour goes directly from node i ∈ N to node j ∈ N , 0 otherwise

a) Formulate this problem as a linear discrete optimization problem. Explain the
objective function and all constraints in words.

b) Propose a construction heuristic for the GTSP. Explain your heuristic briefly.
c) Propose an improvement heuristic for the GTSP. Explain your heuristic briefly.



APPENDIX B

HOW TO WRITE PROOFS:

A SHORT GUIDE

B.1 HOW TO PROVE ANYTHING

OK, fine—we can’t actually tell you how to prove everything. But we can give you some
advice that will help you when you try to prove anything.

Writing a proof is more art than science. Although there may be a “correct” way to
prove something (or several correct ways), there is still a wide range of styles, formats, and
logical implications that follow the same basic argument. (Similarly, you and your friend
might write very different essays on “How I Spent My Summer Vacation,” even if you did
the same things during your vacations.)

Writing a proof is very much like arguing a case in court. (Or at least it’s like how it
looks on TV.) Like a courtroom argument, a proof should contain a beginning, a middle,
and an end.

• The beginning tells us what is already known (the assumptions of the theorem),
reminds us of important facts that are already in evidence that will be important for
the proof, establishes new notation that you will use in the proof, and gives us a hint
of where you’re headed and what steps the proof will take. Here are some examples:

Courtroom Claim: Dr. Evil is guilty of stealing pencils from Prof. Plum’s desk.
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Courtroom Argument: Consider the man sitting before you, Dr. Evil. You
already know that security camera video from the night of October 6 shows
Dr. Evil entering Prof. Plum’s office building. Let the security video tape from that
night be labeled as “Exhibit A.” Today I will convince you, beyond a reasonable
doubt, that Dr. Evil stole pencils from Prof. Plum’s desk on that night. I will do
this by providing physical evidence placing Dr. Evil in Prof. Plum’s office and
demonstrating that Dr. Evil had, indeed, touched pencils recently.

Theorem B.1 The sum of two convex functions is also convex.
Proof: Consider two convex functions f(x) and g(x). Recall that, by definition,
a function f(x) is convex if, for any x and y in its domain and for any λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (B.1)

Leth(x) ≡ f(x)+g(x), let x and y be in the domain of f and g, and letλ ∈ [0, 1].
We will show that h(x) is convex by proving that inequality (B.1) holds.

See how similar their structures are?

• The middle provides the evidence that proves the claim. Like evidence in a trial, the
steps in your proof must follow logically from one another and must be straightfor-
ward to follow.

Courtroom Argument: Exhibit A shows Dr. Evil entering Prof. Plum’s office
building at 11:37 PM. At approximately 11:45 PM, graduate students saw a
secretive figure attempting to pick the lock on Prof. Plum’s office door. Dr. Evil’s
fingerprints were found on the door, and in Prof. Plum’s office, on the following
day (October 7), and since Prof. Plum’s office had been steam-cleaned the day
before, the fingerprints must have been left on the night of October 6. Moreover,
graphite stains on Dr. Evil’s shirt match the precise composition of graphite
contained in the pencils that Prof. Plum keeps in his desk.

Proof:

h(λx+ (1− λ)y) = f(λx+ (1− λ)y) + g(λx+ (1− λ)y)

≤ [λf(x) + (1− λ)f(y)] + [λg(x) + (1− λ)g(y)]

= λ[f(x) + g(x)] + (1− λ)[f(y) + g(y)]

= λh(x) + (1− λ)h(y)

The first and last equalities follow from the definition of h(x). The inequality
follows from the fact that f(x) and g(x) are convex functions.

Note that, in the proof, we provided justification for the steps that were not imme-
diately obvious but omitted justification for the easy algebraic step. What counts
as “easy” or “obvious” is, of course, a subjective matter. In general, a good rule of
thumb to use is that, if your fellow students were reading your proof, they should
be able to follow each step without having to look up any facts or write down any
additional derivations.

• The end is the arrival point—the claim you are trying to prove.

Courtroom Argument: Ladies and gentlemen of the jury, the preponderance of
evidence demonstrates that Dr. Evil has committed this heinous crime. You have
no choice but to find him guilty.
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Proof: Therefore, h(x) is convex.

Just like the lawyer’s argument, the proof uses words—not just math—to lead the
reader on the path from assumptions to conclusions. Of course, in a legal trial, facts and
implications are subject to interpretation—that’s why we have judges and juries. In a
mathematical proof, however, all facts and logical implications should be incontrovertible.

B.2 TYPES OF THINGS YOU MAY BE ASKED TO PROVE

Here is a (very nonexhaustive) list of the kinds of statements you may be asked to prove in
this book or at some other point in your proof-writing career:

• x = y

This is the simplest kind of statement (though that does not mean it will require the
simplest proof). It simply asks you to prove that two mathematical objects are equal.

Theorem B.2 Let g(Q) = Kλ
Q

+ hQ
2

and Q∗ =
√

2Kλ/h. Then g(Q∗) =√
2Kλh.

Notice that in this example, there is a qualifying statement to set up the statement
you are asked to prove; this is fairly typical.

• p =⇒ q

The symbols p and q stand here not for variables but for statements. The symbol
=⇒ is interpreted as “p implies q,” and it is the same as saying “if p then q.”

Theorem B.3 If 0 < r < 1, then

∞∑
n=0

rn =
1

1− r . (B.2)

Here p is “0 < r < 1” and q is equation (B.2).

• p ⇐⇒ q

The symbol ⇐⇒ means “if and only if” (sometimes abbreviated “iff”). The claim
indicates that either both statements are true or both are false. Another description
for this kind of statement is that q is a necessary and sufficient condition for p—in
order for p to be true, q must be true, and the truth of q is sufficient to ensure the truth
of p.

Theorem B.4 In the newsvendor model under normally distributed demand, the
optimal safety stock level, σΦ−1

(
p

p+h

)
, is positive if and only if p > h.

To prove an iff statement, you must prove both directions of the implication—that is,
you must prove that p implies q and that q implies p. Sometimes you can do this all
at once using a string of iff implications:

σΦ−1

(
p

p+ h

)
> 0
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⇐⇒ Φ−1

(
p

p+ h

)
> 0

⇐⇒ p

p+ h
>

1

2

⇐⇒ p > h

In other cases, though, the proof needs to be divided into two parts. In the first part,
you prove one implication (e.g., p =⇒ q), and in the second part, you prove the
reverse implication (q =⇒ p, or its logical equivalent, ¬p =⇒ ¬q).

• ∀x such that [condition], [statement].

Here you are asked to prove that for all x that satisfy a certain [condition], some
[statement] is true.

Theorem B.5 For all x such that x ≥ 1, lnx ≥ 0.

To prove a “∀x” claim, you take the [condition] as given and prove that the [statement]
is true. This actually feels a lot like a “p =⇒ q” claim, and in fact they are often
logically equivalent.

• ∃x such that [statement].

This time you need to prove that there exists (at least one) x that satisfies the
[statement]. Sometimes there are qualifying conditions on the type of x that are
allowed.

Theorem B.6 Suppose that limx→∞ f(x) = ∞. Then for any x′, there exists
an x > x′ such that f(x) > f(x′).

(In this case, there are many x that will do the trick, but you are asked only to prove
the existence of one of them.)

• ¬p
In other words, you are being asked to disprove the statement p.

Theorem B.7 Let f(x) and g(x) be convex functions and let h(x) ≡ f(x)g(x).
Then h(x) is not necessarily convex.

In general, it suffices to find a single example for which p is not true. In the example
above, you just need to find two convex functions whose product is not convex.

However, if p is of the form “∃x such that [statement],” then to disprove p you must
prove that the [statement] is false for all x. This may be easy or hard. Here’s a hard
example:

Theorem B.8 Let n be an integer greater than 2. Then there do not exist integers
a, b, and c such that

an + bn = cn.

(This is Fermat’s Last Theorem, which went unproved for over 350 years until it was
finally proved in 1995.)
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B.3 PROOF TECHNIQUES

This section will give you a quick overview of several types of proofs—strategies for
proving theorems. (Of course, there are others that this list does not include.) These are
tools in your proof-building toolbox. It’s your job to figure out which tool(s) to use for
each job.

B.3.1 Direct Proof

This is the most common kind of proof—you simply prove the claim directly, through a
series of logical implications.

Theorem B.9 If 0 < r < 1, then

∞∑
n=0

rn =
1

1− r .

Proof. Let 0 < r < 1. Define A ≡
∑∞
n=0 r

n. We wish to prove that A = 1
1−r . Well,

A = r0 +

∞∑
n=1

rn

= 1 + r
∞∑
n=0

rn

= 1 + rA.

Therefore,

A =
1

1− r ,

as desired.

B.3.2 Proof by Contradiction

Suppose you are trying to prove that p =⇒ q. In a proof by contradiction, you assume p,
as usual, but then you assume that q is not true and then prove that a contradiction occurs.
In particular, you show that if q is false, then so is p. And since you have assumed that p
is true, you have now proven that p is both true and false—an impossibility. Therefore, the
assumption of ¬q must have been false—in other words, q must be true.

Theorem B.10 There are an infinite number of prime numbers.

Actually, to highlight the structure of a proof by contradiction, let’s rewrite the theorem in
“p =⇒ q” form, even though it’s a little more awkward:

Theorem B.11 (Theorem B.10 Revised) If N is the number of prime numbers, then
N =∞.
Proof. Suppose (for a contradiction) that N is finite. Let the N primes be denoted
p1, p2, . . . , pN . Furthermore, let

B =

N∏
n=1

pn + 1.
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Now,B is also a prime number: None of the primes p1, . . . , pN dividesB (each results
in a remainder of 1), so by definition, B is prime. Moreover, B is not in {p1, . . . , pN}
since it is larger than each of the pn. Therefore, we have found a new prime, so there
must be at leastN +1 of them, contradicting our assumption that the number of primes
is N . Therefore, there are an infinite number of primes.

Note the parenthetical phrase “for a contradiction.” This is not strictly necessary, but it
does help the reader by letting him or her know that the assumption you’re about to make
is not one that you actually believe—you are making it solely for the purpose of proving a
contradiction later.

The contrapositive of the statement p =⇒ q is ¬q =⇒ ¬p, and the two are logically
equivalent; therefore, you can prove p =⇒ q by proving ¬q =⇒ ¬p. This feels a lot
like a proof by contradiction—we assume ¬q and prove ¬p. The difference is that in a
proof by contradiction, we also assume p and we use it to derive the contradiction. For
example, we used the fact that N is the number of primes to build B, and then we used
B to contradict the fact that N is the number of primes. In a proof by contrapositive, we
don’t need to assume p—we simply assume ¬q and prove ¬p.

B.3.3 Proof by Mathematical Induction

Mathematical induction is useful when you need to prove something about all the integers
(or all the members of some other countable set). The idea is to prove that if the claim is
true for (an arbitrary) n, then it must also be true for n+1. If we can prove this implication,
then it holds for any n—that is, the truth of the claim for n implies the claim for n + 1,
and this in turn implies the claim for n+ 2, and then for n+ 3, and so on. Therefore, this
general implication (truth for n =⇒ truth for n+ 1) is powerful enough to prove that the
claim is true for all integers greater than or equal to n. Of course, we also have to get the
process started, by proving that the claim is true for n = 1.

A proof by induction generally has two parts: In the first (often called the base case),
we prove that the claim is true for n = 1, and in the second (called the induction step), we
prove that, if the claim holds for n, then it also holds for n + 1. In the induction step, we
are allowed to assume that the claim holds for n—this is called the induction hypothesis.

Theorem B.12 For all integers n ≥ 1,

n∑
i=1

i =
n(n+ 1)

2
.

Proof: By induction on n.

Base Case: If n = 1, then
n∑
i=1

i = 1 =
1(2)

2
.

Induction Step: Suppose the claim holds for n. We need to prove that the claim holds
for n+ 1, i.e., that

n+1∑
i=1

i =
(n+ 1)(n+ 2)

2
.
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Well,

n+1∑
i=1

i =

n∑
i=1

i+ (n+ 1)

=
n(n+ 1)

2
+ (n+ 1) (by the induction hypothesis)

=
n(n+ 1) + 2(n+ 1)

2

=
(n+ 1)(n+ 2)

2
,

as desired.

Note the phrase “by induction onn” at the start of the proof. This is not strictly necessary,
but it helps the reader by telling him or her how we’re going to prove the theorem.

B.3.4 Proof by Cases

In this method, the universe of possibilities is divided into cases, and the claim is proved
for each case separately. We don’t know which case applies—typically, all of the cases are
possible. But since we’ve proved the claim for every case, it doesn’t matter which case
holds.

Theorem B.13 Let k be a perfect cube. Then k is either a multiple of 9, or 1 more
than a multiple of 9, or 1 less than a multiple of 9.
Proof. Since k is a perfect cube, there exists an integer n such that k = n3. Every
integer is either a multiple of 3, or 1 more than a multiple of 3, or 1 less than a multiple
of 3. We will consider three cases:
Case 1: n is a multiple of 3.
Then there exists an integer p such that n = 3p. Then k = n3 = 27p3, so k is a
multiple of 9.
Case 2: n is 1 more than a multiple of 3.
Then there exists an integer p such that n = 3p+ 1. Then k = n3 = 27p3 + 27p2 +
9p+ 1, which is 1 more than a multiple of 9.
Case 3: n is 1 less than a multiple of 3.
Then there exists an integer p such that n = 3p− 1. Then k = n3 = 27p3 − 27p2 +
9p− 1, which is 1 less than a multiple of 9.

B.4 OTHER ADVICE

• Provide explanations, not just math. Even though your reader may be a smart
mathematician, you should still provide verbal explanations that explain the intuition
behind the math whenever the math is a bit complicated. This applies to derivations,
but also to definitions.

For example, suppose you want to say:

Let ti be the order times, let T be the set of order times, let S = {t|I(t−) >
0, t ∈ T}, and let tmin = argmint{t ∈ S}.
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Then you may wish to help out your reader a bit by also saying:

That is, S is the set of order times for which the inventory level (just before
ordering) is positive, and tmin is the earliest such time.

• Distinguish between definitional and derivational =’s. The = sign has two meanings:
One means “let the left-hand side be defined to equal the right-hand side” and the other
means “I have now proved that the left-hand side equals the right-hand side.” The
first is a definitional equality, the second is a derivational equality. It is important to
differentiate between them. The best way to do this is using words: “Let x = y2/2.”
“Therefore, s = r − D.” (The difference between these two types of equality
is exactly the same as the difference between = and == in C/C++, Java, and other
programming languages. It’s also the difference between← and = in the pseudocode
in this book.)

For example, consider the following proof fragment:

v = r −D
y = r2

D = 2y

v =
√
y − 2y

This fragment is confusing. Is v a new symbol that is being defined as r −D? Or
do we already know that v = r−D? Did the first step prove that y = r2? Or do we
already know that y = r2? Or is it another new symbol?

True, a smart reader might be able to figure all this out. But the reader’s life would
be a lot easer if the proof-writer instead wrote:

We know that v = r−D. Let y = r2. SinceD = 2y (by Theorem 4.3), we have

v = r −D =
√
y − 2y.

This bullet is really a special case of the next.

• Use complete sentences. The first proof fragment in the previous bullet (starting with
v = r−D) becomes a lot easier to read when it’s written using complete sentences.
If you use sentences, the ambiguities of the = sign are resolved. The same could
be said about many other mathematical ambiguities and confusions. Writing in
complete sentences—even if your English isn’t very good—will instantly make your
proofs easier to read.

• Typeset thoughtfully. If you are writing your proofs by hand, take care to write them
neatly, and think carefully about how the proof will be laid out, including your use of
white space. Even better, type your proofs using LATEX or another software package
for typesetting mathematical text. Invest the time to learn how to typeset complicated
math so that it looks nice and helps convey your meaning. Be considerate of your
reader.

For example, consider the following proof fragment:

[(hQ/2) + (Kλ/Q)]/(hQ∗) = [hQ2 + 2Kλ]/(2hQQ∗).
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The math would be a lot easier to follow if the proof-writer had written the fractions
the way they were intended to be written:

hQ
2 + Kλ

Q

hQ∗
=
hQ2 + 2Kλ

2hQQ∗
.

In general, thoughtfully typeset math will make your proof easier to read.

• Don’t stop here. There are many books and other resources for learning how to write
proofs. (See, e.g., Sundstrom (2006) and Velleman (2006).) There are also lots of
web sites devoted to the topic. Like web sites devoted to any topic, some of these
are very good and others are very bad, so be a good critic when you read.



APPENDIX C

HELPFUL FORMULAS

C.1 POSITIVE AND NEGATIVE PARTS

For any number x ∈ R, we define the positive part and negative part of x as, respectively:

x+ = max{x, 0} = x if x > 0 and 0 otherwise

x− = |min{x, 0}| = |x| if x < 0 and 0 otherwise

(Some authors use x− = min{x, 0}.)
The following identities hold:

x = x+ − x− (C.1)

|x| = x+ + x− (C.2)

(−x)+ = x− (C.3)

(−x)− = x+ (C.4)

For any x, y ∈ R, we have:

min{x, y} = x− (x− y)+ = y − (y − x)+ (C.5)

max{x, y} = x+ (y − x)+ = y + (x− y)+ (C.6)

If y ≥ 0, then
(x+ − y)+ = (x− y)+. (C.7)
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C.2 STANDARD NORMAL RANDOM VARIABLES

Let X ∼ N(µ, σ2) with pdf f and cdf F . Let φ and Φ be the pdf and cdf, respectively, of
the standard normal distribution.

f(x) =
1

σ
φ

(
x− µ
σ

)
(C.8)

F (x) = Φ

(
x− µ
σ

)
(C.9)

We define
zα = Φ−1(α) (C.10)

for 0 < α < 1. Moreover,
zα = −z1−α. (C.11)

C.3 LOSS FUNCTIONS

Throughout, we use n(·) and n(2)(·) to refer to the first- and second-order loss functions,
and n̄(·) and n̄(2)(·) to refer to the corresponding complementary loss functions.1 It
would be equally appropriate to use n(1)(·) for the first-order loss function, but we drop the
superscript for notational simplicity, and often omit the phrase “first-order” when describing
this function and its complement. For the standard normal distribution, we replace n with
L in these functions.

C.3.1 General Continuous Distributions

Let X be a continuous random variable with pdf f and cdf F . Let F̄ (x) = 1 − F (x) be
the complementary cdf. The loss function and complementary loss function are given by

n(x) = E[(X − x)+] =

∫ ∞
x

(y − x)f(y)dy =

∫ ∞
x

F̄ (y)dy (C.12)

n̄(x) = E[(X − x)−] =

∫ x

−∞
(x− y)f(y)dy =

∫ x

−∞
F (y)dy. (C.13)

The loss function and its complement are related as follows:

n̄(x) = x− E[X] + n(x). (C.14)

The derivatives of the loss function and its complement are given by

n′(x) = F (x)− 1 (C.15)

n̄′(x) = F (x). (C.16)

The loss function and its complement are therefore both convex.

1The term “complementary loss function” and the notation n̄(x) are our own. They are not standard.
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The second-order loss function and its complement are given by

n(2)(x) =
1

2
E
[(

[X − x]+
)2]

=
1

2

∫ ∞
x

(y − x)2f(y)dy =

∫ ∞
x

n(y)dy (C.17)

n̄(2)(x) =
1

2
E
[(

[X − x]−
)2]

=
1

2

∫ x

−∞
(x− y)2f(y)dy =

∫ x

−∞
n̄(y)dy. (C.18)

The second-order loss function and its complement are related as follows:

n̄(2)(x) =
1

2

(
(x− E[X])

2
+ Var[X]

)
− n(2)(x). (C.19)

The derivatives of the second-order loss function and its complement are given by

d

dx
n(2)(x) = −n(x) (C.20)

d

dx
n̄(2)(x) = n̄(x). (C.21)

C.3.2 Standard Normal Distribution

Let Z ∼ N(0, 1), with pdf φ, cdf Φ, and complementary cdf Φ̄. The standard normal loss
function, its complement, and their derivatives are given by

L (z) = E[(Z − z)+] =

∫ ∞
z

(t− z)φ(t)dt = φ(z)− zΦ̄(z) (C.22)

L̄ (z) = E[(Z − z)−] =

∫ z

−∞
(z − t)φ(t)dt = z + L (z) (C.23)

L ′(z) = Φ(z)− 1 (C.24)

L̄ ′(z) = Φ(z). (C.25)

Also:
L (−z) = z + L (z) = L̄ (z). (C.26)

(The second equality follows from the fact that E[Z] = 0.)
The second-order standard normal loss function, its complement, and their derivatives

are given by

L (2)(z) =
1

2
E
[(

[Z − z]+
)2]

=
1

2

∫ ∞
z

(t− z)2φ(t)dt

=
1

2

[(
z2 + 1

)
Φ̄(z)− zφ(z)

]
(C.27)

L̄ (2)(z) =
1

2
E
[(

[Z − z]−
)2]

=
1

2

∫ z

−∞
(z − t)2f(t)dt

=
1

2
(z2 + 1)−L (2)(z). (C.28)

d

dz
L (2)(z) = −L (z) (C.29)

d

dz
L̄ (2)(z) = L̄ (z). (C.30)
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C.3.3 Nonstandard Normal Distributions

LetX ∼ N(µ, σ2) with pdf f , cdf F , and complementary cdf F̄ . The normal loss function
can be computed using the standard normal loss function as follows:

n(x) =

∫ ∞
x

(y − x)f(y)dy = L (z)σ (C.31)

n̄(x) =

∫ x

−∞
(x− y)f(y)dy = L̄ (z)σ, (C.32)

where z = (x− µ)/σ. (In many instances, we assume σ � µ so that the probability that
X < 0 is small; in these cases, we often replace the lower limit of the integral in (C.32)
with 0.) The derivatives of n(x) and n̄(x) are given by (C.15)–(C.16).

The second-order normal loss function and its complement are given by

n(2)(x) =
1

2

∫ ∞
x

(y − x)2f(y)dy = L (2)(z)σ2 (C.33)

n̄(2)(x) =
1

2

∫ x

−∞
(x− t)2f(t)dt = L̄ (2)(z)σ2. (C.34)

The derivatives of n(2)(x) and n̄(2)(x) are given by (C.20)–(C.21).

C.3.4 General Discrete Distributions

Let X be a discrete random variable with pmf f and cdf F . Let F̄ (x) = 1− F (x) be the
complementary cdf. The loss function and complementary loss function are given by

n(x) = E[(X − x)+] =

∞∑
y=x

(y − x)f(y) =

∞∑
y=x

F̄ (y) (C.35)

n̄(x) = E[(X − x)−] =
x∑

y=−∞
(x− y)f(y) =

x−1∑
y=−∞

F (y). (C.36)

The loss function and its complement are related as follows:

n̄(x) = x− E[X] + n(x). (C.37)

The second-order loss function and its complement are given by

n(2)(x) =
1

2
E
[
(X − x)+(X − x− 1)+

]
=

1

2

∞∑
y=x

(y − x)(y − x− 1)f(y)

=

∞∑
y=x

(y − x)F̄ (y) =

∞∑
y=x+1

n(y) (C.38)

n̄(2)(x) =
1

2
E
[
(X − x)−(X − x− 1)−

]
=

1

2

x∑
y=−∞

(x− y)(x+ 1− y)f(y)

=

x∑
y=−∞

(x− y)F (y) =

x∑
y=−∞

n̄(y). (C.39)
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The second-order loss function and its complement are related as follows:

n̄(2)(x) =
1

2

(
(x− E[X])

2
+ (x− E[X]) + Var[X]

)
− n(2)(x). (C.40)

If X is nonnegative, then equations (C.37) and (C.40) can facilitate the calculation of
n(x) and n(2)(x), since n(x) and n(2)(x) contain infinite sums, but n̄(x) and n̄(2)(x)

contain finite ones.

C.3.5 Poisson Distribution

LetX ∼ Pois(λ) with pmf f , cdf F , and complementary cdf F̄ . The Poisson loss function
and complementary loss function are given by

n(x) = E[(X − x)+] =

∞∑
y=x

(y − x)f(y) = −(x− λ)F̄ (x) + λf(x) (C.41)

n̄(x) = E[(X − x)−] =

x∑
y=−∞

(x− y)f(y) = (x− λ)F (x) + λf(x). (C.42)

The second-order Poisson loss function and its complement are given by

n(2)(x) =
1

2
E
[
[X − x]+[X − x− 1]+

]
=

1

2

[[
(x− λ)2 + x

]
F̄ (x)− λ(x− λ)f(x)

]
(C.43)

n̄(2)(x) =
1

2
E
[
[X − x]−[X − x− 1]−

]
=

1

2

[[
(x− λ)2 + x

]
F (x) + λ(x− λ)f(x)

]
. (C.44)

C.4 DIFFERENTIATION OF INTEGRALS

C.4.1 Variable of Differentiation Not in Integral Limits

d

dx

∫ b

a

f(t, x)dt =

∫ b

a

∂f(t, x)

∂x
dt (C.45)

C.4.2 Variable of Differentiation in Integral Limits

d

dx

∫ x

a

f(t)dt = f(x) (C.46)

d

dx

∫ g(x)

a

f(t)dt = f(g(x))g′(x) (C.47)

d

dx

∫ g2(x)

g1(x)

f(t)dt = f(g2(x))g′2(x)− f(g1(x))g′1(x) (C.48)
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d

dx

∫ g2(x)

g1(x)

f(t, x)dt =

∫ g2(x)

g1(x)

∂f(t, x)

∂x
dt+ f(g2(x), x)g′2(x)− f(g1(x), x)g′1(x)

(C.49)

Equation (C.49) is known as Leibniz’s rule.

C.5 GEOMETRIC SERIES

If 0 < |r| < 1, then:

∞∑
i=0

ri =
1

1− r
(C.50)

k∑
i=0

ri =
1− rk+1

1− r
(C.51)

∞∑
i=k

ri =
rk

1− r
(C.52)

∞∑
i=1

iri−1 =
1

(1− r)2
(C.53)

k∑
i=1

iri−1 =
1− rk

(1− r)2
− krk

1− r
(C.54)

∞∑
i=k

iri−1 =
rk−1

(1− r)2
+

(k − 1)rk−1

1− r
(C.55)

C.6 NORMAL DISTRIBUTIONS IN EXCEL AND MATLAB

Microsoft Excel and MATLAB have several built-in functions for computing normal dis-
tributions. Let X ∼ N(µ, σ2) with pdf f and cdf F and Z ∼ N(0, 1) with pdf φ and cdf
Φ. Then, in Excel:

NORM.DIST(x, µ, σ, cumulative = FALSE) = f(x) (C.56)

NORM.DIST(x, µ, σ, cumulative = TRUE) = F (x) (C.57)

NORM.S.DIST(z, cumulative = FALSE) = φ(z) (C.58)

NORM.S.DIST(z, cumulative = TRUE) = Φ(z) (C.59)

NORM.INV(p, µ, σ) = F−1(p) (C.60)

NORM.S.INV(p) = Φ−1(p) (C.61)

And, in MATLAB:

normpdf(x, µ, σ) = f(x) (C.62)

normcdf(x, µ, σ) = F (x) (C.63)
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normpdf(z) = φ(z) (C.64)

normcdf(z) = Φ(z) (C.65)

norminv(p, µ, σ) = F−1(p) (C.66)

norminv(p) = Φ−1(p) (C.67)

C.7 PARTIAL EXPECTATIONS

The following formulas computes partial expectations of a random variable with pdf f and
cdf F . (If a = −∞ and b =∞, these each equal the true mean.)∫ b

−∞
yf(y)dy = bF (b)− n̄(b) (C.68)∫ ∞

a

yf(y)dy = aF̄ (a) + n(a) (C.69)∫ b

a

yf(y)dy = n̄(a)− n̄(b)− aF (a) + bF (b) (C.70)

Discrete versions are also available:

b∑
y=−∞

yf(y) = bF (b)− n̄(b) (C.71)

∞∑
y=a

yf(y) = aF̄ (a− 1) + n(a) (C.72)

b∑
y=a

yf(y) = n̄(a)− n̄(b)− aF (a− 1) + bF (b) (C.73)

For a continuous random variableX and constants a and b, the identities above can be used
to prove:

E[min{aX, b}] = b− an̄
(
b

a

)
(C.74)

E[max{aX, b}] = b+ an

(
b

a

)
(C.75)



APPENDIX D

INTEGER OPTIMIZATION TECHNIQUES

In this appendix, we provide a brief overview of two optimization techniques that are used
repeatedly in this book: Lagrangian relaxation and column generation.

D.1 LAGRANGIAN RELAXATION

D.1.1 Overview

Consider an optimization problem of the form

(P) minimize cx (D.1)

subject to Ax = b (D.2)

Dx ≤ e (D.3)

x ≥ 0 and binary (D.4)

Here, x is a vector of decision variables, b, c, and e are vectors of coefficients, and A and
D are matrices. (It’s not necessary that all of the x variables be binary; some or all can
be continuous.) Suppose that (P) itself is hard to solve, but that the problem obtained by
omitting constraints (D.2) is easier. In this section, we discuss Lagrangian relaxation, a
method that is well suited to solve problems like this one. Similar approaches can also be
applied to other types of problems, such as nonlinear programming problems.
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There are many sources of additional information about Lagrangian relaxation in journal
articles and textbooks; among the most user-friendly treatments are the articles by Fisher
(1981, 1985).

The idea behind Lagrangian relaxation is to relax (i.e., remove) the hard constraints
(D.2) to produce an easier problem. When we remove the constraints, we add a term to
the objective function that penalizes solutions for violating the relaxed constraints. This
penalty term uses a vector λ of Lagrange multipliers, one per constraint, that dictate the
magnitude of the penalty. The Lagrangian subproblem is then given by

(P-LRλ) minimize cx+ λ(b−Ax) (D.5)

subject to Dx ≤ e (D.6)

x ≥ 0 and binary (D.7)

Problem (P-LRλ) is easier to solve than problem (P). This, by itself, does not help us very
much, because solutions to (P-LRλ) will typically be infeasible for (P). But it turns out that
the optimal solution to (P-LRλ) provides us with a lower bound on the optimal objective
value of (P). Feasible solutions to (P) each provide an upper bound on the optimal objective
value. Such solutions must be found using some other method, typically using a heuristic
that is executed once per iteration of the Lagrangian relaxation procedure. When the upper
and lower bounds are close (say, within 0.1%), we know that the feasible solution we have
found is close to optimal.

When choosing which constraints to relax, i.e., which constraints to label as “hard,”
there are three main considerations:

• How easy the relaxed problem is to solve

• How tight the resulting lower bound is

• How many constraints are being relaxed

Choosing which constraints to relax is not straightforward, and often some trial and error
is required.

D.1.2 Bounds

Let z∗ be the optimal objective value of (P) and let zLR(λ) be the optimal objective value
of (P-LRλ). Let m be the number of rows in A, that is, the number of constraints in (D.2).
Then we have the following result:

Theorem D.1 For any λ ∈ Rm,
zLR(λ) ≤ z∗.

Proof. Let x be a feasible solution for (P). Clearly x is feasible for (P-LRλ), and it has the
same objective value in both problems since the constraint violations all equal 0. Therefore,
the optimal objective value for (P-LRλ) is no greater than that of (P).

If (P) has a different structure than given in (D.1)–(D.4)—for example, if it is a maximiza-
tion problem, or if (D.2) are inequality constraints—then we must make some modifications
to Theorem D.1 (and the results that follow); see Section D.1.5.
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Since (P) is a minimization problem, we want lower bounds that are as large as possible;
these are the most accurate and useful bounds. Different values of λ will give different
values of zLR(λ), and hence different bounds. We’d like to find λ that gives the largest
possible bounds. That is, we want to solve

(LR) max
λ

zLR(λ). (D.8)

Suppose for now that we have found the λ∗ that solves (LR). (We’ll discuss one way to find
such λ in Section D.1.3.) Let zLR = zLR(λ∗). How good a bound is zLR? For example, is
it better or worse than the bound obtained from the LP relaxation of (P)? The answer turns
out to be, “at least as good”:

Theorem D.2
zLP ≤ zLR,

where zLP is the optimal objective value of the LP relaxation of (P) and zLR is the optimal
objective value of (LR).

Proof.

zLR = max
λ

{
min
x

cx+ λ(b−Ax)
∣∣∣Dx ≤ e, x ≥ 0 and binary

}
≥ max

λ

{
min
x

cx+ λ(b−Ax)
∣∣∣Dx ≤ e, x ≥ 0

}
(since relaxing integrality can’t increase the objective)

= max
λ

{
min
x

(c− λA)x+ λb
∣∣∣Dx ≤ e, x ≥ 0

}
= max

λ

{
max
µ

µe+ λb

∣∣∣∣µD ≤ c− λA, µ ≤ 0

}
(taking LP dual of what’s inside {·})

= max
λ,µ
{µe+ λb|µD ≤ c− λA, µ ≤ 0}

= max
λ,µ
{µe+ λb|µD + λA ≤ c, µ ≤ 0}

= min
y
{cy|Ay = b,Dy ≤ e, y ≥ 0} (taking LP dual of the entire problem)

= zLP

An optimization problem with binary variables is said to have the integrality property if
its LP relaxation always has optimal solutions that are binary. If the Lagrangian subproblem
has the integrality property for all λ, then the bound from Lagrangian relaxation is exactly
equal to the bound from LP relaxation:

Lemma D.3 If (P-LRλ) has the integrality property for all λ, then

zLP = zLR.

Proof (sketch). The proof follows from the fact that the inequality in the proof of Theo-
rem D.2 holds as an equality since removing the integrality restriction does not change the
problem.
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In a typical Lagrangian relaxation algorithm, we solve (P-LRλ) for a given λ and then
find a solution x that is feasible for (P). This is often done by modifying the solution to
(P-LRλ), converting it somehow from an infeasible solution to a feasible one. We then
choose new multipliers λ in the hopes of improving the lower bound. Therefore, each
iteration of the procedure consists of (1) solving (P-LRλ), (2) finding an upper bound, and
(3) updating the multipliers. In Section D.1.3, we discuss one common method for step
(3).

To summarize what we have covered so far, at any given iteration of the Lagrangian
relaxation procedure, we have

zLR(λ) ≤zLR ≤ z∗ ≤ z(x) (D.9)

zLP ≤zLR ≤ z∗ ≤ z(x), (D.10)

where

• zLR(λ) is the objective value of (P-LRλ) for a particular λ (λ is a feasible solution to
(LR))

• zLR is the optimal objective value of (P-LRλ)

• zLP is the optimal objective value of the LP relaxation of (P)

• z(x) is the objective value of (P) for a particular x (x is a feasible solution to (P))

• z∗ is the optimal objective value of (P)

If (P-LRλ) has the integrality property for all λ, then (D.9)–(D.10) reduce to

zLR(λ) ≤ zLR = zLP ≤ z∗ ≤ z(x). (D.11)

D.1.3 Subgradient Optimization

At the end of each iteration of the Lagrangian relaxation procedure, we want to update the
Lagrange multipliers to coax the subproblem solution toward feasibility for (P). Let x be the
optimal solution to the Lagrangian subproblem for a given λ. Consider a given constraint
i and its multiplier λi. Should we make λi larger or smaller? The answer depends on
whether, and how, the constraint is violated. We can write constraint i as

n∑
j=1

aijxj = bi, (D.12)

where n is the number of variables. We are trying to encourage the solution to satisfy this
constraint by adding the penalty term

λi

bi − n∑
j=1

aijxj

 (D.13)

to the objective function. If λi is too small, then there’s no real penalty for making∑n
j=1 aijxj small, and it’s likely that the left-hand side of (D.12) will be too small. On
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the other hand, if λi is too large, there will be an incentive to make
∑n
j=1 aijxj large,

making the term inside the parentheses in (D.13) negative and the overall penalty large
and negative. (Remember that (P) is a minimization problem.) By changing λi, we can
encourage

∑n
j=1 aijxj to be larger or smaller—hopefully equal to bi—at the next iteration.

So:

• If
∑n
j=1 aijxj < bi, then λi is too small; it should be increased.

• If
∑n
j=1 aijxj > bi, then λi is too large; it should be decreased.

• If
∑n
j=1 aijxj = bi, then λi is just right; it should not be changed.

Now, zLR(λ) is a piecewise-linear concave function of λ. Solving problem (LR) involves
maximizing this function. Since it’s piecewise-linear (and therefore nondifferentiable at
some points), we can’t just take a derivative with respect to λ. Somehow, though, we want
to move from our current value of λ to a better one, over and over, until we’re near the
maximum of the function.

We will use a common method for updating the Lagrange multipliers called subgradient
optimization. (Other methods for nonlinear optimization, such as the volume algorithm and
bundle methods, have also proved to be very effective for updating Lagrangian multipliers.)
In subgradient optimization, each move consists of a step size (which is the same for all i)
and a step direction (which is different for each i).

The step size at iteration t (denoted ∆t) is computed as follows. Let Lt be the lower
bound found at iteration t (i.e., the value of zLR(λ) for the current value of λ) and let UB
be the best upper bound found (i.e., the objective value of the best feasible solution found
so far, by any method). Note that while Lt is the last lower bound found, UB is the best
upper bound found. Then the step size ∆t is given by

∆t =
αt(UB− Lt)∑m

i=1

(
bi −

∑n
j=1 aijxj

)2 . (D.14)

αt is a constant that is generally set to 2 at iteration 1 and divided by 2 after a given number
(say 20) of consecutive iterations have passed during which the best known lower bound
has not improved. The numerator is proportional to the difference between the upper and
lower bounds—as we get closer to the maximum of the function, the steps should get
smaller. The denominator is simply the sum of the squares of the constraint violations.

The step direction for constraint i is simply given by bi −
∑n
j=1 aijxj (the violation in

the constraint).
To obtain the new multipliers (call them λt+1) from the old ones (λt), we set

λt+1
i = λti + ∆t

bi − n∑
j=1

aijxj

 . (D.15)

Note that since ∆t > 0, this update step follows the rules given above:

• If
∑n
j=1 aijxj < bi, then λi increases.

• If
∑n
j=1 aijxj > bi, then λi decreases.

• If
∑n
j=1 aijxj = bi, then λi stays the same.
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At the first iteration, λ can be initialized using a variety of ways: For example, set
λi = 0 for all i, set it to some random number, or set it according to some other ad hoc
rule.

D.1.4 Stopping Criteria

The process of solving (P-LRλ), finding a feasible solution, and updating λ is continued
until some stopping criteria are met. For example, we might stop the procedure when any
of the following is true:

• The upper bound and lower bound are within some prespecified tolerance, say 0.1%.

• A certain number of iterations, say 1000, have elapsed.

• αt is smaller than some pre-specified tolerance, say 10−6.

• A certain amount of time, say 1 minute, has elapsed.

D.1.5 Other Problem Types

Lagrangian relaxation is a general tool that can be used for any IP. However, some of the
rules discussed above change when applied to IPs that have a form other than that given in
(D.1)–(D.4).

D.1.5.1 Inequality Constraints The constraints relaxed may be inequality or equal-
ity constraints.

• For ≤ constraints, λ is restricted to be nonpositive.

• For ≥ constraints, λ is restricted to be nonnegative.

• For = constraints, λ is unrestricted in sign.

(Note: These rules assume the penalty in the objective function is written as

λ(RHS− LHS).

If, instead, the right-hand side is subtracted from the left-hand side, these rules are reversed.)

D.1.5.2 Maximization Problems If the IP is a maximization problem, then

• The Lagrangian subproblem provides an upper bound on the optimal objective value
and a feasible solution provides a lower bound, so the relationships in (D.9) and
(D.10) are reversed:

z(x) ≤ z∗ ≤ zLR ≤ zLR(λ) (D.16)

z(x) ≤ z∗ ≤ zLR ≤ zLP. (D.17)

• Problem (LR) is of the form

min
λ

{
maxx · · ·

s.t. · · ·

}
• The + sign in (D.15) becomes a − sign.

• The rules for inequality constraints given in Section D.1.5.1 are reversed.
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D.1.6 Branch-and-Bound

If the Lagrangian procedure stops before the upper and lower bounds are close to each
other, there is no guarantee that the solution found is near-optimal. If this happens, we
could stop and accept the best feasible solution found without a guarantee of optimality
(this treats Lagrangian relaxation as a heuristic), or we could close the optimality gap using
branch-and-bound. The branch-and-bound process is like the standard process for solving
LPs except that (a) lower bounds are obtained by solving the Lagrangian subproblem,
not the LP relaxation, and (b) upper bounds are found using the upper-bounding method
that is embedded into the Lagrangian procedure, instead of when LP solutions happen to
be integer-feasible. At each node of the branch-and-bound tree, a variable is chosen for
branching, and that variable is fixed first to 0, then to 1. The mechanics of branching and
fathoming are just like those in standard branch-and-bound.

D.1.7 Algorithm Summary

The Lagrangian relaxation algorithm is summarized in Algorithm D.1.

D.2 COLUMN GENERATION

D.2.1 Overview

Column generation is a useful technique for solving optimization problems, especially
those in which the number of variables is much larger than the number of constraints. The
number of variables may even be exponentially large—too large to enumerate all of the
variables and their coefficients. The basic idea behind column generation is to optimize the
problem using only a subset of the variables (the columns), and to generate new columns
as needed during the algorithm. Because the vast majority of the columns will be nonbasic,
i.e., will equal zero, in the optimal solution, the idea makes sense, but we must be smart,
and efficient, at determining the new columns that must be generated.

Column generation was first developed for linear programming (LP) problems (Ford
and Fulkerson 1958, Dantzig and Wolfe 1960), but it has since become a popular tool for
solving integer programming (IP) problems, as well. It is indispensable for certain classes
of IPs, such as airline crew scheduling, that were previously considered intractable.

The column generation process works as follows. The problem being solved is decom-
posed into two problems, called the master problem and the pricing problem. The master
problem is the original problem, but we usually work with a version of it that contains
only a subset of the original variables and is therefore called the restricted master problem.
The pricing problem, also called the subproblem, uses dual information from the master
problem to identify a column to be generated and added to the master problem. The master
problem is solved again, new dual information is obtained, the pricing problem identifies a
new column, and so on, until the pricing problem cannot identify a new column to add, in
which case the current solution to the master problem is optimal.
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Algorithm D.1 Lagrangian relaxation
1: input initial multipliers λ1, initial constant α0, α-halving constant γ, optimality toler-

ance κ, iteration limit ζ
2: t← 1, LB← −∞, UB←∞, NonImprCtr← 0 . Initialization
3: repeat . Main loop
4: solve (P-LRλ) with input λt to obtain zLR(λt) . Lower bound
5: if zLR(λt) > LB then . Compare to best-known lower bound
6: LB← zLR(λt)

7: NonImprCtr← 0 . Reset non-improvement counter
8: else
9: NonImprCtr← NonImprCtr + 1 . Increment non-impr. counter

10: if NonImprCtr = γ then . Check whether to halve α
11: αt ← αt−1/2

12: NonImprCtr← 0

13: else
14: αt ← αt−1

15: end if
16: end if
17: get feasible solution x for (P), with cost z(x), using the solution to (P-LRλ)

18: (or some other method) . Upper bound
19: if z(x) < UB then . Compare to best-known upper bound
20: UB← z(x)

21: xUB ← x

22: end if
23: ∆t ← αt(UB− zLR(λt))/

∑m
i=1

(
bi −

∑n
j=1 aijxj

)2

. Update multipliers
24: for all i ∈ I do
25: λt+1

i ← λti + ∆t
(
bi −

∑n
j=1 aijxj

)
26: end for
27: t← t+ 1 . Increment t
28: until UB− zLR(λt) ≤ κ or t > ζ . Check for termination
29: return xUB, UB



COLUMN GENERATION 677

D.2.2 Master Problem and Subproblem

Suppose we wish to solve the following LP, which we will refer to as the master problem:

(MP) minimize
∑
j∈J

cjxj (D.18)

subject to
∑
j∈J

ajxj ≥ b (D.19)

xj ≥ 0 ∀j ∈ J, (D.20)

where J is the set of decision variables, cj is a (scalar) objective function coefficient, and
aj and b are vectors of constraint coefficients. Let π ≥ 0 be the vector of dual variables
associated with the constraints (D.19).

Recall that a standard decision rule in the simplex method is to find the variable with
the most negative reduced cost, i.e., to solve

c∗ = min
j∈J

{
cj − πTaj

}
, (D.21)

where the superscript T stands for transpose. The j ∈ J that minimizes (D.21) is selected
as the next variable to enter the basis. If c∗ ≥ 0, i.e., cj − πTaj ≥ 0 for all j ∈ J , then the
current solution to the LP is optimal.

Because we have assumed that the number of columns is very large, it may not be
practical to solve (D.21) explicitly. Therefore, we will work with the restricted master
problem, which considers only a subset J ′ ⊆ J of the columns:

(MP) minimize
∑
j∈J′

cjxj (D.22)

subject to
∑
j∈J′

ajxj ≥ b (D.23)

xj ≥ 0 ∀j ∈ J ′ (D.24)

Let x̄ be the optimal solution to (MP) and let π̄ be the corresponding optimal dual solution.
Suppose we could solve the following pricing problem:

c̄∗ = min
j∈J

{
cj − π̄Taj

}
. (D.25)

(Note that the minimization is over all of J , not just J ′.) If c̄∗ ≥ 0, then the current
solution x̄ is optimal not only for (MP), but also for (MP), since all of the reduced costs
are nonnegative. If, instead, c̄∗ < 0, then the j that attains the minimum in (D.25) will
improve the objective function value of (MP), and therefore we should add it to J ′ and
re-solve (MP).

It seems unrealistic to hope to be able to solve the pricing problem, since we cannot
enumerate the elements of J . However, in many cases, the pricing problem can be solved
by exploiting the structure of the original problem, even without enumerating J . These
are the cases in which column generation is most useful. Examples of tractable pricing
problems include the cutting stock problem (Section D.2.3), the vehicle routing problem
(VRP) (Section 11.2.4), and the location model with risk pooling (LMRP) (Section 12.2.7).
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D.2.3 An Example: The Cutting Stock Problem

We next introduce an example to illustrate how column generation works in the context of
a classic operations research (OR) problem: the one-dimensional cutting stock problem,
introduced by Gilmore and Gomory (1965). Paper manufacturers often produce very wide
rolls of paper. Their customers want narrower rolls, so the problem is to determine how to
cut up the wide rolls into smaller ones while minimizing the amount of waste.

Let W be the width of each roll of paper, and let K be the set of available rolls. Let m
be the number of types of rolls that are required by the customers; there is a demand bi for
type i, which has width wi, for i = 1, . . . ,m. We define two sets of decision variables:
yk = 1 if we use roll k ∈ K, 0 otherwise; and xik equals the number of times type i is
cut from roll k. The objective is to minimize the total number of rolls to be cut, while
satisfying all of the customers’ demands.

One way to formulate the cutting stock problem is as follows:

(CS) minimize
∑
k∈K

yk (D.26)

subject to
∑
k∈K

xki ≥ bi ∀i = 1, . . . ,m (D.27)

m∑
i=1

wix
k
i ≤Wyk ∀k ∈ K (D.28)

yk ∈ {0, 1} ∀k ∈ K (D.29)

xki ∈ Z+ ∀k ∈ K, i = 1, ...,m (D.30)

The objective function (D.26) counts the total number of rolls used. Constraints (D.27)
require the total demand of each roll type to be satisfied. Constraints (D.28) ensure that the
total width of the rolls cut from roll k does not exceed W , and that no rolls are cut from k

if yk = 0. Constraints (D.29) and (D.30) are integrality and non-negativity constraints.
The formulation above, given by Kantorovich (1960), is natural and straightforward.

However, it is not practical, because its LP relaxation is very weak. Even for moderately
sized instances, it may take a very long time for an off-the-shelf IP solver to solve (D.26)–
(D.30). Therefore, Gilmore and Gomory (1965) propose an alternative formulation that
treats the cutting stock problem as a set covering problem.

Define a cutting pattern as a collection of roll types and quantities that can be cut from
a single large roll. Let J denote the set of all feasible cutting patterns, and let aij be a
parameter that equals the number of times that roll type i is cut in pattern j. A cutting
pattern is feasible if it satisfies

m∑
i=1

wiaij ≤W (D.31)

aij ∈ Z+ ∀i = 1, ...,m. (D.32)

For example, suppose the width of the original roll isW = 100, and there are two roll types
(i = 1, 2), with demands bi = 10, 20 and widths wi = 25, 15. Pattern 1 might entail the
original roll being cut into three rolls of width w1 and one roll of width w2, in which case
a11 = 3 and a21 = 1. Similarly, the large roll can also be cut into pattern 2, which might
consist of two rolls of width w1 and three of width w2, implying that a12 = 2 and a22 = 3.
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Thus, each cutting pattern j is represented by a column (a1j , a2j , ..., amj)
T . The problem,

of course, is that there is an exponential number of cutting patterns—but let’s ignore that
concern for a moment.

In our new formulation, let xj denote the number of times that cutting pattern j ∈ J is
used, i.e., the number of large rolls that will be cut using pattern j. Then we can reformulate
the cutting stock problem as follows:

(CSE) minimize
∑
j∈J

xj (D.33)

subject to
∑
j∈J

aijxj ≥ bi ∀i = 1, . . . ,m (D.34)

xj ∈ Z+ ∀j ∈ J (D.35)

This formulation is sometimes called the extensive formulation, since it contains many
more decision variables, whereas (CS) is called the compact formulation.

The idea is to solve the LP relaxation of (CSE) using column generation. The LP
relaxation will be our master problem. It turns out that the pricing problem is relatively
easy—it is a knapsack problem. Of course, the LP relaxation may not provide a feasible
integer solution, but it might provide a tight lower bound for the original problem, because
the extensive formulation has a tighter LP bound than the compact formulation does. The
LP relaxation can also be used to develop heuristic solutions to the integer problem.

As we noted above, J is exponentially large. Therefore, we will work with the restricted
master problem, in which the LP relaxation uses only the patterns in J ′ ⊆ J , which is
typically much smaller than J . The restricted master problem is given by:

(CSE) minimize
∑
j∈J′

xj (D.36)

subject to
∑
j∈J′

aijxj ≥ bi ∀i = 1, . . . ,m (D.37)

xj ≥ 0 ∀j ∈ J ′ (D.38)

The initial subset J ′ can be calculated using a simple approach. For example, we might
generate a column for each roll type i, with bW/wic rolls of type i cut from the original
roll, i.e., aii = bW/wic.

We can solve (CSE) using standard LP algorithms. Let π̄ be the vector of optimal dual
variables. Then the reduced cost of a primal variable xj is

1−
m∑
i=1

aij π̄i.

Our task, then, is to identify a column (a cutting pattern) in J \ J ′ that would improve the
objective function of the restricted master problem (CSE) if we were to add it to J ′. Such
a column would have a negative reduced cost. Thus, we would like to solve a problem like
(D.25), but we need to do it without enumerating all of J .

Recall that a cutting pattern is feasible if it satisfies (D.31)–(D.32). We can formulate
an optimization problem for “pricing out” the desired column, i.e., the one with the most
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negative reduced cost. This pricing problem is given by:

minimize 1−
m∑
i=1

π̄iai (D.39)

subject to
m∑
i=1

wiai ≤W (D.40)

ai ∈ Z+ ∀i = 1, . . . ,m, (D.41)

where we replace aij with ai for convenience, and since we are only concerned with
finding one j. Fortunately, (D.39)–(D.41) is easy to solve—it is simply an integer knapsack
problem. (Think of multiplying the objective function by−1 to convert it to a maximization
problem and omitting the constant 1.) Note that the ai are now the decision variables: We
are trying to find a cutting pattern, as defined by the ai, that is feasible and that minimizes
the reduced cost. If the optimal objective function value of (D.39) is negative, then we
have found a new column, defined by the ai, to add to the restricted master problem. On
the other hand, if the optimal objective of the pricing problem is nonnegative, then we
know there is no cutting pattern that has negative reduced cost and that will improve the
restricted master problem. We can conclude that we have found the optimal solution to the
LP relaxation of the (full) master problem.

Moreover, the LP solution can be converted to an integer solution by rounding the
fractional xj up. Since (D.34) holds for the fractional solution, it also holds for the
rounded-up solution.

D.2.4 Column Generation for Integer Programs

Column generation was originally designed for solving linear programs. However, it
can also be used to solve large-scale integer programs together with the classical branch-
and-bound framework. This method is known as branch-and-price. In particular, the
original integer program is converted to an extensive formulation using an approach known
as Dantzig–Wolfe decomposition. The extensive formulation typically has tighter LP
relaxations and often eliminates symmetry. In the branch-and-price algorithm, we use
column generation to solve the LP relaxation at each node of the branch-and-bound tree.
Other aspects are similar to classical branch-and-bound, although the branching strategy
is often somewhat different. A generic procedure for the branch-and-price algorithm is
introduced by Barnhart et al. (1998).

Other practical issues arise when implementing column generation for integer programs.
For example, one must consider how to reformulate the original problem into an appropriate
extensive form so that both the restricted master problem and the pricing subproblem are
tractable. Moreover, the solution process may exhibit a so-called tailing-off effect, in which
the convergence becomes significantly slower after a near-optimal solution is found. For
further discussion on column generation for integer programming, we refer the readers to
tutorials such as Wilhelm (2001) and Lübbecke and Desrosiers (2005).
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M. Çelik, Ö. Ergun, P. Keskinocak, M. Soldner, and J. Swann. Humanitarian applications of supply
chain optimization. In T. Terlaky, M. Anjos, and S. Ahmed, editors, Advances and Trends in
Optimization with Engineering Applications, chapter 36, pages 479–492. SIAM, Philadelphia,
2017.
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terminal, 102
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Hypohamiltonian inequality, 416
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Implicit penalty function, 197
Improvement heuristic, 276, 291, 436–442, 475,

488, 490, 491, 499, 500, 521, 650
exchange, 295, 521
neighborhood search, 303–304
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swap, 295, 300–304

In-transit inventory, see Inventory: in-transit
Inapproximability bound, 451
Increasing generalized failure rate (IGFR), 571
Induction, proof by, 469, 630, 656–657
Infinite horizon, see Inventory model: infinite

horizon
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Influenza vaccine, 370, 625–628
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191, 193
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on-order, 50, 192, 205, 206
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infinite horizon, 47, 89, 105–114, 117–123,
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stochastic, 87–140, 155–182, 187–222,
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with disruptions, 356–364
with multiple suppliers, 372–383
with supply uncertainty, 355–387
with yield uncertainty, 365–372
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policies

optimality of, 88, 123–137, 192
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Kernel method, 18
Kirchhoff’s laws, 623
KKT condition, 376
Knapsack problem

0–1, 297, 483
continuous, 256, 297, 325
integer, 680

Kodak, 203, 217–219
Kruskal’s algorithm, 430, 431

L\-convexity, 138
`1 norm, see Manhattan metric
`2 norm, see Distance: Euclidean
Ladder inequality, 416
Lagrangian decomposition, see Variable splitting
Lagrangian relaxation, 254–256, 272–282, 296–

297, 299–300, 309, 324–326, 331,
342, 345–346, 349, 392–393, 447,
483, 499–502, 669–675, see also In-
dividual problems

bound, 276, 298, 670–672
dual, 597
maximization problem, 674
multiplier, 273, 277–278, 300, 597, 670,

674
stopping criteria, 278, 674
subgradient optimization, 277–278, 300,

672–674
subproblem, 501, 670

Last-mile distribution, 632
Law of total expectation, 112, 157, 377
Lead time, 46, 47, 56, 106–109, 118, 122, 136–

138, 145, 155, 157, 191, 205
demand, see Demand: lead-time
net lead time, 140, 206
safety, 556, 558
stochastic, 157, 167, 181, 185, 189, 202,

356
Leader–follower game, see Stackelberg game
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Least absolute shrinkage and selection operator
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Least unit cost heuristic, 74
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man problem (TSP): Lin–Kernighan
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relaxation, 272, 275–276, 282, 288, 297,

299, 300, 307, 309, 312, 331, 337–
338, 410–411, 413, 416, 447, 449–
451, 467, 473–475, 499, 678–680

Linear regression, 13–14, 18–20, 29, 31
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Linearized power flow, 623
Local search, 489, 493, 501
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165, 235, 276, 512–529

capacitated, 528–529
column generation, 472, 524–527
conic optimization, 527–529
formulation, 516–517
Lagrangian relaxation, 517–523

algorithm (for subproblem), 519
improvement heuristic, 521

notation, 514
objective function, 515–516
problem statement, 514
set covering model, 525

Location–allocation problem, see Facility location
Location–inventory model, 512–529, see also

Location model with risk pooling
(LMRP)

Location–routing problem (LRP), 529–531, 649
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Location-based heuristic, see Vehicle rout-
ing problem (VRP): location-based
heuristic
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multinomial, 34–38
Lognormal distribution, 89, 144, 146

loss function, 146
Loss function, 92, 97–98, 162, 167–169, 382,

662–665
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derivative of, 93, 147
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lognormal distribution, 146
nonstandard normal distribution, 97, 147,

664
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second-order, 167
standard normal distribution, 97, 164, 663
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Lost sales, 48, 81, 88, 136–138, 153, 257, 357,
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discrete time (DTMC), 356, 361, 384, 390

Markov decision process (MDP), 619, 637
Markov random field, 18
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Master problem, 331, 526, 675, 677
Matching, 433, 480

perfect, 410, 433, 434, 436
Material requirements planning (MRP), 541, 550
MATLAB, 22, 98, 278, 300, 382, 666
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Maximal covering location problem (MCLP),
307–309

as special case of p-median, 350
case study, 332–335
Lagrangian relaxation, 309
relationship to p-center problem, 350
with mandatory closeness constraints, 350

Maximum capture (MAXCAP) problem, 315
Maximum flow problem, 415
Maximum margin classifier, 21
Maxisum location problem, 314, 346
McGriff Treading Company, 584–586
Meals on Wheels, 453–455
Mean absolute deviation (MAD), 15
Mean absolute percentage error (MAPE), 16, 39
Mean squared error (MSE), 15
Mean–variance objective, 387
Memetic algorithm, 491, 493
Memoryless property, 358
Mercator projection, 305
Metaheuristic, 295, 304, 309, 331, 407, 430,

488–493, 500–502, 624, see also In-
dividual metaheuristic types

METRIC model, 202
Metric TSP, see Traveling salesman problem

(TSP): metric
Miller–Tucker–Zemlin constraints, 459
Minimax, 312, 320

-cost model, 321
-regret model, 321

Minimax fixed-charge location problem (MFLP),
320–321

formulation, 320
Minimum order quantity, 153, 185
Minimum spanning tree (MST), 417, 430, 433,

434, 436, 442, 443
bound for TSP, 442
heuristic for TSP, 430–434, 458
Kruskal’s algorithm, 430, 431
Prim’s algorithm, 430, 431

Minimum-cut problem, 413
Minisum location problem, 295–296
Mixed-integer programming (MIP), 72–73, 324,

501, 616, 635
Mixture models, 18
Mona Lisa, 453
Mosek, 527
Moving average, 6–7, 99, 100, 140, 543

forecast error, 16–17
weighted, 7

Moving standard deviation, 99
Multi-objective optimization, 219, 393
Multicommodity network flow problem, 331
Multiobjective optimization, 637–638
Mutation, 491, 493
Myopic policy, 127

Nash equilibrium, 315, 547, 564–565, 592, 605
Nash, John, 564

National Academy of Engineering, 625
National Academy of Medicine, 625
Natural gas supply chain, 639–641
Nearest insertion heuristic, see Traveling sales-

man problem (TSP): nearest insertion
heuristic

Nearest neighbor heuristic, see Traveling sales-
man problem (TSP): nearest neighbor
heuristic

Negative part (of number), 661
Neighborhood search heuristic, 276, 303–304,

336, 350, 489
Net lead time (NLT), 140, 206, 219
Network design, see Supply chain network design
Network distance, 271
Neural network, 22–23, 489
Newsboy problem, see Newsvendor problem
Newsvendor problem, 90–102, 106, 174, 257,

376, 514, 564, 621–623, 625, 629
cooperative, 146
cost function, 92–93, 158, 196, 231, 567,

620
critical ratio, 94
discrete demand distribution, 95, 101–102,

146, 178
explicit formulation, 95–96, 146, 374, 566
forecasting, 99
implicit formulation, 91–95, 146
infinite horizon, 105, 629
nonzero starting inventory level, 99
normally distributed demand, 97–99
optimal solution, 93, 158, 165, 547
Poisson distributed demand, 147
profit maximization, 95
type-1 service level, 94, 377
with disruptions, 360–364
with multiple suppliers, 372–383
with yield uncertainty, 369–372, 376, 626

Node design, see Supply chain network design:
node design

Node expansion, see also Process flexibility
guideline, 248
ratio, 248

Nonlinear integer program (NLIP), 516
Nonlinear optimization (NLP), 616
Normal distribution, 89, 97–99, 106, 108, 139,

165, 181, 204, 206, 231, 370, 571
in Excel and MATLAB, 666
loss function, 97, 147, 663–664
standard, 231, 662

NP-complete, 331, 404, 417, 499
NP-hard, 76, 210, 269, 272, 297, 299, 306, 308,

312, 315, 319, 324, 331, 404, 408,
410, 416, 451, 467, 471, 474, 499,
529, 531, 535, 638

Obnoxious facility location, see Undesirable fa-
cility location

Offered load, 183
On-hand inventory, see Inventory: on-hand
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On-order inventory, see Inventory: on-order
One-warehouse, multiple-retailer (OWMR) sys-

tem, 202–203, 559
algorithms for, 202
deterministic, 57

Open chain, 249, 251–252
Operational decision, 4, 511
Operations research (OR), 2, 269, 322, 404, 464,

501, 615, 678
Optimal power flow (OPF) problem, 616, 624
Optimization-by-simulation, 243
Or-opt heuristic, see Traveling salesman problem

(TSP): Or-opt heuristic
Order batching, 140, 541, 548–551, 554
Order cycle, 48, 109, 110, 159, 357, 360, see

also Cycle length
Order quantity, 52, 53, 63, 65, 71, 155, 355, see

also Individual inventory problems
Order-up-to level, 103, 115, see also Base-stock

level
Order-up-to policy, see Base-stock policy
Ordering capacity, 150
ORION (UPS route-optimization system), 464,

501–502
Outdate cost, 629
Overage cost, see Holding cost

P vs. NP, 406, 416, 458
p-center problem (pCP), 309–313, 348

absolute, 311, 313, 348
relationship to maximal covering location

problem, 350
relationship to set covering location prob-

lem, 312
vertex, 311, 348

p-dispersion problem, 314
p-hub median problem, 316
p-median problem (pMP), 272, 283, 290, 298–

304, 316, 350
exact algorithms, 299–300
formulation, 298–299
heuristics, 300–304
Lagrangian relaxation, 299–300, 349
LP relaxation, 338

p-neighborhood, 429, 430, 440
Parallel computing, 453, 490, 501
Pareto

curve, see Trade-off curve
optimal, 564–565

Part period balancing, 74
Partial expectation, 667
Passenger screening, 635–637
Path inequality, 416
Penalty cost, see Stockout cost
Perfect matching, see Matching: perfect
Periodic review, see Inventory model: periodic

review
Perishability, 47, 48, 90, 91, 115, 628–631
Philips Electronics, 556–559

Piecewise-linear function, 101, 363, 626, 673
Planning horizon, 47, 89
Plug-in hybrid electric vehicle (PHEV), 617
PMX operator, 492
Point-of-sale (POS), 553
Poisson distribution, 89, 147, 177, 518

loss function, 665
normal approximation, 89

Poisson process, 89, 117, 155, 517
compound, 89, 156

Polynomial-time algorithm, 38, 210, 299, 313,
411, 471

Polynomial-time approximation scheme (PTAS),
451

Population search, 489
Positive part (of number), 661
Postponement, 223, 236–237, 258, see also Risk-

pooling effect
relationship to risk pooling, 236–237

Power approximation, 122–123, 559
Power distribution, 572
Power-of-two policy, 57–60, 514

error bound, 58, 80
Predecessor, 188, 189, 210, 211
Price speculation, 47, 541, 551–552, 554–555
Pricing problem, 501, 527, 675, 677
Prim’s algorithm, 430, 431
Primal algorithm, 594
Primal–dual algorithm, 282, 291, 594
Printed circuit board, 453, 557
Prisoner’s dilemma, 565
Probit model, 34
Process flexibility, 243–256

dedicated system, 245
design guidelines, 245–248
full-flexibility, 245
optimization model, 253–256

Procter & Gamble (P&G), 222–223, 404, 539,
554

Procurement auction, see Auction: reverse
Product proliferation, 223, 244
Production capacity, 47
Projection algorithm, 202
Proof

kinds of statements, 653–654
techniques, 655–657

Pseudopolynomial-time algorithm, 210
Public housing location, 637–638
Public sector planning, 269, 637–638
Pull system, 217, 219
Purchase cost, 49, 88, 91, 95, 96, 105, 156, 357
Push system, 217, 219
Push–pull boundary, 219
Python, 98

Quantity discount, 46, 60–67, 541, 609
all-units, 60, 62–64
carload, 66
incremental, 60, 64–66
modified all-units, 66–67
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Quantity flexibility contract, see Contract: quan-
tity flexibility

Quasiconcave function, see Unimodal function
Quasiconvex function, 82, 127, 131, 359
Queuing model, 183

(r,Q) policy, 115, 122, 155–180
approximate models with continuous distri-

bution, 161–169
performance of, 169

EOQ+SS approximation, 123, 166–167,
169, 185

EOQB approximation, 166–167, 169, 173,
176–177

exact model with continuous distribution,
123, 156–161, 170–177

algorithm, 172
controllable cost, 172–173
expected cost, 157–159
noncontrollable cost, 172–173
optimality conditions, 159–161
properties of optimal solutions, 170–172
relationship to EOQB, 173–177
sensitivity analysis, 176

exact model with discrete distribution, 177–
180

expected-inventory-level (EIL) approxima-
tion, 161–166, 168, 169, 184, 186,
515

loss function approximation, 167–169
relationship to (s, S) policy, 115, 156
relationship to base-stock policy, 178
service level, 164–166

Radial basis function (RBF), 22
Random forest, 20
Randomization, 303, 478
Rationing game, 540, 546–548, 554
Real-time market, 619–621, 641
Recourse cost, 253
Recovery probability, 361
Recovery rate, 357
Rectilinear metric, 270
Recursive optimization heuristic, 203
Recursive partitioning, 20
Reduced cost, 474, 527, 677, 679
Regression tree, 20–21
Regret, 321, 352
Reinforcement learning (RL), 23
Reliable fixed-charge location problem, 389–394

facility-dependent disruption probabilities,
400

formulation, 391–392
Lagrangian relaxation, 392–393
notation, 390–391
trade-off curves, 393–394

ReLU function, 23
Renewal process, 117
Renewal-reward

process, 117

theorem, 117, 118, 358, 366, 367
Reorder interval, 57, 106, 108–109, 222, 549
Reorder point, 56, 115, 119–120, 156, 165, 181
Reproduction, 491
Reservation payment, 554
Residual, 13, 19, 20
Restriction-decomposition heuristic, 202
Revenue management, 147–148
Revenue sharing contract, see Contract: revenue

sharing
Review period, see Reorder interval
Review type, 47
Ridge regression, 20, 41
Risk-diversification effect, 384–387
Risk-pooling effect, 230–237, 257–258, 356, 384,

385, 513
negative safety stock, 260

Robust optimization, 317, 320
Rolling horizon, 76, 633
Row reduction, 300, 307
(r|p) centroid, 315
(r|Xp) medianoid, 315

(s, S) policy, 114–123, 129–136
continuous demand distribution, 122–123
discrete demand distribution, 118–122
finite horizon, 116, 129–136

DP algorithm, 116, 150
infinite horizon, 117–123, 136

DP algorithm, 149
exact algorithm, 117–122, 149
heuristic, 122–123
power approximation, 122–123, 559
(r,Q) approximation, 122–123

lost sales, 137, 138
nonzero lead time, 118
optimality of, 129–138
ordering capacity, 150
relationship to (r,Q) policy, 115, 156
relationship to base-stock policy, 115
single period, 115–116, 129

S-policy, see Base-stock policy
Safety lead time, 556, 558
Safety stock, 88, 91, 97, 100, 108, 161, 165,

167, 181, 203–208, 211, 217, 219,
222, 223, 230, 232, 260, 364, 369,
513

negative, 91, 260
Salvage value, 91, 95, 257, 374
Sampling distribution, 38
Scenario, 253, 256, 258, 317, 633
Scotsburn Dairy Group, 76–77
Second-order loss function, see Loss function:

second-order
Semiconductor, 30, 38–39, 244, 557
Separation problem, 411, 415, 416, 471
Sequence of events, 72, 90, 205, 207, 238, 562,

566, 617
Serial system, 3, 188, 202, 204, 211

guaranteed-service, 207–210
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stochastic-service, 191–201
exact approach, 193–197, 223
heuristic approach, 223
optimal policy, 192
Shang–Song heuristic, 197–201

Series system, see Serial system
Service level, 4, 109–114, 180, 190, 223, 237,

241–243, 400, 514
for (r,Q) policy, 164–166, 184

type-1, 164–165, 181, 514
type-2, 165

for base-stock policy, 110–114
constraint, 114, 140
type-1, 110
type-2, 110–113, 138, 140

for newsvendor problem
type-1, 94, 377

type-1, 109, 230, 364, 379
type-2, 109, 146

Set covering location problem (SCLP), 306–307,
350, 596, 610

case study, 332–335
relationship to p-center problem, 312

Set covering problem, 472–474, 499, 524, 526,
678

Set packing problem (SPP), 596
Lagrangian relaxation, 597–598

Set partitioning problem, 500, 531, 536, 596
Setup cost, see Fixed cost
Shang–Song heuristic, 197–201, 223
Shortcutting, 431, 433, 434
Shortest path problem, 74, 271
Shortfall, 232, 237, 246, 249

optimization problem, 246
Sigmoid function, 23
Silver–Meal heuristic, 74
Simple linear regression, 13, 18
Simple logistic diffusion model, 38
Simplex method, 276, 283, 594, 677
Simulated annealing, 295, 304, 407, 489, 502
Simulation, 34, 145–146, 225, 243, 245, 247,

384, 546, 552
Simultaneous game, 315
Single-sourcing constraint, 297, 482
Single-stage system, 138, 200, 204–207
Skiadas diffusion model, 38
Sobel, Matthew, 91
Space-filling curve, 500, see Traveling salesman

problem (TSP): space-filling curve
heuristic

Spanning path, 430
Spherical law of cosines, 271, 350
Spline, 20
Spreadsheet, 103, 140, 181
Stackelberg game, 315, 565, 626, see also Con-

tract
Stage, 3, 187–189, 203, 212, 217

demand stage, 210, 211, 214, 223
supply stage, 210

Standard normal distribution, 97, 185, 662–663
fractile, 97
loss function, 97, 164, 663

Stanford University, 138
Star inequality, 416
State of charge, 617–619
State-space relaxation, 468–469
Statistical learning, 18
Steiner tree problem, 290
Stochastic dynamic programming, see Dynamic

programming (DP)
Stochastic fixed-charge location problem (SFLP),

318–320
formulation, 318
Lagrangian relaxation, 319

Stochastic optimization, 257, 317, 318
deterministic equivalent, 318
multistage, 619
two-stage, 253, 257

Stochastic-service model, 189–203, 217, 219–222
Stock-keeping unit (SKU), 76, 223
Stockout, 48, 109, 110, 161, 162, 165, 173, 189,

190, 356, 366, 385
Stockout cost, 50, 88, 95, 156, 157, 161–162,

164, 181, 191, 197, 200, 217, 235,
257, 260, 357, 374

terminal, 102
Storage capacity, 47, 533
Strategic decision, 4, 267, 396, 511
Strategic safety stock placement problem

(SSSPP), 190, 203–222
demand, 204
serial system, 207–210
single stage network, 204–207
tree system, 210–217

dynamic programming, 214, 225
solution method, 211–214

Subgradient optimization, 277–278, 300, 326,
393, 446, 447, 597, 672–674

stochastic, 258
Subtour, 406, 407, 427, 437, 449, 466, 493, 531
Subtour-elimination constraint, 406–407, 410–

413, 415, 451, 459, 460, 466, 468,
533

Successor, 188, 189, 210, 211
Superadditive, 596
Supervised learning, 18
Supply chain management definition, 2
Supply chain network design, 290, 321–332

arc design, 73, 329–332
node design, 322–326
software, 322

Supply uncertainty, 355–387, 616
Supply-curve auction, 609
Support graph, 413
Support vector machine (SVM), 21–22
Support vector regression (SVR), 22
Susceptance, 624
Susceptible, infectious, and recovered (SIR)

model, 626
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Swap heuristic, 276, 295, 300–304, 316, 335,
336, 350, 521

Sweep heuristic, see Vehicle routing problem
(VRP): sweep heuristic

Tabu search, 295, 331, 407, 430, 489–491, 493,
501

TABUROUTE heuristic, 490–491, 501
Tactical decision, 4, 396, 511
Tauber Manufacturing Institute, 181
Technion—Israel Institute of Technology, 257
Technische Universiteit Eindhoven, 557
Telecommunications, 269, 316, 322, 331, 595
Terminal cost function, 102–103, 124, 126–127,

129, 136, 153, 619, 620
Texas A&M University, 534
Third-party logistics (3PL), 554
Time window, 465, 499–500, see also Vehicle

routing problem (VRP): with time
windows

Tire retreading, 584–586
Toyota, 395
Toys “R” Us, 5
Trade-off curve, 219, 393–394, 638

weighting method, 394, 638
Transfer payment, 563, 567, 568, 578, 581
Transportation cost, 235, 267, 270
Transportation Security Administration (TSA),

635, 636
Transshipment, 237–243, 262
Traveling salesman problem (TSP), 403–455, 463,

465, 472, 480, 482–484, 490, 492,
493, 495, 498–500, 633, 649

4/3 conjecture, 450–451
2-matching relaxation, 410, 449–451
2-opt heuristic, 437–438, 440, 442, 456,

488, 493
3-opt heuristic, 437–438, 456
applications, 404, 452
approximation bounds, 451
asymmetric, 460
bounds, 442–451
branch-and-bound algorithm, 408–410, 447
branch-and-cut algorithm, 410–416, 452,

471
case study, 453–455
cheapest insertion heuristic, 422, 423, 456,

460, 534
Christofides’ heuristic, 422, 433–436, 450,

456, 458
constant, 451, 460, 498
construction heuristics, 416–437, 455, 456
control zones, 449–450, 461
convex hull heuristic, 425
dynamic programming algorithm, 408, 468
Euclidean, 425, 437, 449, 451, 452, 458–

460
exact algorithms, 408–416, 438

farthest insertion heuristic, 423–425, 456,
481

for VRP bounds, 495–497
formulation, 406–407, 466
generalized (GTSP), 650
generalized insertion (GENI) heuristic,

427–430, 440, 442, 458, 460, 490,
501

GENIUS heuristic, 442
greatest angle insertion heuristic, 427
greedy heuristic, 461
history, 405
improvement heuristics, 436–442, 456, 458,

475
integrality gap, 450–451
Lin–Kernighan heuristic, 438, 440, 442,

452, 500
metaheuristics, 407, 430
metric, 406, 451
minimum spanning tree heuristic, 430–434,

456
nearest insertion heuristic, 419–423, 456
nearest neighbor heuristic, 417–419, 456,

460
NP-hard, 404, 408, 451
Or-opt heuristic, 438–440, 456, 488, 499
periodic, 501
polynomial-time approximation scheme

(PTAS), 451
prize-collecting, 460, 501
problem statement, 404
relationship to Hamiltonian cycle problem,

404, 417
space-filling curve heuristic, 453–455
square-root approximation, 442, 451–452,

460, 497, 498, 649
symmetric, 406, 408
unstringing and stringing (US) heuristic,

430, 440–442, 488, 490
with time windows, 501
world records, 452–453

Tree system, 189, 203, 222, 299, 313, 321, 348
guaranteed-service, 210–217

Tree-based model, 20–21
Triangle inequality, 238, 406, 416–418, 420, 431,

434, 450, 458, 460, 465
Trucking industry, 397, 584–586
Truckload (TL) delivery, 464, 554
Tsinghua University, 639
TSPLIB, 463
Two-moment approximation, 202

Uncapacitated fixed-charge location problem
(UFLP), 269–295, 297, 324, 474,
529, 636, 638

DUALOC algorithm, 282–291
formulation, 270–272
genetic algorithm, 491–492
heuristics, 291–295
Lagrangian relaxation, 272–282, 345–346

alternate relaxation, 281–282
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lower bound, 274–276
subproblem, 273
updating the multipliers, 277–278
upper bound, 276
variable fixing, 280–281

LP relaxation, 337–338
neighborhood search heuristic, 489
partial assignment, 338
problem statement, 269–270

Uncapacitated lot-sizing (ULS) model, see
Wagner–Whitin model

Underage cost, see Stockout cost
Undesirable facility location, 314–315
UNESCO World Heritage List, 334
Uniform distribution, 158

discrete, 177
loss function, 147

Unimodal function, 81, 127, 571, 573
Unit commitment (UC) problem, 616, 619
University of Alabama, 584
University of California, Berkeley, 639
University of Michigan, 181
Unsupervised learning, 18
UPS, 464, 501–502, 554
Upstream, 3, 189, 213
US heuristic, see Traveling salesman problem

(TSP): unstringing and stringing (US)
heuristic

Utility, see Consumer utility

Vaccine, 368–370, 625–628
Valid inequality, 413–415, 459, 468, 471, 472,

507
Variable neighborhood search (VNS), 304, 430
Variable splitting, 297, 349–350, 499
Vehicle routing problem (VRP), 403, 463–502,

529, 531, 633, 650
branch-and-bound algorithm, 469–471, 475
branch-and-cut algorithm, 471–472, 475
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Chvátal, V. 410, 416, 453
Ciarallo, F. W. 356
Clark, A. J. 189, 192, 196
Clarke, G. 475
Clerkx, M. 557–559
Coelho, L. C. 512, 531, 533, 534
Coffman, E. G. 485, 487, 498
Cohon, J. L. 394, 638
Collins, R. L. 453
Colson, B. 315
Combs, K. 395
Compton, W. D. 625
Conejo, A. J. 624
Cook, W. J. 404–406, 410, 416, 438, 449, 450,

452, 453
Corbett, C. J. 231
Cordeau, J.-F. 464, 484, 487, 489–491, 499,

501, 512, 531, 533, 534
Cornuejols, G. 273, 297, 299, 467
Costa, A. M. 331
Costa, A. P. C. 624
Cotter, A. L. 616
Coullard, C. R. 281, 513, 514, 516, 523, 524,

528, 529, 531
Council of Supply Chain Management

Professionals 2, 403
Craig, C. S. 316
Crainic, T. G. 331, 489
Cramton, P. 602, 604, 606, 608
Croes, G. A. 437



AUTHOR INDEX 727

Crowder, H. 413
Cui, T. 390
Cunningham, W. H. 416
Currier, A. B. 616

Dada, M. 372, 375
Dahleh, M. 619
Dantzig, G. B. 410, 452, 454, 463, 675
Dasci, A. 316
Daskin, M. S. 247, 269, 278, 281, 306, 307,

313, 317, 318, 387, 390, 478, 513, 514, 516,
523, 524, 528, 529, 531

d’Aspremont, C. 315
Daughety, A. 315
Davari, S. 309
Davenport, A. J. 609
Davenport, T. 502
Davis, P. 297
Davis, T. 111, 112
Dawande, M. 138
de Kok, A. G. 189, 191, 564, 572
de Kok, T. G. 203, 557–559
de Vries, S. 595
De Wolf, D. 641
Dearing, P. M. 313
Deif, I. 500
Deneault, S. 440
DeNegre, S. 315
Deng, T. 639, 641
Desaulniers, G. 499, 500
DesMarteau, K. 244
Desrochers, M. 466, 474, 480, 499
Desrosiers, J. 474, 499, 500, 680
Disney, S. M. 541
Drake, R. 584
Drexl, M. 529
Drezner, Z. 269, 298, 315, 317, 331, 541, 546
Druehl, C. T. 29
Drummond, L. M. 501
Dunlop, D. D. 14
Dusonchet, Y. P. 624

Easwaran, G. 534, 535
Edgeworth, F. 91
Edmonds, J. 433
Efroymson, M. A. 272
Ehrhardt, R. 122
Eilon, S. 463, 468
Eiselt, H. A. 269, 306, 307, 309, 313, 314, 316
El-Abiad, A. 624
Elliott-Magwood, P. 451
Elloumi, S. 313
Eppen, G. D. 230, 231
Epstein, R. 595
Erdmann, A. 500
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Güllü, R. 360
Gunawardane, G. 317
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Önsel, Ş. 332
Or, I. 438
Orlin, J. B. 331
Osborne, M. J. 564
Osman, I. H. 490, 491
Otto, S. W. 438
Ou, J. 514
Oudjit, A. 290
Ouyang, Y. 390, 615
Owen, S. H. 317, 318
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