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Foreword

Logistics is concerned with the organization, movement and storage of material and
people. The term logistics was first used by the military to describe the activities
associated with maintaining a fighting force in the field and, in its narrowest sense,
describes the housing of troops. Over the years the meaning of the term has grad-
ually generalized to cover business and service activities. The domain of logistics
activities is providing the customers of the system with the right product, in the right
place, at the right time. This ranges from providing the necessary subcomponents for
manufacturing, having inventory on the shelf of a retailer, to having the right amount
and type of blood available for hospital surgeries. A fundamental characteristic of
logistics is its holistic, integrated view of all the activities that it encompasses. So,
while procurement, inventory management, transportation management, warehouse
management and distribution are all important components, logistics is concerned
with the integration of these and other activities to provide the time and space value
to the system or corporation.

Excess global capacity in most types of industry has generated intense competition.
At the same time, the availability of alternative products has created a very demanding
type of customer, who insists on the instantaneous availability of a continuous stream
of new models. So the providers of logistics activities are asked to do more transac-
tions, in smaller quantities, with less lead time, in less time, for less cost, and with
greater accuracy. New trends such as mass customization will only intensify these
demands. The accelerated pace and greater scope of logistics operations has made
planning-as-usual impossible.

Even with the increased number and speed of activities, the annual expenses asso-
ciated with logistics activities in the United States have held constant for the last
several years around ten per cent of the gross domestic product. Given the significant
amounts of money involved and the increased operational requirements, the planning
and control of logistics systems has gained widespread attention from practitioners
and academic researchers alike. To maximize the value in a logistics system, a large
variety of planning decisions has to be made, ranging from the simple warehouse-floor
choice of which item to pick next to fulfil a customer order to the corporate-level deci-
sion to build a new manufacturing plant. Logistics planning supports the full range
of those decisions related to the design and operation of logistics systems.



xiv FOREWORD

There exists a vast amount of literature, software packages, decision support tools
and design algorithms that focus on isolated components of the logistics system or
isolated planning in the logistics systems. In the last two decades, several companies
have developed enterprise resource planning (ERP) systems in response to the need of
global corporations to plan their entire supply chain. In their initial implementations,
the ERP systems were primarily used for the recording of transactions rather than
for the planning of resources on an enterprise-wide scale. Their main advantage
was to provide consistent, up-to-date and accessible data to the enterprise. In recent
years, the original ERP systems have been extended with advanced planning systems
(APSs). The main function of APSs is for the first time the planning of enterprise-
wide resources and actions. This implies a coordination of the plans among several
organizations and geographically dispersed locations.

So, while logistics planning and control requires an integrated, holistic approach,
their treatment in courses and textbooks tends to be either integrated and qualita-
tive or mathematical and very specific. This book bridges the gap between those
two approaches. It provides a comprehensive and modelling-based treatment of the
complete distribution system and process, including the design of distribution cen-
tres, terminal operations and transportation operations. The three major components
of logistics systems—inventory, transportation and facilities—are each examined in
detail. For each topic the problem is defined, models and solution algorithms are
presented that support computer-assisted decision-making, and numerous applica-
tion examples are provided. The book concludes with an extensive set of case studies
that illustrate the application of the models and algorithms in practice. Because of
its rigorous mathematical treatment of real-world planning and control problems in
logistics, the book will provide a valuable resource to graduate and senior undergrad-
uate students and practitioners who are trying to improve logistics operations and
satisfy their customers.

Marc Goetschalckx
Georgia Institute of Technology

Atlanta, May 2003



Preface

Logistics is key to the modern economy. From the steel factories of Pennsylvania
to the port of Singapore, from the Nicaraguan banana fields to postal delivery and
solid waste collection in any region of the world, almost every organization faces the
problem of getting the right materials to the right place at the right time. Increasingly
competitive markets are making it imperative to manage logistics systems more and
more efficiently.

This textbook grew out of a number of undergraduate and graduate courses on
logistics and supply chain management that we have taught to engineering, computer
science, and management science students.The goal of these courses is to give students
a solid understanding of the analytical tools available to reduce costs and improve
service levels in logistics systems. For several years, the lack of a suitable textbook
forced us to make use of a number of monographs and scientific papers which tended to
be beyond the level of most students. We therefore committed ourselves to developing
a quantitative textbook, written at a more accessible level.

The book targets both an educational audience and practitioners. It should be appro-
priate for advanced undergraduate and graduate courses in logistics, operations man-
agement, and supply chain management. It should also serve as a reference for prac-
titioners in consulting as well as in industry. We make the assumption that the reader
is familiar with the basics of operations research, probability theory and statistics.
We provide a balanced treatment of sales forecasting, logistics system design, inven-
tory management, warehouse design and management, and freight transport planning
and control. In the final chapter we present some insightful case studies, taken from
the scientific literature, which illustrate the use of quantitative methods for solving
complex logistics decision problems.

In our text every topic is illustrated with a numerical example so that the reader
can check his or her understanding of each concept before going on to the next one.
In addition, a concise annotated bibliography at the end of each chapter acquaints the
reader with the state of the art in logistics.
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Problems and Website

This textbook contains questions and problems at the end of every chapter. Some
are discussion questions while others focus on modelling or algorithmic issues. The
answers to these problems are available on the book’s website

http://wileylogisticsbook.dii.unile.it,

which also contains additional material (FAQs, software, further modelling exercises,
links to other websites, etc.).
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1

Introducing Logistics Systems

1.1 Introduction

Logistics deals with the planning and control of material flows and related information
in organizations, both in the public and private sectors. Broadly speaking, its mission
is to get the right materials to the right place at the right time, while optimizing a
given performance measure (e.g. minimizing total operating costs) and satisfying a
given set of constraints (e.g. a budget constraint). In the military context, logistics is
concerned with the supply of troops with food, armaments, ammunitions and spare
parts, as well as the transport of troops themselves. In civil organizations, logistics
issues are encountered in firms producing and distributing physical goods. The key
issue is to decide how and when raw materials, semi-finished and finished goods
should be acquired, moved and stored. Logistics problems also arise in firms and
public organizations producing services. This is the case of garbage collection, mail
delivery, public utilities and after-sales service.

Significance of logistics. Logistics is one of the most important activities in modern
societies. A few figures can be used to illustrate this assertion. It has been estimated
that the total logistics cost incurred by USA organizations in 1997 was 862 billion
dollars, corresponding to approximately 11% of the USA Gross Domestic Product
(GDP). This cost is higher than the combined annual USA government expenditure in
social security, health services and defence. These figures are similar to those observed
for the other North America Free Trade Agreement (NAFTA) countries and for the
European Union (EU) countries. Furthermore, logistics costs represent a significant
part of a company’s sales, as shown in Table 1.1 for EU firms in 1993.

Logistics systems. A logistics system is made up of a set of facilities linked by
transportation services. Facilities are sites where materials are processed, e.g. manu-
factured, stored, sorted, sold or consumed. They include manufacturing and assembly
centres, warehouses, distribution centres (DCs), transshipment points, transportation
terminals, retail outlets, mail sorting centres, garbage incinerators, dump sites, etc.

Introduction to Logistics Systems Planning and Control G. Ghiani, G. Laporte and R. Musmanno
© 2004 John Wiley & Sons, Ltd ISBN: 0-470-84916-9 (HB) 0-470-84917-7 (PB)



2 INTRODUCING LOGISTICS SYSTEMS

Table 1.1 Logistics costs (as a percentage of GDP) in EU countries
(T, transportation; W, warehousing; I, inventory; A, administration).

Sector T W I A Total

Food/beverage 3.7 2.2 2.8 1.7 10.4
Electronics 2.0 2.0 3.8 2.5 10.3
Chemical 3.8 2.3 2.6 1.5 10.2
Automotive 2.7 2.3 2.7 1.2 8.9
Pharmaceutical 2.2 2.0 2.5 2.1 8.8
Newspapers 4.7 3.0 3.6 2.1 13.4

Transportation services move materials between facilities using vehicles and equip-
ment such as trucks, tractors, trailers, crews, pallets, containers, cars and trains. A few
examples will help clarify these concepts.

ExxonMobil Chemical is one of the largest petrochemical companies in the world.
Its products include olefins, aromatics, synthetic rubber, polyethylene, polypropylene
and oriented polypropylene packaging films. The company operates its 54 manufac-
turing plants in more than 20 countries and markets its products in more than 130
countries.

The plant located in Brindisi (Italy) is devoted to the manufacturing of oriented
polypropylene packaging films for the European market. Films manufactured in Brin-
disi that need to be metallized are sent to third-party plants located in Italy and in
Luxembourg, where a very thin coating of aluminium is applied to one side. As a
rule, Italian end-users are supplied directly by the Brindisi plant while customers
and third-party plants outside Italy are replenished through the DC located in Milan
(Italy). In particular, this warehouse supplies three DCs located in Herstal, Athus and
Zeebrugge (Belgium), which in turn replenish customers situated in Eastern Europe,
Central Europe and Great Britain, respectively. Further details on the ExxonMobil
supply chain can be found in Section 8.2.

The Pfizer Pharmaceuticals Group is the largest pharmaceutical corporation in the
world. The company manufactures and distributes a broad assortment of pharmaceu-
tical products meeting essential medical needs, a wide range of consumer products for
self-care and well-being, and health products for livestock and pets. The Pfizer logis-
tics system comprises 58 manufacturing sites in five continents producing medicines
for more than 150 countries. Because manufacturing pharmaceutical products requires
highly specialized and costly machines, each Pfizer plant produces a large amount of
a limited number of pharmaceutical ingredients or medicines for an international mar-
ket. For example, ALFA10, a cardiovascular product, is produced in a unique plant for
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an international market including 90 countries. For this reason, freight transportation
plays a key role in the Pfizer supply chain. A more detailed description of the Pfizer
logistics system is given in Section 8.3.

Railion is an international carrier, based in Mainz (Germany), whose core business
is rail transport. Railion transports a vast range of products, such as steel, coal, iron
ore, paper, timber, cars, washing machines, computers as well as chemical products. In
2001 the company moved about 500 000 containers. Besides offering high-quality rail
transport, Railion is also engaged in the development of integrated logistics systems.
This involves close cooperation with third parties, such as road haulage, waterborne
transport, forwarding and transshipment companies. More details on the freight rail
transportation system at Railion can be found in Section 8.4.

The Gioia Tauro marine terminal is the largest container transshipment hub on the
Mediterranean Sea and one of the largest in the world. In 1999, its traffic amounted to
2253 million Twenty-foot Equivalent Units (TEUs). The terminal is linked to nearly
50 end-of-line ports on the Mediterranean Sea. Inside the terminal is a railway station
where cars can be loaded or unloaded and convoys can be formed. Section 8.5 is
devoted to an in-depth description of the Gioia Tauro terminal.

The waste management system of the regional municipality of Hamilton-Went-
worth (Canada) is divided into two major subsystems: the solid waste collection
system and the regional disposal system. Each city or town is in charge of its own
kerbside garbage collection, using either its own workforce or a contracted service.
On the other hand, the regional municipality is responsible for the treatment and
disposal of the collected wastes. For the purposes of municipal solid waste planning,
the region is divided into 17 districts. The regional management is made up of a
waste-to-energy facility, a recycling facility, a 550 acre landfill, a hazardous waste
depot and three transfer stations. Section 8.6 contains a more detailed description of
this logistics system.

Supply chains. A supply chain is a complex logistics system in which raw materials
are converted into finished products and then distributed to the final users (consumers
or companies). It includes suppliers, manufacturing centres, warehouses, DCs and
retail outlets. Figure 1.1 shows a typical supply chain in which the production and
distribution systems are made up of two stages each. In the production system, com-
ponents and semi-finished parts are produced in two manufacturing centres while
finished goods are assembled at a different plant. The distribution system consists
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Figure 1.1 A supply chain.

of two central distribution centres (CDCs) supplied directly by the assembly cen-
tre, which in turn replenish two regional distribution centres (RDCs) each. Of course,
depending on product and demand characteristics it may be more appropriate to design
a supply chain without separate manufacturing and assembly centres (or even without
an assembly phase), without RDCs or with different kinds of facilities (e.g. cross-
docks, see Section 1.2.2). Each of the transportation links in Figure 1.1 could be
a simple transportation line (e.g. a truck line) or of a more complex transportation
process involving additional facilities (e.g. port terminals) and companies (e.g. truck
carriers). Similarly, each facility in Figure 1.1 comprises several devices and subsys-
tems. For example, manufacturing plants contain machines, buffers, belt conveyors or
other material handling equipment, while DCs include shelves, forklifts or automatic
storage and retrieval systems. Logistics is not normally associated with the detailed
planning of material flows inside manufacturing and assembly plants. Strictly speak-
ing, topics like aggregate production planning and machine scheduling are beyond
the scope of logistics and are not examined in this textbook. The core logistics issues
described in this book are the design and operations of DCs and transportation termi-
nals.

Push versus pull supply chains. Supply chains are often classified as push or pull
systems. In a pull (or make-to-order (MTO)) system, finished products are manu-
factured only when customers require them. Hence, in principle, no inventories are
needed at the manufacturer. In a push (or make-to-stock (MTS)) system, production
and distribution decisions are based on forecasts. As a result, production anticipates
effective demand, and inventories are held in warehouses and at the retailers. Whether
a push system is more appropriate than a pull system depends on product features,
manufacturing process characteristics, as well as demand volume and variability.
MTO systems are more suitable whenever lead times are short, products are costly,
and demand is low and highly variable. In some cases, a mixed approach can be used.
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For example, in make-to-assembly (MTA) systems components and semi-finished
products are manufactured in a push-based manner while the final assembly stage is
pull-based. Hence, the work-in-process inventory at the end of the first stage is used
to assemble the finished product as demand arises. These parts are then assembled as
soon as customer orders are received.

Product and information flows in a supply chain. Products flow through the
supply chain from raw material sources to customers, except for obsolete, damaged
and nonfunctioning products which have to be returned to their sources for repair or
disposal. Information follows a reverse path. It traverses the supply chain backward
from customers to raw material suppliers. In an MTO system, end-user orders are
collected by salesmen and then transmitted to manufacturers who in turn order the
required components and semi-finished products from their suppliers. Similarly, in
an MTS system, past sales are used to forecast future product demand and associated
material requirements.

Product and information flows cannot move instantaneously through the supply
channel. First, freight transportation between raw material sources, production plants
and consumption sites is usually time consuming. Second, manufacturing can take
a long time, not only because of processing itself, but also because of the limited
plant capacity (not all products in demand can be manufactured at once). Finally,
information can flow slowly because order collection, transmission and processing
take time, or because retailers place their orders periodically (e.g. once a week), and
distributors make their replenishment decisions on a periodic basis (e.g. twice a week).

Degree of vertical integration and third-party logistics. According to a classical
economic concept, a supply chain is said to be vertically integrated if its components
(raw material sources, plants, transportation system, etc.) belong to a single firm.
Fully vertically integrated systems are quite rare. More frequently the supply chain
is operated by several independent companies. This is the case of manufacturers
buying raw materials from outside suppliers, or using contractors to perform particular
services, such as container transportation and warehousing. The relationships between
the companies of a supply chain may be transaction based and function specific (as
those illustrated in the previous example), or they can be strategic alliances. Strategic
alliances include third-party logistics (3PL) and vendor-managed resupply. 3PL is a
long-term commitment to use an outside company to perform all or part of a company’s
product distribution. It allows the company to focus on its core business while leaving
distribution to a logistics outsourcer. 3PL is suitable whenever the company is not
willing to invest much in transportation and warehousing infrastructures, or whenever
the company is unable to take advantage of economies of scale because of low demand.
On the other hand, 3PL causes the company to lose control of distribution and may
possibly generate higher logistics costs.

Retailer-managed versus vendor-managed resupply. Traditionally, customers
(both retailers or final consumers) have been in charge of monitoring their inventory
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levels and place purchase orders to vendors (retailer-managed systems). In recent
years, there has been a growth in vendor-managed systems, in which vendors monitor
customer sales (or consumption) and inventories through electronic data interchange
(EDI), and decide when and how to replenish their customers. Vendors are thus able
to achieve cost savings through a better coordination of customer deliveries while
customers do not need to allocate costly resources to inventory management. Vendor-
managed resupply is popular in the gas and soft drink industries, although it is gaining
in popularity in other sectors. In some vendor-managed systems, the retailer owns the
goods sitting on the shelves, while in others the inventory belongs to the vendor. In
the first case, the retailer is billed only at the time where it makes a sale to a customer.

1.2 How Logistics Systems Work

Logistics systems are made up of three main activities: order processing, inventory
management and freight transportation.

1.2.1 Order processing

Order processing is strictly related to information flows in the logistics system and
includes a number of operations. Customers may have to request the products by
filling out an order form. These orders are transmitted and checked. The availability
of the requested items and customer’s credit status are then verified. Later on, items
are retrieved from the stock (or produced), packed and delivered along with their
shipping documentation. Finally, customers have to be kept informed about the status
of their orders.

Traditionally, order processing has been a very time-consuming activity (up to
70% of the total order-cycle time). However, in recent years it has benefited greatly
from advances in electronics and information technology. Bar code scanning allows
retailers to rapidly identify the required products and update inventory level records.
Laptop computers and modems allow salespeople to check in real time whether a
product is available in stock and to enter orders instantaneously. EDI allows companies
to enter orders for industrial goods directly in the seller’s computer without any
paperwork.

1.2.2 Inventory management

Inventory management is a key issue in logistics system planning and operations.
Inventories are stockpiles of goods waiting to be manufactured, transported or sold.
Typical examples are

• components and semi-finished products (work-in-process) waiting to be man-
ufactured or assembled in a plant;
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• merchandise (raw material, components, finished products) transported through
the supply chain (in-transit inventory);

• finished products stocked in a DC prior to being sold;

• finished products stored by end-users (consumers or industrial users) to satisfy
future needs.

There are several reasons why a logistician may wish to hold inventories in some
facilities of the supply chain.

Improving service level. Having a stock of finished goods in warehouses close to
customers yields shorter lead times.

Reducing overall logistics cost. Freight transportation is characterized by econom-
ies of scale because of high fixed costs.As a result, rather than frequently delivering
small orders over long distances, a company may find it more convenient to satisfy
customer demand from local warehouses (replenished at low frequency).

Coping with randomness in customer demand and lead times. Inventories of
finished goods (safety stocks) help satisfy customer demand even if unexpected
peaks of demand or delivery delays occur (due, for example, to unfavourable
weather or traffic conditions).

Making seasonal items available throughout the year. Seasonal products can be
stored in warehouses at production time and sold in subsequent months.

Speculating on price patterns. Merchandise whose price varies greatly during the
year can be purchased when prices are low, then stored and finally sold when prices
go up.

Overcoming inefficiencies in managing the logistics system. Inventories may be
used to overcome inefficiencies in managing the logistics system (e.g. a distri-
bution company may hold a stock because it is unable to coordinate supply and
demand).

Holding an inventory can, however, be very expensive for a number of reasons
(see Table 1.1). First, a company that keeps stocks incurs an opportunity (or capital)
cost represented by the return on investment the firm would have realized if money
had been better invested. Second, warehousing costs must be incurred, whether the
warehouse is privately owned, leased or public (see Chapter 4 for a more detailed
analysis of inventory costs).

The aim of inventory management is to determine stock levels in order to minimize
total operating cost while satisfying customer service requirements. In practice, a good
inventory management policy should take into account five issues: (1) the relative
importance of customers; (2) the economic significance of the different products;
(3) transportation policies; (4) production process flexibility; (5) competitors’policies.



8 INTRODUCING LOGISTICS SYSTEMS

(a)

Plants

Retailers

(b)

Plants

Warehouses

Retailers

(c)

Plants

Crossdocks

Retailers

Figure 1.2 Distribution strategies: (a) direct shipment; (b) warehousing; (c) crossdocking.

Inventory and transportation strategies. Inventory and transportation policies are
intertwined. When distributing a product, three main strategies can be used: direct
shipment, warehousing, crossdocking.

If a direct shipment strategy is used, goods are shipped directly from the manufac-
turer to the end-user (the retailers in the case of retail goods) (see Figure 1.2a). Direct
shipments eliminate the expenses of operating a DC and reduce lead times. On the
other hand, if a typical customer shipment size is small and customers are dispersed
over a wide geographic area, a large fleet of small trucks may be required. As a result,
direct shipment is common when fully loaded trucks are required by customers or
when perishable goods have to be delivered timely.

Warehousing is a traditional approach in which goods are received by warehouses
and stored in tanks, pallet racks or on shelves (see Figure 1.2b). When an order arrives,
items are retrieved, packed and shipped to the customer. Warehousing consists of four
major functions: reception of the incoming goods, storage, order picking and shipping.
Out of these four functions, storage and order picking are the most expensive because
of inventory holding costs and labour costs, respectively.

Crossdocking (also referred to as just-in-time distribution) is a relatively new
logistics technique that has been successfully applied by several retail chains (see
Figure 1.2c). A crossdock is a transshipment facility in which incoming shipments
(possibly originating from several manufacturers) are sorted, consolidated with other
products and transferred directly to outgoing trailers without intermediate storage or
order picking. As a result, shipments spend just a few hours at the facility. In pre-
distribution crossdocking, goods are assigned to a retail outlet before the shipment
leaves the vendor. In post-distribution crossdocking, the crossdock itself allocates
goods to the retail outlets. In order to work properly, crossdocking requires high
volume and low variability of demand (otherwise it is difficult to match supply and
demand) as well as easy-to-handle products. Moreover, a suitable information system
is needed to coordinate inbound and outbound flows.
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Centralized versus decentralized warehousing. If a warehousing strategy is used,
one has to decide whether to select a centralized or a decentralized system. In central-
ized warehousing, a single warehouse serves the whole market, while in decentralized
warehousing the market is divided into different zones, each of which is served by
a different (smaller) warehouse. Decentralized warehousing leads to reduced lead
times since warehouses are much closer to customers. On the other hand, centralized
warehousing is characterized by lower facility costs because of larger economies of
scale. In addition, if customers’ demands are uncorrelated, the aggregate safety stock
required by a centralized system is significantly smaller than the sum of the safety
stocks in a decentralized system. This phenomenon (known as risk pooling) can be
explained qualitatively as follows: under the above hypotheses, if the demand from a
customer zone is higher than the average, then there will probably be a customer zone
whose demand is below average. Hence, demand originally allocated to a zone can
be reallocated to the other and, as a result, lower safety stocks are required. A more
quantitative explanation of risk pooling will be given in Section 2.2. Finally, inbound
transportation costs (the costs of shipping the goods from manufacturing plants to
warehouses) are lower in a centralized system while outbound transportation costs
(the costs of delivering the goods from the warehouses to the customers) are lower in
a decentralized system.

1.2.3 Freight transportation

Freight transportation plays a key role in today’s economies as it allows production
and consumption to take place at locations that are several hundreds or thousands
of kilometres away from each other. As a result, markets are wider, thus stimulating
direct competition among manufacturers from different countries and encouraging
companies to exploit economies of scale. Moreover, companies in developed countries
can take advantage of lower manufacturing wages in developing countries. Finally,
perishable goods can be made available in the worldwide market.

Freight transportation often accounts for even two-thirds of the total logistics cost
(see Table 1.1) and has a major impact on the level of customer service. It is there-
fore not surprising that transportation planning plays a key role in logistics system
management.

A manufacturer or a distributor can choose among three alternatives to transport its
materials. First, the company may operate a private fleet of owned or rented vehicles
(private transportation). Second, a carrier may be in charge of transporting materials
through direct shipments regulated by a contract (contract transportation). Third,
the company can resort to a carrier that uses common resources (vehicles, crews,
terminals) to fulfil several client transportation needs (common transportation).

In the remainder of this section, we will illustrate the main features of freight
transportation from a logistician’s perspective. A more detailed analysis is provided
in Chapters 6 and 7.
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Figure 1.3 Channels of distribution.

Distribution channels. Bringing products to end-users or into retail stores may be
a complex process. While a few manufacturing firms sell their own products to end-
users directly, in most cases intermediaries participate in product distribution. These
can be sales agents or brokers, who act for the manufacturer, or wholesalers, who
purchase products from manufacturers and resell them to retailers, who in turn sell
them to end-users. Intermediaries add a markup to the cost of a product but on the
whole they benefit consumers because they provide lower transportation unit costs
than manufacturers would be able to achieve.A distribution channel is a path followed
by a product from the manufacturer to the end-user. A relevant marketing decision
is to select an appropriate combination of distribution channels for each product.
Figure 1.3 illustrates the main distribution channels. Channels 1–4 correspond to
consumer goods while channels 5–7 correspond to industrial goods. In channel 1, there
are no intermediaries. This approach is suitable for a restricted number of products
(cosmetics and encyclopaedias sold door-to-door, handicraft sold at local flea markets,
etc.). In channel 2, producers distribute their products through retailers (e.g. in the tyre
industry). Channel 3 is popular whenever manufacturers distribute their products only
in large quantities and retailers cannot afford to purchase large quantities of goods
(e.g. in the food industry). Channel 4 is similar to channel 3 except that manufacturers
are represented by sales agents or brokers (e.g. in the clothing industry). Channel 5 is
used for most industrial goods (raw material, equipment, etc.). Goods are sold in large
quantities so that wholesalers are useless. Channel 6 is the same as channel 5, except
that manufacturers are represented by sales agents or brokers. Finally, channel 7 is
used for small accessories (paper clips, etc.).

Freight consolidation. A common way to achieve considerable logistics cost sav-
ings is to take advantage of economies of scale in transportation by consolidating
small shipments into larger ones. Consolidation can be achieved in three ways. First,
small shipments that have to be transported over long distances may be consolidated
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Table 1.2 Main features of the most common containers used for transporting solid goods.

Size Tare Capacity Capacity
Type (m3) (kg) (kg) (m3)

ISO 20 5.899 × 2.352 × 2.388 2300 21 700 33.13
ISO 40 12.069 × 2.373 × 2.405 3850 26 630 67.80

so as to transport large shipments over long distances and small shipments over short
distances (facility consolidation). Second, less-than-truckload pick-up and deliveries
associated with different locations may be served by the same vehicle on a multi-stop
route (multi-stop consolidation). Third, shipment schedules may be adjusted forward
or backward so as to make a single large shipment rather than several small ones
(temporal consolidation).

Modes of transportation. Transportation services come in a large number of vari-
ants. There are five basic modes (ship, rail, truck, air and pipeline), which can be
combined in several ways in order to obtain door-to-door services such as those pro-
vided, for example, by intermodal carriers and small shipment carriers.

Merchandise is often consolidated into pallets or containers in order to protect it and
facilitate handling at terminals. Common pallet sizes are 100×120 cm2, 80×100 cm2,
90×110 cm2 and 120×120 cm2. Containers may be refrigerated, ventilated, closed or
with upper openings, etc. Containers for transporting liquids have capacities between
14 000 and 20 000 l. The features of the most common containers for transporting
solid goods are given in Table 1.2.

When selecting a carrier, a shipper must take two fundamental parameters into
account: price (or cost) and transit time.

The cost of a shipper’s operated transportation service is the sum of all costs asso-
ciated with operating terminals and vehicles. The price of a transportation service is
simply the rate charged by the carrier to the shipper. A more detailed analysis of such
costs is reported in Chapters 6 and 7.Air is the most expensive mode of transportation,
followed by truck, rail, pipeline and ship. According to recent surveys, transportation
by truck is approximately seven times more expensive than by train, which is four
times more costly than by ship.

Transit time is the time a shipment takes to move between its origin to its destination.
It is a random variable influenced by weather and traffic conditions. A comparison
between the average transit times of the five basic modes is provided in Figure 1.4.
One must bear in mind that some modes (e.g. air) have to be used jointly with other
modes (e.g. truck) to provide door-to-door transportation. The standard deviation and
the coefficient of variation (standard deviation over average transit time) of the transit
time are two measures of the reliability of a transportation service (see Table 1.3).

Rail. Rail transportation is inexpensive (especially for long-distance movements),
relatively slow and quite unreliable. As a result, the railroad is a slow mover of raw
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Figure 1.4 Average transit time (in days) as a function of distance (in kilometres)
between origin and destination.

Table 1.3 Reliability of the five basic modes of transportation expressed by the standard
deviation and the coefficient of variation of the transit time.

Ranking Standard deviation Coefficient of variation

1 Pipeline Pipeline
2 Airplane Airplane
3 Truck Train
4 Train Truck
5 Ship Ship

materials (coal, chemicals, etc.) and of low-value finished products (paper, tinned
food, etc.). This is due mainly to three reasons:

• convoys transporting freight have low priority compared to trains transporting
passengers;

• direct train connections are quite rare;

• a convoy must include tens of cars in order to be worth operating.

Truck. Trucks are used mainly for moving semi-finished and finished products.
Road transportation can be truckload (TL) or less-than-truckload (LTL). A TL ser-
vice moves a full load directly from its origin to its destination in a single trip (see
Figure 1.5). If shipments add up to much less than the vehicle capacity (LTL loads), it
is more convenient to resort to several trucking services in conjunction with consol-
idation terminals rather than use direct shipments (see Figure 1.6). As a result, LTL
trucking is slower than TL trucking.

Air. Air transportation is often used along with road transportation in order to pro-
vide door-to-door services. While air transportation is in principle very fast, it is
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Figure 1.6 Example of LTL transportation.

slowed down in practice by freight handling at airports. Consequently, air transporta-
tion is not competitive for short and medium haul shipments. In contrast, it is quite
popular for the transportation of high-value products over long distances.

Intermodal transportation. Using more than one mode of transportation can lead
to transportation services having a reasonable trade-off between cost and transit time.
Although there are in principle several combinations of the five basic modes of trans-
portation, in practice only a few of them turn out to be convenient. The most frequent
intermodal services are air–truck (birdyback) transportation, train–truck (piggyback)
transportation, ship–truck (fishyback) transportation. Containers are the most com-
mon load units in intermodal transportation and can be moved in two ways:

• containers are loaded on a truck and the truck is then loaded onto a train, a ship
or an airplane (trailer on flatcar);
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• containers are loaded directly on a train, a ship or an airplane (container on
flatcar).

1.3 Logistics Managerial Issues

When devising a logistics strategy, managers aim at achieving a suitable compromise
between three main objectives: capital reduction, cost reduction and service level
improvement.

Capital reduction. The first objective is to reduce as much as possible the level of
investment in the logistics system (which depends on owned equipment and invento-
ries). This can be accomplished in a number of ways, for example, by choosing public
warehouses instead of privately owned warehouses, and by using common carriers
instead of privately owned vehicles. Of course, capital reduction usually comes at the
expense of higher operating costs.

Cost reduction. The second objective is to minimize the total cost associated with
transportation and storage. For example, one can operate privately owned warehouses
and vehicles (provided that sales volume is large enough).

Service level improvement. The level of logistics service greatly influences cus-
tomer satisfaction which in turn has a major impact on revenues. Thus, improving the
logistics service level may increase revenues, especially in markets with homogeneous
low-price products where competition is not based on product features.

The level of logistics service is often expressed through the order-cycle time, defined
as the elapsed time between the instant a purchase order (or a service request) is issued
and the time goods are received by the customer (or service is provided to the user). The
order-cycle time is a random variable with a multinomial probability distribution. To
illustrate, the probability density function of the supply chain of Figure 1.1 is depicted
in Figure 1.7. When a retailer outlet issues an order, the following events may occur:

(a) if the goods required by the outlet are available at the associated RDC, the
merchandise will be delivered shortly;

(b) otherwise, the RDC has to resupply its stocks by placing an order to the CDC,
in which case the shipment to the retailer will be further delayed;

(c) if the goods are not available even at the CDC, the plants will be requested to
produce them.

Let pa , pb and pc be the probabilities of events a, b and c, and let fa(t), fb(t), fc(t) be
the (conditional) probability density functions of the order-cycle time in case events
a, b and c occur, respectively. The probability density function of the order-cycle time
is then

f (t) = pafa(t) + pbfb(t) + pcfc(t).
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Figure 1.7 Probability density function of the order-cycle time.

Cost versus level of service relationship. Different logistics systems can be classi-
fied on the basis of classical multi-objective analysis concepts. Each logistics system
is characterized by a level of investment, a cost and a level of service. For example,
a system with privately owned warehouses and fleets can be characterized by a high
level of investment, a relatively low cost and a high level of logistics service. In what
follows the focus will be on the cost–service relationship. System A is said to be
dominated by a system B (see Figure 1.8)) if the cost of A is higher or equal to the
cost of B, the level of service of A is less or equal to the level of service of B and at
least one of these two inequalities holds strictly. For example, in Figure 1.8, alterna-
tive configurations 2, 3, 4 and 5 are dominated by system 1, while 3, 4, 5 and 7 are
dominated by 6. The undominated alternatives are called efficient (or Pareto optimal)
and define the cost versus level of service curve.

Sales versus service relationship. The level of logistics service greatly influences
sales volume (see Figure 1.9). If service is poor, few sales are generated. As service
approaches that of the competition, the sales volume grows. As service is further
improved, sales are captured from competing suppliers (provided that other companies
do not change their logistics system). Finally, if service improvements are carried too
far, sales continue to increase but at a much slower rate. The sales versus service
relationship can be estimated by means of buyer surveys and computer simulations.

Determining the optimal service level. The cost versus level of service and sales
versus level of service relationships can be used to determine the level of service that
maximizes the profit contribution to the firm, as shown in Figure 1.9. The optimal
service level usually lies between the low and high extremes. In practice, a slightly
different approach is often used: first, a customer service level is set; then the logistics
system is designed in order to meet that service level at minimum cost.
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Figure 1.8 Cost versus level of service curve (the level of service is defined as the percentage
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Figure 1.9 Determination of the optimum service level.

1.4 Emerging Trends in Logistics

In recent years, several strategic and technological changes have had a marked impact
on logistics. Among these, three are worthy of mention: globalization, new informa-
tion technologies and e-commerce.

Globalization. An increasing number of companies operate at the world level in
order to take advantage of lower manufacturing costs or cheap raw materials avail-
able in some countries. This is sometimes achieved through acquisitions or strategic
alliances with other firms. As a result of globalization, transportation needs have
increased. More parts and semi-finished products have to be moved between produc-
tion sites, and transportation to markets tends to be more complex and costly. The
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Table 1.4 Main differences between traditional logistics and e-logistics.

Traditional logistics E-logistics

Type of load High volumes Parcels
Customer Known Unknown
Average order value >$1000 <$100
Destinations Concentrated Highly scattered
Demand trend Regular Lumpy

increase in multimodal container transportation is a direct consequence of globaliza-
tion. Also, as a result of globalization, more emphasis must be put on the efficient
design and management of supply chains, sometimes at the world level.

Information technologies. Suppliers and manufacturers make use of EDI. This
enables them to share data on stock levels, timing of deliveries, positioning of in-
transit goods in the supply chain, etc.At the operational level, geographic information
systems (GISs), global positioning systems (GPSs) and on-board computers allow
dispatchers to keep track of the current position of vehicles and to communicate
with drivers. Such technologies are essential to firms engaged in express pick-up and
delivery operations, and to long-haul trucking companies.

E-commerce. An increasing number of companies make commercial transactions
through the internet. It is common to distinguish between business-to-business (B2B)
and business-to-consumers (B2C) transactions. The growth of e-commerce parallels
that of globalization and information technologies. As a result of e-commerce the
volume of goods between producers and retailers should go down while more direct
deliveries should be expected between manufacturers and end-users.

E-commerce leads to a more complex organization of the entire logistics system
(e-logistics), which should be able to manage small- and medium-size shipments to a
large number of customers, sometimes scattered around the world. Furthermore, the
return flow of defective (or rejected) goods becomes a major issue (reverse logistics).
Table 1.4 reports the main differences between traditional logistics and e-logistics.

In an e-logistics system different approaches for operating warehouses and distri-
bution are generally adopted. The virtual warehouse and the Points Of Presence In
The Territory (POPITT) are just a few examples. A virtual warehouse is a facility
where suppliers and distributors keep their goods in stock in such a way that the
e-commerce company can fulfil its orders. A POPITT is a company-owned facility
where customers may go either for purchasing and fetching the ordered goods, or for
returning defective products. Unlike traditional shops, a POPITT only stores already
sold goods waiting to be picked up by customers and defective products waiting to be
returned to the manufacturers. This solution simplifies distribution management but
reduces customer service level since it does not allow for home deliveries.



18 INTRODUCING LOGISTICS SYSTEMS

1.5 Logistics Decisions

When designing and operating a logistics system, one needs to address several fun-
damental issues. For example, should new facilities (manufacturing and assembly
centres, CDCs, RDCs, etc.) be opened? What are their best configuration, size and
location? Should any existing facility be divested, displaced or sized down? Where
should materials and components be acquired and stored? Where should manufactur-
ing and assembly take place? Where should finished goods be stored? Should ware-
houses be company-owned or leased? Where should spare parts be stocked? How
should production be planned? How should warehouses operate? (Should goods be
stored in racks or should they be stacked? Should goods be retrieved by a team of
human order pickers or by automated devices?) When and how should each stock-
ing point be resupplied? What mode of transportation should be used to transport
products? Should vehicles be company-owned or leased? What is the best fleet size?
How should shipment be scheduled? How should vehicles be routed? Should some
transportation be carried out by common carriers?

Logistics decisions are traditionally classified as strategic, tactical and operational,
according to the planning horizon.

Strategic decisions. Strategic decisions have long-lasting effects (usually over
many years). They include logistics systems design and the acquisition of costly
resources (facility location, capacity sizing, plant and warehouse layout, fleet sizing).
Because data are often incomplete and imprecise, strategic decisions generally use
forecasts based on aggregated data (obtained, for example, by grouping individual
products into product families and aggregating individual customers into customer
zones).

Tactical decisions. Tactical decisions are made on a medium-term basis (e.g. month-
ly or quarterly) and include production and distribution planning, as well as resource
allocation (storage allocation, order picking strategies, transportation mode selection,
consolidation strategy). Tactical decisions often use forecasts based on disaggregated
data.

Operational decisions. Operational decisions are made on a daily basis or in real-
time and have a narrow scope. They include warehouse order picking as well as
shipment and vehicle dispatching. Operational decisions are customarily based on
very detailed data.

1.5.1 Decision support methods

Quantitative analysis is essential for intelligent logistics decision-making. Operations
research offers a variety of planning tools.

There are three basic situations in which quantitative analysis may be helpful.
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• If a logistics system already exists, one may wish to compare the current system
design (or a current operating policy) to an industry standard.

• One may wish to evaluate specified alternatives. In particular, one may wish
to answer a number of what-if questions regarding specified alternatives to the
existing system.

• One may wish to generate a configuration (or a policy) which is optimal (or at
least good) with respect to a given performance measure.

Benchmarking. Benchmarking consists of comparing the performance of a logis-
tics system to a ‘best-practice’ standard, i.e. the performance of an industry leader in
logistics operations. The most popular logistics benchmarking is based on the supply
chain operations references (SCOR) model. The SCOR model makes use of several
performance parameters that range from highly aggregated indicators (named key
performance indicators (KPIs)) to indicators describing a specific operational issue.

Simulation. Simulation enables the evaluation of the behaviour of a particular con-
figuration or policy by considering the dynamics of the system. For instance, a sim-
ulation model can be used to estimate the average order retrieval time in a given
warehouse when a specific storage policy is used. Whenever a different alternative
has to be evaluated, a new simulation is run. For instance, if the number of order pick-
ers is increased by one, a new simulation is required. Simulation models can easily
incorporate a large amount of details, such as individual customer ordering patterns.
However, detailed simulations are time consuming and can be heavy when a large
number of alternatives are considered.

Optimization. The decision-making process can sometimes be cast as a mathe-
matical optimization problem. ‘Easy’ (polynomial) optimization problems can be
consistently solved within a reasonable amount of time even if instance size is large.
This is the case, for example, in linear programming (LP) problems and, in partic-
ular, of linear network flow (NF) problems (linear programs with tens of thousands
of variables and constraints can be optimized quickly on a personal computer). NP-
hard optimization problems can be solved consistently within a reasonable amount
of time only if instance size is sufficiently small. Most integer programming (IP),
mixed-integer programming (MIP), and nonlinear programming (NLP) problems are
difficult to optimize. Unfortunately, several classes of logistics decisions (production
planning, location decisions, vehicle routing and scheduling, etc.) can only be mod-
elled as IP or MIP problems. This has motivated the development of fast heuristic
algorithms that search for good but not necessarily the best solutions. Popular exam-
ples of heuristics include rounding the solution of the continuous relaxation of an IP
or MIP model, local search, simulated annealing and tabu search. In order to work
properly, such procedures must be tailored to the problem at hand. As a result, a slight
change to problem features may entail a significant modification to the heuristic.
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Table 1.5 Annual sales forecast and total cost (in millions of dollars)
for different service levels.

Percentage of orders filled within three working days
︷ ︸︸ ︷

70% 75% 80% 85% 90% 95% 100%

Annual sales 4.48 6.67 8.17 9.34 9.87 10.56 11.52
Annual cost 4.41 5.55 5.99 6.22 6.87 7.44 12.84

When using an optimization model, a key aspect is to keep model size as small as
possible. As a result, unlike simulation models, optimization models do not custom-
arily consider systems dynamics issues.

Continuous approximation methods. Continuous approximation methods can be
used whenever customers are so numerous that demand can be seen as a continuous
spatial function. Approximation often yields closed-form solutions and can be used
as a simple heuristic.

This textbook presents the main mathematical optimization and simulation meth-
ods used for decision-making in logistics management. Other approaches such as the
SCOR model and the continuous approximation method are described in the refer-
ences listed at the end of the chapter.

1.5.2 Outline of the book

The remainder of this textbook describes the main quantitative methods used for the
planning, organizing and controlling of logistics systems. The material is divided
into five major streams: forecasting logistics requirements (Chapter 2); designing
the logistics network (Chapter 3); managing inventories (Chapter 4); designing and
operating warehouses and crossdocks (Chapter 5); planning and controlling long-haul
and short-haul freight transportation (Chapters 6 and 7). Finally, Chapter 8 provides
supplementary material as well as some case studies that show how efficient logistics
plans can be devised by applying or adapting the quantitative methods presented in
Chapters 2 to 7.

1.6 Questions and Problems

1.1 Why does a push-based supply chain react more slowly to changing demand
than a pull-based system?

1.2 Discuss the impact of product diversification (the increase in the number of
product variants) on logistics systems planning and control.
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Figure 1.10 The bullwhip effect.

1.3 CalFruit is an emerging Californian distributor of high-quality fresh fruits and
vegetables, and packaged food. Because the company operates in a very com-
petitive market, the crucial factor influencing sales volume is the time required
to meet orders. On the basis of the historical data, the logistician of the com-
pany has estimated that the service level (expressed as the percentage of orders
filled within three working days) influences annual sales volume and total cost
as reported in Table 1.5. Determine the service level that maximizes revenue.

1.4 Norsk is a Danish producer of dairy products with five subsidiaries in the EU
countries and a large network of distributors in North America. The company
has recently decided to redesign its Scandinavian distribution network where
140 warehouses have been transformed into pure stocking points, while admin-
istrative activities have been concentrated in 14 new regional logistics centres
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and quantitative forecasting data have been centralized at the company’s head-
quarters. List and classify the decisions faced by Norsk management in the
logistics system redesign.

1.5 The bullwhip effect is an unwanted increase in variability of material flows over
time through the supply chain as a consequence of small variations in customer
demand. This phenomenon, which was first recognized by Procter and Gamble
managers when examining the demand for Pampers disposal diapers, depends
mainly on the fact that individuals managing the different facilities of the supply
chain make decisions based on a limited amount of information. For instance,
the decision to replenish a factory warehouse is usually based on its current
inventory level and the orders actually issued by its immediate successors in
the supply chain (e.g. the CDCs) without any knowledge of end-user demand.
Traditionally, successor orders are used to develop forecasts of the average
value and the standard deviation of the demand perceived by the facility. Then,
such estimates serve as a basis for reorder decisions. For example, in the (s, S)

method (see Section 4.8), an order is issued any time the inventory level falls
below a given reorder level s; the inventory level is then increased to an order-
up-to-level S. As the perceived demand varies, the parameters S and s are
updated and order quantities also changed. Show that the typical bullwhip
effect for a supply chain made up of a factory, a factory warehouse, a DC and
a retailer is like the one reported in Figure 1.10 (where it is assumed that a
sudden 10% increase in end-user demand occurs).

1.6 How can the bullwhip effect be reduced by sharing information among the
facilities of a supply chain?

1.7 Discuss the role of transportation mode selection, allocation of transportation
cost among subsidiaries, and international taxation when operating a global
supply chain.

1.8 Illustrate how a distribution company can take advantage of on-vehicle GPSs.

1.9 Which are the most relevant issues when selecting a company supplier?

1.10 What are the main issues in reverse logistics?

1.7 Annotated Bibliography

A detailed introduction to business logistics is:

1. Ballou R 1998 Business Logistics Management: Planning, Organizing, and
Controlling the Supply Chain. Prentice Hall, New York.

Statistics reported in Table 1.1 are derived from the following survey:

2. Kearney AT 1993 Logistics Excellence in Europe. European Logistics Associ-
ation.



INTRODUCING LOGISTICS SYSTEMS 23

Table 1.4 is taken from:
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4. Supply Chain Council homepage, http://www.supply-chain.org.
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5. Wolsey LA 1998 Integer Programming. Wiley, New York.

Continuous approximation methods are surveyed in the book:

6. Daganzo CF 1996 Logistics System Analysis. Springer, Berlin.



2

Forecasting Logistics
Requirements

2.1 Introduction

Forecasting is an attempt to determine in advance the most likely outcome of an
uncertain variable. Planning and controlling logistics systems need predictions for
the level of future economic activities because of the time lag in matching supply to
demand. Typical decisions that must be made before some data are known consider
virtually every aspect of the network planning process (including facility location and
capacity purchasing) as well as production scheduling, inventory management and
transportation planning.

Logistics requirements to be predicted include customer demand, raw material
prices, labour costs and lead times. In this chapter forecasting techniques are described
with respect to demand although they are equally applicable to other kinds of data.

Forecasting methods are equally relevant to every kind of logistics system, although
they are crucial for MTS systems (see Section 1.1), where inventory levels have to be
set in every facility.

Forecasting is based on some hypotheses. No forecasting method can be deemed
to be superior to others in every respect. As a matter of fact, in order to generate a
forecast the demand must show some degree of regularity. For instance, the demand
pattern must remain nearly the same in the future or the demand entries must depend to
some extent on the past values of a set of variables. Items for which these hypotheses
hold are said to have a regular demand. This is often the case when there are many
customers that individually purchase a small fraction of the whole sales volume.

Lumpy demand. When demand is lumpy or irregular (see Figure 2.1), there is
so much randomness in the demand pattern that no reliable prediction can be made.
This is typically the case when large and rare customer orders dominate the demand
pattern or when the volume of each item is low (this often happens when the degree of

Introduction to Logistics Systems Planning and Control G. Ghiani, G. Laporte and R. Musmanno
© 2004 John Wiley & Sons, Ltd ISBN: 0-470-84916-9 (HB) 0-470-84917-7 (PB)
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Figure 2.1 Irregular demand pattern of an item. Although the demand pattern is discrete we
use a continuous graph representation. This convention will be used throughout the book.

product diversification is high). When dealing with such items, two alternatives should
be explored. If demand is low, accuracy is not usually a key issue and an overestimate
can be used (this could lead, for example, to a higher safety stock). As an alternative,
the processes of the supply chain (namely, manufacturing and transportation) could
be made more flexible in order to obtain a quick response. If this is feasible, an MTO
system is able to satisfy promptly each customer request.

Long-term, medium-term and short-term forecasts. Demand forecasts are orga-
nized by periods of time into three general categories. Long-term forecasts span a
time horizon from one to five years. Predictions for longer periods are very unreli-
able, since political and technological issues come into play. Long-term forecasts are
used for deciding whether a new item should be put on the market, or whether an old
one should be withdrawn, as well as in designing a logistics network. Such forecasts
are often generated for a whole group of commodities (or services) rather than for a
single item (or service). Moreover, in the long term, sector forecasts are more com-
mon than corporate ones. Medium-term forecasts extend over a period from a few
months to one year. They are used for tactical logistical decisions, such as setting
annual production and distribution plans, inventory management and slot allocation
in warehouses. Short-term forecasts cover a time interval from a few days to several
weeks. They are employed to schedule and re-schedule resources in order to meet
medium-term production and distribution targets. As service requests are received,
there is less need for forecasts. Consequently, forecasts for a shorter time interval (a
few hours or a single day) are quite uncommon (see Figure 2.2).

The role of the logistician in generating forecasts. Medium- and long-term de-
mand forecasts are hardly ever left to the logistician. More frequently, this task is
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Figure 2.2 Demand pattern of an item. In the shortest period the forecasts are
replaced by the order receipts.

assigned to marketing managers who try to influence demand, for example, by launch-
ing an advertising campaign for those items whose sales are in decline. On the other
hand, the logistician will often produce short-term demand forecasts.

Spatial location of demand. Since in most cases customers are geographically
dispersed, it is worth estimating not only when, but also where demand volume will
occur. This is because decisions such as warehouse location and inventory level setting
are affected by the spatial location of demand. To this end, a top–down or a bottom–
up approach can be utilized. In the top–down method, the entire demand is globally
forecasted and then divided heuristically among geographic areas (e.g. on the basis
of the most recent sales quotas). On the contrary, in the bottom–up technique, the
demand pattern of an item is estimated in each geographical area, and then aggregated
if necessary.

Derived versus independent demand. The demand for certain items (e.g. the fin-
ished goods of a manufacturing firm) cannot be related to the demand of some other
commodities. However, there are some products (like the raw materials and the com-
ponents required by a production schedule) whose demand can be derived determinis-
tically from the requirements of some other items (e.g. finished goods). For example,
the number of loudspeakers needed when assembling a TV set can be easily calcu-
lated as a multiple of the number of finished items. Since even moderately complex
products can contain several hundreds of different components, such calculations are
often performed through computerized procedures, such as manufacturing resource
planning (MRP).
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2.2 Demand Forecasting Methods

Before introducing a classification of demand forecasting methods, it is worth observ-
ing the following.

• Short-term forecasts are as a rule more accurate than those for medium and long
time periods. This is simply because the longer the time interval, the greater
the probability of unexpected events.

• Aggregate demand forecasts are generally more precise than those of single
items. This can be explained as follows. Suppose the demands of n items can
be modelled as independent random variables x1, x2, . . . , xn, having the same
expected value µx and the same standard deviation σx . Then, the aggregate
demand y is a random variable,

y = x1 + x2 + · · · + xn,

whose expected value and standard deviation are, respectively,

µy = nµx and σ 2
y = nσ 2

x .

It follows that the ratio between the standard deviation σy and the average µy

is
σy

µy

= 1√
n

σx

µx

. (2.1)

Equation (2.1) indicates that the relative dispersion of the aggregate demand
around the correspondent expected value µy is less than the relative dispersion
of a single item demand.

Forecasting approaches can be classified in two main categories: qualitative and
quantitative methods.

2.2.1 Qualitative methods

Qualitative methods are mainly based on workforce experience or on surveys, al-
though they can also make use of simple mathematical tools to combine different
forecasts. Qualitative methods are usually employed for long- and medium-term fore-
casts, when there is insufficient history to use a quantitative approach. This is the case,
for example, when a new product or service is launched on the market, when a product
packaging is changed, or when the future demand pattern is expected to be affected
by political changeovers or by technological advances.

The most widely used qualitative methods are sales force assessment, market
research and the Delphi method. In the first approach, a forecast is developed by
company salesmen. As a rule, the workforce can provide accurate estimates since it is
close to customers. Market research is based on interviews with potential consumers
or users. It is time consuming and requires a deep knowledge of sampling theory.
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For these reasons it is used only occasionally, for example, when deciding whether
a new product should be launched. In the Delphi method, a series of questionnaires
is submitted to a panel of experts. Every time a group of questions is answered, new
sets of information become available. Then a new questionnaire is prepared in such
a way that every expert is faced with the new findings. This procedure eliminates
the bandwagon effect of majority opinion. The Delphi method terminates as soon as
all experts share the same viewpoint. This technique is mainly used to estimate the
influence of political or macro-economical changes on an item demand.

2.2.2 Quantitative methods

Quantitative methods can be used every time there is sufficient demand history. Such
techniques belong to two main groups: causal methods and time series extrapolation.
Causal methods are based on the hypothesis that future demand depends on the past or
current values of some variables. They include regression, econometric models, input–
output models, life-cycle analysis, computer simulation models and neural networks.
Most of these approaches are difficult to implement, even for larger companies. In
practice, only single or multiple regression is used for logistics planning and control.
Time series extrapolation presupposes that some features of the past demand time pat-
tern will remain the same. The demand pattern is then projected in the future. This can
be done in a number of ways, including the elementary technique, moving averages,
exponential smoothing techniques, the decomposition approach and the Box–Jenkins
method. The choice of the most suitable quantitative forecasting technique (see also
Section 2.9) depends on the kind of historical data available and the type of product
(or service). However, as a rule, it is best to select the simplest possible approach.
This principle is based on the following observations.

• Forecasts obtained by using simple techniques are easier to understand and
explain. This is a fundamental aspect when large sums of money are involved
in the decision-making process.

• In a business context, complex forecasting procedures seldom yield better
results than simple ones.

This rule is often kept in mind by logisticians, as confirmed by several surveys
carried out in North America and in the EU (see, for example, Table 2.1).

The usage frequencies reported in columns 2 and 3 of Table 2.1 should be adjusted
in order to take into account the variable levels of familiarity of the decision makers
with different forecasting methods (column 4). For example, when comparing the
decomposition technique and the more complex Box–Jenkins method in the medium
term, one should consider the different level of familiarity that the decision makers
have (57% and 37%, respectively) with such approaches. This can be done by com-
puting the values that the quotas of use would likely have if all the decision makers
knew both techniques (12/0.57 = 21% and 5/0.37 = 13.5%, respectively).
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Table 2.1 Quota of use of the main quantitative forecasting methods in USA (1994). Reprinted
from Interfaces 24(2), 92–100, Sanders NR and Manrodt KB 1994 Forecasting practices in US
corporations: survey results, ©1994, with the permission of INFORMS.

Use (%) in Use (%) in Level (%) of
Forecasting method short term medium term familiarity

Decomposition 7 12 57
Elementary technique 19 14 84
Moving average 33 28 96
Exponential smoothing 20 17 83
Regression 25 26 83
Box–Jenkins 2 5 37

2.2.3 Notation

In the remainder of this chapter, we will assume, as usual, that the time horizon has
been divided into a finite number of time periods and that all periods have the same
duration. Moreover, we will use the following notation. Let dt , t = 1, . . . , T , be the
demand of a given product (or a service) at time period t , where T indicates the time
period in correspondence of the latest demand entry available. Moreover, let

pt (τ ), τ = 1, 2, . . . ,

be the τ periods ahead forecast made at time t (i.e. the forecast of demand dt+τ

generated at time t). If τ = 1, a one-period-ahead forecast has to be generated and
the notation can be simplified to

pt (1) = pt+1.

As explained later, it is worth defining a forecast error in order to evaluate, a poste-
riori (i.e. once the forecasted demands become known), the deviation of the demand
from its forecast. The error made by using forecasting pi(τ ) instead of demand dt is
given by

ei(τ ) = dt − pi(τ ), i + τ = t.

As before, the notation can be simplified if τ = 1:

et−1(1) = et .

2.3 Causal Methods

Causal methods exploit the strong correlation between the future demand of some
items (or services) and the past (or current) values of some causal variables. For
example, the demand for economy cars depends on the level of economic activity
and, therefore, can be related to the GDP. Similarly, the demand for spare parts can
be associated with the number of installed devices using them.
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Table 2.2 Monthly exports of Italian avicultural meat (in hundreds of kilograms)
to Germany during 1994 and 1995.

Month Quantity Month Quantity

Jan 94 8257 Jan 95 9 443
Feb 94 8659 Feb 95 9 671
Mar 94 8906 Mar 95 11 624
Apr 94 8601 Apr 95 11 371
May 94 8084 May 95 10 627
Jun 94 8669 Jun 95 11 141
Jul 94 8608 Jul 95 10 993
Aug 94 9186 Aug 95 10 572
Sep 94 9162 Sep 95 10 817
Oct 94 9475 Oct 95 11 133
Nov 94 9196 Nov 95 10 761
Dec 94 9283 Dec 95 10 560

The major advantage of causal methods is their ability to anticipate variations
in demand. As such, they are very effective for medium- and long-term forecasts.
Unfortunately, in several cases, it is difficult to identify any causal variable having
a strong correlation with future demands. Moreover, it is even more difficult to find
a causal variable that leads the forecasted variable in time. For these reasons, causal
methods are less popular than those based on the time series extrapolation.

As explained in the previous section, a number of different techniques can be
classified as causal method although only regression is widely used by logisticians. In
this section regression-based forecasting is described while the other causal methods
are outlined in Section 2.8.

Regression is a statistical method that relates a dependent variable y (representing,
for example, future demand dT +1) to some causal variables x1, x2, . . . , xn whose
value is known or can be predicted:

y = f (x1, x2, . . . , xn).

Such a relation can be linear,

y = a0 + a1x1 + a2x2 + · · · + anxn,

or even nonlinear. It is assumed that a set of observed values of the causal variables
and the corresponding values of the dependent variable are available. A function f (·)
is then selected as the one that interpolates best such observations (if f (·) is linear,
this amounts to applying the least squares method in order to estimate a0, a1, . . . , an).

PAI is an association of Italian farmers which, at the end of 1995, ordered market-
ing research to estimate future export levels of some Italian goods to the other EU
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Table 2.3 Average monthly LIT/DM exchange rate
from November 1993 to December 1995.

Month Exchange rate Month Exchange rate

Nov 93 980.619 52 Dec 94 1039.120 00
Dec 93 987.036 82 Jan 95 1051.678 10
Jan 94 975.963 50 Feb 95 1078.278 00
Feb 94 971.129 00 Mar 95 1201.790 43
Mar 94 986.006 96 Apr 95 1239.064 44
Apr 94 957.251 05 May 95 1172.814 09
May 94 961.928 64 Jun 95 1170.013 64
Jun 94 977.984 09 Jul 95 1158.960 95
Jul 94 996.441 43 Aug 95 1111.316 36
Aug 94 1011.230 45 Sep 95 1104.762 86
Sep 94 1010.387 27 Oct 95 1135.130 00
Oct 94 1018.733 33 Nov 95 1124.658 10
Nov 94 1028.189 05 Dec 95 1106.748 89

countries. The estimate of Italian avicultural meat demand in Germany in January
1996 was based on the data reported in Table 2.2.

It was assumed that the export volume was affected by the exchange rate between
Italian lira and German mark (LIT/DM) (see Table 2.3).

More specifically, it was assumed that the exports in a given month depended on
the exchange rate in the two months before. This hypothesis was confirmed by the
correlation indices (ρ1 and ρ2) between the corresponding time series (see Table 2.4):

ρ1 = 0.881 and ρ2 = 0.822.

Therefore, the required demand was estimated as

y = f (x1, x2) = a0 + a1x
2
1 + a2x

2
2 + a3x1x2 + a4x1 + a5x2,

where x1 and x2 are the average monthly exchange LIT/DM rates in December 1995
and November 1995, respectively (x1 = 1106.748 89 and x2 = 1124.658 10). The
coefficients a0, a1, . . . , a5 were estimated through multiple regression applied to data
in Table 2.4. The results were as follows:

a0 = −75 811.605, a1 = −0.014, a2 = 0.038,

a3 = −0.088, a4 = 135.354, a5 = 13.435.

As a consequence, the estimated exports in January 1996 were

y = 10 682.11 hundred kg.
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Table 2.4 Monthly exports of avicultural meat (in hundreds of kilograms) and
average monthly LIT/DM exchange rate during the two previous months.

Exchange rate Exchange rate
Month Quantity one month before two months before

Jan 94 8 257 987.036 82 980.619 52
Feb 94 8 659 975.963 50 987.036 82
Mar 94 8 906 971.129 00 975.963 50
Apr 94 8 601 986.006 96 971.129 00
May 94 8 084 957.251 05 986.006 96
Jun 94 8 669 961.928 64 957.251 05
Jul 94 8 608 977.984 09 961.928 64
Aug 94 9 186 996.441 43 977.984 09
Sep 94 9 162 1011.230 45 996.441 43
Oct 94 9 475 1010.387 27 1011.230 45
Nov 94 9 196 1018.733 33 1010.387 27
Dec 94 9 283 1028.189 05 1018.733 33
Jan 95 9 443 1039.120 00 1028.189 05
Feb 95 9 671 1051.678 10 1039.120 00
Mar 95 11 624 1078.278 00 1051.678 10
Apr 95 11 371 1201.790 43 1078.278 00
May 95 10 627 1239.064 44 1201.790 43
Jun 95 11 141 1172.814 09 1239.064 44
Jul 95 10 993 1170.013 64 1172.814 09
Aug 95 10 572 1158.960 95 1170.013 64
Sep 95 10 817 1111.316 36 1158.960 95
Oct 95 11 133 1104.762 86 1111.316 36
Nov 95 10 761 1135.130 00 1104.762 86
Dec 95 10 560 1124.658 10 1135.130 00

2.4 Time Series Extrapolation

Time series extrapolation methods assume that the main features of past demand
pattern will be replicated in the future. A forecast is then obtained by extrapolating
(projecting) the demand pattern. Such techniques are suitable for short- and medium-
term predictions, where the probability of a changeovers is low.

As explained in Section 2.2, time series extrapolation can be done in a number
of ways. The classical decomposition method is depicted in this section, while the
elementary technique, moving averages and exponential smoothing techniques are
described in Sections 2.5, 2.6 and 2.7. Moreover, the Box–Jenkins method is outlined
in Section 2.8.
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Figure 2.3 Life cycle of a product or service.

2.4.1 Time series decomposition method

The time series decomposition method is based on the assumption that the demand
pattern of a product (or a service) can be decomposed into the following four effects:
trend, cyclical variation, seasonal variation and residual variation.

Trend. The trend is the long-term modification of demand over time; it may depend
on changes in population and on the product (or service) life cycle (see Figure 2.3).

Cyclical variation. Cyclical variation is caused by the so-called business cycle,
which depends on macro-economic issues. It is quite irregular, but its pattern is roughly
periodic.

Seasonal variation. Seasonal variation is caused by the periodicity of several hu-
man activities. Typical examples are the ups and downs in the demand of some items
over the year. This type of effect can also be observed on a weekly basis (e.g. some
product sales are higher on weekends than on working days).

Residual variation. Residual variation is the portion of demand that cannot be
interpreted as trend, cyclical or seasonal variation. It is often the result of numerous
causes, each of which has a small impact. If there are no other predictable variations
in the demand, the residual effect is a random variable with unit expected value
(assuming that demand is modelled as the product of the four effects).

In the sequel we assume that the way the four components are combined together
is multiplicative,

dt = qtvt st rt , t = 1, . . . , T ,
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where qt represents the trend at time period t (expressed in the same units as the
demand), vt is the cyclical effect at time period t , st is the seasonal variation at time
period t , and rt is the residual variation at time period t . It is worth noting that all
factors are greater than or equal to 0. Also note that if M is the periodicity of the
seasonal variation, then the average of the seasonal effects over M consecutive time
periods is equal to 1:

∑j+M
t=j+1 st

M
= 1, j = 0, 1, . . . , T − M. (2.2)

In Figure 2.4 a typical demand pattern is reported. The decomposition method is
made up of three steps: in the first phase, the demand time series dt , t = 1, . . . , T ,
is decomposed into the four components qt , vt , st , rt , t = 1, . . . , T ; in the second
phase, the time series of q, v and s are projected into one or more future time periods
(it is worth noting that the residual variation cannot be predicted); finally, in the third
phase the projected values are combined,

pT (τ) = qT (τ )vT (τ )sT (τ ), τ = 1, 2, . . . , (2.3)

to obtain the required demand forecasts. The decomposition phase is carried out as
follows.

Evaluation of the product (qv)t

The product (qv)t is obtained by removing from the time series dt , t = 1, . . . , T ,
the seasonal effect and the random fluctuation. This can be done by observing that
the average value of the demand over M consecutive time periods is not affected by
the seasonal fluctuations. Furthermore, by so doing we also remarkably reduce the
influence of the random fluctuations, especially if M is relatively high (see also the
next section). Therefore, the computation of the following quantities,

d1 + · · · + dM

M
,

d2 + · · · + dM+1

M
,

...

dT −M+1 + · · · + dT

M
,

allows us to determine a series of demand entries without the seasonal and residual
effects.
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If M is odd, each average can be associated with the central period of the corre-
sponding time interval. Thus,

(qv)�M/2� = d1 + · · · + dM

M
,

(qv)�M/2�+1 = d2 + · · · + dM+1

M
,

(qv)T −�M/2�+1 = dT −M+1 + · · · + dT

M
.

Hence the required time series is (qv)t , t = � 1
2M�, . . . , T − � 1

2M� + 1.
If M is even, one can use a weighted average of M + 1 demand entries in which

the first and the last ones have a weight of 1
2 and all other values have a unit weight.

Then, the time series (qv)t , t = 1
2M + 1, . . . , T − 1

2M is given by

(qv)t =
1
2dt−M/2 + dt−M/2+1 + · · · + 1

2dt+M/2

M
, t = 1

2M + 1, . . . , T − 1
2M.

Evaluation of qt and vt

In most cases, it can be assumed that the trend is described by a simple functional
relation, such as a linear or quadratic function. Then the trend is obtained by applying
a simple regression to the time series (qv)t , t = 1, . . . , T (for the sake of simplicity,
we assume that (qv)t spans t = 1, . . . , T , although, as we have seen previously, it
is defined over a shorter time interval). Once qt , t = 1, . . . , T , is determined, the
cyclical effect vt , t = 1, . . . , T can be computed for each t = 1, . . . , T as follows:

vt = (qv)t

qt

.

Evaluation of st and rt

The time series (sr)t , t = 1, . . . , T , which includes both the seasonal variation and
the random fluctuation, can be computed for each t = 1, . . . , T as follows:

(sr)t = dt

(qv)t
.

The seasonal effect can then be expressed by means of M indices s̄1, . . . , s̄M ,
defined as

skM+t = s̄t , t = 1, . . . , M, k = 0, 1, . . . .

Each index s̄t , t = 1, . . . , M , represents the average of the values (sr)t , t =
1, . . . , T , associated with homologous time periods (i.e. s̄t , t = 1, . . . , M , is the aver-
age of (sr)t , (sr)M+t , (sr)2M+t , . . . ). This procedure is correct because, as explained
previously, the average calculation reduces greatly the random fluctuation. Finally,
we observe that, on the basis of the definition of seasonal index, we have

∑M
t=1 s̄t

M
= 1. (2.4)
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Figure 2.4 Demand pattern of electrosurgical equipment in France.

If Equation (2.4) is not satisfied, the following normalized indices s̃t , t = 1, . . . , M ,
are used:

s̃t = Ms̄t
∑M

t ′=1 s̄t ′
, t = 1, . . . , M.

It is easy to show that the indices s̃t , t = 1, . . . , M , verify the relation,

∑M
t=1 s̃t

M
= 1.

The random values rt , t = 1, . . . , T , can be obtained by dividing each term of
the time series (sr)t , t = 1, . . . , T , by the correspondent seasonal index st , t =
1, . . . , T , that is

rt = (sr)t

st
.

If the decomposition has been executed correctly, the time series rt , t = 1, . . . , T ,
has an expected value close to 1.

The second phase of the decomposition method amounts to projecting the effects
q, v and s previously determined over one or more future time periods; this is very
easy to accomplish for the trend and the seasonal effect. However, the cyclical trend is
much harder to extrapolate in a quantitative fashion. As a result, it is often estimated
qualitatively, on the basis of the macro-economic forecasts. If no such information is
available, it can be assumed that

vT (τ ) = vT , τ = 1, 2, . . . .

Finally, in the third phase, a forecast is generated by combining the projections
obtained in step two, according to Equation (2.3).
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Table 2.5 Demand history (in thousands of euros) of electrosurgical
equipment in France (Part I).

Year Month Period Demand Year Month Period Demand

1986 Jan 1 511.70 1989 May 41 848.40
1986 Feb 2 468.30 1989 Jun 42 820.40
1986 Mar 3 571.90 1989 Jul 43 795.90
1986 Apr 4 648.20 1989 Aug 44 774.90
1986 May 5 705.60 1989 Sep 45 750.40
1986 Jun 6 709.10 1989 Oct 46 759.50
1986 Jul 7 676.90 1989 Nov 47 740.60
1986 Aug 8 661.50 1989 Dec 48 809.90
1986 Sep 9 611.80 1990 Jan 49 603.40
1986 Oct 10 640.50 1990 Feb 50 558.60
1986 Nov 11 611.10 1990 Mar 51 711.20
1986 Dec 12 697.20 1990 Apr 52 760.90
1987 Jan 13 548.80 1990 May 53 840.00
1987 Feb 14 492.10 1990 Jun 54 835.80
1987 Mar 15 613.20 1990 Jul 55 777.00
1987 Apr 16 692.30 1990 Aug 56 727.30
1987 May 17 721.70 1990 Sep 57 714.00
1987 Jun 18 672.00 1990 Oct 58 744.80
1987 Jul 19 670.60 1990 Nov 59 723.10
1987 Aug 20 635.60 1990 Dec 60 770.70
1987 Sep 21 611.80 1991 Jan 61 581.00
1987 Oct 22 686.00 1991 Feb 62 555.80
1987 Nov 23 630.70 1991 Mar 63 665.70
1987 Dec 24 750.40 1991 Apr 64 770.70
1988 Jan 25 515.20 1991 May 65 836.50
1988 Feb 26 498.40 1991 Jun 66 779.10
1988 Mar 27 627.20 1991 Jul 67 745.50
1988 Apr 28 741.30 1991 Aug 68 739.20
1988 May 29 760.90 1991 Sep 69 676.20
1988 Jun 30 754.60 1991 Oct 70 710.50
1988 Jul 31 733.60 1991 Nov 71 711.90
1988 Aug 32 704.90 1991 Dec 72 731.50
1988 Sep 33 709.80 1992 Jan 73 598.50
1988 Oct 34 733.60 1992 Feb 74 578.90
1988 Nov 35 714.70 1992 Mar 75 675.50
1988 Dec 36 831.60 1992 Apr 76 756.00
1989 Jan 37 586.60 1992 May 77 865.20
1989 Feb 38 536.90 1992 Jun 78 819.00
1989 Mar 39 654.50 1992 Jul 79 800.80
1989 Apr 40 767.90 1992 Aug 80 758.10
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Table 2.6 Demand history (in thousands of euros) of electrosurgical
equipment in France (Part II).

Year Month Period Demand Year Month Period Demand

1992 Sep 81 737.80 1996 Mar 123 721.00
1992 Oct 82 774.90 1996 Apr 124 877.10
1992 Nov 83 728.00 1996 May 125 959.70
1992 Dec 84 817.60 1996 Jun 126 916.30
1993 Jan 85 618.10 1996 Jul 127 870.80
1993 Feb 86 565.60 1996 Aug 128 832.30
1993 Mar 87 691.60 1996 Sep 129 760.20
1993 Apr 88 768.60 1996 Oct 130 833.70
1993 May 89 903.00 1996 Nov 131 827.40
1993 Jun 90 847.70 1996 Dec 132 864.50
1993 Jul 91 830.90 1997 Jan 133 705.60
1993 Aug 92 772.10 1997 Feb 134 619.50
1993 Sep 93 755.30 1997 Mar 135 723.10
1993 Oct 94 779.10 1997 Apr 136 847.70
1993 Nov 95 770.00 1997 May 137 942.90
1993 Dec 96 844.20 1997 Jun 138 917.00
1994 Jan 97 671.30 1997 Jul 139 897.40
1994 Feb 98 607.60 1997 Aug 140 859.60
1994 Mar 99 737.80 1997 Sep 141 821.80
1994 Apr 100 863.10 1997 Oct 142 872.20
1994 May 101 908.60 1997 Nov 143 795.90
1994 Jun 102 891.10 1997 Dec 144 824.60
1994 Jul 103 853.30 1998 Jan 145 669.90
1994 Aug 104 836.50 1998 Feb 146 618.10
1994 Sep 105 797.30 1998 Mar 147 756.00
1994 Oct 106 840.70 1998 Apr 148 901.60
1994 Nov 107 816.90 1998 May 149 968.80
1994 Dec 108 872.20 1998 Jun 150 968.80
1995 Jan 109 613.90 1998 Jul 151 921.20
1995 Feb 110 595.00 1998 Aug 152 891.10
1995 Mar 111 744.10 1998 Sep 153 882.00
1995 Apr 112 812.00 1998 Oct 154 887.60
1995 May 113 941.50 1998 Nov 155 840.00
1995 Jun 114 940.10 1998 Dec 156 935.90
1995 Jul 115 863.10 1999 Jan 157 763.70
1995 Aug 116 829.50 1999 Feb 158 700.00
1995 Sep 117 808.50 1999 Mar 159 844.20
1995 Oct 118 800.10 1999 Apr 160 989.10
1995 Nov 119 836.50 1999 May 161 1045.80
1995 Dec 120 870.80 1999 Jun 162 1012.90
1996 Jan 121 684.60 1999 Jul 163 970.90
1996 Feb 122 644.70
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Table 2.7 Computation of combined trend and cyclical effects (qv)t ,
t = 1, . . . , 163, in the P&D problem.

t (qv)t t (qv)t

1 152 864.65
2 153 871.73
3 154 879.05
4 155 885.91
5 156 890.95
6 157 894.86
7 627.70 158
8 630.23 159
9 632.95 160

10 636.50 161
11 639.01 162
12 638.14 163
. . . . . .

P&D is a French consulting firm which was entrusted in July 1999 to estimate the
future demand of electrosurgical equipment in France for the subsequent six months.
The sales over the past 13 years and seven months are available (Tables 2.5 and 2.6,
Figure 2.4).

The duration M of the seasonal cycle was assumed to be equal to 12 and the
trend was assumed to be linear. Then the decomposition method was applied. The
intermediate and final results are summarized in Tables 2.7–2.12 and in Figures 2.5–
2.12. The trend equation is qt = 638.51 + 1.43t . The seasonal indices s̄1, . . . , s̄12
(see Table 2.10 and Figure 2.9) satisfy Equation (2.4). As the expected value of the
random variation is approximately 1, the demand decomposition can be deemed to
be satisfactory. The demand forecasts from August 1999 to January 2000 (the first
six months ahead) were obtained by combining the projections of the trend with the
seasonal and cyclical effects. The latter was estimated (see Figure 2.11) by using a
quadratic regression curve defined on the basis of vt , t = 150, . . . , 157. In particular,
it was assumed that

vt = f (t − 149)2 + g(t − 149) + h, t = 150, 151, . . . .

The values of the coefficients f , g and h that best fit the cyclical effect for t =
150, . . . , 157 are

f = −0.0004, g = 0.0094, h = 0.9856.
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Table 2.8 Trend qt , t = 7, . . . , 157, and cyclical effect vt , t = 7, . . . , 157,
in the P&D problem.

t (qv)t qt vt

7 627.70 648.52 0.97
8 630.23 649.95 0.97
9 632.95 651.39 0.97

10 636.50 652.82 0.98
11 639.01 654.25 0.98
12 638.14 655.68 0.97

· · · · · · · · · · · ·
152 864.65 856.02 1.01
153 871.73 857.45 1.02
154 879.05 858.88 1.02
155 885.91 860.31 1.03
156 890.95 861.74 1.03
157 894.86 863.17 1.04

Table 2.9 Evaluation of combined seasonal and residual effects (sr)t , t = 1, . . . , 157,
in the P&D problem.

t dt (qv)t (sr)t

7 676.90 627.70 1.08
8 661.50 630.23 1.05
9 611.80 632.95 0.97

10 640.50 636.50 1.01
11 611.10 639.01 0.96
12 697.20 638.14 1.09

. . . . . . . . . . . .
152 891.10 864.65 1.03
153 882.00 871.73 1.01
154 887.60 879.05 1.01
155 840.00 885.91 0.95
156 935.90 890.95 1.05
157 763.70 894.86 0.85

2.5 Further Time Series Extrapolation Methods:
the Constant Trend Case

We first analyse the case in which the past demand pattern does not show any relevant
cyclical and seasonal effects, and the trend is constant. We suppose initially that a
forecast must be generated only for the next period ahead.
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Table 2.10 Computation of the seasonal indices s̄t , t = 1, . . . , 12, in the P&D problem.

t s̄t t s̄t

1 0.82 7 1.07
2 0.76 8 1.02
3 0.92 9 0.98
4 1.05 10 1.02
5 1.15 11 0.99
6 1.11 12 1.08

Table 2.11 Computation of the residual variations rt , t = 7, . . . , 157, in the P&D problem.

t (sr)t st rt

7 1.08 1.07 1.01
8 1.05 1.02 1.02
9 0.97 0.98 0.98

10 1.01 1.02 0.98
11 0.96 0.99 0.97
12 1.09 1.08 1.01

· · · · · · · · · · · ·
152 1.03 1.02 1.01
153 1.01 0.98 1.03
154 1.01 1.02 0.99
155 0.95 0.99 0.96
156 1.05 1.08 0.98
157 0.85 0.82 1.04

Table 2.12 Demand forecasts pT (τ), T = 163, τ = 1, . . . , 6, in the P&D problem.

Month T + τ qT (τ ) vT (τ ) sT (τ ) pT (τ)

Aug 99 164 873.19 1.04 1.02 933.84
Sep 99 165 874.62 1.04 0.98 895.28
Oct 99 166 876.05 1.04 1.02 932.52
Nov 99 167 877.48 1.04 0.99 898.46
Dec 99 168 878.92 1.03 1.08 976.03
Jan 00 169 880.35 1.03 0.82 743.76

2.5.1 Elementary technique

The forecast for the first time period ahead is simply given by

pT +1 = dT .
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Figure 2.5 Combined trend and cyclical effects (qv)t , t = 7, . . . , 157, in the P&D problem.
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Figure 2.6 Linear trend (in grey) qt , t = 7, . . . , 157, in the P&D problem.

The method is straightforward. The forecast time series reproduces the demand pattern
with one period delay. Consequently, it usually produces rather poor predictions.

Sarath is a Malaysia-based distributor of Korean appliances. The sales volume of
portable TV sets during the last 12 weeks in Kuala Lumpur is shown in Table 2.13.

The demand pattern is depicted in Figure 2.13. It can be seen that the trend is
constant. By using the elementary technique, we obtain

p13 = d12 = 1177.
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Figure 2.7 Cyclical effect vt , t = 7, . . . , 157, in the P&D problem.
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Figure 2.8 Combined seasonal effect and random fluctuation (sr)t ,
t = 7, . . . , 157, in the P&D problem.

2.5.2 Moving average method

The moving average method uses the average of the r most recent demand entries as
the forecast for first period ahead (r � 1):

pT +1 =
r−1
∑

k=0

dT −k

r
.

If r is chosen equal to 1, the moving average method reduces to the elementary
technique.
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Figure 2.9 Seasonal effect st = s̄t , t = 1, . . . , 12, in the P&D problem.
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Figure 2.10 Random variation rt , t = 7, . . . , 157, in the P&D problem.

Table 2.13 Number of portable TV sets sold by Sarath company in the last 12 weeks.

Time period Quantity Time period Quantity

1 1180 7 1162
2 1176 8 1163
3 1185 9 1180
4 1163 10 1170
5 1188 11 1161
6 1172 12 1177
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Figure 2.11 Extrapolation of the cyclical effect (in grey) vt̄ (τ ), t̄ = 157,
τ = 1, . . . , 12, in the P&D problem.
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Figure 2.12 Demand forecasting (in grey) of electrosurgical equipment in
France for the subsequent six months.

Using the moving average method for solving the Sarath problem above, we obtain
the forecasts,

p13 = d12 + d11

2
= 1169,

p13 = d12 + d11 + d10

3
= 1169.33,

with r = 2 and r = 3, respectively.
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Figure 2.13 Demand pattern of portable TV sets sold by
the Sarath company in the last 12 weeks.

When using the moving average method, one should wait for the first r demand data
to be available before producing a forecast. To overcome this drawback, the forecasts
for time periods T < r are obtained by using the average of the data available in the
first T periods, i.e.

pT +1 =
T −1
∑

k=0

dT −k

r
, T < r.

For example, if T = 1, then p2 = d1, whereas if T = 2, then p3 = (d1 + d2)/2.
A key aspect of the moving average method is the choice of parameter r . A small

value of r allows a rapid adjustment of the forecast to demand fluctuations but, at
the same time, increases the influence of random perturbations. In contrast, a high
value of r effectively filters the random effect, but produces a slow adaptation to
demand variations. This phenomenon can be explained as follows. Let d1, . . . , dT be
independent random variables with expected value µ and standard deviation σ . The
random variable pT +1 will have an expected value µpT +1 defined as

µpT +1 =
r−1
∑

k=0

µdT −k

r
=

r−1
∑

k=0

µ

r
= µ

(i.e. the same expected value as d1, . . . , dT ), and a standard deviation

σpT +1 = 1√
r
σ.

It follows that the dispersion of pT +1 is less than that of d1, . . . , dT and decreases
as r increases.
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2.5.3 Exponential smoothing method

The exponential smoothing method (also known as the Brown method) can be seen
as an evolution over the moving average technique. The demand forecast is obtained
by taking into account all historical data and assigning lower weights to older data.
The demand forecast for the first period ahead is given by

pT +1 = αdT + (1 − α)pT , (2.5)

where α ∈ (0, 1) is a smoothing constant. Here, pT represents the demand forecast
for period T made at time period T − 1.

Suppose that at time period T we have dT = 1177 and pT = 1182. Then the
forecast pT +1 obtained by means of the Brown method is given by (α = 0.2)

pT +1 = 0.2 × 1177 + (1 − 0.2) × 1182 = 1181.

Rewriting Equation (2.5) as

pT +1 = pT + α(dT − pT ) = pT + αeT ,

we obtain the following interpretation: the demand forecast at time period T + 1
corresponds to the sum of the demand value estimated at time period T − 1 and a
fraction of the forecasting error at time period T . This means that if the value of pT is
overestimated with respect to dT , the forecasting value pT +1 is lower than pT . Vice
versa, if pT is an underestimate of dT , then pT +1 is increased.

The demand history is embedded into pT , and hence does not appear explicitly
in the previous formula. Applying Equation (2.5) recursively, all the demand history
appears explicitly:

pT = αdT −1 + (1 − α)pT −1.

From Equation (2.5), we obtain

pT +1 = αdT + (1 − α)[αdT −1 + (1 − α)pT −1].
Iterating these substitutions (and taking into account that p2 can be assumed equal

to d1), the following relation is obtained:

pT +1 = α

T −2
∑

k=0

(1 − α)kdT −k + (1 − α)T −1d1.

In this relation past demand entries are multiplied by exponentially decreasing weights
(this is where the name of the method comes from). Finally, we observe that the sum
of all weights α

∑T −2
k=0 (1 − α)k + (1 − α)T −1 is equal to 1.
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Table 2.14 Demand forecasts of portable TV sets in the Sarath problem.

t pt t pt

2 1180.00 8 1172.51
3 1178.80 9 1169.65
4 1180.66 10 1172.76
5 1175.36 11 1171.93
6 1179.15 12 1168.65
7 1177.01 13 1171.16

If we use the exponential smoothing method (with α = 0.3) for solving the fore-
casting problem of Sarath company, we get

p2 = d1 = 1180.

For t = 3,
p3 = αd2 + (1 − α)p2 = 1178.80.

Proceeding recursively up to t = 12, we obtain the results reported in Table 2.14.

2.5.4 Choice of the smoothing constant

The choice of a value for α plays an important role in the exponential smoothing
method. High values of α give a larger weight to the most recent historical data and
therefore allow us to follow rapidly the demand variations. On the other hand, lower
values of α yield a forecasting method less dependent on the random fluctuation but,
at the same time, cannot take quickly into account the most recent variations of the
demand.

In practice, the value of α is frequently chosen between 0.01 and 0.3. However, a
larger value may be preferable if rapid demand changes are anticipated.

In order to estimate the best value of α, it is worth evaluating a posteriori the errors
that would have been made in the past if the Brown method had been applied with
different values of α (e.g. the values between 0.1 and 0.5, with a step length equal to
0.05). A more detailed treatment of this topic will be given in Section 2.9.

2.5.5 The demand forecasts for the subsequent time periods

The methods just illustrated can be used to forecast demand one period ahead. In
order to predict demand for the subsequent time periods, it is sufficient to recall that
the trend is assumed to be constant. Consequently,

pT (τ) = pT +1, τ = 2, 3, . . . , τ̄ ,

where the forecasting value pT +1 is obtained by using any technique described above
and τ̄ represents the duration of the forecasting time horizon. In such a context, the
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forecasting time horizon is said to be rolling, because, once a new demand value
becomes available, the time horizon shifts one time period ahead.

The four-weeks-ahead forecasts are needed for the Sarath problem. By using the
moving average method with r = 2, the predictions are

p13[= p12(1)] = p12(2) = p12(3) = d12 + d11

2
= 1169.

At time period t = 13, the rolling forecasting horizon would cover the time periods
t = 14, 15, 16. For example, if d13 = 1173, then

p13(1) = p13(2) = p13(3) = d13 + d12

2
= 1175.

Thus, for t = 14 a new updated value is available (p13(1) = 1175), which substi-
tutes the previous one (p12(2) = 1169). Similar considerations are valid for t = 15.

2.6 Further Time Series Extrapolation Methods:
the Linear Trend Case

If the trend is linear and no cyclical or seasonal effect is displayed, the forecasting
methods are based on the following computational scheme:

pT (τ) = aT + bT τ, τ = 1, 2, . . . .

For estimating aT and bT , we can use the techniques illustrated below.

2.6.1 Elementary technique

This is the simplest technique:

aT = dT and bT = dT − dT −1.

Sarath company also distributes satellite receivers. The items sold to the stores
located in Kuala Lumpur district during the last 12 weeks are reported in Table 2.15.

As shown in Figure 2.14, the trend is linear. By using the elementary technique to
forecast the demand in τ th periods ahead, we get

p12(τ ) = a12 + b12τ = d12 + (d12 − d11)τ = 1230 + 100τ, τ = 1, 2, . . . .

In particular, for the first time period ahead (τ = 1):

p13 = 1330.
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Table 2.15 Number of kits for satellite equipment furnished by
Sarath company in the last 12 weeks.

Time period Quantity Time period Quantity

1 630 7 895
2 730 8 1010
3 880 9 1030
4 850 10 1150
5 910 11 1130
6 890 12 1230
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Figure 2.14 Demand pattern of kit for satellite equipment furnished by
Sarath company in the last 12 weeks.

2.6.2 Linear regression method

In order to estimate aT and bT , this method determines the regression line which best
interpolates the r most recent demand entries (i.e. dT −r+1, . . . , dT −1, dT ):

bT = − 1
2 (r − 1)

∑r−1
k=0 dT −k + ∑r−1

k=0 kdT −k

1
4 r(r − 1)2 − 1

6 r(r − 1)(2r − 1)
,

aT =
∑r−1

k=0 dT −k + 1
2bT r(r − 1)

r
.
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The satellite receiver demand of Sarath company can be predicted by means of the
linear regression method. If r = 4, then

r−1
∑

k=0

dT −k = 4540,

r−1
∑

k=0

kdT −k = 6520,

and

b12 = 58,

a12 = 1222.

Therefore,

p12(τ ) = a12 + b12τ = 1222 + 58τ, τ = 1, 2, . . . .

In particular, for the first time period ahead (τ = 1):

p13 = 1280.

2.6.3 Double moving average method

The method is an extension of the moving average method illustrated above. Let r

(> 1) be a double moving average parameter. We get

aT = 2γT − ηT ,

bT = 2

r − 1
(γT − ηT ),

where γT is the average of the r most recent demand entries,

γT =
r−1
∑

k=0

dT −k

r
,

and ηT represents the average of the r most recent average demand entries, i.e.

ηT =
r−1
∑

k=0

γT −k

r
.

Whenever r past demand data are not available (T < r), the computation of γT and
ηT can be executed along the guidelines illustrated for the moving average method.
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We will now solve the satellite receiver problem of Sarath company by means of
the double moving average method (with r = 3). We get

γ12 = d12 + d11 + d10

3
= 1170,

η12 = γ12 + γ11 + γ10

3
,

where

γ11 = d11 + d10 + d9

3
= 1103.33,

γ10 = d10 + d9 + d8

3
= 1063.33.

Therefore,
η12 = 1112.22,

from which

a12 = 2γ12 − η12 = 1227.78,

b12 = γ12 − η12 = 57.78.

Therefore,

p12(τ ) = a12 + b12τ = 1227.78 + 57.78τ, τ = 1, 2, . . . .

In particular, for the first period ahead (τ = 1):

p13 = 1285.56.

2.6.4 The Holt method

The exponential smoothing method, introduced in Section 2.5.3, is unable to deal
with a linear trend. The Holt method is a modification of the exponential smoothing
method and is based on the following two relations:

aT = αdT + (1 − α)(aT −1 + bT −1), (2.6)

bT = β(aT − aT −1) + (1 − β)bT −1. (2.7)

Applying recursively Equations (2.6) and (2.7), it is possible to express aT and bT

as a function of the past demand entries d1, . . . , dT .
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Table 2.16 Computation of at and bt , t = 1, . . . , 12, in
the Sarath satellite receiver forecasting problem.

t at bt

1 630.00 0.00
2 660.00 9.00
3 732.30 27.99
4 787.20 36.06
5 849.29 43.87
6 892.21 43.59
7 923.56 39.91
8 977.43 44.10
9 1024.07 44.86

10 1093.26 52.16
11 1140.79 50.77
12 1203.09 54.23

In order to start the procedure, a1 and b1 must be specified. They can be chosen in
the following way:

a1 = d1 and b1 = 0.

In this way, we have p2 = p1(1) = a1 + b1 = d1, as in the exponential smoothing
method. The choice of parameters α and β is conducted according to the same criteria
illustrated for the exponential smoothing method.

Applying the Holt method (with α = β = 0.3) to the Sarath satellite receiver fore-
casting problem, the values of at and bt , t = 1, . . . , 12, in Table 2.16 are generated.
As a result,

p12(τ ) = a12 + b12τ = 1203.09 + 54.23τ, τ = 1, 2, . . . .

In particular, for the first period ahead (τ = 1):

p13 = 1257.32.

2.7 Further Time Series Extrapolation Methods:
the Seasonal Effect Case

This section describes the main forecasting method when the demand pattern displays
a constant or linear trend, and a seasonal effect.
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Table 2.17 Number of air conditioners sold in the last 24 months by Sarath company.

Time period Quantity Time period Quantity

1 915 13 815
2 815 14 1015
3 1015 15 915
4 1115 16 1315
5 1415 17 1215
6 1615 18 1615
7 1515 19 1315
8 1415 20 1115
9 815 21 1115

10 615 22 915
11 315 23 715
12 815 24 615

2.7.1 Elementary technique

If the trend is constant, then

pT (τ) = dT +τ−M, τ = 1, . . . , M. (2.8)

On the basis of Equation (2.8), the forecast related to the time period T + τ cor-
responds to the demand value M time periods back. More generally, for a temporal
horizon whose length is superior to one cycle, we have

pT (kM + τ) = dT +τ−M, τ = 1, . . . , M, k = 1, 2, . . . .

The air conditioners supplied by Sarath company during the last 24 months are
reported in Table 2.17. The demand pattern (Figure 2.15) displays a linear trend and
a seasonal effect with a cycle duration M = 12. By using the elementary technique,
we get

p24(τ ) = d24+τ−12, τ = 1, . . . , 12.

In particular,

p25 = d25−12 = d13 = 815,

p24(2) = d26−12 = d14 = 1015.
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Figure 2.15 Demand pattern of Sarath air conditioners for the last 24 months.

2.7.2 Revised exponential smoothing method

This method can be used whenever the trend is constant. It is based on the following
computational scheme,

pT (τ) = aT sT +τ , τ = 1, . . . , M, (2.9)

where aT takes into account the constant trend (and can be interpreted as the fore-
casted demand without the seasonal effect), whereas sT +τ is the seasonal index (see
Section 2.4.1) for period T + τ . More generally, for a time horizon whose duration
is greater than one cycle time, we get

pT (kM + τ) = aT sT +τ , τ = 1, . . . , M, k = 1, 2, . . . .

Assuming, without loss of generality, that the available historical data are sufficient
to cover an integer number K = T/M of cycles, the parameters aT and sT +τ , τ =
1, . . . , M , can be computed by the following relations,

aT = α
dT

sT
+ (1 − α)aT −1, (2.10)

sT +τ = skM+τ = β
d(K−1)M+τ

a(K−1)M+τ

+ (1 − β)s(K−1)M+τ , τ = 1, . . . , M, (2.11)

where α and β are smoothing constants (0 � α, β � 1). Equation (2.10) expresses
aT as the weighted sum of two components: the first, dT /sT , represents the value of
the demand at time period T without the seasonal effect, while the second represents
the forecast, without the seasonal effect, at time period T −1. A similar interpretation
can be given to Equation (2.11). However, in this case, it is necessary to take into
account the periodicity of the seasonal effect. Using the reasoning of Sections 2.5.3
and 2.6.4, it is possible to develop recursively Equations (2.10) and (2.11) in such a
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way that all demand entries d1, . . . , dT appear explicitly. To start the procedure we
set a0 equal to the average demand in the first time cycle, i.e.

a0 = d̄(1) = d1 + · · · + dM

M
,

whereas we can select the following initial estimate of st , t = 1, . . . , M:

st = dt/d̄(1) + dt+M/d̄(2) + · · · + dt+(K−1)M/d̄(K)

K
. (2.12)

It is worth noting that the numerator is the sum of the demand entries of the t th
time period for each cycle (dt , dt+M, . . . ) divided by the average demand of the
corresponding cycles (d̄(1), d̄(2), . . . ). Equation (2.12) implies

M
∑

t=1

st = T

K
= M,

i.e. the average seasonal index for the first cycle is equal to 1. However, this con-
dition cannot be satisfied for the subsequent cycles, and for this reason, in order to
respect Equation (2.2), it is necessary to normalize the indices st , t = (k − 1)M +
1, . . . , kM, k = 2, 3, . . . .

To solve the air conditioner forecasting problem of Sarath company, we use the
revised exponential smoothing method with α = β = 0.3. To this end, we compute
the mean value of the demand during the two time cycles,

d̄(1) = d1 + · · · + d12

12
= 1031.67,

d̄(2) = d13 + · · · + d24

12
= 1056.67,

from which we obtain
a0 = d̄(1) = 1031.67.

Then we compute the seasonal indices st , t = 1, . . . , 12 (see Table 2.18), using
Equation (2.12). We observe that

s̄ = 1

12

12
∑

t=1

st = 1.

Using Equations (2.10) and (2.11), we obtain the results reported in Tables 2.19
and 2.20, where the values of st , t = 13, . . . , 36, are already normalized. From
Equation (2.9), we get

p25 = p24(1) = 959.20,

p24(2) = 1016.66,
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Table 2.18 Time series of st , t = 1, . . . , 12, in
the Sarath air conditioner forecasting problem.

t st t st

1 0.83 7 1.36
2 0.88 8 1.21
3 0.92 9 0.92
4 1.16 10 0.73
5 1.26 11 0.49
6 1.55 12 0.69

Table 2.19 Time series of at , t = 1, . . . , 24, in
the Sarath air conditioner forecasting problem.

t at t at

1 1053.25 13 969.16
2 1016.61 14 1035.30
3 1040.86 15 1016.74
4 1016.31 16 1056.87
5 1048.13 17 1022.92
6 1046.90 18 1029.51
7 1067.89 19 1007.53
8 1097.37 20 975.86
9 1033.17 21 1062.15

10 975.60 22 1135.18
11 875.39 23 1269.56
12 969.19 24 1140.58

and so on. Figure 2.16 shows both the demand pattern during the first 24 months and
the forecasting of the subsequent 12 months.

2.7.3 The Winters method

The Winters method can be used whenever there is a linear trend and a seasonal effect:

pT (kM + τ) = [aT + bT (kM + τ)]sT +τ , τ = 1, . . . , M, k = 1, 2, . . . . (2.13)

As in the revised exponential smoothing method, we assume that the historical data
available are enough to have an integer number K = T/M of cycles. The Winters
method is based on the following relationships for the computation of aT , bT and
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Table 2.20 Time series of st , t = 13, . . . , 36, in
the Sarath air conditioner forecasting problem.

t st t st

13 0.84 25 0.84
14 0.85 26 0.89
15 0.94 27 0.93
16 1.14 28 1.17
17 1.29 29 1.26
18 1.55 30 1.55
19 1.38 31 1.35
20 1.24 32 1.21
21 0.88 33 0.93
22 0.70 34 0.73
23 0.45 35 0.49
24 0.73 36 0.67
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Figure 2.16 Demand forecasting (in grey) of air conditioners in the Sarath problem.

sT +τ , τ = 1, . . . , M:

aT = α

(

dT

sT

)

+ (1 − α)(aT −1 + bT −1), (2.14)

bT = η(aT − aT −1) + (1 − η)bT −1, (2.15)

sT +τ = sKM+τ = β

(

d(K−1)M+τ

a(K−1)M+τ

)

+ (1 − β)s(K−1)M+τ , τ = 1, . . . , M,

(2.16)

where α, η and β are smoothing constants chosen in the interval (0, 1). In order to
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Figure 2.17 Demand pattern and demand forecasting (in grey) of
microwave ovens in the Sarath problem.

use Equations (2.14)–(2.16) recursively, we need an estimate of the values a0, b0 and
st , t = 1, . . . , M . We can use

b0 = d̄(K) − d̄1

T − M
. (2.17)

To explain this formula, we observe that the numerator represents the variation of the
mean value of the demand between the first and the last period. In addition, we note
that the mean value of the demand in the first cycle corresponds to time period

t = 1
2 (M + 1),

which is the ‘centre’ of the first M time periods (see Section 2.4.1). Similarly, the
mean value of the demand of the last time period is assumed to correspond to the time
period

t = T − 1
2 (M − 1).

Hence, there are T − M time periods between the centres of the first and the last
period. The parameter a0 can be determined as follows:

a0 = d̄(1) − 1
2 (M + 1)b0. (2.18)

An estimate of the seasonal indices during the first period is given by

st = dt

a0 + b0t
, t = 1, . . . , M, (2.19)

subject to a normalization, if necessary.
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Table 2.21 reports the number of microwave ovens sold by Sarath company in the
last 24 months in Southern Malaysia. The demand pattern (see Figure 2.17) has both
a linear trend and a seasonal effect (M = 12). In order to forecast the demand for
the subsequent 12 months, we use the Winters method. First, we compute the mean
demand value in the K = 2 time cycles, that is

d̄(1) = d1 + · · · + d12

12
= 2089.58,

d̄(2) = d13 + · · · + d24

12
= 3674.50.

Then, we determine the value b0 through Equation (2.17),

b0 = d̄(1) + d̄(2)

12
= 132.08,

and the value a0 through Equation (2.18),

a0 = d̄(1) − 6.5b0 = 1231.09.

The seasonal indices st , t = 1, . . . , M (already normalized), determined by Equa-
tion (2.19), are reported in Table 2.22.

Using Equations (2.14)–(2.16) with α = η = β = 0.1, we obtain the results
reported in Tables 2.23 and 2.24.

The st values, t = 13, . . . , 36, are already in normalized form. From Equa-
tion (2.13) we obtain the forecasting values for the subsequent 12 months, reported
in Table 2.25. Figure 2.17 shows both the demand pattern in the first 24 months and
the forecasts in the subsequent 12 months.

2.8 Advanced Forecasting Methods

For the sake of completeness, six advanced forecasting techniques are outlined in this
section. As stated in Section 2.2, the first five approaches can be classified as casual
methods, whereas the sixth one is a complex time series extrapolation technique.

Econometric models. Econometric models consist of several interrelated regres-
sion equations linking the demand to be forecasted and its main determinants. The
parameters of such relations have to be estimated simultaneously.

Input–output models. Input–output analysis, introduced by Wassily Leontief, is
concerned with the interdependence among the various industries and sectors of the
economy. Once such a dependence has been established, the variation in demand of a
commodity can be forecasted given the forecasts for the other commodities (obtained,
for example, through econometric models).
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Table 2.21 Number of microwave ovens produced in
the last 24 months in the Sarath problem.

Time period Quantity Time period Quantity

1 682 13 416
2 416 14 1746
3 1613 15 2411
4 1613 16 2544
5 1746 17 4140
6 2677 18 4539
7 4672 19 7997
8 5603 20 8263
9 3741 21 7465

10 1480 22 3209
11 682 23 1081
12 150 24 283

Table 2.22 Time series of st , t = 1, . . . , 12, in
the Sarath microwave ovens forecasting problem.

t st t st

1 0.50 7 2.17
2 0.28 8 2.45
3 0.99 9 1.55
4 0.92 10 0.58
5 0.92 11 0.25
6 1.32 12 0.05

Life-cycle analysis. Most items (and services) pass through the usual stages of
introduction, growth, maturity and decline, as shown by the ‘S curve’ of Figure 2.3.
In each stage the product (or service) is demanded by a particular subset of potential
customers. Life-cycle analysis attempts to predict clients’demand through an analysis
of their behaviour.

Computer simulation models. Computer simulation can be used to estimate the
impact of changes of policy (e.g. inventory policies, production schedules) on the
demand for finished goods.

Neural networks. Neural networks are made up of a set of elementary nonlinear
systems reproducing the behaviour of biological neurons. If properly trained by means
of the past demand entries, they can be used to make a forecast.
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Table 2.23 Time series of at and bt , t = 1, . . . , 24, in
the Sarath microwave ovens forecasting problem.

t at bt t at bt

1 1362.96 132.06 13 2733.31 110.74
2 1494.82 132.04 14 3186.32 144.96
3 1626.67 132.02 15 3241.05 135.94
4 1758.50 132.00 16 3316.38 129.88
5 1890.32 131.98 17 3549.47 140.20
6 2022.13 131.96 18 3663.31 137.57
7 2153.93 131.95 19 3789.22 136.40
8 2285.72 131.93 20 3869.94 130.83
9 2417.51 131.92 21 4082.83 139.04

10 2549.30 131.90 22 4352.16 152.07
11 2681.08 131.89 23 4478.58 149.50
12 2812.87 131.88 24 4695.76 156.27

Table 2.24 Time series of st , t = 13, . . . , 36, in
the Sarath microwave ovens forecasting problem.

t st t st

13 0.50 25 0.47
14 0.28 26 0.31
15 0.99 27 0.97
16 0.92 28 0.91
17 0.92 29 0.95
18 1.32 30 1.32
19 2.17 31 2.17
20 2.45 32 2.43
21 1.55 33 1.58
22 0.58 34 0.60
23 0.25 35 0.25
24 0.05 36 0.05

Box–Jenkins method. The Box–Jenkins method is made up of three steps (iden-
tification, parameter evaluation and diagnostic check). In the first phase, the most
appropriate forecasting method is selected from a set of techniques. To this end, the
past demand entries are used to generate a set of autocorrelation functions, which are
then compared. In the second phase, the coefficients of the forecasting method are
selected so as to minimize the mean squared error. Finally, an autocorrelation func-
tion of the error is determined to verify the adequacy of the method chosen and its
corresponding parameters. In case of negative result, the entire procedure is executed
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Table 2.25 Demand forecast of Sarath microwave ovens in the subsequent 12 months.

τ p24(τ ) τ p24(τ )

1 2266.79 7 12 560.23
2 1533.73 8 14 427.88
3 5009.31 9 9 640.73
4 4815.66 10 3 741.53
5 5207.48 11 1 627.72
6 7431.86 12 355.89

again by discarding the forecasting method previously chosen. Of course, when new
demand entries become available, the whole procedure is run again.

2.9 Selection and Control of Forecasting Methods

Forecasting methods can be evaluated through accuracy measures calculated on the
basis of errors made in the past. Such measures can be employed to select the most
precise approach. Moreover, in the case of periodic predictions (like those required
by inventory management), forecasting errors should be monitored in order to adjust
parameters if needed. For the sake of brevity, we examine these issues for the case
where a one-period-ahead forecast has to be generated.

2.9.1 Accuracy measures

To evaluate the accuracy of a forecasting method, the errors made in the past have
to be computed. Then a number of indices (the mean absolute deviation (MAD), the
mean absolute percentage deviation (MAPD) and the mean squared error (MSE)) at
time period t can be defined:

MADt =
∑t

k=2 |ek|
t − 1

, (2.20)

MAPDt = 100

∑t
k=2 |ek|/dk

t − 1
, (2.21)

MSEt =
∑t

k=2 e2
k

t − 2
, (2.22)

where 1 < t � T for Equations (2.20) and (2.21), and 2 < t � T for Equation (2.22).
These three accuracy measures can be used at time period t = T to establish a
comparison between different forecasting methods. In particular, MAPDT can be
used to evaluate the quality of a forecasting method (see Table 2.26).
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Table 2.26 Evaluation of the forecasting accuracy through MAPDT .

MAPDT Quality of forecast

�10% Very good
>10%, �20% Good
>20%, �30% Moderate

>30% Poor

Table 2.27 Mean absolute deviation in the Sarath microwave ovens forecasting problem.

α MAD12

0.05 9.30
0.10 9.27
0.15 9.28
0.20 9.33
0.25 9.40
0.30 9.50
0.35 9.63
0.40 9.79
0.45 9.96

The accuracy of the exponential smoothing method will be evaluated for different
values of the smoothing constant α for the TV sets forecasting problem of Sarath
company. By using MAD12 (see Table 2.27), α = 0.1 comes out to give the most
precise forecast. With this value of the smoothing constant we obtain MAPD12 =
0.79%, which corresponds to a very good accuracy.

2.9.2 Forecast control

A forecasting method works correctly if the errors are random and not systematic.
Typical systematic errors occur when the demand value is constantly underestimated
or overestimated, and a seasonal variation is not taken into account. Forecasting
control can be done through a tracking signal or a control chart. The tracking signal
St , 1 < t � T , is defined as the ratio between the cumulative error and the MADt ,

St = Et

MADt

,
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Figure 2.18 Use of a tracking signal for a forecasting control.

where

Et =
t

∑

k=2

ek.

The tracking signal is greater than zero if the forecast systematically underestimates
the demand; vice versa, a negative value of St indicates a systematic overestimate of
the demand. For this reason, a forecast is assumed to be unbiased if the tracking signal
falls in the range ±Smax. The value of Smax is established heuristically, and usually
varies between 3 and 8. If the tracking signal is outside this interval, the parameters of
the forecasting method should be modified or a different forecasting method should
be selected (see Figure 2.18).

Unlike tracking signals, control charts are based on the plot of single errors et . Under
the hypothesis that the expected value of the errors is zero, a forecast is effective if each
error ek , k = 2, . . . , t , is in the confidence interval ±mσt , where σt is the standard
deviation of the errors. An estimate of σt can be obtained as

σt = √

MSEt .

The parameter m can be related to the probability that the error be in the interval
±mσt . If the errors are normally distributed with zero mean, the error belongs to
the interval ±2σt with a probability around 97.7%, and to the interval ±3σt with
a probability around 99.8%. Finally, it is worth observing that the interval ±3σt

corresponds approximately to the band ±4 of the tracking signal.
In addition to the previous analytical check, it is useful to verify visually whether the

error pattern reveals the possibility of improving the forecast by introducing suitable
modifications. Here are three of the most common pathological situations.

• The errors have an expected value different from zero; this means that the
forecast is biased (see Figure 2.19).
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Figure 2.19 Nonzero mean error.

• The error pattern shows a positive or negative trend; in this case, the accuracy
of the forecasting method is progressively diminishing.

• The error pattern is periodic; this can happen if an existing seasonal effect has
not been identified.

By using the tracking signal (±4 band) and the control chart (±3σT ), we can mon-
itor the demand forecast of sports goods for Browns supermarkets. The forecasting
technique is the exponential smoothing method with α = 0.3. The demand history
for the last few months, and the required forecasts (both in hundreds of dollars), are
reported in Table 2.28. The tracking signal St , t = 2, . . . , T , is always in the inter-
val ±4. On the basis of this preliminary evaluation, we can state that the forecast is
under control. To make a further check, the expected value and the standard deviation
of the error at time period t = T are estimated. The results are −3.02 and 45.36,
respectively. We observe that, since the average error is much less than the average
demand, we can consider the forecast unbiased. Furthermore, since all errors are in
the interval ±3σT , even this test suggests that the forecast is under control. Finally,
the examination of the control chart (see Figure 2.20) does not show any systematic
error.

2.10 Questions and Problems

2.1 In containerized freight transportation, empty containers have to be periodically
allocated to depots in order to satisfy future customer demands. How would
you forecast the demand for carrier ISO 20 refrigerated containers?
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Table 2.28 Demand entries and forecasts (in hundreds of dollars) in the Browns problem.

t dt pt et |et | MADt Et St e2
t MSEt

1 975 — — — — — — — —
2 995 975.00 20.00 20.00 20.00 20.00 1.00 400.00 —
3 952 981.00 −29.00 29.00 24.50 −9.00 −0.37 841.00 1241.00
4 982 972.30 9.70 9.70 19.57 0.70 0.04 94.09 667.55
5 923 975.21 −52.21 52.21 27.73 −51.51 −1.86 2725.88 1353.66
6 985 959.55 25.45 25.45 27.27 −26.06 −0.96 647.86 1177.21
7 902 967.18 −65.18 65.18 33.59 −91.24 −2.72 4248.81 1791.53
8 938 947.63 −9.63 9.63 30.17 −100.87 −3.34 92.7 1508.39
9 983 944.74 38.26 38.26 31.18 −62.61 −2.01 1463.86 1502.03

10 895 956.22 −61.22 61.22 34.52 −123.83 −3.59 3747.61 1782.73
11 950 937.85 12.15 12.15 32.28 −111.68 −3.46 147.56 1601.04
12 1020 941.50 78.50 78.50 36.48 −33.17 −0.91 6162.77 2057.21
13 — 965.05 — — — — — — —
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Figure 2.20 Control chart for the demand forecasting of
sports goods in the Browns problem.

2.2 Illustrate a logistics system where there is little need for forecasting.

2.3 To what extent are the forecasting practices different in an MTS and in an MTA
system?

2.4 How would you predict the future demand of a new product?

2.5 Your company is planning to add extra capacity to a plant currently manufactur-
ing 110 000 items per year.You are asked to suggest how much capacity should
be added to the factory. After an accurate sales forecast over the next few years
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Table 2.29 Number of installed heaters by Hot Spot and service requests.

Installed heaters
︷ ︸︸ ︷

Less than two More than two Service
Year years ago years ago Total requests

1995 260 000 69 500 329 500 18 672
1996 265 000 74 200 339 200 19 076
1997 287 800 82 850 370 650 20 994
1998 313 750 90 550 404 300 23 249
1999 345 350 97 150 442 500 25 025
2000 379 050 105 950 485 000 28 111
2001 416 950 111 550 528 500 30 985
2002 459 100 117 000 576 100 33 397
2003 502 550 123 200 625 750

you are quite sure that the most likely value of the annual demand is 140 000
items and that the MSE is equal to 108. You also know that your company
loses $3 for each unit of unused capacity and $7 for each unit of unsatisfied
demand. How much capacity should your company buy? (Hint: suppose that
the forecasting error can be assumed to be normally distributed.)

2.6 Hot Spot is a firm based in the USA whose core business is the maintenance
of home heaters. The company usually forecasts service requests on the basis
of the number of installed heaters. Make a forecast of the service requests in
2003 in New Jersey by using data in Table 2.29.

To this purpose use

(a) a single regression analysis (service requests versus total installed heat-
ers);

(b) a multiple regression analysis (service requests versus the number of
heaters installed less than two years ago and at least two years).

Which technique is the most accurate? Why?

2.7 Sunshine Ltd is one of the world’s leading suppliers of fast-moving goods in
household care and personal product categories. According to management, its
facial soap sales depend mainly on the promotion expenditure that the com-
pany and its competitor make. Table 2.30 reports facial soap sales in Canada
versus (a) Sunshine promotion expenditure, and (b) the competitor’s promo-
tion expenditure divided by the Sunshine promotion expenditure. Make a sales
forecast for the next two periods under the hypotheses that Sunshine increases
its promotion expenditure to 14.5 millions of Canadian dollars and the com-
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Table 2.30 Sunshine Ltd facial soap sales (in millions of Canadian dollars) in Canada.

Sunshine Competitor’s promotion
Period promotion expenditure/Sunshine Sales of facial

(trimester, year) expenditure promotion expenditure soaps in Canada

I 2001 6.0 1.2 46.8
II 2001 6.8 1.2 52.7

III 2001 7.5 1.4 60.5
IV 2001 7.5 1.5 56.6

I 2002 9.0 1.5 64.4
II 2002 10.5 1.7 74.1

III 2002 12.0 1.8 72.2
IV 2002 12.0 1.5 78.0

I 2003 13.5 1.4 87.8
II 2003 13.5 1.5 95.6

Table 2.31 Number of light trucks sold by Mitsumishi.

Year
︷ ︸︸ ︷

Month 2000 2001 2002 2003

January 22 882 23 478 24 768 24 765
February 19 981 17 019 19 351 21 739
March 18 811 20 967 23 953 25 153
April 19 352 19 759 18 855 20 515
May 27 226 22 200 28 414 24 038
June 14 932 24 162 18 537 26 151
July 18 531 20 275 22 845
August 8 523 7 949 9 451
September 13 064 14 328 15 842
October 13 733 16 691 16 409
November 12 597 13 784 13 881
December 7 645 10 986 11 230

petitor’s promotion expenditure remains the same as in the second trimester of
2003.

2.8 Mitsumishi is a Korean company whose number of light trucks sold between
January 2000 and June 2003 is reported in Table 2.31.

The company usually carries out a promotion in May and/or in June. The sales
improvement achieved during the last few promotions are shown in Table 2.32.
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Table 2.32 Light trucks sales improvement of Mitsumishi.

Period Sales improvement (%)

May 2000 +30
May 2001 +20
June 2001 +15
May 2002 +25
June 2003 +30

Table 2.33 Sales of the new spiced food (in hundreds of kilograms)
produced by Mare Nostrum.

Year
︷ ︸︸ ︷

Month 2001 2002 2003

January 130 000 141 988 156 467
February 129 720 142 376 158 137
March 129 703 143 636 159 140
April 129 633 144 543 161 156
May 129 632 147 534 162 835
June 129 854 148 919 165 479
July 130 436 150 961
August 132 751 152 748
September 133 334 152 977
October 133 761 154 387
November 135 286 156 856
December 136 800 157 349

(a) Using a classical decomposition method, forecast the sales for the next
six months.

(b) Plot a control chart of the error over the last three months. Are you able
to detect any anomaly?

2.9 Mare Nostrum, a canned tuna manufacturer based in Sicily (Italy), has marketed
a new spiced food line in June 2002. Now the management wishes to project
sales for improved planning of production and logistics operations. Sales data
for one and a half years are reported in Table 2.33.

(a) Plot the data on a graph. What important observations can you make
about the demand pattern? Which data are relevant and should be used
for forecasting purposes?
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Table 2.34 Demand of refrigerated trucks (in europallets) between
Antwerp and Brussels over the last ten weeks.

Week
︷ ︸︸ ︷

Day 1 2 3 4 5 6 7 8 9 10

Monday 67 68 76 75 75 82 77 88 84 84
Tuesday 54 57 59 57 58 69 65 57 72 56
Wednesday 47 49 49 52 57 59 52 54 68 59
Thursday 40 45 46 43 48 49 55 50 59 52
Friday 60 63 68 69 72 69 68 66 63 69

(b) Using the classical time series decomposition analysis, predict the expect-
ed sales over the next six months.

(c) Repeat the forecast by applying the Holt method.

(d) Estimate the MAPD of both methods using the last six months. Which
approach seems to work best?

2.10 The Belgian Trucking Company needs to determine the number of refrigerated
trucks to satisfy the transportation demand between Antwerp and Brussels on a
daily basis. The volume of the demand for the last weeks is given in Table 2.34.

(a) Using the Winters method, predict the expected number of pallets to be
transported for the next week.

(b) Estimate the error in the above forecast using the last three weeks.

(c) Construct a 95% confidence interval on the forecasting. (Hint: assume a
normal distribution of demand.)

2.11 Annotated Bibliography

An in-depth treatment of the forecasting methods is reported in:

1. Montgomery DC, Johnson LA and Gradiner JS 1990 Forecasting and Time
Series Analysis. McGraw-Hill, New York.

For a detailed description of the statistical methods, the reader can refer to:

2. Sandy R 1990 Statistics for Business and Economics. McGraw-Hill, NewYork.

The results of the survey reported in Table 2.1 are taken from:

3. Sanders NR and Manrodt KB 1994 Forecasting practices in US corporations:
survey results. Interfaces 24(2), 92–100.
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Designing the Logistics Network

3.1 Introduction

In business logistics the network planning process consists of designing the system
through which commodities flow from suppliers to demand points, while in the public
sector it consists of determining the set of facilities from which users are serviced. In
both cases the main issues are to determine the number, location, equipment and size
of new facilities, as well as the divestment, displacement or downsizing of facilities.
Of course, the objectives and constraints vary depending on the sector (private or pub-
lic) and on the type of facilities (plants, CDCs, RDCs, regional and field warehouses,
retail outlets, dumpsites, incinerators, ambulance parking places, fire stations, etc.).
The aim generally pursued in business logistics is the minimization of the annual
total logistics cost subject to side constraints related to facility capacity and required
customer service level (recall the discussion in Chapter 1). As a rule, the cost to
be minimized is associated with facility operations (manufacturing, storage, sorting,
consolidation, selling, incineration, parking, etc.), and to transportation between facil-
ities, or between facilities and users. Also, when designing the logistics network for
a utility company, different objectives, such as achieving equity in servicing users,
may have to be considered.

Research in logistics network design dates back to the early location theories of
the 19th century. Since then a variety of models and solution methodologies has been
proposed and analysed. In this chapter some of the most important facility location
problems are examined. To put this analysis in the right perspective, a number of
relevant issues are first introduced and discussed.

When location decisions are needed. Facility location decisions must obviously
be made when a logistics system is started from scratch. They are also required as a
consequence of variations in the demand pattern or spatial distribution, or following
modifications of materials, energy or labour cost. In particular, location decisions are
often made when new products or services are launched, or outdated products are
withdrawn from the market.

Introduction to Logistics Systems Planning and Control G. Ghiani, G. Laporte and R. Musmanno
© 2004 John Wiley & Sons, Ltd ISBN: 0-470-84916-9 (HB) 0-470-84917-7 (PB)
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Location decisions may be strategic or tactical. Whereas facilities are purchased
or built, location decisions involve sizeable investments. In this case, changing sites or
equipment is unlikely in the short or medium term. This may be true even if facilities
are leased. On the other hand, if space and equipment are rented (e.g. from a public
warehouses) or operations are subcontracted, location decisions can be reversible in
the medium term.

Location and allocation decisions are intertwined. Location decisions are strictly
related to those of defining facility area boundaries (i.e. allocating demand to facili-
ties). For example, in a two-echelon distribution system (see Figure 3.1), opening a
new RDC must be accompanied by a redefinition of the sales districts along with a dif-
ferent allocation of the RDCs to the CDCs and of the CDCs to the production plants.
For this reason location problems are sometimes referred to as location–allocation
problems.

Location decisions may affect demand. Facility location may affect the demand
volume. For example, opening a new RDC may lead to the acquisition of customers
who previously could not be served at a satisfactory level of service because they
lived too far away.

3.2 Classification of Location Problems

Location problems come in a variety of forms, which can be classified with respect
to a number of criteria. The classification proposed below is logistics-oriented.

Time horizon. In single-period problems, facility location decisions must be made
at the beginning of the planning horizon on the basis of the forecasted logistics require-
ments. In multi-period problems one has to decide, at the beginning of the planning
horizon, a sequence of changes to be made at given time instants within the planning
horizon.

Facility typology. In single-type location problems, a single type of facility (e.g.
only RDCs) are located. Instead, in multi-type problems several kinds of facility (e.g.
both CDCs and RDCs) are located.

Material flows. In single-commodity problems it can be assumed that a single homo-
geneous flow of materials exists in the logistics system, while in multicommodity
problems there are several items, each with different characteristics. In the latter case
each commodity is associated with a specific flow pattern.

Interaction among facilities. In complex logistics systems there can be material
flows among facilities of the same kind (e.g. component flows among plants). In this
case, optimal facility locations depend not only on the spatial distribution of finished
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Supply points

Production plants

RDCs

Figure 3.1 A two-echelon single-type location problem.

product demand but also on the mutual position of the facilities (location problems
with interaction).

Dominant material flows. Single-echelon location problems are single-type prob-
lems such that either the material flow coming out or the material flow entering the
facilities to be located is negligible. In multiple-echelon problems, both inbound and
outbound commodities are relevant. This is the case, for example, when DCs have to
be located taking into account both the transportation cost from plants to DCs and the
transportation cost from DCs to customers. In multiple-echelon problems, constraints
aiming at balancing inbound and outbound flows have to be considered.

Demand divisibility. In some distribution systems it is required, for administrative
or book-keeping reasons, that each facility or customer be supplied by a single centre,
while in others a facility or a customer may be served by two or more centres. In the
former case demand is said to be divisible while in the latter it is indivisible.

Influence of transportation on location decisions. Most location models assume
that transportation cost between two facilities, or between a facility and an user, is
computed as a suitable transportation rate multiplied by the freight volume and the
distance between the two points. Such an approach is appropriate if vehicles travel by
means of a direct route. However, if each vehicle makes collections or deliveries to
several points, then a transportation rate cannot easily be established. In such cases the
routes followed by the vehicles should be taken explicitly into account when locating
the facilities (location-routing models). To illustrate this concept, consider Figure 3.2,
where a warehouse serves three sales districts located at the vertices of triangle ABC.
Under the hypothesis that the facility fixed cost is independent of the site, there can
be two extreme cases.
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C

A

B

O

Figure 3.2 The optimal location of a warehouse depends on the way customers are serviced.

• Each customer requires a full-load supply and, therefore, the optimal location
of the DC is equal to the Steiner point O.

• A single vehicle can service all points and hence the facility can be located at
any point of the triangle ABC perimeter.

The interdependence between facility locations and vehicle routes is particularly
strong when dealing with mail distribution, solid waste collection or road mainte-
nance, as the users are located almost continuously on the road network.

Retail location. When planning a store network, the main issue is to optimally
locate a set of retail outlets that compete with other stores for customers. In such a
context, predicting the expected revenues of a new site is difficult since it depends
on a number of factors such as location, sales area and level of competition. Retail
location problems can be modelled as competitive location models, the analysis of
which is also beyond the scope of this textbook. The reader should again consult the
references quoted in the last section of this chapter for further details.

Modelling and solving location problems

In the remainder of this chapter, some selected facility location problems are modelled
and solved as MIP problems. An optimal solution can be determined in principle
by means of a general-purpose or tailored branch-and-bound algorithm. Such an
approach only works for relatively simple problems (such as the single-echelon single-
commodity (SESC) problem) whenever instance size is small. For multiple-echelon
multiple-commodity problems, determining an optimal solution can be prohibitive
even if the number of potential facilities is relatively small (less than 100). As a result,
heuristic procedures capable of determining a ‘good’ feasible solution in a reasonable
amount of time can be very useful. To evaluate whether a heuristic solution provides
a tight upper bound (UB) on the optimal solution value, it is useful to determine a
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lower bound (LB) on the optimal solution value. This yields a ratio (UB − LB)/LB
which represents an overestimate of relative deviation of the heuristic solution value
from the optimum.

3.3 Single-Echelon Single-Commodity
Location Models

The SESC location problem is based on the following assumptions:

• the facilities to be located are homogeneous (e.g. they are all regional ware-
houses);

• either the material flow coming out or the material flow entering such facilities
is negligible;

• all material flows are homogeneous and can therefore be considered as a single
commodity;

• transportation cost is linear or piecewise linear and concave;

• facility operating cost is piecewise linear and concave (or, in particular, con-
stant).

The second assumption is the most restrictive. It holds in contexts where locating
production plants whose finished product (e.g. steel) weighs much less than the raw
materials (iron and coal in the example) used in the manufacturing process. Another
application arises in warehouse location for a distribution company (see Figure 3.3),
whereas the goods are purchased at a price inclusive of transportation cost up to the
warehouses. We examine the case where inbound flows are negligible, although the
same methodology can be applied without any change to the case where they are
important and outbound flows are negligible. Moreover, to simplify the exposition, it
is assumed that the facilities to be located are warehouses and the demand points are
customers.

The problem can be modelled through a bipartite complete directed graph G(V1 ∪
V2, A), where the vertices in V1 stand for the potential facilities, the vertices in V2
represent the customers, and the arcs in A = V1 ×V2 are associated with the material
flows between the potential facilities and the demand points.

In what follows, we further assume that

• the demand is divisible (see Section 3.2).

Let dj , j ∈ V2, be the demand of customer j ; qi, i ∈ V1, the capacity of the potential
facility i; ui, i ∈ V1, a decision variable that accounts for operations in potential
facility i; sij , i ∈ V1, j ∈ V2, a decision variable representing the amount of product
sent from site i to demand point j ; Cij (sij ), i ∈ V1, j ∈ V2, the cost of transporting
sij units of product from site i to customer j ; Fi(ui), i ∈ V1, the cost for operating
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RDCs Demand points

Figure 3.3 RDC location.

potential facility i at level ui . Then the problem can be expressed in the following
way.

Minimize
∑

i∈V1

∑

j∈V2

Cij (sij ) +
∑

i∈V1

Fi(ui) (3.1)

subject to
∑

j∈V2

sij = ui, i ∈ V1, (3.2)

∑

i∈V1

sij = dj , j ∈ V2, (3.3)

ui � qi, i ∈ V1, (3.4)

sij � 0, i ∈ V1, j ∈ V2, (3.5)

ui � 0, i ∈ V1. (3.6)

Variables ui, i ∈ V1, implicitly define a location decision since a facility i ∈ V1 is
open if only if ui is strictly positive.Variables sij , i ∈ V1, j ∈ V2, determine customer
allocations to facilities. The objective function (3.1) is the sum of the facility operating
costs plus the transportation cost between facilities and users. Constraints (3.2) state
that the sum of the flows outgoing a facility equals its activity level. Constraints (3.3)
ensure that each customer demand is satisfied, while constraints (3.4) force the activity
level of a facility not to exceed the corresponding capacity.

Model (3.1)–(3.6) is quite general and can be easily adapted to the case where, in
order to have an acceptable service level, some arcs (i, j) ∈ A having a travel time
larger than a given threshold cannot be used (we remove the corresponding decision
variables sij , for the appropriate i ∈ V1 and j ∈ V2 (see Figure 3.4)). In the remainder
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Figure 3.4 Graph representation of the single-echelon location problem (note that the arcs
(1, j) and (|V1|, 1) are absent, given that the corresponding travel times are longer than the
given threshold).

of this section two particular cases of the SESC location problem are examined in
detail. In the first case, the transportation cost per unit of commodity is constant, and
facility operating costs consist of fixed costs. In the second case, transportation costs
are still linear but facilities operating costs are piecewise linear and concave. Both
problems are NP-hard and can be modelled as MIP problems. Hence they can be
solved through general purpose (or tailored) branch-and-bound algorithms.

3.3.1 Linear transportation costs and facility fixed costs

If the transportation costs per unit of flow are constant, then

Cij (sij ) = cij sij , i ∈ V1, j ∈ V2.

Moreover, if facility costs Fi(ui) are described by a fixed cost fi and a constant
marginal cost gi , then

Fi(ui) =
{

fi + giui, if ui > 0,

0, if ui = 0,
i ∈ V1. (3.7)

Equation (3.7) leads to the introduction in problem (3.1)–(3.6) of a binary variable
yi replacing ui , for each i ∈ V1, whose value is equal to 1 if potential facility i is
open, and 0 otherwise. If gi is negligible, then Equation (3.7) is replaced by

Fi(yi) = fiyi, i ∈ V1,

and constraints (3.2) and (3.4) become
∑

j∈V2

sij � qiyi, i ∈ V1.
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The new set of variables easily allows the imposition of lower and upper bounds on
the number of open facilities. For instance, if exactly p facilities have to be opened,
then

∑

i∈V1

yi = p.

Finally, introducing xij variables, i ∈ V1, j ∈ V2, representing the fraction of
demand dj satisfied by facility i, we can write

sij = djxij , i ∈ V1, j ∈ V2,

ui =
∑

j∈V2

djxij , i ∈ V1.









(3.8)

The SESC problem can hence be formulated as an MIP problem as follows.

Minimize
∑

i∈V1

∑

j∈V2

cij xij +
∑

i∈V1

fiyi (3.9)

subject to
∑

i∈V1

xij = 1, j ∈ V2, (3.10)

∑

j∈V2

djxij � qiyi, i ∈ V1, (3.11)

∑

i∈V1

yi = p, (3.12)

0 � xij � 1, i ∈ V1, j ∈ V2, (3.13)

yi ∈ {0, 1}, i ∈ V1, (3.14)

where
cij = cij dj , i ∈ V1, j ∈ V2, (3.15)

is the transportation cost incurred for satisfying the entire demand dj of customer
j ∈ V2 from facility i ∈ V1. It is worth noting that on the basis of constraints (3.10),
variables xij , i ∈ V1, j ∈ V2, cannot take a value larger than 1. Therefore, rela-
tions (3.13) can be written more simply in the form xij � 0, i ∈ V1, j ∈ V2.
Relations xij � 1, i ∈ V1, j ∈ V2, are fundamental in a context where the con-
straints (3.10) are relaxed, as in the Lagrangian procedure described below.

The SESC formulation (3.9)–(3.14) is quite general and can sometimes be simpli-
fied. In particular, if constraint (3.12) is removed, the model is known as capacitated
plant location (CPL). If relations (3.11) are also deleted, the so-called simple plant
location (SPL) model is obtained. If fixed costs fi are the same for each i ∈ V1,
dj = 1 for each j ∈ V2 and qi = |V2| for each i ∈ V1, then formulation (3.9)–(3.14)
is known as a p-median model.
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Koster Express is an American LTL express carrier operating in Oklahoma (USA).
The carrier service is organized through a distribution subsystem, a group of termi-
nals and a long-haul transportation subsystem. The distribution subsystem uses a set
of trucks, based at the terminals, that pick up the outgoing goods from 1:00 p.m. to
7:00 p.m., and deliver the incoming goods from 9:00 a.m. to 1:00 p.m. The terminals
are equipped areas where the outgoing items are collected and consolidated on pallets,
the incoming pallets are opened up, and their items are classified and directed to the
distribution. At present the firm has nine terminals (located in Ardmore, Bartlesville,
Duncan, Enid, Lawton, Muskogee, Oklahoma City, Ponca City and Tulsa). The long-
haul transportation subsystem provides the transport, generally during the night, of
the consolidated loads between the origin and destination terminals. For that purpose,
trucks with a capacity between 14 and 18 pallets (and a maximum weight of between
0.8 and 1 ton) are used. During the last six years, the long-haul transportation subsys-
tem has had two hubs in Duncan and Tulsa. The Duncan hub receives the goods from
Ardmore, Lawton, Oklahoma City and Duncan itself, while the Tulsa hub collects
the items coming from the other terminals. In each hub the goods assigned to the
terminals of the other hub are sent on large trucks, generally equipped with trailers.
For example, goods coming from Enid and destined to Oklahoma City are brought to
the Tulsa hub, from where they are sent to the Duncan hub together with the goods
coming from Bartlesville, Muskogee, Ponca City and Tulsa itself and directed to the
terminals served by the Duncan hub; finally, they are sent to Oklahoma City. Goods
destined to other terminals of the same hub are stocked for a few hours until the trucks
coming from the other hub arrive, and only then are they sent to their destinations.
For example, goods to Lawton coming from Ardmore are sent to the Duncan hub,
stocked until the arrival of the trucks from the Tulsa hub and then, sent to Lawton,
together with the goods coming from all the other terminals.

Recently, the firm was offered a major growth opportunity with the opening of new
terminals in Altus, Edmond and Stillwater. At the same time the management decided
to relocate its two hubs. The team hired to carry out a preliminary analysis decided
to consider only the transportation cost from each terminal to the hub and vice versa
(neglecting, therefore, both the transportation cost between the two hubs and the cost,
yet considerable, associated with the possible divestment of the pre-existing hub).
Under the hypothesis that each terminal can accommodate a hub, the problem can be
formulated a p-median problem in the following way.

Minimize
∑

i∈V1

∑

j∈V2

cij xij

subject to
∑

i∈V1

xij = 1, j ∈ V2,
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Table 3.1 Distances (in miles) between terminals in the Koster Express problem (Part I).

Altus Ardmore Bartlesville Duncan Edmond Enid

Altus 0.0 169.8 291.8 88.2 153.9 208.2
Ardmore 169.8 0.0 248.6 75.9 112.5 199.0
Bartlesville 291.8 248.6 0.0 231.5 146.0 132.4
Duncan 88.2 75.9 231.5 0.0 93.5 137.5
Edmond 153.9 112.5 146.0 93.5 0.0 88.8
Enid 208.2 199.0 132.4 137.5 88.8 0.0
Lawton 54.2 115.8 238.7 34.1 100.7 145.0
Muskogee 274.2 230.4 92.2 213.5 145.7 166.4
Oklahoma City 141.1 100.5 151.4 80.9 14.4 87.6
Ponca City 245.0 202.2 70.2 184.8 91.9 64.5
Stillwater 209.2 162.6 115.0 145.3 53.0 65.8
Tulsa 248.0 204.6 45.6 187.8 102.2 118.4

∑

j∈V2

xij � |V2|yi, i ∈ V1,

∑

i∈V1

yi = 2,

xij ∈ {0, 1}, i ∈ V1, j ∈ V2,

yi ∈ {0, 1}, i ∈ V1,

where V1 = V2 represent the set of old and new terminals; yi , i ∈ V1, is a binary
decision variable whose value is equal to 1 if terminal i accommodates a hub, 0
otherwise; xij , i ∈ V1, j ∈ V2, is a binary decision variable whose value is equal
to 1 if the hub located in terminal i serves terminal j , 0 otherwise; however, due to
the particular structure of the problem constraints, variables xij cannot be fractional
and greater than 1, therefore xij ∈ {0, 1}, i ∈ V1, j ∈ V2 can be replaced with
xij � 0, i ∈ V1, j ∈ V2.

Since the goods incoming and outgoing every day from each terminal can be
transferred by a single truck with a capacity of 14 pallets, the daily transport cost (in
dollars) between a pair of terminals i ∈ V1 and j ∈ V2 is given by cij = 2×0.74× lij ,
where 0.74 is the transportation cost (in dollars per mile), and lij is the distance (in
miles) between the terminals (see Tables 3.1 and 3.2).

The optimal solution leads to the opening of two hubs located in Duncan and
Stillwater (the daily total cost being $1081.73). Terminals in Altus, Ardmore, Duncan
and Lawton are assigned to the Duncan hub, while the Stillwater hub serves the
terminals in Bartlesville, Edmond, Enid, Muskogee, Oklahoma City, Ponca City,
Stillwater and Tulsa.
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Table 3.2 Distances (in miles) between terminals in the Koster Express problem (Part II).

Lawton Muskogee Oklahoma City Ponca City Stillwater Tulsa

Altus 54.2 274.2 141.1 245.0 209.2 248.0
Ardmore 115.8 230.4 100.5 202.2 162.6 204.6
Bartlesville 238.7 92.2 151.4 70.2 115.0 45.6
Duncan 34.1 213.5 80.9 184.8 145.3 187.8
Edmond 100.7 145.7 14.4 91.9 53.0 102.2
Enid 145.0 166.4 87.6 64.5 65.8 118.4
Lawton 0.0 220.6 88.0 191.9 152.5 194.9
Muskogee 220.6 0.0 140.4 142.5 119.2 48.1
Oklahoma City 88.0 140.4 0.0 104.7 66.6 107.6
Ponca City 191.9 142.5 104.7 0.0 41.9 96.5
Stillwater 152.5 119.2 66.6 41.9 0.0 71.2
Tulsa 194.9 48.1 107.6 96.5 71.2 0.0

Demand allocation

For a given set V̄1 ⊆ V1 of open facilities, an optimal demand allocation to V̄1 can be
determined by means of the following LP model.

Minimize
∑

i∈V̄1

∑

j∈V2

cij xij (3.16)

subject to
∑

i∈V̄1

xij = 1, (3.17)

∑

j∈V2

djxij � qi, i ∈ V̄1, (3.18)

xij � 0, i ∈ V̄1, j ∈ V2. (3.19)

In an optimal solution of problem (3.16)–(3.19), some x∗
ij values may be fractional

(i.e. the demand of a vertex j ∈ V2 can be satisfied by more than one vertex i ∈ V1)
because of capacity constraints (3.18). However, in the absence of a capacity constraint
(as in the SPL and p-median models), there exists at least one optimal solution such
that the demand of each vertex j ∈ V2 is satisfied by a single facility i ∈ V1 (single
assignment property). This solution can be defined as follows. Let ij ∈ V̄1 be a facility
such that

ij = arg min
i∈V̄1

cij .

Then, the allocation variables can be defined as follows:

x∗
ij =

{

1, if i = ij ,

0, otherwise.
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A Lagrangian heuristic for the capacitated plant location problem

Several heuristic methods have been developed for the solution of SESC problem
(3.9)–(3.14). Among them, Lagrangian relaxation techniques play a major role. They
usually provide high-quality upper and lower bounds within a few iterations. For
the sake of simplicity, in the remainder of this section, a Lagrangian procedure is
illustrated for the CPL problem, although this approach may be used for the general
SESC model (3.9)–(3.14). The fundamental step of the heuristic is the determination
of a lower bound, obtained by relaxing demand satisfaction constraints (3.10) in a
Lagrangian fashion. Let λj ∈ � be the multiplier associated with the j th constraint
(3.10). Then the relaxed problem is:

Minimize
∑

i∈V1

∑

j∈V2

cij xij +
∑

i∈V1

fiyi +
∑

j∈V2

λj

(
∑

i∈V1

xij − 1

)

(3.20)

subject to
∑

j∈V2

djxij � qiyi, i ∈ V1, (3.21)

0 � xij � 1, i ∈ V1, j ∈ V2, (3.22)

y1 ∈ {0, 1}, i ∈ V1. (3.23)

It is easy to check that problem (3.20)–(3.23) can be decomposed into |V1| sub-
problems. Indeed, for a given vector λ ∈ �|V2| of multipliers, the optimal objective
value of problem (3.20)–(3.23), LBCPL(λ), can be determined by solving, for each
potential facility i ∈ V1, the following subproblem:

Minimize
∑

j∈V2

(cij + λj )xij + fiyi (3.24)

subject to
∑

j∈V2

djxij � qiyi, (3.25)

0 � xij � 1, j ∈ V2, (3.26)

yi ∈ {0, 1}, (3.27)

and then by setting

LBCPL(λ) =
∑

i∈V1

LBi
CPL(λ) −

∑

j∈V2

λj ,

where LBi
CPL(λ) is the optimal objective function value of subproblem (3.24)–(3.27).

LBi
CPL(λ) can be easily determined by inspection, by observing that
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• for yi = 0, Equation (3.25) implies xij = 0, for each j ∈ V2, and therefore
LBi

CPL(λ) = 0;

• for yi = 1, subproblem (3.24)–(3.27) is a continuous knapsack problem (with
an objective function to be minimized); it is well known that this problem can
be solved in polynomial time by means of a ‘greedy’ procedure.

By suitably modifying the optimal solution of the Lagrangian relaxation, it is pos-
sible to construct a CPL feasible solution as follows.

Step 1. (Finding the facilities to be activated.) Let L be the list of potential facilities
i ∈ V1 sorted by nondecreasing values of LBi

CPL(λ), i ∈ V1 (note that LBi
CPL(λ) �

0, i ∈ V1, λ ∈ �|V2|). Extract from L the minimum number of facilities capable
to satisfy the total demand

∑

j∈V2
dj . Let V̄1 be the set of facilities selected. Then

V̄1 satisfies the relation:
∑

i∈V̄1

qi �
∑

j∈V2

dj .

Step 2. (Customer allocation to the selected facilities.) Solve the demand allocation
problem (3.16)–(3.19) considering V̄1 as the set of facilities to be opened. Let
UBCPL(λ) be the cost (3.24) associated with the optimal allocation.

The heuristic first selects the facilities characterized by the smallest LBi
CPL(λ)

values and then optimally allocates the demand to them.
Thus for each set of multipliers λ ∈ �|V2|, the above procedure computes both

a lower and upper bound (LBCPL(λ) and UBCPL(λ), respectively). If these bounds
coincide, an optimal solution has been found. Otherwise, in order to determine the
multipliers corresponding to the maximum possible lower bound LBCPL(λ) (or at
least a satisfactory bound), the classical subgradient algorithm can be used. This
method also generates, in many cases, better upper bounds, since the feasible solutions
generated from improved lower bounds are generally less costly. Here is a schematic
description of the subgradient algorithm.

Step 0. (Initialization.) Select a tolerance value ε � 0. Set LB = −∞, UB =
∞, k = 1 and λk

j = 0, j ∈ V2.

Step 1. (Computation of a new lower bound.) Solve the Lagrangian relaxation (3.20)–
(3.23) using λk ∈ �|V2| as a vector of multipliers. If LBCPL(λk) > LB, set LB =
LBCPL(λk).

Step 2. (Computation of a new upper bound.) Determine the corresponding feasible
solution. Let UBCPL(λk) be its cost. If UBCPL(λk) < UB, set UB = UBCPL(λk).

Step 3. (Check of the stopping criterion.) If (UB − LB)/LB � ε, STOP. LB and UB
represent the best upper and lower bound available for z∗

CPL, respectively.
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Table 3.3 Distances (in kilometres) between potential production plants
and markets in the Goutte problem.

Brossard Granby Sainte-Julie Sherbrooke Valleyfield Verdun

Brossard 0.0 76.1 30.4 139.4 72.6 11.7
Granby 76.1 0.0 71.0 77.2 144.5 83.7
LaSalle 20.8 92.9 47.2 156.1 47.5 11.7
Mascouche 54.7 113.3 52.9 187.2 93.0 45.2
Montréal 13.5 85.5 28.0 148.7 67.3 9.3
Sainte-Julie 30.4 71.0 0.0 138.2 94.5 38.1
Sherbrooke 139.4 77.2 138.2 0.0 207.9 146.9
Terrebonne 47.8 106.5 46.2 180.2 86.7 38.9
Valleyfield 72.6 144.5 94.5 207.9 0.0 63.4
Verdun 11.7 83.7 38.1 146.9 63.4 0.0

Step 4. (Updating of the Lagrangian multipliers.) Determine the subgradient of the
j th relaxed constraint,

sk
j =

∑

i∈V1

xk
ij − 1, j ∈ V2,

wherexk
ij is the solution of the Lagrangian relaxation (3.20)–(3.23) usingλk ∈ �|V2|

as Lagrangian multipliers. Then set

λk+1
j = λk

j + βksk
j , j ∈ V2, (3.28)

where βk is a suitable scalar coefficient. Let k = k + 1 and go back to Step 1.

This algorithm attempts to determine an ε-optimal solution, i.e. a feasible solution
with a maximum user-defined deviation ε from the optimal solution.

Computational experiments have shown that the initial values of the Lagrangian
multipliers do not significantly affect the behaviour of the procedure. Hence multi-
pliers are set equal to 0 in Step 0. Formula (3.28) can be explained in the following
way. If, at the kth iteration, the left-hand side of constraint (3.10) is higher than the
right-hand side (

∑

i∈V1
xk
ij > 1) for a certain j ∈ V2, the subgradient sk

j is positive
and the corresponding Lagrangian multiplier has to be increased in order to heavily
penalize the constraint violation. Vice versa, if the left-hand side of constraint (3.10)
is lower than the right-hand side (

∑

i∈V1
xk
ij < 1) for a certain j ∈ V2, the associated

subgradient sk
j is negative and the value of the associated multiplier must be decreased

to make the service of the unsatisfied demand fraction 1 − ∑

i∈V1
xk
ij more attractive.

Finally, if the j th constraint (3.10) is satisfied (
∑

i∈V1
xk
ij = 1), the corresponding

multiplier is unchanged.
The term βk in Equation (3.28) is a proportionality coefficient defined as

βk = α(UB − LBCPL(λk))
∑|V2|

j=1(s
k
j )2

,
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Table 3.4 Plant operating costs (in Canadian dollars per year) and capacity
(in hectolitres per year) in the Goutte problem.

Site Fixed cost Capacity

Brossard 81 400 22 000
Granby 83 800 24 000
LaSalle 88 600 28 000
Mascouche 91 000 30 000
Montréal 79 000 20 000
Sainte-Julie 86 200 26 000
Sherbrooke 88 600 28 000
Terrebonne 91 000 30 000
Valleyfield 79 000 20 000
Verdun 80 200 21 000

Table 3.5 Demands (in hectolitres per year) of the sales districts in the Goutte problem.

Site Demand

Brossard 14 000
Granby 10 000
Sainte-Julie 8 000
Sherbrooke 12 000
Valleyfield 10 000
Verdun 9 000

where α is a scalar arbitrarily chosen in the interval (0, 2]. The use of parameter
βk in Equation (3.28) limits the variations of the multipliers when the lower bound
LBCPL(λk) approaches the current upper bound UB.

Finally, note that the {LBCPL(λk)} sequence produced by the subgradient method
does not decrease monotonically. Therefore, there could exist iterations k for which
LBCPL(λk) < LBCPL(λk−1) (this explains the lower bound update in Step 1). In
practice, LBCPL(λk) values exhibit a zigzagging pattern.

The procedure is particularly efficient. Indeed, it generally requires, for ε ≈ 0.01,
only a few thousand iterations for problems with hundreds of vertices in V1 and in V2.

Goutte is a Canadian company manufacturing and distributing soft drinks. The
firm has recently achieved an unexpected increase of its sales mostly because of the
launch of a new beverage which has become very popular with young consumers.
The management is now considering the opportunity of opening a new plant to which
some of the production of the other factories could be moved.
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The production process makes use of water, available anywhere in Canada in an
unlimited quantity at a negligible cost, and of sugar extracts which compose a modest
percentage of the total weight of the finished product. For this reason, supply costs
are negligible compared to finished product distribution costs, and the transportation
costs are product independent. Table 3.3 provides the distances between potential
plants and markets.

The management has decided to undertake a preliminary analysis in order to eval-
uate the theoretical minimum cost plant configuration for different service levels. In
this study, the logistics system is assumed to be designed from scratch.

The annual operating costs and capacities of the potential plants are shown in
Table 3.4, while the annual demands of the sales districts are reported in Table 3.5.

The maximum distance between a potential plant and a market is successively
set equal to ∞ and 70 km. The trucks have a capacity of 150 hectolitres and a cost
(inclusive of the crew’s wages) of 0.92 Canadian dollars per kilometre.

The Goutte problem is then modelled as a CPL formulation:

Minimize
∑

i∈V1

∑

j∈V2

cij xij +
∑

i∈V1

fiyi

subject to
∑

i∈V1

xij = 1, j ∈ V2,

∑

j∈V2

djxij � qiyi, i ∈ V1,

0 � xij � 1, i ∈ V1, j ∈ V2,

yi ∈ {0, 1}, i ∈ V1,

where V1 = {Brossard, Granby, LaSalle, Mascouche, Montréal, Sainte-Julie, Sher-
brooke, Terrebonne, Valleyfield, Verdun} and V2 = {Brossard, Granby, Sainte-Julie,
Sherbrooke, Valleyfield, Verdun}; xij , i ∈ V1, j ∈ V2, is a decision variable repre-
senting the fraction of the annual demand of market j satisfied by plant i; yi, i ∈ V1,
is a binary decision variable, whose value is equal to 1 if the potential plant i is
open, 0 otherwise. Transportation costs cij , i ∈ V1, j ∈ V2 (see Table 3.6), are
calculated through Equations (3.15), observing that trucks always travel with a full
load on the outward journey and empty on the return journey. For example, since
the distance between the potential plant located in Granby and the sales district of
Brossard is 76.1 km, the transportation cost is 2 × 76.1 × 0.92 = 140.06 Cana-
dian dollars for transporting 150 hectolitres. Since the demand of the sales district
of Brossard is 14 000 hectolitres per year, the annual transportation cost for satisfy-
ing the entire demand of the Brossard market from the potential plant of Granby is
(14 000/150) × 140.06 = 13 072.32 Canadian dollars.
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If the maximum distance between a plant and a market is set equal to infinity, the
optimal solution leads to the opening of three production plants (located in Brossard,
Granby and Valleyfield) and the optimal x∗

ij values, i ∈ V1, j ∈ V2, are reported in
Table 3.7.

The annual total logistics cost equals to 265 283.12 Canadian dollars. The optimal
solution can be found by using the Lagrangian heuristic (with α = 1.5). The results
of the first two iterations can be summarized as follows:

λ1
j = 0, j = 1, . . . , 6;

LBCPL(λ1) = 0;
LB = 0;

y1 = [1, 0, 0, 0, 1, 0, 0, 0, 0, 1]T,

corresponding to the plants located in Brossard, Montréal and Verdun. This choice
guarantees the minimum number of open plants capable of satisfying the whole
demand (63 000 hectolitres per year) of the market at the lowest cost:

UBCPL(λ1) = 282 537.24;
UB = 282 537.24;
s1
j = −1, j = 1, . . . , 6;

β1 = 70 634.31;
λ2

j = −70 634.31, j = 1, . . . , 6;
LBCPL(λ2) = −529 969.24;

LB = 0;
y2 = [1, 0, 0, 0, 1, 0, 0, 0, 1, 1]T;

UBCPL(λ2) = 353 542.24;
UB = 282 537.24;
s2 = [−1.00, 2.60, 9.00, −0.92, 3.50, 8.67]T;
β2 = 6887.15.

If the maximum distance between a potential plant and a market is 70 km, the
optimal solution leads to the opening of four plants (located in Brossard, Granby,
Sherbrooke and Valleyfield). The demand allocation is reported in Table 3.8.

The annual total logistics cost would be 342 784.87 Canadian dollars, with an
increase of 77 501.75 Canadian dollars compared with the first solution found.
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Table 3.6 Transportation costs (in Canadian dollars per year) cij , i ∈ V1, j ∈ V2,
in the Goutte problem.

Brossard Granby Sainte-Julie Sherbrooke Valleyfield Verdun

Brossard 0.00 9 337.37 2 984.80 20 514.58 8 903.08 1 296.97
Granby 13 072.32 0.00 6 964.54 11 370.67 17 727.19 9 238.67
LaSalle 3 565.18 11 390.41 4 627.23 22 978.23 5 823.52 1 296.97
Mascouche 9 396.60 13 897.49 5 195.76 27 550.19 11 410.15 4 992.43
Montréal 2 321.51 10 482.34 2 747.91 21 888.54 8 251.63 1 030.47
Sainte-Julie 5 223.40 8 705.67 0.00 20 348.76 11 587.82 4 210.70
Sherbrooke 23 933.68 9 475.56 13 565.84 0.00 25 505.04 16 220.97
Terrebonne 8 208.20 13 068.37 4 532.48 26 531.56 10 640.26 4 299.53
Valleyfield 12 464.31 17 727.19 9 270.25 30 606.05 0.00 7 000.07
Verdun 2 017.50 10 265.19 3 742.85 21 627.96 7 777.85 0.00

Table 3.7 Fraction of the annual demand of the sales district j ∈ V2 satisfied by
the production plant i ∈ V1 (no limit on the distance) in the Goutte problem.

Brossard Granby Sainte-Julie Sherbrooke Valleyfield Verdun

Brossard 1.00 0.00 0.75 0.00 0.00 0.22
Granby 0.00 1.00 0.25 1.00 0.00 0.00
LaSalle 0.00 0.00 0.00 0.00 0.00 0.00
Mascouche 0.00 0.00 0.00 0.00 0.00 0.00
Montréal 0.00 0.00 0.00 0.00 0.00 0.00
Sainte-Julie 0.00 0.00 0.00 0.00 0.00 0.00
Sherbrooke 0.00 0.00 0.00 0.00 0.00 0.00
Terrebonne 0.00 0.00 0.00 0.00 0.00 0.00
Valleyfield 0.00 0.00 0.00 0.00 1.00 0.78
Verdun 0.00 0.00 0.00 0.00 0.00 0.00

3.3.2 Linear transportation costs and concave piecewise linear
facility operating costs

In this subsection we show how an SESC location problem with piecewise linear and
concave facility operating costs can still be modelled as an MIP model. Indeed, such a
problem can be transformed into model (3.9)–(3.14) by introducing dummy potential
facilities and suitably defining costs and capacities. For the sake of simplicity, the
topic will be illustrated in three steps.

Case A. The operating cost Fi(ui) of a facility i ∈ V1 is given by Equation (3.7) (see
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Table 3.8 Fraction of the annual demand of the sales district i ∈ V2 satisfied by the
production plant i ∈ V1 (maximum distance of 70 km) in the Goutte problem.

Brossard Granby Sainte-Julie Sherbrooke Valleyfield Verdun

Brossard 1.00 0.00 1.00 0.00 0.00 0.00
Granby 0.00 1.00 0.00 0.00 0.00 0.00
LaSalle 0.00 0.00 0.00 0.00 0.00 0.00
Mascouche 0.00 0.00 0.00 0.00 0.00 0.00
Montréal 0.00 0.00 0.00 0.00 0.00 0.00
Sainte-Julie 0.00 0.00 0.00 0.00 0.00 0.00
Sherbrooke 0.00 0.00 0.00 1.00 0.00 0.00
Terrebonne 0.00 0.00 0.00 0.00 0.00 0.00
Valleyfield 0.00 0.00 0.00 0.00 1.00 1.00
Verdun 0.00 0.00 0.00 0.00 0.00 0.00

Figure 3.5):

Fi(ui) =
{

fi + giui, if ui > 0,

0, if ui = 0,
i ∈ V1,

where, using Equation (3.8), ui = ∑

j∈V2
djxij .

Hence, this problem can be transformed into model (3.9)–(3.14) by rewriting the
objective function (3.9) as

∑

i∈V1

∑

j∈V2

tij xij +
∑

i∈V1

fiyi, (3.29)

where
tij = cij + gidj , i ∈ V1, j ∈ V2. (3.30)

This transformation is based on the following observations. If the site i ∈ V1
is opened, the first term of the objective function (3.29) includes not only the
transportation cost cij xij , j ∈ V2, but also the contribution gidj xij of the variable
cost of the facility i ∈ V1; if, instead, the site i ∈ V1 is not opened, the variables
xij , j ∈ V2, take the value 0 and that does not generate any cost.

Case B. A potential facility cannot be run economically if its activity level is lower
than a value q−

i or higher than a threshold q+
i . For intermediate values, the operating

cost grows linearly (see Figure 3.6). This case can be modelled as the previous case,
provided that in (3.29), (3.10)–(3.14), capacity constraints (3.11) are replaced with
the following relations:

q−
i yi �

∑

j∈V2

djxij � q+
i yi , i ∈ V1.
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Fi (ui)
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Figure 3.5 Operating cost Fi(ui) of potential facility i ∈ V1 versus
activity level ui (case A).

uiqi qi

fi

+−

Fi (ui)

Figure 3.6 Operating cost Fi(ui) of potential facility i ∈ V1 versus
activity level ui (case B).

Case C. The operating cost Fi(ui) of a potential facility i ∈ V1 is a general concave
piecewise linear function of its activity level because of economies of scale. In the
simplest case, there only are two piecewise lines (see Figure 3.7). Then

Fi(ui) =









f ′′
i + g′′

i ui, if ui > u′
i ,

f ′
i + g′

iui, if 0 < ui � u′
i , i ∈ V1,

0, if ui = 0,

(3.31)

wheref ′
i < f ′′

i andg′
i > g′′

i . In order to model this problem as before, each potential
facility is replaced by as many artificial facilities as the piecewise lines of its cost
function. For instance, if Equation (3.31) holds, facility i ∈ V1 is replaced by two
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Figure 3.7 Operating cost Fi(ui) of potential facility i ∈ V1 versus
activity level ui (case C).

artificial facilities i′ and i′′ whose operating costs are characterized, respectively,
by fixed costs equal to f ′

i and f ′′
i , and by marginal costs equal to g′

i and g′′
i . In this

way the problem belongs to case A described above since it is easy to demonstrate
that in every optimal solution at most one of the artificial facilities is selected.

Logconsult is an American consulting company commissioned to propose changes
to the logistics system of Gelido, a Mexican firm distributing deep-frozen food. A key
aspect of the analysis is the relocation of the Gelido DCs. A preliminary examina-
tion of the problem led to the identification of about |V1| = 30 potential sites where
warehouses can be open or already exist. In each site several different types of ware-
houses can usually be installed. Here we show how the cost function of a potential
facility i ∈ V1 can be estimated. Facility fixed costs include rent, amortization of the
machinery, insurance of premises and machinery, and staff wages. They add up to
$80 000 per year. The variable costs are related to the storage and handling of goods.
Logconsult has estimated the Gelido variable costs on the basis of historical data (see
Table 3.9).

Facility variable costs (see Figure 3.8) are influenced by inventory costs which
generally increase with the square root of the demand (see Chapter 4 for further
details). This relation suggests approximating the cost function of potential facility
i ∈ V1 through Equation (3.31), where u′

i = 3500 hundred kilograms per year.
The values of f ′

i , f ′′
i , g′

i and g′′
i can be obtained by applying linear regression (see

Chapter 2) to each of the two sets of available data. This way the following relations
are obtained:

f ′
i = 80 000 + 2252 = 82 252 dollars per year;

g′
i = 18.5 dollars per hundred kilograms;



94 DESIGNING THE LOGISTICS NETWORK

f ′′
i = 80 000 + 54 400 = 134 400 dollars per year;

g′′
i = 4.1 dollars per hundred kilograms.

The problem can therefore be modelled as in (3.29), (3.10)–(3.14), provided that
each potential facility i ∈ V1 is replaced by two dummy facilities i′ and i′′ with fixed
costs equal to f ′

i and f ′′
i , and marginal costs equal to g′

i and g′′
i , respectively.

By way of example, this approach is applied to a simplified version of the problem
where the potential facilities are in Linares, Monclova and Monterrey, each of them
having a capacity of 20 000 hundred kilograms per year, and the sales districts are
concentrated in four areas, around Bustamante, Saltillo, Santa Catarina and Monte-
morelos, respectively. The annual demands add up to 6200 hundred kilograms for
Bustamante, 6600 hundred kilograms for Saltillo, 5800 hundred kilograms for Santa
Catarina and 4400 hundred kilograms for Montemorelos. Transportation is carried
out by trucks whose capacity is 10 hundred kilograms and whose cost is equal to
$0.98 per mile.

The Gelido location problem can be modelled as a CPL formulation:

Minimize
∑

i∈V1

∑

j∈V2

tij xij +
∑

i∈V1

fiyi

subject to
∑

i∈V1

xij = 1, j ∈ V2,

∑

j∈V2

djxij � qiyi, i ∈ V1,

0 � xij � 1, i ∈ V1, j ∈ V2,

yi ∈ {0, 1}, i ∈ V1,

where V1 = {Linares′, Linares′′, Monclova′, Monclova′′, Monterrey′, Monterrey′′},
V2 = {Bustamante, Saltillo, Santa Catarina, Montemorelos}. Linares′ and Linares′′
represent two dummy facilities which can be opened up in Linares, with a capacity
equal to

q ′
i = 3500 hundred kilograms per year,

q ′′
i = 20 000 hundred kilograms per year,

respectively (the same goes for Monclova′, Monclova′′, Monterrey′ and Monterrey′′);
xij , i ∈ V1, j ∈ V2, is a decision variable representing the fraction of the annual
demand of sales district j satisfied by facility i; yi, i ∈ V1, is a binary decision
variable, whose value is equal to 1 if the potential facility i is open, 0 otherwise.
Costs tij , i ∈ V1, j ∈ V2, reported in Table 3.11, were obtained by means of
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Table 3.9 Demand entries (in hundreds of kilograms per year) versus facility variable costs
(in dollars) as reported in the past in the Logconsult problem.

Demand Variable cost

1 000 17 579
2 500 56 350
3 500 62 208
6 000 76 403
8 000 85 491
9 000 90 237
9 500 96 251

12 000 109 429
13 500 107 355
15 000 122 432
16 000 116 816
18 000 124 736

Table 3.10 Distances (in miles) between potential facilities and
sales districts in the Logconsult problem.

Bustamante Saltillo Santa Catarina Montemorelos

Linares 165.0 132.5 92.7 32.4
Monclova 90.8 118.5 139.0 176.7
Monterrey 84.2 51.6 11.9 49.5

Equations (3.30), where the quantities cij , i ∈ V1, j ∈ V2, are in turn obtained
through Equation (3.15). In other words, cij = c̄ij dj , with c̄ij = (0.98 × 2 × lij )/10,
where lij , i ∈ V1, j ∈ V2, represents the distance (in miles) between facility i and
market j (see Table 3.10).

The optimal demand allocation (see Table 3.12) leads to an optimal cost equal to
$569 383.52 per year. Two facilities are located in Linares and Monterrey, with an
activity level equal to 3000 hundred kilograms per year and 20 000 hundred kilograms
per year, respectively (this means that the Linares′ and Monterrey′′ dummy facilities
are opened).

3.4 Two-Echelon Multicommodity Location Models

In two-echelon multicommodity (TEMC) location problems, homogeneous facilities
have to be located as in SESC problems. However, both incoming and outgoing
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Figure 3.8 Variable cost of a facility versus demand in the Logconsult problem.

Table 3.11 Annual costs (in dollars) tij , i ∈ V1, j ∈ V2, in the Logconsult problem.

Bustamante Saltillo Santa Catarina Montemorelos

Linares′ 315 208 293 502 212 681 109 342
Linares′′ 225 928 198 462 129 161 45 982
Monclova′ 225 040 275 392 265 315 233 786
Monclova′′ 135 760 180 352 181 795 170 426
Monterrey′ 217 020 188 850 120 828 124 089
Monterrey′′ 127 740 93 810 37 308 60 729

Table 3.12 Fraction of the annual demand of sales district j ∈ V2 satisfied by
facility i ∈ V1, in the Logconsult problem.

Bustamante Saltillo Santa Catarina Montemorelos

Linares′ 0.00 0.00 0.00 0.68
Linares′′ 0.00 0.00 0.00 0.00
Monclova′ 0.00 0.00 0.00 0.00
Monclova′′ 0.00 0.00 0.00 0.00
Monterrey′ 0.00 0.00 0.00 0.00
Monterrey′′ 1.00 1.00 1.00 0.32

commodities are relevant and material flows are not homogeneous. In what follows,
transportation costs are assumed to be linear, and each facility is assumed to be
characterized by a fixed and a marginal cost. If cost functions are piecewise linear
and concave, transformations similar to the ones depicted in Section 3.3 can be used
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as a solution methodology. In the following, for the sake of clarity, it is assumed that
the facilities to be located are DCs supplied directly from production plants.

TEMC problems can be modelled as MIP problems. Let V1 be the set of production
plants; V2 the set of potential DCs, p of which are to be opened; V3 the set of the
demand points; K the set of homogeneous commodities; ck

ijr , i ∈ V1, j ∈ V2, r ∈ V3,
k ∈ K , the unit transportation cost of commodity k from plant i to the demand
point r across the DC j ; dk

r , r ∈ V3, k ∈ K , the quantity of product k required
by demand point r in a time unit (for example, one year); pk

i , i ∈ V1, k ∈ K , the
maximum quantity of product k that plant i can manufacture in a time unit; q−

j and
q+
j , j ∈ V2, the minimum and maximum activity level of potential DC j in a time

unit, respectively. Moreover, it is assumed that the operating cost of each DC j ∈ V2

depends on the amount of commodities through a fixed cost fj and a marginal cost
gj . Finally, it is assumed that demand is not divisible (see Section 3.2). Let zj , j ∈ V2,
be a binary variable equal to 1 if DC j is opened, 0 otherwise; yjr , j ∈ V2, r ∈ V3,
a binary variable equal to 1 if demand point r is assigned to DC j , 0 otherwise; sk

ijr ,
i ∈ V1, j ∈ V2, r ∈ V3, k ∈ K , a continuous variable representing the quantity of
item k transported from plant i to demand point r through DC j . The TEMC model
is:

Minimize

∑

i∈V1

∑

j∈V2

∑

r∈V3

∑

k∈K

ck
ijr s

k
ijr +

∑

j∈V2

(

fj zj + gj

∑

r∈V3

∑

k∈K

dk
r yjr

)

subject to
∑

j∈V2

∑

r∈V3

sk
ijr � pk

i , i ∈ V1, k ∈ K, (3.32)

∑

i∈V1

sk
ijr = dk

r yjr , j ∈ V2, r ∈ V3, k ∈ K, (3.33)

∑

j∈V2

yjr = 1, r ∈ V3, (3.34)

q−
j zj �

∑

r∈V3

∑

k∈K

dk
r yjr � q+

j zj , j ∈ V2, (3.35)

∑

j∈V2

zj = p, (3.36)

zj ∈ {0, 1}, j ∈ V2, (3.37)

yjr ∈ {0, 1}, j ∈ V2, r ∈ V3, (3.38)

sk
ijr � 0, i ∈ V1, j ∈ V2, r ∈ V3, k ∈ K. (3.39)

Inequalities (3.32) impose a capacity constraint for each production plant and for
each product. Equations (3.33) require the satisfaction of customer demand. Equa-
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tions (3.34) establish that each client must be served by a single DC. Inequalities (3.35)
are DC capacity constraints. Equation (3.36) sets the number of DCs to be opened.

By removing some constraints (e.g. Equation (3.36)) or adding some new con-
straints (e.g. forcing the opening of a certain DC, or the assignment of some demand
points to a given DC) several meaningful variants of the above model can be obtained.

• A plant i ∈ V1 is not able to produce a certain commodity k ∈ K (in this case
we remove the decision variables sk

ijr for each r ∈ V3 and j ∈ V2).

• A DC j ∈ V2 cannot be serviced efficiently by a plant i ∈ V1 because it is too
far from it (in this case we remove variables sk

ijr for each r ∈ V3 and k ∈ K).

• The time required to serve a demand point r ∈ V3 from potential DC j ∈ V2
is too long (in this case we remove variables yjr and variables sk

ijr for each
i ∈ V1 and k ∈ K).

Demand allocation

When a set z̄j , j ∈ V2 and ȳjr , j ∈ V2, r ∈ V3, of feasible values for the binary vari-
ables is available, determining the corresponding optimal demand allocation amounts
to solving an LP problem:

Minimize
∑

i∈V1

∑

j∈V2

∑

r∈V3

∑

k∈K

ck
ijr s

k
ijr (3.40)

subject to
∑

j∈V2

∑

r∈V3

sk
ijr � pk

i , i ∈ V1, k ∈ K, (3.41)

∑

i∈V1

sk
ijr = dk

r ȳjr , j ∈ V2, r ∈ V3, k ∈ K, (3.42)

xk
ijr � 0, i ∈ V1, j ∈ V2, r ∈ V3, k ∈ K. (3.43)

A Lagrangian heuristic

The Lagrangian methodology illustrated for the CPL problem can be adapted to the
TEMC problem as follows. A lower bound is obtained by relaxing constraints (3.33)
with multipliers θk

jr , j ∈ V2, r ∈ V3, k ∈ K . The relaxed problem:

Minimize

∑

i∈V1

∑

j∈V2

∑

r∈V3

∑

k∈K

(ck
ijr + θk

jr )s
k
ijr +

∑

j∈V2

(

fj zj + (gj − θk
jr )

∑

r∈V3

∑

k∈K

dk
r yjr

)

subject to (3.32), (3.34)–(3.39), decomposes into two separate subproblems P1 and
P2. P1 is the LP problem:
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Minimize
∑

i∈V1

∑

j∈V2

∑

r∈V3

∑

k∈K

(ck
ijr + θk

jr )s
k
ijr

subject to (3.32) and (3.39), which can be strengthened by adding constraints:
∑

i∈V1

∑

j∈V2

sk
ijr = dk

r , r ∈ V3, k ∈ K,

∑

i∈V1

∑

r∈V3

∑

k∈K

sk
ijr � q+

j , j ∈ V2.

Subproblem P2, defined as

Minimize
∑

j∈V2

fj zj +
∑

j∈V2

∑

r∈V3

[

(gj − θk
jr )

(
∑

k∈K

dk
r

)]

yjr

subject to (3.34)–(3.38), is an SESC problem (with indivisible demand) where DCs
have to be located and each customer r ∈ V3 has a single-commodity demand equal
to

∑

k∈K dk
r . Even if this problem is still NP-hard, its solution is usually much simpler

than that of the TEMC problem and can be often obtained through a general-purpose
or a tailored branch-and-bound algorithm.

Let z̄j , j ∈ V2 and ȳjr , j ∈ V2, r ∈ V3, be the optimal solution of P2. If the
allocation problem associated with such binary variable values is feasible, an upper
bound is obtained. The above procedure is then embedded in a subgradient procedure
in order to determine improved lower and upper bounds.

A Benders decomposition procedure

We now illustrate a Benders decomposition method for solving the TEMC problem.
Generally speaking, a Benders decomposition method allows the determination of an
optimal solution of an MIP problem by solving several MIP problems with a single
continuous variable each, and several LP problems.

To simplify the exposition, the Benders decomposition method will be described
assuming the problem is well posed (i.e.

∑

i∈V1
pk

i �
∑

r∈V3
dk
r , k ∈ K , and at least

one solution (zj , yjr ), j ∈ V2, r ∈ V3, satisfies all the constraints).
Let µk

i , i ∈ V1, k ∈ K , and πk
jr , j ∈ V2, r ∈ V3, k ∈ K , be the dual variables

corresponding to constraints (3.41) and (3.42), respectively. The dual of problem
(3.40)–(3.43) can be reformulated as

Maximize
∑

i∈V1

∑

k∈K

(−pk
i )µ

k
i +

∑

j∈V2

∑

r∈V3

∑

k∈K

(dk
r ȳjr )π

k
jr (3.44)

subject to

−µk
i + πk

jr � ck
ijr , i ∈ V1, j ∈ V2, r ∈ V3, k ∈ K, (3.45)

µk
i � 0, i ∈ V1, k ∈ K. (3.46)
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This way the optimal solution of problem (3.40)–(3.43) is determined by solv-
ing its dual. Since problem (3.40)–(3.43) always has a finite optimal solution, its
dual (3.44)–(3.46) can be formulated as follows. Denote by Ω the feasible region
of problem (3.44)–(3.46) and by T the set of extreme points of Ω . Moreover, let
µk

i (t), i ∈ V1, k ∈ K , and πk
jr (t), j ∈ V2, r ∈ V3, k ∈ K , be the dual solution cor-

responding to a generic extreme point t ∈ T . Then we can compute:

Maximize
{

∑

i∈V1

∑

k∈K

(−pk
i )µ

k
i (t) +

∑

j∈V2

∑

r∈V3

∑

k∈K

(dk
r ȳk

jr )π
k
jr (t)

}

.

The feasible region Ω (and, consequently, also T ) does not depend on the ȳjr , j ∈
V2 and r ∈ V3 values. This observation allows us to formulate the TEMC problem as

Minimize
{

∑

j∈V2

(

fj zj + gj

∑

r∈V3

∑

k∈K

dk
r yjr

)

+ max
t∈T

[
∑

i∈V1

∑

k∈K

(−pk
i )µ

k
i (t) +

∑

j∈V2

∑

r∈V3

∑

k∈K

(dk
r yk

jr )π
k
jr (t)

]}

subject to (3.34)–(3.38), or equivalently (Benders reformulation):

Minimize
L (3.47)

subject to

L �
∑

j∈V2

(

fj zj + gj

∑

r∈V3

∑

k∈K

dk
r yjr

)

+
∑

i∈V1

∑

k∈K

(−pk
i )µ

k
i (t) +

∑

j∈V2

∑

r∈V3

∑

k∈K

(dk
r yk

jr )π
k
jr (t), t ∈ T (3.48)

and constraints (3.34)–(3.38).
Problem (3.47), (3.48), (3.34)–(3.38) becomes intractable because of the large

number of constraints (3.48) (one for each extreme point of Ω). For this reason, it is
convenient to resort to the relaxation of this formulation, named master problem, for
which only a subset T (h) ⊆ T of constraints (3.48) is present.
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Minimize
L (3.49)

subject to

L �
∑

j∈V2

(

fj zj + gj

∑

r∈V3

∑

k∈K

dk
r yjr

)

+
∑

i∈V1

∑

k∈K

(−pk
i )µ

k
i (t) +

∑

j∈V2

∑

r∈V3

∑

k∈K

(dk
r yk

jr )π
k
jr (t), t ∈ T (h), (3.50)

and constraints (3.34)–(3.38).
Let z

(h)
j , j ∈ V2 and y

(h)
ij , j ∈ V2, r ∈ V3, be an optimal solution to the master

problem, and let L(h) be the corresponding objective function value. Since the master
problem represents a relaxation of the formulation (3.47), (3.48), (3.34)–(3.38), the
value L(h) is a lower bound on the optimal solution value of the TEMC problem.
Starting from y

(h)
jr , j ∈ V2, r ∈ V3, it is possible to determine the optimal solution

s
k,(h)
ijr , i ∈ V1, j ∈ V2, r ∈ V3, k ∈ K , of the following demand allocation problem:

Minimize
∑

i∈V1

∑

j∈V2

∑

r∈V3

∑

k∈K

ck
ijr s

k
ijr (3.51)

subject to
∑

j∈V2

∑

r∈V3

sk
ijr � pk

i , i ∈ V1, k ∈ K, (3.52)

∑

i∈V1

sk
ijr = dry

(h)
jr , j ∈ V2, r ∈ V3, k ∈ K, (3.53)

sk
ijr � 0, i ∈ V1, j ∈ V2, r ∈ V3, k ∈ K. (3.54)

The optimal solutions of the master and demand allocation problems, therefore,
allow us to define a feasible solution z

(h)
j , j ∈ V2, y

(h)
jr , j ∈ V2, r ∈ V3, s

k,(h)
ijr , i ∈

V1, j ∈ V2, r ∈ V3, k ∈ K , for the TEMC problem, whose cost is equal to

U(h) =
∑

j∈V2

(

fj z
(h)
j + gj

∑

r∈V3

∑

k∈K

dk
r y

(h)
jr

)

+
∑

i∈V1

∑

j∈V2

∑

r∈V3

∑

k∈K

ck
ijr s

k,(h)
ijr . (3.55)

Let µk
i (t

(h)), i ∈ V1, k ∈ K , and πk
jr (t

(h)), j ∈ V2, r ∈ V3, k ∈ K, t(h) ∈ T , be
the dual optimal solution of the demand allocation problem (3.51)–(3.54). Since the
optimum solution values of the primal and dual problems are equal, it follows that

∑

i∈V1

∑

k∈K

(−pk
i )µ

k
i (t

(h)) +
∑

j∈V2

∑

r∈V3

∑

k∈K

(dk
r y

(h)
jr )πk

i (t (h))

=
∑

i∈V1

∑

j∈V2

∑

r∈V3

∑

k∈K

ck
ijr s

k,(h)
ijr ,
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from which

U(h) =
∑

j∈V2

(

fj z
(h)
j + gj

∑

r∈V3

∑

k∈K

dk
r y

(h)
jr

)

+
∑

i∈V1

∑

k∈K

(−pk
i )µ

k
i (t

(h)) +
∑

j∈V2

∑

r∈V3

∑

k∈K

(dk
r y

(h)
jr )πk

i (t (h)). (3.56)

The implications of Equation (3.56) are clear. If L(h) < U(h), the solution z
(h)
j , j ∈

V2, y
(h)
jr , j ∈ V2, r ∈ V3, s

k,(h)
ijr , i ∈ V1, j ∈ V2, r ∈ V3, k ∈ K , is not optimal

for the TEMC problem. Furthermore,

L(h) <
∑

j∈V2

(

fj z
(h)
j + gj

∑

r∈V3

∑

k∈K

dk
r y

(h)
jr

)

+
∑

i∈V1

∑

k∈K

(−pk
i )µ

k
i (t

(h)) +
∑

j∈V2

∑

r∈V3

∑

k∈K

(dk
r y

(h)
jr )πk

i (t (h)),

i.e. t (h) /∈ T (h). Therefore, the introduction of t (h) in the set T (h), which defines the
constraints (3.50) of the master problem, yields an improvement of the relaxation
and consequently the procedure can be iterated. In the case L(h) = U(h), the optimal
solution of the TEMC problem is obtained.

In a more schematic way, the Benders decomposition method can be described as
follows.

Step 0. (Initialization.) Select a tolerance value ε > 0; set LB = −∞, UB = ∞,
h = 1, T (h) = ∅.

Step 1. (Solution of the master problem.) Solve the master problem (3.49), (3.50),
(3.34)–(3.38). Let z

(h)
j , j ∈ V2 and y

(h)
jr , j ∈ V2, r ∈ V3, be the correspond-

ing optimal solution and L(h) the corresponding objective function value; set
LB = L(h); if (UB − LB)/LB < ε, then STOP.

Step 2. (Determination of a new feasible solution.) Determine the optimal solu-
tion s

k,(h)
ijr , i ∈ V1, j ∈ V2, r ∈ V3, k ∈ K , of demand allocation problem (3.51)–

(3.54) and the corresponding dual solution µk
i (t

(h)), i ∈ V1, k ∈ K , and πk
jr (t

(h)),
j ∈ V2, r ∈ V3, k ∈ K; let U(h) be the objective function value obtained through
Equation (3.55); if U(h) <UB, then set UB = U(h); finally, set T (h) =T (h) ∪ {t (h)}.

Step 3. Set h = h + 1 and go back to Step 1.

The above algorithm seeks an ε-optimal solution, i.e. a feasible solution with a
maximum gap ε from the optimal solution. The efficiency of this method can be
improved remarkably if some feasible solutions for the TEMC problem are available
at the beginning (e.g. the solution adopted in practice and those suggested on the
basis of the experience of the company’s management). This yields, at Step 0 of
the algorithm, a better initial choice both for the value of UB and for the set T (1).
In particular, UB can be set equal to the best value of the objective function value
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Table 3.13 Distances (in kilometres) among the production sites and the demand points
through the DCs in the K9 problem.

i = 1 i = 2

j r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

1 400 600 1100 800 1000 1500
2 600 400 900 800 600 1100
3 1000 600 900 800 400 700
4 1600 1200 900 1200 800 500

available. Moreover, the dual solution of each feasible solution allows us to define a
constraint (3.50) for the initial master problem. Moreover, because of the presence
of constraints (3.34), the optimal solution of the master problem is such that each
demand point r ∈ V3 is served by one and only one DC jr ∈ V2, i.e.

y
(h)
jr =

{

1, if j = jr ,

0, otherwise.

Therefore, the demand allocation problem (3.51)–(3.54) in Step 2 can be further
simplified as:

Minimize
∑

i∈V1

∑

r∈V3

∑

k∈K

ck
ijr r

sk
ijr r

subject to
∑

r∈V3

sk
ijr r

� pk
i , i ∈ V1, k ∈ K,

∑

i∈V1

sk
ijr r

= dk
r , r ∈ V3, k ∈ K,

sk
ijr r

� 0, i ∈ V1, r ∈ V3, k ∈ K,

and can be therefore decomposed in |K| transportation problems, the kth of which
corresponds to:

Minimize
∑

i∈V1

∑

r∈V3

ck
ijr r

sk
ijr r

subject to
∑

r∈V3

sk
ijr r

� pk
i , i ∈ V1,
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∑

i∈V1

sk
ijr r

= dk
r , r ∈ V3,

sk
ijr r

� 0, i ∈ V1, r ∈ V3.

K9 is a German petrochemical company. The firm’s management intends to ren-
ovate its production and distribution network, which is presently composed of two
refining plants, two DCs and hundreds of sales points (gas pumps and liquefied gas
retailers). After a series of meetings, it was decided to relocate the DCs, leaving the
position and features of the two production plants unchanged. The products of K9 are
subdivided into two homogeneous commodities (represented by the indices k = 1, 2):
fuel for motor transportation and liquefied gas (the latter sold in cylinders). There are
four potential sites suited to receive a DC and, among these, two must be selected.
A DC j, j = 1, . . . , 4, is economically feasible if its level of activity is higher than
q−
j = 1 000 000 hectolitres per year and lower than q+

j = 2 500 000 hectolitres per
year; for intermediate values, the cost increases approximately with a linear trend
characterized by a fixed cost of 10 million euros per year and by a marginal cost of
€0.25 per hectolitre. Transportation costs ck

ijr , i ∈ V1, j ∈ V2, r ∈ V3, k = 1, 2, are
equal to the cost per kilometre and hectolitre (equal to €0.67 for k = 1, and €0.82
for k = 2) multiplied by the distance between production plant i ∈ V1 and demand
point r ∈ V3 through site j ∈ V2 (see Table 3.13).

The market is subdivided into three districts (r = 1, 2, 3) characterized by demand
values equal to

d1
1 = 800 000 hectolitres per year;

d1
2 = 600 000 hectolitres per year;

d1
3 = 700 000 hectolitres per year;

d2
1 = 300 000 hectolitres per year;

d2
2 = 400 000 hectolitres per year;

d2
3 = 500 000 hectolitres per year.

Finally, the production plants have the following capacities:

p1
1 = 1 200 000 hectolitres per year;

p1
2 = 1 500 000 hectolitres per year;

p2
1 = 500 000 hectolitres per year;

p2
2 = 800 000 hectolitres per year.

To determine the optimal allocation of the two DCs, a TEMC model with p =
2 is built and solved. The decision variables sk

ijr , i = 1, 2, j = 1, . . . , 4, r =
1, 2, 3, k = 1, 2, represent the quantity (in hectolitres) of product k transported yearly
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from production plant i to demand point r through DC j , whereas transportation costs
ck
ijr , i = 1, 2, j = 1, . . . , 4, r = 1, 2, 3, k = 1, 2, can be obtained from Tables 3.14

and 3.15.
In the optimal TEMC solution, the first and third DCs are opened (z∗

1 = 1, z∗
2 = 0,

z∗
3 = 1, z∗

4 = 0) and the yearly cost amounts to 33.19 million euros. The first
centre serves the first sales district, while the second one is used for the second and
third sales district (y∗

11 = y∗
32 = y∗

33 = 1). Moreover, the decision variables sk
ijr ,

i = 1, 2, j = 1, . . . , 4, r = 1, 2, 3, k = 1, 2, take the following values:

s
1,∗
111 = 800 000 hectolitres per year;

s
1,∗
232 = 600 000 hectolitres per year;

s
1,∗
233 = 700 000 hectolitres per year;

s
2,∗
111 = 300 000 hectolitres per year;

s
2,∗
133 = 100 000 hectolitres per year;

s
2,∗
232 = 400 000 hectolitres per year;

s
2,∗
233 = 300 000 hectolitres per year

(for the sake of brevity, the variables that take zero value are not reported).
In order to apply the Benders decomposition method, the following initial solution

is used:

z
(1)
1 = 1;

z
(1)
2 = 1;

y
(1)
11 = 1;

y
(1)
22 = 1;

y
(1)
23 = 1;

s
1,(1)
111 = 800 000 hectolitres per year;

s
1,(1)
123 = 400 000 hectolitres per year;

s
1,(1)
222 = 600 000 hectolitres per year;

s
1,(1)
223 = 300 000 hectolitres per year;

s
2,(1)
111 = 300 000 hectolitres per year;

s
2,(1)
122 = 200 000 hectolitres per year;

s
2,(1)
222 = 200 000 hectolitres per year;

s
2,(1)
223 = 500 000 hectolitres per year;
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corresponding to an initial upper bound:

UB = U(1) = 37.138 million euros per year.

LB is set equal to−∞.The solution s
k,(1)
ijr , i = 1, 2, j = 1, . . . , 4, r = 1, 2, 3, k =

1, 2, corresponds to the following dual solution of the problem of demand allocation,

µ
1,(1)
1 = 1.34;

µ
2,(1)
1 = 1.64;

π
1,(1)
11 = 4.02;

π
1,(1)
22 = 4.02;

π
1,(1)
23 = 7.37;

π
2,(1)
11 = 4.92;

π
2,(1)
22 = 4.92;

π
2,(1)
23 = 9.02,

which allows us to initialize the set T (1) of constraints of the master problem. The
master problem therefore provides the following optimal solution,

z
(2)
3 = 1;

z
(2)
4 = 1;

y
(2)
32 = 1;

y
(2)
41 = 1;

y
(2)
43 = 1,

whose objective function value allows us to update LB:

LB = L(2) = 16.757 million euros per year.

The optimal solutions of the demand allocation problem and its dual are

s
1,(2)
132 = 600 000 hectolitres per year;

s
1,(2)
241 = 800 000 hectolitres per year;

s
1,(2)
243 = 700 000 hectolitres per year;

s
2,(2)
132 = 400 000 hectolitres per year;

s
2,(2)
241 = 300 000 hectolitres per year;

s
2,(2)
243 = 200 000 hectolitres per year;
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Table 3.14 Transportation costs (in euros per hectolitre)
ck
ijr

, i = 1, 2, j = 1, . . . , 4, r = 1, 2, 3, for product k = 1 (Part I) in the K9 problem.

i = 1 i = 2

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

1 2.68 4.02 7.37 5.36 6.7 10.05
2 4.02 2.68 6.03 5.36 4.02 7.37
3 6.7 4.02 6.03 5.36 2.68 4.69
4 10.72 8.04 6.03 8.04 5.36 3.35

Table 3.15 Transportation costs (in euros per hectolitre)
ck
ijr

, i = 1, 2, j = 1, . . . , 4, r = 1, 2, 3, for product k = 2 (Part II) in the K9 problem.

i = 1 i = 2

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

1 3.28 4.92 9.02 6.56 8.2 12.3
2 4.92 3.28 7.38 6.56 4.92 9.02
3 8.2 4.92 7.38 6.56 3.28 5.74
4 13.12 9.84 7.38 9.84 6.56 4.1

µ
1,(2)
2 = 2.68; π

1,(2)
43 = 6.03;

µ
2,(2)
2 = 3.28; π

2,(2)
32 = 4.92;

π
1,(2)
32 = 4.02; π

2,(2)
41 = 13.12;

π
1,(2)
41 = 10.72; π

2,(2)
43 = 7.38.

Hence, U(2) = 38.984 million euros per year. Since UB < U(2), the value of UB is
not updated. The procedure continues until a ε-optimal solution is generated.

3.5 Logistics Facility Location in the Public Sector

As explained in Chapter 1, relevant logistics issues have to be tackled when planning
a number of public services (fire fighting, transport of the disabled, ambulance dis-
patching, to name a few). In such contexts, it is often of primary importance to ensure
not only a low logistics cost, but also an adequate service level to all users. As a result,
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specific models have to be applied when locating public facilities. For example, in
the p-centre model described below, the service time of the most disadvantaged user
is to be minimized, whereas in the location-covering model one has to determine the
least-cost set of facilities such that each user can be reached within a given maximum
travel time.

3.5.1 p-centre models

In the p-centre model the aim is to locate p facilities on a graph in such a way that the
maximum travel time from a user to the closest facility is minimized. The p-centre
model finds its application when it is necessary to ensure equity in servicing users
spread on a wide geographical area.

The problem can be modelled on a directed, undirected or mixed graph G(V, A, E),
where V is a set of vertices representing both user sites and road intersections, while
A and E (the set of arcs and edges, respectively) describe the road connections among
the sites. Exactly p facilities have to be located either on a vertex or on an arc or edge.
For p � 2, the p-centre model is NP-hard.

If G is a directed graph, there exists an optimal solution of the p-centre problem
such that every facility location is a vertex (vertex location property). If G is undirected
or mixed, the optimal location of a facility could be on an internal point of an edge.
In what follows, a solution methodology is described for the 1-centre problem. The
reader should consult specialized books for a discussion of the other cases. If G is
directed, the 1-centre is simply the vertex associated with the minimum value of the
maximum travel time to all the other vertices. In the case of an undirected or mixed
graph, the 1-centre can correspond to a vertex or an internal edge point. To simplify the
discussion, we will refer only to the case of the undirected graph (A = ∅), although
the procedure can be easily applied in the case of mixed graph. For each (i, j) ∈ E, let
aij be the traversal time of edge (i, j). Furthermore, for each pair of vertices i, j ∈ V ,
denote by t

j
i the shortest travel time between i and j , corresponding to the sum of the

travel times of the edges of the shortest path between i and j . Note that, on the basis
of the definition of travel time, the result is

t
j
i � aij , (i, j) ∈ E.

Finally, denote by τh(phk) the travel time along edge (h, k) ∈ E between vertex
h ∈ V and a point phk of the edge. In this way, the travel time τh(phk) along the edge
(h, k) between the vertex k ∈ V and phk results as (see Figure 3.9)

τk(phk) = ahk − τh(phk).

The 1-centre problem can be solved by the following algorithm proposed by
Hakimi.

Step 1. (Computation of the travel time.) For each edge (h, k) ∈ E and for each
vertex ∈ V , determine the travel time Ti(phk) from i ∈ V to a point phk of the
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Figure 3.9 Computation of the travel time Ti(phk) from an user i ∈ V to a facility in phk .
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Figure 3.10 Travel time Ti(phk) versus the position of point phk along edge (h, k).

edge (h, k) (see Figure 3.10):

Ti(phk) = min[thi + τh(phk), t
k
i + τk(phk)]. (3.57)

Step 2. (Finding the local centre.) For each edge (h, k) ∈ E, determine the local
centre p∗

hk as the point on (h, k) minimizing the travel time from the most disad-
vantaged vertex,

p∗
hk = arg min max

i∈V
{Ti(phk)},

where maxi∈V {Ti(phk)} corresponds to the superior envelope of the functions
Ti(phk), i ∈ V (see Figure 3.11).
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i ∈V

* phkphkh k

max{Ti ( phk)}

Figure 3.11 Determination of the local centre of edge (h, k) ∈ E.
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Figure 3.12 Location problem in La Mancha region.

Step 3. (Determination of the 1-centre.) The 1-centre p∗ is the best local centre p∗
hk ,

(h, k) ∈ E, i.e.

p∗ = arg min
(h,k)∈E

{

min max
i∈V

{Ti(phk)}
}

.

In the La Mancha region of Spain (see Figure 3.12) a consortium of town councils,
located in an underpopulated rural area, decided to locate a parking place for ambu-
lances. A preliminary examination of the problem revealed that the probability of
receiving a request for service during the completion of a previous call was extremely
low because of the small number of the inhabitants of the zone. For this reason the
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Table 3.16 Vertices of La Mancha 1-centre problem.

Vertex Locality

1 Torre de Juan Abad
2 Infantes
3 Villahermosa
4 Villanueva de la Fuente
5 Albaladejo
6 Terrinches
7 Santa Cruz de los Canamos
8 Montiel
9 Infantes-Montiel crossing

10 Almedina
11 Puebla del Principe

team responsible for the service decided to use only one vehicle. In the light of this
observation, the problem was modelled as a 1-centre problem on a road network G

where all the connections are two-way streets (see Table 3.16). Travel times were
calculated assuming a vehicle average speed of 90 km/h (see Table 3.17).

Travel times t
j
i , i, j ∈ V , are reported in Table 3.18. For each edge (h, k) ∈ E and

for each vertex i ∈ V the travel time Ti(phk) from vertex i to a point phk of the edge
(h, k) can be defined through Equation (3.57). This enables the construction, for each
edge (h, k) ∈ E of the function maxi∈V {Ti(phk)}, whose minimum corresponds to
the local centre p∗

hk . For example, Figure 3.13 depicts the function maxi∈V {Ti(p23)},
and Table 3.19 gives, for each edge (h, k) ∈ E, both the position of p∗

hk and the value
maxi∈V {Ti(p

∗
hk)}.

Consequently the 1-centre corresponds to the point p∗ on the edge (8, 10). There-
fore, the optimal positioning of the parking place for the ambulance should be located
on the road between Montiel and Almedina, at 2.25 km from the centre of Montiel.
The villages least advantaged by this location decision are Villanueva de la Fuente
and Torre de Juan Abad, since the ambulance would take an average time of 11.5 min
to reach them.

3.5.2 The location-covering model

In the location-covering model the aim is to locate a least-cost set of facilities in such
a way that each user can be reached within a maximum travel time from the closest
facility. The problem can modelled on a complete graph G(V1∪V2, E), where vertices
in V1 and in V2 represent potential facilities and customers, respectively, and each
edge (i, j) ∈ E = V1 × V2 corresponds to a least-cost path between i and j .
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Table 3.17 Travel time (in minutes) on the road network edges in the La Mancha problem.

(i, j) aij (i, j) aij

(1,2) 12 (1,11) 8
(2,3) 9 (2,9) 8
(3,4) 11 (2,10) 9
(4,5) 9 (3,9) 4
(5,6) 2 (4,8) 10
(6,7) 3 (5,8) 6
(7,8) 4 (6,11) 5
(8,9) 1 (7,10) 5
(8,10) 7 (1,10) 6

(10,11) 4

Table 3.18 Travel times (in minutes) t
j
i
, i, j ∈ V , in the La Mancha problem.

i

j 1 2 3 4 5 6 7 8 9 10 11

1 0 12 18 23 15 13 11 13 14 6 8
2 12 0 9 19 15 16 13 9 8 9 13
3 18 9 0 11 11 12 9 5 4 12 16
4 23 19 11 0 9 11 14 10 11 17 16
5 15 15 11 9 0 2 5 6 7 10 7
6 13 16 12 11 2 0 3 7 8 8 5
7 11 13 9 14 5 3 0 4 5 5 8
8 13 9 5 10 6 7 4 0 1 7 11
9 14 8 4 11 7 8 5 1 0 8 12

10 6 9 12 17 10 8 5 7 8 0 4
11 8 13 16 16 7 5 8 11 12 4 0

Let fi, i ∈ V1, be the fixed cost of potential facility i; pj , j ∈ V2, the penalty
incurred if customer j is unserviced; tij , i ∈ V1, j ∈ V2, the least-cost travel time
between potential facility i and customer j ; aij , i ∈ V1, j ∈ V2, a binary constant
equal to 1 if potential facility i is able to serve customer j , 0 otherwise (given a user-
defined maximum time T , aij = 1, if tij � T , i ∈ V1, j ∈ V2, otherwise aij = 0).
The decision variables are binary: yi, i ∈ V1, is equal to 1 if facility i is opened, 0
otherwise; zj , j ∈ V2, is equal to 1 if customer j is not served, otherwise it is 0.

The location-covering problem is modelled as follows:

Minimize
∑

i∈V1

fiyi +
∑

j∈V2

pjzj (3.58)
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Table 3.19 Distances of the local centres p∗
hk

from vertices h (in kilometres) and
maxi∈V {Ti(p

∗
hk

)} (in minutes) in the La Mancha problem.

(h, k) γh(p∗
hk

) maxi∈V {Ti(p
∗
hk

)} (h, k) γh(p∗
hk

) maxi∈V {Ti(p
∗
hk

)}
(1,2) 18.00 19.0 (1,11) 12.00 16.0
(2,3) 6.00 17.0 (2,9) 12.00 14.0
(3,4) 0.00 18.0 (2,10) 13.50 17.0
(4,5) 13.50 15.0 (3,9) 6.00 14.0
(5,6) 0.00 15.0 (4,8) 15.00 13.0
(6,7) 3.75 13.5 (5,8) 9.00 13.0
(7,8) 2.25 12.5 (6,11) 4.50 15.0
(8,9) 0.00 13.0 (7,10) 0.00 14.0
(8,10) 2.25 11.5 (1,10) 9.00 17.0

(10,11) 6.00 16.0

17

3.75 13.500.75 3.00 6.00 11.259.759.00

i ∈V
max{Ti (p23)}

2 (p23)γ

Figure 3.13 Time maxi∈V {Ti(p23)} versus
position γ2(p23) of p23 in the La Mancha problem.

subject to
∑

i∈V1

aij yi + zj � 1, j ∈ V2, (3.59)

yi ∈ {0, 1}, i ∈ V1,

zj ∈ {0, 1}, j ∈ V2.

The objective function (3.58) is the sum of the fixed costs of the open facilities and
the penalties corresponding to the unserviced customers. Constraints (3.59) impose
that, for each j ∈ V2, zj is equal to 1 if the facilities opened do not cover customer j

(i.e. if
∑

i∈V1
aij yi = 0).
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Table 3.20 Distances (in kilometres) between municipalities of
the consortium in Portugal (Part I).

Almada Azenha Carregosa Corroios Lavradio

Almada 0.0 24.4 33.2 4.7 29.9
Azenha 24.4 0.0 13.2 18.2 14.8
Carregosa 33.2 13.2 0.0 27.1 11.1
Corroios 4.7 18.2 27.1 0.0 23.8
Lavradio 29.9 14.8 11.1 23.8 0.0
Macau 39.0 15.4 13.9 32.9 16.1
Moita 29.5 9.5 5.1 23.4 7.4
Montijo 38.8 18.7 7.2 32.7 16.6
Palmela 34.3 24.0 16.4 28.2 26.2
Pinhal Novo 39.1 16.9 10.9 33.0 14.2

If all customers must be served (i.e. if the penalties pj are sufficiently high for
each j ∈ V2), variables zj , j ∈ V2, can be assumed equal to 0. Hence, the location-
covering problem is a generalization of the well-known set covering problem and is
therefore NP-hard.

Several variants of the location-covering model can be used in practice. For exam-
ple, if fixed costs fi are equal for all potential sites i ∈ V1, it can be convenient
to discriminate among all the solutions with the least number of open facilities the
one corresponding to the least total travelling time, or to the most equitable demand
distribution among the facilities. In the former case, let xij , i ∈ V1, j ∈ V2, be a
binary decision variable equal to 1 if customer j is served by facility i, 0 otherwise.
The problem can be modelled as follows:

Minimize
∑

i∈V1

Myi +
∑

i∈V1

∑

j∈V2

tij xij (3.60)

subject to
∑

i∈V1

aij xij � 1, j ∈ V2, (3.61)

∑

j∈V2

xij � |V2|yi, i ∈ V1, (3.62)

yi ∈ {0, 1}, i ∈ V1, (3.63)

xij ∈ {0, 1}, i ∈ V1, j ∈ V2, (3.64)

where M is a large positive constant. Constraints (3.61) guarantee that all the cus-
tomers j ∈ V2 are serviced, while constraints (3.62) ensure that if facility i ∈ V1 is
not set up (yi = 0), then no customer j ∈ V2 can be served by it.
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Table 3.21 Distances (in kilometres) between municipalities of
the consortium in Portugal (Part II).

Macau Moita Montijo Palmela Pinhal Novo

Almada 39.0 29.5 38.8 34.3 39.1
Azenha 15.4 9.5 18.7 24.0 16.9
Carregosa 13.9 5.1 7.2 16.4 10.9
Corroios 32.9 23.4 32.7 28.2 33.0
Lavradio 16.1 7.4 16.6 26.2 14.2
Macau 0.0 9.1 12.0 6.9 1.7
Moita 9.1 0.0 10.6 11.7 7.2
Montijo 12.0 10.6 0.0 19.0 10.3
Palmela 6.9 11.7 19.0 0.0 8.8
Pinhal Novo 1.7 7.2 10.3 8.8 0.0

In Portugal, a consortium of 10 municipalities (Almada, Azenha, Carregosa, Cor-
roios, Lavradio, Macau, Moita, Montijo, Palmela, Pinhal Novo), located in the neigh-
bourhood of Lisbon, has decided to improve its fire-fighting service. The person
responsible for the project has established that each centre of the community must
be reached within 15 min from the closest fire station. Since the main aim is just to
provide a first help in case of fire, the decision maker has decided to assign a single
vehicle to each station. The annual cost of a station inclusive of the expenses of the
personnel is €198 000. It is assumed that the average travelling speed is 60 km/h
everywhere. In order to determine the optimal station location the location-covering
model (3.60)–(3.64) is used, where V1 = V2 = {Almada, Azenha, Carregosa, Cor-
roios, Lavradio, Macau, Moita, Montijo, Palmela, Pinhal Novo}. Time coefficients
tij , i ∈ V1, j ∈ V2, can be easily determined from the distances (in kilometres)
reported in Tables 3.20 and 3.21. Coefficients aij , i ∈ V1, j ∈ V2, were obtained
from Tables 3.20 and 3.21. The minimum number of fire stations turns out to be two.
The facilities are located in Almada and Moita. The fire station located in Almada
serves Corroios and Almada itself, the remaining ones are served by the fire station
located in Moita.

Another interesting variant of the location-covering model arises when one must
locate facilities to ensure double coverage of demand points. A classic case is ambu-
lance location when users are better protected if two ambulances are located within
their vicinity. If one of the two ambulances has to answer a call, there will remain one
ambulance to provide coverage.

3.6 Data Aggregation

Modelling and solving a location problem often requires a considerable amount of
data. For instance, the number of demand points of a large food producer often exceeds
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several thousands. Similarly, the items marketed by a distribution firm can be around
tens of thousands.Therefore, in order to keep computation times and hardware require-
ments acceptable, data have to be aggregated. This can be done mainly in two ways.

Demand aggregation. Customers can be aggregated according to their position,
service level or frequency of delivery. In the first case, demand points are clustered in
such a way that customers close to one another (e.g. customers having the same zip
code) are substituted by a customer zone. In the other cases, customers are aggregated
into classes.

Item aggregation. Items are aggregated into a suitable number of product groups.
This can be done according to their distribution pattern or their features (weight,
volume, shape, cost, etc.). In the former case, products manufactured by the same
plants and supplied to the same customers are treated as a single commodity. In
the latter case, similar items (e.g. variants of the same basic product model) are
aggregated.

Whatever the aggregation method, the reduced problem can be modelled with fewer
variables and constraints. In what follows, a demand aggregation method for the CPL
model (see Section 3.3.1) is analysed. The demand points of a subset S ⊂ V2 are
aggregated in the following way:

xij = xik, i ∈ V1, j ∈ S, k ∈ S.

Consequently, each point j ∈ S receives the same fraction of demand from each
facility i ∈ V1. Let s be the customer zone resulting from the aggregation. Then the
CPL model becomes:

Minimize
∑

i∈V1

∑

j∈(V2\S)∪{s}
cij xij +

∑

i∈V1

fiyi

subject to
∑

i∈V1

xij = 1, j ∈ (V2 \ S) ∪ {s},
∑

j∈(V2\S)∪{s}
djxij � qiyi, i ∈ V1,

0 � xij � 1, i ∈ V1, j ∈ (V2 \ S) ∪ {s},
yi ∈ {0, 1}, i ∈ V1,

where
cis =

∑

j∈S

cij , i ∈ V1,

and
ds =

∑

j∈S

dj .
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As a rule, the optimal solution value of the aggregated problem is worse than that
of the original problem. It is useful to evaluate an upper bound on the error made
resulting from the aggregation procedure. Let z∗

CPL and z
(a)
CPL be the costs of the

optimal solutions of the original problem and of the aggregate problem, respectively.

Property. The following relation holds,

z∗
CPL � z

(a)
CPL � z∗

CPL + ε,

where

ε =
∑

j∈S

max
i∈V1

{

dj

∑

r∈S cir
∑

r∈S dr

− cij

}

. (3.65)

Proof. In Equation (3.65),
∑

r∈S cir represents the transportation cost when the whole
demand of customers in S is served by facility i ∈ V1, while dj /

∑

r∈S dr represents
the fraction of the total demand of customers in S. The difference

(

dj

∑

r∈S

cir

/
∑

r∈S

dr

)

− cij

represents, therefore, the variation (positive, negative or zero) of the cost of assigning
the whole demand of customer j ∈ V2 to facility i ∈ V1 when the vertices of S are
aggregated. Therefore, Equation (3.65) expresses the worst-case error made in the
aggregation process as a sum of the maximum increases of the distribution costs of
the various demand points in S.

It can be shown that bound (3.65) is tight, i.e. there are instances such that the
aggregation error is nearly equal to ε.

If the demands of Brossard and Verdun are aggregated in the Goutte problem
(see Section 3.3, where the maximum distance between plants and sales districts is
assumed to be infinite), the worst-case error is, on the basis of Equation (3.65),

ε = ε1 + ε2 = 1578.92 Canadian dollars per year,

where

ε1 = max
i∈V1

{

q1(ci1 + ci6)

(q1 + q6)
− ci1

}

= 789.46 Canadian dollars per year,

ε2 = max
i∈V1

{

q6(ci1 + ci6)

(q1 + q6)
− ci6

}

= 789.46 Canadian dollars per year.

The above aggregation technique can be obviously extended to the case of K

disconnected subsets S1, . . . , SK .
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Property. An a priori upper bound on the error is given by

z∗
CPL � z

(a)
CPL � z∗

CPL +
K

∑

k=1

εk,

where

εk =
∑

j∈Sk

max
i∈V1

{
dj

∑

r∈Sk
cir

∑

r∈Sk
dr

− cij

}

.

3.7 Questions and Problems

3.1 Illustrate why crude oil refineries are customarily located near home heating
and automotive fuel markets.

3.2 Describe how fixed costs fi , i ∈ V1, in the CPL model should be computed
in order to take labour costs, property taxes and site-development costs into
account.

3.3 Your company has to close 20 of its 125 warehouses. Suppose the CPL hypothe-
ses hold. How would you define V1? What is the value of p?

3.4 Modify the CPL model to take into account that a subset of already existing
facilities V ′

1 ⊆ V1 cannot be closed (but can be upgraded). Indicate the current
fixed cost and capacity of facility i ∈ V ′

1 as f ′
i and q ′

i , respectively. Moreover,
let f ′′

i and q ′′
i be the fixed cost and capacity if facility i ∈ V ′

1 is upgraded,
respectively.

3.5 Borachera is a major Spanish wine wholesaler currently operating two CDCs in
Salamanca and Albacete, and a number of RDCs all over the Iberian peninsula.
In order to reduce the overall logistics cost, the company wishes to redesign its
distribution network by replacing its current RDCs with three (possibly new)
RDCs. Based on a preliminary qualitative analysis, an RDC should be located
in the Castilla-Leon region, either in Vallalolid, Burgos or Soria. A second RDC
should be located in the Extremadura region, either in Badajoz, Plasencia or
Caceres. Finally, the third RDC should be located in the Argon region, either
in Barbastro, Saragossa or Teruel. Transportation costs from RDCs to retailers
are charged to retailers. Formulate the Borachera problem as a modified CPL
model.

3.6 As illustrated in Section 3.3, when designing a distribution network it is cus-
tomary to remove excessively long transportation links from the model in order
to allow for a timely delivery to customers. How should the CPL Lagrangian
heuristic be modified in this case?

3.7 Modify the CPL Lagrangian heuristic for the case where demand is indivisible
(i.e. a customer demand must be satisfied by a single warehouse). Is the modified
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heuristic still time-polynomial? How can it determine whether an instance of
the modified problem is feasible?

3.8 Modify the TEMC model in Section 3.4 for the case where a customer can
receive shipments from different DCs if these shipments are for different com-
modities. How should the proposed heuristics be changed in order to take this
modification into account?

3.9 Modify the location-covering model in order to determine, among the least-
cost solutions, the one associated with the most equitable demand distribution
among the facilities.

3.10 Data aggregation is useful in facility location even if the available algorithms
are able to solve the original problems.Why? (Hint: recall that demand forecasts
at the account and product levels are generally mediocre.)

3.8 Annotated Bibliography

An extensive literature review of strategic production-distribution models is presented
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1. Vidal C and Goetschalckx M 1997 Strategic production-distribution models: a
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following book:

2. Love RF, Morris JG and Wesolowsky GO 1988 Facilities Location. North-
Holland, Amsterdam.

A review of the most important location-routing problems is presented in:

3. Laporte G 1988 Location-routing problems. In Vehicle Routing: Methods and
Studies (ed. Golden BL and Assad AA). North-Holland, Amsterdam.
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Solving Inventory Management
Problems

4.1 Introduction

Inventories are stockpiles of items (raw materials, components, semi-finished and
finished goods) waiting to be processed, transported or used at a point of the supply
chain. As pointed out in Chapter 1, there are a number of reasons to have invento-
ries, including improving service level, reducing overall logistics costs, coping with
randomness in customer demand and lead times, making seasonal items available all
year, speculating on price patterns, etc. At the same time, holding an inventory can
be very expensive (the annual cost can be 30% of the value of the materials kept in
stock, or even more). It is therefore crucial to manage inventories carefully.

This chapter deals with the solution of the most important inventory management
problems. Inventory management amounts to deciding for each stocking point in the
supply chain when to reorder and how much to order so that the expected annual cost
is minimized while meeting a given service level. A useful formula that can be used to
know whether a stocking point is well managed is the inventory turnover ratio (ITR),
defined as the ratio between the annual sales priced at the value of the items in stock
and the average inventory investment. Of course, high ITRs generally correspond to
well-managed stocking points.

4.2 Relevant Costs

The costs relevant to the determination of an inventory policy can be classified into
four broad categories.

Procurement costs. Procurement costs are those associated with the acquisition of
goods. They typically include fixed costs (independent of the amount ordered) and
variable costs (dependent of the amount acquired). They may include

Introduction to Logistics Systems Planning and Control G. Ghiani, G. Laporte and R. Musmanno
© 2004 John Wiley & Sons, Ltd ISBN: 0-470-84916-9 (HB) 0-470-84917-7 (PB)
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• a (fixed) reorder cost (the cost of issuing and processing an order through the
purchasing and accounting departments if the goods are bought, or the cost for
setting up the production process if the goods are manufactured by the firm);

• a purchasing cost or a (variable) manufacturing cost, depending on whether
the goods are bought from a supplier or manufactured by the firm;

• a transportation cost, if not included in the price of the purchased goods; for the
sake of simplicity, we assume in the remainder of this chapter that fixed trans-
portation costs are included in the reorder cost, while variable transportation
costs are included in the purchasing cost;

• the cost of handling the goods at the receiving point.

Inventory holding costs. Inventory holding costs are incurred when materials are
stored for a period of time. They include the following.

• An opportunity (or capital) cost representing the return on investment the firm
would have realized if money had been invested in a more profitable economic
activity (e.g. on the stock market) instead of inventory. This cost is generally
estimated on the basis of a standard banking interest rate.

• A warehousing cost. If the company runs its own warehouses, such costs include
space and equipment costs, personnel wages, insurance on inventories, mainte-
nance costs, energy costs and state taxes. Otherwise, warehousing costs amount
to the fee paid for storing the goods in third-party warehouses.

Shortage costs. Shortage costs are paid when customer orders are not met. Shortage
costs depend heavily on customer behaviour and are difficult to evaluate accurately.
They can be classified as follows.

• Lost sales costs. A lost sale is likely to occur if the unavailable items can be
easily obtained from a competitor. Lost sales costs include the profit that would
have made on the sale, and the negative effect that the shortage could have on
future sales.

• Back order costs. When goods are difficult to replace, a shortage often results
in a delayed sale. Apart from the negative effect on future sales, a back order
could result in a penalty.

Obsolescence costs. Obsolescence costs arise when stocked items lose some of
their value over time. This happens, for example, when food inventories deteriorate,
clothing items in stock go out of fashion, or newspapers are unsold. The value of an
item at the end of its lifetime is usually referred to as its salvage value.
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4.3 Classification of Inventory Management Models

Inventory management models can be classified according to a number of criteria.

Deterministic versus stochastic models. In a deterministic model, where demands,
prices and lead times are assumed to be known in advance, the focus is on balancing
different categories of costs (e.g. the fixed costs of ordering and the costs of holding
inventory). In a stochastic model, where some data are uncertain, it is impossible
to always satisfy all the demand. As a result, a constraint on customer service level
(stating, for example, that a customer is satisfied with a given probability) is usually
imposed.

Fast-moving items versus slow-moving items. Fast-moving items are those man-
ufactured and sold regularly, and include most products on the market. The main issue
when managing a fast-moving item inventory is to determine when stocking points
have to be replenished and how much to order. On the other hand, slow-moving items,
which are often spare parts of complex machineries, have a very low demand (e.g. a
few units every 10 or 20 years). As a rule, manufacturing a spare part several years
after the machinery is constructed is very expensive compared to producing it along
with the machinery. Hence the main issue is to determine the number of items that
have to be produced and stored at the beginning of the planning horizon.

Number of stocking points. Optimal inventory policies can often be derived ana-
lytically for single stocking point models, while multiple stocking point situations are
usually much harder to deal with.

Number of commodities. When holding a multicommodity inventory, joint costs
and constraints usually come into play. It is therefore not surprising that most multi-
commodity inventory management problems are NP-hard.

Instantaneous resupply versus noninstantaneous resupply. A stocking point can
be replenished almost instantaneously (e.g. as a consequence of a truck delivery) or
noninstantaneously (e.g. at a constant rate through a manufacturing process).

4.4 Single Stocking Point: Single-Commodity
Inventory Models under Constant Demand Rate

A single stocking point has to service a single-commodity constant rate demand, and
places orders for the item from another facility. The planning horizon is assumed
to be infinite (for the finite horizon case, see Problem 4.4). Since the demand rate
is constant, a minimal cost policy is to replenish on a periodic basis. Let d be the
constant demand rate, T the time lapse between two consecutive orders, q the order
size (i.e. the amount of product ordered at each replenishment). These quantities are
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Figure 4.1 Inventory level as a function of time.

such that
q = dT . (4.1)

Moreover, let c be the value of an item (assumed to be independent of the order size),
k the fixed reorder cost, h the holding cost per item and per time unit, u the shortage
cost per item, independent of the duration of the shortage, and v the shortage cost per
item and per time unit. The holding cost h can be expressed as a fraction p of c:

h = pc. (4.2)

The parameter p is a banking interest rate (measuring capital cost) increased to take
into account warehousing costs. Moreover, let I (t) be the inventory level at time t ,
m the maximum inventory level, s the maximum shortage, tl the lead time, i.e. the
time lapse between when an order is placed and when the items are received (see
Chapter 1). The problem is to determine q (or, equivalently, T ) and s in such a way
that the overall average cost per time unit is minimum.

4.4.1 Noninstantaneous resupply

Let Tr � 0 be the replenishment time, i.e. the time to make a replenishment, and r

the replenishment rate, i.e. the number of items per unit of time received during Tr .
The following relation holds:

q = rTr . (4.3)

The inventory level I (t) as a function of time t is shown in Figure 4.1. Dashed
lines represent the cumulative number of items arriving at the stocking point during
a replenishment (their slope is r). Since items are picked up at a rate d while a
replenishment takes place, the net number of items stocked per unit of time during
Tr is r − d . Finally, after a replenishment, the stock level decreases at a rate equal to
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−d. Let T1, T2, T3 and T4 be the time the inventory level takes to go from −s to 0,
from 0 to m, from m to 0 and from 0 to −s, respectively.

The maximum inventory level m is given by

s + m = (r − d)Tr .

Therefore, from Equation (4.3),

m = (r − d)Tr − s = q(1 − d/r) − s.

The total average cost per time unit µ(q, s) is

µ(q, s) = 1

T
(k + cq + hĪT + us + vS̄T ). (4.4)

The quantity in parentheses in the right-hand side is the average cost per period,
given by the fixed and variable costs of a resupply (k and cq, respectively), and the
holding cost hĪT , plus the shortage costs (us and vS̄T ). The holding and shortage
costs depend on the average inventory level Ī , and on the average shortage level S̄,
respectively:

Ī = 1

T

∫ T

0
I+(t) dt = 1

T

(

m(T2 + T3)

2

)

,

S̄ = 1

T

∫ T

0
I−(t) dt = 1

T

(

s(T1 + T4)

2

)

,

where

I+(t) =
{

I (t) if I (t) � 0,

0 otherwise,
and I−(t) =

{

−I (t) if I (t) � 0,

0 otherwise.

Moreover, since

s = (r − d)T1,

m = (r − d)T2,

m = dT3,

s = dT4,

the time lapses T1, T2, T3 and T4 are given by

T1 = s

r − d
,

T2 = m

r − d
,

T3 = m

d
,

T4 = s

d
.
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Figure 4.2 Inventory level as a function of time when shortage is not allowed.

Consequently,

Ī = m2

2q(1 − d/r)
= [q(1 − d/r) − s]2

2q(1 − d/r)
, (4.5)

S̄ = s2

2q(1 − d/r)
. (4.6)

Finally, using Equations (4.1), (4.5) and (4.6), Equation (4.4) can be rewritten as

µ(q, s) = kd

q
+ cd + h[q(1 − d/r) − s]2

2q(1 − d/r)
+ usd

q
+ vs2

2q(1 − d/r)
. (4.7)

If shortages are allowed, the minimum point (q∗, s∗) of the convex function µ(q, s)

can be obtained by solving the equations:

∂

∂q
µ(q, s)

∣

∣

∣

∣

q=q∗,s=s∗
= 0,

∂

∂s
µ(q, s)

∣

∣

∣

∣

q=q∗,s=s∗
= 0.

As a result,

q∗ =
√

h + v

v

√

2kd

h(1 − d/r)
− (ud)2

h(h + v)
(4.8)

and

s∗ = (hq∗ − ud)(1 − d/r)

(h + v)
. (4.9)

If shortages are not allowed (see Figure 4.2), Equation (4.7) can be simplified since
s = 0:

µ(q) = kd/q + cd + 1
2hq(1 − d/r). (4.10)
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µ(q)

q
q*

kd/q + hq(1 − d/r)/2

hq(1 − d/r)/2

kd/q

Figure 4.3 Average costs as a function of q.

Hence, a single equation has to be solved:

d

dq
µ(q)

∣

∣

∣

∣

q=q∗
= 0,

Finally, the optimal order size q∗ is (see Figure 4.3)

q∗ =
√

2kd

h(1 − d/r)
. (4.11)

Golden Food distributes tinned foodstuff in Great Britain. In a warehouse located in
Birmingham, the demand rate d for tomato purée is 400 pallets a month. The value of
a pallet is c = £2500 and the annual interest rate p is 14.5% (including warehousing
costs). Issuing an order costs £30. The replenishment rate r is 40 pallets per day.
Shortages are not allowed. The holding cost is given by

h = 0.145 × 2500 = £362.5 per year per pallet

= £30.2 per month per pallet.

Therefore, from Equation (4.11),

q∗ =
√

2 × 30 × 400

30.2[1 − 400/(40 × 20)] = 39.9 ≈ 40 pallets,

where it is assumed that the number of workdays in a month equals 20 (hence the
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Figure 4.4 Inventory level as a function of time in the instantaneous resupply case.

demand rate d is 20 pallets per workday). Finally, from Equations (4.1) and (4.3),

T ∗ = 40/400 = 1/10 month = 2 workdays,

T ∗
r = 40/40 = 1 workday.

4.4.2 Instantaneous resupply

If resupply is instantaneous, the optimal inventory policy can be obtained by Equations
(4.8), (4.9) and (4.11), taking into account that r → ∞. If shortages are allowed (see
Figure 4.4), then

q∗ =
√

h + v

v

√

2kd

h
− (ud)2

h(h + v)
,

s∗ = hq∗ − ud

(h + v)
.

If shortages are not allowed (see Figure 4.5), Equation (4.10) becomes

µ(q) = kd/q + cd + 1
2hq (4.12)

and the optimal order size is given by

q∗ =
√

2kd

h
. (4.13)
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Figure 4.5 Inventory level as a function of time in the EOQ model.

This is the classical economic order quantity (EOQ) model introduced by F. W. Harris
in 1913. The total cost per time unit of an EOQ policy is

µ(q∗) = √
2kdh + cd.

Optimal policies with no backlogging (in particular, the EOQ policy) satisfy the
zero inventory ordering (ZIO) property, which states that an order is received exactly
when the inventory level falls to zero.

Al-Bufeira Motors manufactures spare parts for aircraft engines in SaudiArabia. Its
component Y02PN, produced in a plant located in Jiddah, has a demand of 220 units
per year and a unit production cost of $1200. Manufacturing this product requires
a time-consuming set-up that costs $800. The current annual interest rate p is 18%,
including warehousing costs. Shortages are not allowed. The holding cost is

h = 0.18 × 1200 = 216 dollars/year per unit.

Therefore, from Equation (4.13),

q∗ = 40.37 units,

and, from Equation (4.1),

T ∗ = 40.37/220 = 0.18 years = 66.8 days.

The total cost is given by Equation (4.12),

kd

q∗ + hq∗

2
= 800 × 220

40.37
+ 216 × 40.37

2
= 8719.63 dollars per year,

plus
cd = 220 × 1200 = 264 000 dollars per year.
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Figure 4.6 Reorder point.

In practice, the values of q∗ and of T ∗ must be rounded as explained in Section 4.12.

4.4.3 Reorder point

An order has to be issued tl time instants before the inventory level equals −s. In case
resupplies are instantaneous, a replenishment is needed every time the inventory level
equals the following reorder point l,

l = (tl − �tl/T �T )d − s,

where �tl/T � is the number of periods included in the lead time (see Figure 4.6).

In theAl-Bufeira Motors problem, a set-up has to be planned seven days in advance.
Assuming T = 67 days, the reorder point l is

l = (7 − �7/67� × 67)
220

365
− 0 ≈ 4 units.

4.5 Single Stocking Point: Single-Commodity
Inventory Models under Deterministic
Time-Varying Demand Rate

When orders are placed in advance, demands can be assumed to be deterministic,
yet time-varying. Let 1, . . . , TH be a finite and discrete time horizon. In addition, let
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dt , t = 1, . . . , TH, be the demand at time period t , k the fixed reorder cost, and h the
holding cost. The problem is to decide how much to order in each time period in such
a way that the sum of reorder costs plus holding costs is minimized. No backlogging
is allowed. In 1958, H. M. Wagner and T. M. Whithin formulated this problem as
follows. The decision variables are the amount qt , t = 1, . . . , TH, ordered at the
beginning of time period t , the inventory level It , t = 1, . . . , TH, at the end of time
period t ; in addition let yt , t = 1, . . . , TH, be a decision variable equal to 1 if an
order is placed in time period t , 0 otherwise.

Minimize
∑

t=1,...,TH

(kyt + hIt ) (4.14)

subject to

It = It−1 + qt − dt , t = 1, . . . , TH, (4.15)

qt � yt

∑

r=t,...,n

dr , t = 1, . . . , TH, (4.16)

I0 = 0, (4.17)

It � 0, t = 1, . . . , TH,

qt � 0, t = 1, . . . , TH,

yt ∈ {0, 1}, t = 1, . . . , TH,

where the objective function (4.14) is the total cost. Equations (4.15) are the inventory-
balance constraints, inequalities (4.16) state that for each time period t = 1, . . . , TH,
qt is zero if yt is zero, and equation (4.17) specifies the initial inventory.

An optimal solution of the Wagner–Within model can be obtained in O(T 2
H) time

through a dynamic programming procedure. This algorithm is based on the following
theoretical results.

Proposition. Any optimal policy satisfies the ZIO property, i.e.

qt It−1 = 0, t = 1, . . . , TH.

Proof. If It−1 = δ > 0 and qt > 0, the total cost can be reduced by setting It−1 := 0,
qt := qt + δ, and modifying the remaining variables accordingly.

Corollary. In an optimal policy, the amount ordered at each time period is the total
demand of a set of consecutive subsequent periods.

The algorithm is as follows. Let G = (V , A) be a directed acyclic graph, where
V = {1, . . . , TH, TH + 1} is a vertex set and A = {(t, t ′) : t = 1, . . . , TH, t ′ =
t + 1, . . . , TH + 1} is an arc set. With each arc (t, t ′) is associated the cost of ordering
in time period t to satisfy the demands in time periods t, t + 1, . . . , t ′ − 1:

gtt ′ = k + h
∑

r=t,...,t ′−1

(r − t)dr .
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Then the shortest path between vertices 1 and TH + 1 corresponds to a least-cost
inventory policy.

Sao Vincente Chemical is a Portuguese company producing lubricants. In the fol-
lowing year, its product Serrado Oil is expected to have a demand of 720, 1410, 830
and 960 pallets in winter, spring, summer and autumn, respectively. Manufacturing
this product requires a time-consuming set-up that costs €8900. The current annual
interest rate p is 7.5%, including warehousing costs. The variable production cost
amounts to $350 per pallet while the initial inventory is zero. The holding cost is

h = 0.075 × 350/4 = 6.56 euros/season per unit.

Let t = 1, 2, 3, 4 represent the winter, spring, summer and autumn periods, respec-
tively. By solving the Wagner–Within model, it follows that the optimal policy is
to produce at the beginning of winter and summer of the next year. In particular,
y1 = y3 = 1, y2 = y4 = 0, q1 = 2130, q2 = 0, q3 = 1790, q4 = 0, I1 = 1410,
I2 = 0, I3 = 960, I4 = 0. Total holding and set-up costs amount to €33 353.

4.6 Models with Discounts

In the previous sections it has been assumed that the value of an item is always constant
(equal to c). In practice, quantity discounts offered by suppliers, or economies of scale
in the manufacturing processes, make the value of an item dependent on the order
size q. In the following, quantity-discounts-on-all-units and incremental quantity
discounts are examined under the EOQ hypothesis. Let f (q) be the value of q items.
If the value of an item is independent of q, then f (q) = cq. Otherwise, f (q) is a
concave nondecreasing function.

4.6.1 Quantity-discounts-on-all-units

The function f (q) is assumed to be piecewise linear (see Figure 4.7),

f (q) = ciq, qi−1 � q < qi, i = 1, 2, . . . ,

where q0 = 0, q1, . . . are known discount breaks (qi < qi+1, i = 1, 2, . . . ), f (q0) =
0, and ci > ci+1, i = 1, 2 . . . . Hence, if the order size q is included between discount
breaks qi−1 and qi , the value of every item is ci, i = 1, 2, . . . . It is worth noting
that, depending on ci coefficients, f (q) can be greater than f (q ′) for q < q ′ (see
Figure 4.7). In practice, the effective cost function is

f (q) = min{ciq, ci+1qi}, qi−1 � q < qi, i = 1, 2, . . . .

The total average cost function µ(q) can be written as

µ(q) = µi(q), qi−1 � q < qi, i = 1, 2, . . . ,
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Figure 4.7 The value of q items: quantity-discounts-on-all-units.

where, as hi = pci, i = 1, 2, . . . ,

µi(q) = kd/q + cid + 1
2hiq, i = 1, 2, . . . . (4.18)

Then, the optimal order size q∗ can be obtained through the following procedure.

Step 1. By imposing

dµi(qi)

dqi

∣

∣

∣

∣

qi=q ′
i

= 0, i = 1, 2, . . . ,

determine the order size q ′
i , i = 1, 2, . . . , that minimizes µi(q),

q ′
i =

√

2kd

hi

, i = 1, 2, . . . . (4.19)

Let

q∗
i =









qi−1, if q ′
i < qi−1,

q ′
i , if qi−1 � q ′

i � qi,

qi, if q ′
i > qi,

i = 1, 2, . . . . (4.20)

Step 2. Compute the optimal solution q∗ = q∗
i∗ , where

i∗ = arg min
i=1,2,...

{µ(q∗
i )}.



134 SOLVING INVENTORY MANAGEMENT PROBLEMS

Maliban runs more than 200 stationery outlets in Spain. The firm buys its products
from a restricted number of suppliers and stores them in a warehouse located near
Sevilla. Maliban expects to sell 3000 boxes of the Prince Arthur pen during the next
year. The current annual interest rate p is 30%. Placing an order costs €50. The
supplier offers a box at €3, if the amount bought is less than 500 boxes. The price
is reduced by 1% if 500–2000 boxes are ordered. Finally, if more than 2000 boxes
are ordered, an additional 0.5% discount is applied. Then, by using Equations (4.19)
and (4.20),

q ′
1 =

√

2 × 50 × 3000

0.30 × 3
= 577.35 boxes, q∗

1 = 500 boxes,

q ′
2 =

√

2 × 50 × 3000

0.30 × 2.97
= 580.26 boxes, q∗

2 = 580.26 boxes,

q ′
3 =

√

2 × 50 × 3000

0.30 × 2.955
= 581.73 boxes, q∗

3 = 2000 boxes.

By comparing the corresponding annual average costs given by Equations (4.18),
the optimal order size is q∗ = 580 boxes (≈ q∗

2 ), corresponding to an annual cost of
€9427.

4.6.2 Incremental quantity discounts

The function f (q) is assumed to depend on q as follows (see Figure 4.8),

f (q) = f (qi−1) + ci(q − qi−1), qi−1 � q < qi, i = 1, 2, . . . , (4.21)

where q0 = 0, q1, . . . are known discount breaks (qi < qi+1, i = 1, 2, . . . ), f (q0) =
0, and ci > ci+1, i = 1, 2 . . . . Consequently, if the order size q is included between
discount breaks qi−1 and qi , the value of (q − qi−1) items is ci , the value of (qi−1 −
qi−2) items is ci−1, etc. The average total cost function µ(q) is

µ(q) = µi(q), qi−1 � q < qi, i = 1, 2, . . . ,

where, on the basis of Equation (4.12),

µi(q) = kd

q
+ f (q)d

q
+ p

f (q)

q

q

2
, i = 1, 2, . . . .

Using Equation (4.21), µi(q), i = 1, 2, . . . , can be rewritten as

µi(q) = kd/q + [f (qi−1) + ci(q − qi−1)]d/q

+ 1
2p[f (qi−1) + ci(q − qi−1)], i = 1, 2, . . . (4.22)

The optimal order size q∗ can be computed through a procedure very similar to
that used in the previous case.
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Figure 4.8 The value of q items: incremental quantity discounts.

Step 1. Determine the value q ′
i , i = 1, 2, . . . , that minimizes µi(q) by imposing

that
dµi(qi)

dqi

∣

∣

∣

∣

qi=q ′
i

= 0, i = 1, 2, . . . .

Hence

q ′
i =

√

2d[k + f (qi−1) − ciqi−1]
pci

, i = 1, 2, . . . . (4.23)

If q ′
i /∈ [qi−1, qi], then let µi(q

′
i ) = ∞, i = 1, 2, . . . .

Step 2. Compute the optimal solution q∗ = q ′
i∗ , where

i∗ = arg min
i=1,2,...

{µ(q ′
i )}.

If Maliban (see the previous problem) applies an incremental quantity discount
policy, then, by using Equation (4.23),

q ′
1 =

√

2 × 3000 × 50

0.30 × 3
= 577.4 boxes,

q ′
2 =

√

2 × 3000[50 + (3 × 500) − (2.97 × 500)]
0.30 × 2.97

= 661.6 boxes,

q ′
3 =

√

2 × 3000{50 + [(3 × 500) + (2.97 × 1500)] − (2.955 × 2000)}
0.30 × 2.955

= 801.9 boxes.
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Consequently, as q ′
1 > 500 and q ′

3 < 2000, the optimal order size is q∗ =
662 boxes (≈ q ′

2), corresponding to an annual average cost, given by Equation (4.22),
equal to €9501.67.

4.7 Single Stocking Point: Multicommodity
Inventory Models

When several commodities are kept in stock, their inventory policies are intertwined
because of common constraints and joint costs, as we now discuss in two separate
cases. In the first case, a limit is placed on the total investment in inventories, or on the
warehouse space. In the second case, commodities share joint ordering costs. For the
sake of simplicity, both analysis will be performed under the EOQ model hypotheses.

4.7.1 Models with capacity constraints

Let n be the number of commodities in stock and qj , j = 1, . . . , n, the amount of
commodity j ordered at each replenishment. The inventory management problem can
be formulated as follows.

Minimize
µ(q1, . . . , qn) (4.24)

subject to

g(q1, . . . , qn) � b, (4.25)

q1, . . . , qn � 0, (4.26)

where the objective function (4.24) is the total average cost per time unit. Under the
EOQ hypothesis, the objective function µ(q1, . . . , qn) can be written as

µ(q1, . . . , qn) =
n

∑

j=1

µj (qj ),

where, on the basis of Equation (4.12),

µj (qj ) = kjdj /qj + cj dj + 1
2hjqj , j = 1, . . . , n,

and quantities kj , dj , cj , hj , j = 1, . . . , n, are the fixed reorder cost, the demand
rate, the value, and the holding cost of item j , respectively. As is customary, hj =
pjcj , j = 1, . . . , n, where pj is the interest rate of commodity j .

Equation (4.25) is a side constraint (referred to as a capacity constraint) represent-
ing both a budget constraint or a warehouse constraint. It can usually be considered
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as linear,
n

∑

j=1

ajqj � b, (4.27)

where aj , j = 1, . . . , n, and b are constants. As a result, problem (4.24)–(4.26)
has to be solved through iterative methods for NLP problems, such as the conjugate
gradient method. Alternatively, the following simple heuristic can be used if the
capacity constraint is linear and the interest rates are identical for all the commodities
(pj = p, j = 1, . . . , n).

Step 1. Using Equation (4.13), compute the EOQ order sizes q ′
j , j = 1, . . . , n:

q ′
j =

√

2kjdj

pcj

, j = 1, . . . , n. (4.28)

If the capacity constraint (4.27) is satisfied, STOP, the optimal order size for each
product j, j = 1, . . . , n, has been determined.

Step 2. Increase the interest rate p of a δ quantity to be determined. Then, the order
sizes become

qj (δ) =
√

2kjdj

(p + δ)cj

, j = 1, . . . , n. (4.29)

Determine the value δ∗ satisfying the relation,

n
∑

j=1

ajqj (δ
∗) = b.

Hence,

δ∗ =
(

1

b

n
∑

j=1

(

aj

√

2kjdj

cj

))2

− p. (4.30)

Insert δ∗ in Equations (4.29) in order to determine the order sizes q̄j , j = 1, . . . , n.

New Frontier distributes knapsacks and suitcases in most US states. Its most suc-
cessful models are the Preppie knapsack and the Yuppie suitcase. The Preppie knap-
sack has a yearly demand of 150 000 units, a value of $30 and a yearly holding cost
equal to 20% of its value. The Yuppie suitcase has a yearly demand of 100 000 units,
a value of $45 and a yearly holding cost equal to 20% of its value. In both cases,
placing an order costs $250. The company’s management requires the average capital
invested in inventories does not exceed $75 000. This condition can be expressed by
the following constraint,

30q1/2 + 45q2/2 � 75 000,
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where it is assumed, as a precaution, that the average inventory level is the sum
of the average inventory levels of the two items. The EOQ order sizes, given by
Equation (4.28),

q ′
1 =

√

2 × 250 × 150 000

0.2 × 30
= 3535.53 units,

q ′
2 =

√

2 × 250 × 100 000

0.2 × 45
= 2357.02 units,

do not satisfy the budget constraint. Applying the conjugated gradient method starting
from the initial values (q1, q2) = (1, 1), the following solution is obtained after 300
iterations,

q̄1 = 2500 units,

q̄2 = 1666.66 units,

whose total cost is $9 045 000. Applying the heuristic procedure, by using Equa-
tion (4.30), the same solution is obtained. In effect,

δ∗ =
[

1

75 000

(

30

2

√

2 × 250 × 150 000

30
+ 45

2

√

2 × 250 × 100 000

45

)]2

− 0.2

= 0.2,

hence,

q̄1 =
√

2 × 250 × 150 000

(0.2 + 0.2) 30
= 2500 units,

q̄2 =
√

2 × 250 × 100 000

(0.2 + 0.2) 45
= 1666.66 units.

4.7.2 Models with joint costs

For the sake of simplicity, we assume in this section that only two commodities
are kept in the inventory. Let k1 and k2 be the fixed costs for reordering the two
commodities at different moments in time, and let k1−2 be the fixed cost for ordering
both commodities at the same time (k1−2 < k1 + k2). In addition, let T1 and T2 be the
time lapses between consecutive replenishments of commodities 1 and 2, respectively
(see Figure 4.9). Then,

q1 = d1T1, (4.31)

q2 = d2T2. (4.32)
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Figure 4.9 Inventory level as a function of time in case of synchronized orders.

The periodicity of a joint replenishment policy is

T = max{T1, T2}.
In each period T , the orders issued for the two items are

N1 = T/T1,

N2 = T/T2.

N1 and N2 are positive integer numbers, one of them being equal to 1 (in the situation
depicted in Figure 4.9, N1 = 3 and N2 = 1). During each period T , two items are
ordered simultaneously exactly once. Moreover, Nj − 1 single orders are placed for
each item j, j = 1, 2. Hence, the total average cost per time unit is

µ(T , N1, N2)

= k1−2 + (N1 − 1)k1 + (N2 − 1)k2

T
+ c1d1 + c2d2 + h1d1T

2N1
+ h2d2T

2N2
. (4.33)

By solving the equation,

∂

∂T
µ(T , N1, N2)

∣

∣

∣

∣

T =T ∗
= 0,

the value T ∗(N1, N2) that minimizes µ(T , N1, N2) is obtained,

T ∗(N1, N2) =
√

2N1N2[k1−2 + (N1 − 1)k1 + (N2 − 1)k2]
h1d1N2 + h2d2N1

, (4.34)

as a function of N1 and N2.
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Shamrock Microelectronics Ltd is an Irish company which assembles printed cir-
cuit boards (PCBs) for a number of major companies in the appliance sector. The Y23
PCB has an annual demand of 3000 units, a value of €30 and a holding cost equal to
20% of its value. The Y24 PCB has an annual request of 5000 units, a value of €40
and a holding cost equal to 25% of its value. The cost of issuing a joint order is €300
while ordering a single item costs €250. If no joint orders are placed, the order sizes
are, according to Equation (4.13),

q∗
1 =

√

2 × 250 × 3000

0.2 × 30
= 500 units,

q∗
2 =

√

2 × 250 × 5000

0.25 × 40
= 500 units.

From Equations (4.31) and (4.32):

T ∗
1 = 500/3000 = 1/6,

T ∗
2 = 500/5000 = 1/10.

This means that Shamrock would issue 1/T ∗
1 = 6 orders per year of Y23 PCB and

1/T ∗
2 = 10 orders per year of the Y24 PCB. Since

µ1(q
∗
1 ) = 250 × 3000

500
+ 30 × 3000 + 0.2 × 30 × 500

2
= 93 000 euros per year,

µ2(q
∗
2 ) = 250 × 5000

500
+ 40 × 5000 + 0.25 × 40 × 500

2
= 205 000 euros per year,

the average annual cost is €298 000 per year. If a joint order is placed and N1 = 1,
N2 = 2, the periodicity of joint orders is, according to Equation (4.34),

T ∗ =
√

2 × 1 × 2 × (300 + 250)

0.2 × 30 × 3000 × 2 + 0.25 × 40 × 5000 × 1
= 0.16.

Shamrock would issue 1/T ∗ = 6.25 joint orders per year. The annual average cost,
computed through Equation (4.33), is equal to

µ(T ∗, 1, 2) = 300 + 250

0.16
+ 30 × 3000 + 40 × 5000 + 0.2 × 30 × 3000 × 0.16

2

+ 0.25 × 40 × 5000 × 0.16

2 × 2

= 296 877.5 euros per year.
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4.8 Stochastic Models

Inventory problems with uncertain demand or lead times have quite a complex math-
ematical structure. In this section, a restricted number of stochastic models are illus-
trated. First, the classical Newsboy Problem, where a one-shot reorder decision has
to be made, is examined. Then, (s, S) policies are introduced for a variant of the
Newsboy Problem. Finally, the most common inventory policies used by practition-
ers (namely, the reorder level method, the reorder cycle method, the (s, S) method
and the two-bin technique) are reviewed and compared. The first three policies make
use of data forecasts, whereas the fourth policy does not require any data estimate.

4.8.1 The Newsboy Problem

In the Newsboy Problem, a resupply decision has to be made at the beginning of
a period (e.g. a spring sales season) for a single commodity whose demand is not
known in advance. The demand d is modelled as a random variable with a continuous
cumulative distribution function Fd(δ). Let c be the purchasing cost or the variable
manufacturing cost, depending on whether the goods are bought from an external
supplier or produced by the company. Moreover, let r and u be the selling price and
the salvage value per unit of commodity, respectively. Of course,

r > c > u.

There is no fixed reorder cost nor an initial inventory. In addition, shortage costs are
assumed to be negligible. If the company orders q units of commodity, the expected
revenue ρ(q) is

ρ(q) = r

∫ ∞

0
min(δ, q) dFd(δ) + u

∫ ∞

0
max(0, q − δ) dFd(δ) − cq

= r

( ∫ q

0
δ dFd(δ) + q

∫ ∞

q

dFd(δ)

)

+ u

∫ q

0
(q − δ) dFd(δ) − cq.

By adding and subtracting r
∫ ∞
q

δ dFd(δ) to the right-hand side, ρ(q) becomes

ρ(q) = rE[d] + r

∫ ∞

q

(q − δ) dFd(δ) + u

∫ q

0
(q − δ) dFd(δ) − cq, (4.35)

where E[d] is the expected demand. It is easy to show that ρ(q) is concave for q � 0,
and ρ(q) → −∞ for q → ∞.As a result, the maximum expected revenue is achieved
when the derivative of ρ(q) with respect to q is zero. Hence, by applying the Leibnitz
rule, the optimality condition becomes

r(1 − Fd(q)) + uFd(q) − c = 0,
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where, by definition, Fd(q) is the probability Pr(d � q) that the demand does not
exceed q. As a result, the optimal order quantity S satisfies the following condition:

Pr(d � S) = r − c

r − u
. (4.36)

Emilio Tadini & Sons is a hand-made shirt retailer, located in Rome (Italy), close
to Piazza di Spagna. This year Mr Tadini faces the problem of ordering a new bright
colour shirt made by a Florentine firm. He assumes that the demand is uniformly
distributed between 200 and 350 units. The purchasing cost is c = €18 while the
selling price is r = €52 and the salvage value is u = €7. According to Equation
(4.36), Pr(d � S) = (S − 200)/(350 − 200) for 200 � S � 350. Hence, Mr Tadini
should order S = 313 units. According to Equation (4.35), the expected revenue is

ρ(q) = 52 × 275 + 52
∫ 350

q

(q − δ)
1

350 − 200
dδ − 18q = 34q,

for 0 � q � 200,

ρ(q) = 52 × 275 + 52
∫ 350

q

(q − δ)
1

350 − 200
dδ

+ 7
∫ q

200
(q − δ)

1

350 − 200
dδ − 18q

= −0.15q2 + 94q − 6000,

for 200 < q � 350, and

ρ(q) = 52 × 275 + 7
∫ 350

200
(q − δ)

1

350 − 200
dδ − 18q = −11q + 12 375,

for q > 350. Hence, the maximum expected revenue is equal to ρ(313) = €8726.65.

4.8.2 The (s, S) policy for single period problems

If there is an initial inventory q0 and a fixed reorder cost k, the optimal replenishment
policy can be obtained as follows. If q0 � S, no reorder is needed. Otherwise, the
best policy is to order S − q0, provided that the expected revenue associated with this
choice is greater than the expected revenue associated with not producing anything.
Hence, two cases can occur:

(i) if the expected revenue ρ(S) − k − cq0 associated with reordering is greater
than the expected revenue ρ(q0) − cq0 associated with not reordering, then
S − q0 units have to be reordered;

(ii) otherwise, no order has to be placed.
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Figure 4.10 Reorder level inventory policy.

As a consequence, if q0 < S, the optimal policy consists of ordering S − q0 units
if ρ(q0) � ρ(S) − k. In other words, if s is the number such that

ρ(s) = ρ(S) − k,

the optimal policy is to order S − q0 units if the initial inventory level q0 is less than
or equal to s, otherwise not to order. Policies like this are known as (s, S) policies.
The parameter s acts as a reorder point, while S is called the order-up-to-level.

If q0 = 50 and k = €400 in the Emilio Tadini & Sons problem, ρ(s) = ρ(S)−k =
€8526.65 so that s = 277. As q0 < s, the optimal policy is to order S − q0 = 253
units.

4.8.3 The reorder point policy

In the reorder point policy (or fixed order quantity policy), the inventory level is kept
under observation in an almost continuous way. As soon as its net value I (t) (the
amount in stock minus the unsatisfied demand plus the orders placed but not received
yet) reaches a reorder point l, a constant quantity q is ordered (see Figure 4.10).

The reorder size q is computed through the procedures illustrated in the previous
sections, by replacing d with d̄ . In particular, under the EOQ hypotheses:

q =
√

2kd̄

h
.

The reorder point l is obtained by requiring that the inventory level be nonnegative
during tl , with probability α. This is equivalent to assuming that demand should not
exceed l during the interval tl . In the following, it is assumed that
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• the demand rate d is distributed according to a normal distribution with expected
value d̄ and standard deviation σd ;

• d̄ and σd are constant in time;

• the lead time tl is deterministic or is distributed according to a normal distribu-
tion with expected value t̄l and standard deviation σtl ;

• the demand rate and the lead time are statistically independent.

The average demand rate d̄ can be forecasted with one of the methods illustrated
in Chapter 2, while the standard deviation σd can be estimated as the square root of
MSE. Analogous procedures can be adopted for the estimation of t̄l and σtl .

Let zα be the value under which a standard normal random variable falls with
probability α (e.g. zα = 2 for α = 0.9772 and zα = 3 for α = 0.9987). If tl is
deterministic, then

l = d̄tl + zασd

√
tl , (4.37)

where d̄tl and σd

√
tl are the expected value and the standard deviation of the demand

in an interval of duration tl , respectively. If tl is random, then,

l = d̄ t̄l + zα

√

σ 2
d t̄l + σ 2

tl
d̄2,

where d̄ t̄l and
√

σ 2
d t̄l + σ 2

tl
d̄2 are the expected value and the standard deviation of

the demand in a time interval of random duration tl , respectively.
The reorder point l minus the average demand in the reorder period constitutes a

safety stock IS . For example, in case tl is constant, the safety stock is

IS = l − d̄ tl = zασd

√
tl . (4.38)

Papier is a French retail chain.At the outlet located in downtown Lyon, the expected
demand for mouse pads is 45 units per month. The value of an item in stock is €4, and
the fixed reorder cost is equal to €30. The annual interest rate is 20%. The demand
forecasting MSE is 25. Lead time is 1 month and a service level equal to 97.7% is
required. On the basis of Equation (4.2), the holding cost is

h = 0.2 × 4 = 0.8 euros/year per item = 0.067 euros/month per item.

Therefore, from Equation (4.13),

q∗ =
√

2 × 30 × 45

0.067
= 200.74 ≈ 201 items.

Moreover, σd can be estimated as follows:

σd = √
25 = 5.
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Figure 4.11 Reorder cycle inventory policy.

From Equation (4.37), the reorder point l is

l = 45 + 2 × 5 = 55 units.

Consequently, the safety stock IS is

IS = 55 − 45 = 10 units.

4.8.4 The periodic review policy

In the reorder cycle policy (or periodic review policy) the stock level is kept under
observation periodically at time instants ti (ti+1 = ti + T , T � 0). At time ti ,
qi = S − I (ti) units are ordered (see Figure 4.11). The parameter S (referred to as
the order-up-to-level) represents the maximum inventory level in case lead time tl is
negligible.

The periodicity T of the sampling (review period) can be chosen using procedures
analogous to those used for determining q∗ in the deterministic models. For instance,
under the EOQ hypotheses,

T =
√

2k

hd̄
. (4.39)

The parameter S is determined in such a way that the probability that the inventory
level becomes negative does not exceed a given value (1 − α). Since the risk interval
is equal to T plus tl , S is required to be greater than or equal to the demand in T + t̄l ,
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with probability equal to α. If the lead time tl is deterministic, then

S = d̄(T + tl) + zασd

√

T + tl , (4.40)

where d̄(T + tl) and σd

√
T + tl are the expected value and the standard deviation of

the demand in T + tl , respectively. If the lead time is a random variable, then

S = d̄(T + t̄l ) + zα

√

σ 2
d (T + t̄l ) + σ 2

tl
d̄2,

where d̄(T + t̄l ) and
√

σ 2
d (T + t̄l ) + σ 2

tl
d̄2 are the expected value and the standard

deviation of the demand in T + t̄l , respectively.
The difference between S and the average demand in T + t̄l makes up a safety stock

IS . For example, if the lead time is constant,

IS = zασd

√

T + tl . (4.41)

Comparing Equation (4.41) with Equation (4.38), it can be seen that the reorder
cycle inventory policy involves a higher level of safety stock. However, such a policy
does not require a continuous monitoring of the inventory level.

In the Papier problem, the parameters of the reorder cycle inventory policy, com-
puted through Equations (4.39) and (4.40) are

T =
√

2 × 30

0.067 × 45
= 4.47 months,

S = 45 × (4.47 + 1) + 2 × 5 × √
4.47 + 1 = 269.54 units.

The associated safety stock, given by Equation (4.41), is

IS = 2 × 5 × √
4.47 + 1 = 23.39 units.

4.8.5 The (s, S) policy

The (s, S) inventory policy is a natural extension of the (s, S) policy illustrated for the
one-shot case. At time ti , S − I (ti) items are ordered if I (ti) < s (see Figure 4.12). If
s is large enough (s → S), the (s, S) policy is similar to the reorder cycle inventory
method. On the other hand, if s is small (s → 0), the (s, S) policy is similar to a
reorder level policy with a reorder point equal to s and a reorder quantity q ∼= S. On
the basis of these observations, the (s, S) policy can be seen as a good compromise
between the reorder level and the reorder cycle policies. Unfortunately, parameters
T , S and s are difficult to determine analytically. Therefore, simulation is often used
in practice.
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Figure 4.12 (s, S) policy.

Pansko, a Bulgarian chemical firm located in Plovdiv, supplies chemical agents to
state clinical laboratories. Its product Merofosphine has a demand of 400 packages
per week, a variable cost of 100 levs per unit, and a profit of 20 levs per unit. Every
time the manufacturing process is set up, a fixed cost of 900 levs is incurred. The
annual interest rate p is 20%. If the commodity is not available in stock, a sale is lost.
In this case, a cost equal to the profit of the lost sale is incurred. The MSE forecast
equals 2500. The lead time can be assumed to be constant and equal to a week. The
inventory is managed by means of an (s, S) policy with a period T of two weeks. The
values s and S are selected by simulating the system for all combinations of s (equal
to 800, 900, 1000, 1100 and 1200, respectively) and S (equal to 1500, 2000 and 2500,
respectively). According to the results reported in Table 4.1, s = 1100 and S = 2000
are the best choice. This would result in an average cost per week equal to 612.7 levs.

4.8.6 The two-bin policy

The two-bin policy can be seen as a variant of the reorder point inventory method
where no demand forecast is needed, and the inventory level does not have to be
monitored continuously. The items in stock are assumed to be stored in two identical
bins. As soon as one of the two becomes empty, an order is issued for an amount equal
to the bin capacity.

Browns supermarkets make use of the two-bin policy for tomato juice bottles. The
capacity of each bin is 400 boxes, containing 12 bottles each. In a supermarket close
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Table 4.1 Average cost per week (in levs) in the Pansko problem. The average fixed cost,
the average variable cost and the average shortage costs are reported in brackets.

S
︷ ︸︸ ︷

s 1500 2000 2500

800 1120.8 625.0 994.9
(337.8 + 168.5 + 614.5) (224.8 + 236.8 + 163.3) (152.3 + 330.2 + 512.3)

900 644.7 622.9 908.9
(447.6 + 184.6 + 12.4) (225.0 + 236.8 + 161.0) (162.9 + 339.3 + 406.6)

1000 625.0 623.0 724.3
(450.0 + 184.9 + 0.0) (225.0 + 236.8 + 161.0) (197.9 + 375.7 + 150.5)

1100 635.0 612.7 634.6
(450.0 + 184.0 + 0.0) (229.7 + 239.1 + 143.9) (222.2 + 403.3 + 9.0)

1200 635.0 622.7 631.8
(450.0 + 185.0 + 0.0) (291.2 + 276.3 + 55.1) (224.9 + 406.8 + 0.0)

Table 4.2 Daily sales of tomato juice (in bottles) during the first week of
December last in a Browns supermarket.

Day Sales Inventory level

1 Dec 850 8510
2 Dec 576 7934
3 Dec 932 7002
4 Dec 967 6035
5 Dec 945 5090
6 Dec 989 4101
7 Dec 848 3253

to Los Alamos (New Mexico, USA) the inventory level on 1 December last was 780
boxes of 12 bottles each. Last 6 December, the inventory level was less than 400
boxes and an order of 400 boxes was issued (see Table 4.2). The order was fulfilled
the subsequent day.

4.9 Selecting an Inventory Policy

It is quite common for a warehouse to contain several hundreds (or even thousands)
of items. In such a context, goods having a strong impact on the total cost have to be
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managed carefully while for less important goods it is wise to resort to simple and
low-cost techniques.

The problem is generally tackled by clustering the goods into three categories (indi-
cated with the symbols A, B and C) on the basis of the average value of the goods
in stock. This method is often called the ABC technique. Category A is made up of
products corresponding to a high percentage (e.g. 80%) of the total warehouse value.
Category B is constituted by a set of items associated with an additional 15% of
the warehouse value, while category C is formed by the remaining items. Goods are
subdivided into these categories as follows: first, commodities are sorted by nonin-
creasing values with respect to the average value of the goods in stock; the items are
then selected from the sorted list, to reach the pre-established cumulated value levels.

On the basis of the 80–20 principle (or Pareto principle), category A usually con-
tains a small fraction (generally, 20–30%) of the goods whereas category C includes
many products. This observation suggests that the goods of categories A and B should
be managed with policies based on forecasts and a frequent monitoring (e.g. category
A by means of the reorder level inventory method and category B through the reorder
cycle inventory policy). Products in category C can be managed using the two-bin
policy that does not require any forecast.

The Walloon Transportation Consortium (WTC) operates a Belgian public trans-
portation service in the Walloon region. Buses are maintained in a facility located in
Ans, close to a vehicle depot. The average inventory levels, the unit values and the
total average value of the spare parts kept in stock are reported in Table 4.3. It was
decided to allocate to category A the products corresponding approximately to the
first 80% of the total value of the stock, to category B the items associated with the
following 15%, and to category C the remaining commodities (see Table 4.4). It is
worth noting that category A contains about 30% of the goods, while each of the cat-
egories B and C accounts for about 35% of the inventory. The cumulated percentage
of the total value as a function of the cumulated percentage of the number of items
(Pareto curve) is reported in Figure 4.13.

4.10 Multiple Stocking Point Models

Good inventory policies for multiple interdependent stocking points can be very dif-
ficult to devise. In this section a very simple model is described and analysed. In a
decentralized logistics system, a market is divided into n identical sales districts, each
of which is allocated to a warehouse, while in a centralized system every customer
is serviced by a unique facility. Under the EOQ hypotheses, the average inventory
levels of the two systems are linked by the following square-root law.

Property. If the EOQ hypotheses hold, and each warehouse in the decentralized
system services the same demand, then the total average inventory level Ī (n) in the
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Table 4.3 Spare parts stocked by WTC.

Product Average Average unit Total average
code stock value (in euros) value (in euros)

AX24 137 50 6 850
BR24 70 2 000 140 000
BW02 195 250 48 750
CQ23 6 6 000 36 000
CR01 16 500 8 000
FE94 31 100 3 100
LQ01 70 2 500 175 000
MQ12 18 200 3 600
MW20 75 500 37 500
NL01 15 1 000 15 000
PE39 16 3 000 48 000
RP10 20 2 200 44 000
SP00 13 250 3 250
TA12 100 2 500 250 000
TQ23 10 5 000 50 000
WQ12 30 12 000 360 000
WZ34 30 15 450
ZA98 70 250 17 500

Cumulated % of the total value
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Figure 4.13 Pareto curve in the WTC problem.

decentralized system is

Ī (n) = √
n Ī (1),

where Ī (1) is the average inventory level in the centralized system.
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Table 4.4 ABC classification of the spare parts in the WTC problem.

Total Total
Fraction Cumulated % average cumulated Cumulated

Product of total of the number value value % of the
code inventory of products (in euros) (in euros) total value Class

WQ12 3.3 3.30 360 000 360 000 28.87
TA12 10.8 14.10 250 000 610 000 48.92
LQ01 7.6 21.70 175 000 785 000 62.95 A
BR24 7.6 29.30 140 000 925 000 74.18
TQ23 1.1 30.40 50 000 975 000 78.19

BW02 21.1 51.50 48 750 1 023 750 82.10
PE39 1.8 53.30 48 000 1 071 750 85.95
RP10 2.1 55.40 44 000 1 115 750 89.47 B
MW20 8.2 63.60 37 500 1 153 250 92.48
CQ23 0.6 64.20 36 000 1 189 250 95.37

ZA98 7.6 71.80 17 500 1 206 750 96.77
NL01 1.6 73.40 15 000 1 221 750 97.98
CR01 1.8 75.20 8 000 1 229 750 98.62
AX24 14.8 90.00 6 850 1 236 600 99.17 C
MQ12 2.0 92.00 3 600 1 240 200 99.45
SP00 1.4 93.40 3 250 1 243 450 99.72
FE94 3.3 96.70 3 100 1 246 550 99.96
WZ34 3.3 100.00 450 1 2470,00 100.00

Proof. In the EOQ model the average inventory level is half the order size. Therefore,
Ī (1) is equal to 1

2

√
2kd/h, where d is the demand of the whole market. In a decen-

tralized system, Ī (n) is the sum of the average inventory levels of the facilities, each
of which services 1/n of demand d . Hence, Ī (n) = 1

2n
√

2k(d/n)/h.

Kurgantora distributes tyres in Russia and Kazakhstan. The distribution network
currently includes 12 warehouses, each of which serves approximately the same
demand. In an attempt to reduce the total inventory level by 30%, the company
has decided to close some warehouses and allocate their demand to the remaining
facilities. Applying the square-root law, we see that the number of stocking points
should be reduced to 6, since

Ī (12) = √
12 Ī (1),

Ī (n′) = √
n′ Ī (1),

Ī (n′)/Ī (12) = √
n′/

√
12 = 0.7,

n′ = 5.88.
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4.11 Slow-Moving Item Models

As shown in the previous sections, a major issue for fast-moving product inventory
management is determining how often reorders should take place. On the other hand,
if demand is very low (e.g. a few units in 10–20 years), as in the case of spare parts
of a complex machinery (slow-moving products), the main issue is determining the
number of items to be purchased at the beginning of the machinery’s life cycle.

In this section we examine a model in which item purchase cost and shortage
penalties are taken into account while holding cost and salvage value (i.e. the value
of unused spare parts at the end of the machinery lifetime) are negligible. Let c and
u be the purchase cost of an item at the beginning of the planning horizon and during
the planning horizon, respectively (c < u). If n units of product are purchased at the
beginning of the planning period, and m units are demanded in the planning period,
the total cost is

C(n, m) = cn, if n � m;
C(n, m) = cn + u(m − n), if n < m.

Let P(m) be the probability that m items are demanded. Then, the expected cost C̄(n)

in case n items are purchased is

C̄(n) =
∞
∑

m=0

C(n, m)P (m) = cn + u

∞
∑

m=n+1

(m − n)P (m).

Hence,

C̄(n − 1) = C̄(n) − c + u[1 − F(n − 1)], (4.42)

C̄(n + 1) = C̄(n) + c − u[1 − F(n)], (4.43)

where F(n) is the probability that n units (or less) are demanded. The minimum
expected cost is achieved if n∗ items are purchased at the beginning of the planning
period:

C̄(n∗ − 1) � C̄(n∗), (4.44)

C̄(n∗ + 1) � C̄(n∗). (4.45)

Finally, combining Equation (4.44) and Equation (4.42), the following relation is
obtained:

F(n∗ − 1) � u − c

u
.

Similarly, combining Equation (4.45) and Equation (4.43) for n = n∗ gives

F(n∗) � u − c

u
.

Consequently, the optimal number of items n∗ to be purchased is such that

F(n∗ − 1) � u − c

u
� F(n∗). (4.46)
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Hydro Ltd uses five LIF03 generators in its hydroelectric power plants located in
Nigeria. Each piece of machinery has an average life of 20 years, during which the
expected number of engine failures is equal to 1.4. The cost of a spare part, purchased
when a generator is manufactured, is $60 000 while producing an additional unit costs
around $300 000. The failure process is modelled as a Poisson probability distribution
with expected value λ,

λ = 5 × 1.4 = 7 faults per life cycle.

Therefore, the probability P(n) that the number of demanded spare parts equals n

is given by

P(n) = e−λλn

n! , n = 0, 1, . . . ,

while the cumulative probability F(n) is

F(0) = P(0),

F (n) =
n

∑

k=0

e−λλk/k! = F(n − 1) + P(n), n = 1, 2, . . . .

The values of P(n) and F(n) for n = 0, . . . , 10 are reported in Table 4.5.
Since

u − c

c
= 300 000 − 60 000

300 000
= 0.8,

on the basis of Equation (4.46), n∗ = 9 spare parts should be purchased and stocked.

4.12 Policy Robustness

The inventory policies illustrated in the previous sections often have to be slightly
modified in order to be used in practice. Fractional order sizes and shipment frequen-
cies have to be suitably rounded up or down (e.g. q∗ = 14.43 pallets should become
14 or 15 pallets). Fortunately, the total cost is not very sensitive to variations of the
order size around the optimal value. For the EOQ model the following property holds.

Property. In the EOQ model, errors in excess of 100% on the optimal order size
cause a maximum increase of the total cost equal to 25%.

Proof. Recall that the average cost in the EOQ model is given by

µ(q) − cd = kd/q + hq/2.

If q = q∗ = √
2kd/h (see Equation (4.13)), then

µ(q∗) − cd = √
2kdh.
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Table 4.5 Probability distribution of spare part demand in the Hydro Ltd problem.

n P (n) F (n)

0 0.0009 0.0009
1 0.0064 0.0073
2 0.0223 0.0296
3 0.0521 0.0818
4 0.0912 0.1730
5 0.1277 0.3007
6 0.1490 0.4497
7 0.1490 0.5987
8 0.1304 0.7291
9 0.1014 0.8305

10 0.0710 0.9015

If q = 2q∗, then
µ(2q∗) − cd = 5

4

√
2kdh.

Therefore,
µ(2q∗) − cd

µ(q∗) − cd
= 1.25

and
µ(q) − cd � 1.25(µ(q∗) − cd), q ∈ [q∗, 2q∗].

Similarly, it can be shown that rounding the reorder size to the closest power of 2
(power-of-two policy) induces a maximum cost increase of about 6%.

In the Al-Bufeira Motors problem (see Section 4.4.2), the total cost associated with
five shipments per year (i.e. q = 44 units),

µ(q∗) = 800 × 220

44
+ 216 × 44

2
= 8752 dollars per year,

is higher than the optimal solution (µ(q∗) = 8719.63 dollars per year) only by 0.37%.

4.13 Questions and Problems

4.1 In most industrialized countries the average ITR is around 20 for dairy products
and around 5 for household electrical appliances. Discuss these figures.

4.2 Modify the EOQ formula for the case where the stocking point has a finite
capacity Q.
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4.3 Modify the EOQ formula for the case where the holding cost is a concave
function of the number of items kept in inventory.

4.4 Devise an optimal inventory policy for the EOQ model with a finite time horizon
TH.

4.5 Modify the EOQ formula for the case where the order size q is delivered by a
number of vehicles of capacity qv each having a fixed cost kv.

4.6 Draw the auxiliary graph used for solving the Sao Vincente Chemical problem
as a shortest-path problem.

4.7 Modify the Wagner–Within model for the case where the stocking point is
capacitated. Does the ZIO property still hold?

4.8 What is the optimal order quantity in the Newsboy Problem if the stocking
point is capacitated?

4.9 If typeA products are overstocked, the total cost increases dramatically, while if
type C products are overstocked, the total cost does increase too much. Calculate
the cost increase whenever the inventory level of A products is increased by
20%. Repeat the calculation for C products.

4.10 Show that the power-of-two policy induces a maximum cost increase of about
6%.
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5

Designing and Operating a
Warehouse

5.1 Introduction

Warehouses are facilities where inventories are sheltered. They can be broadly classi-
fied into production warehouses and DCs. This chapter deals with warehouse design
and operation, with an emphasis on DCs. In the following, a product is defined as
a type of good, e.g. wine bottles of a specific brand. The individual units are called
items (or stock keeping units (SKUs)). A customer order is made up of one or more
items of one or more products.

Flow of items through the warehouse. Warehouses are often used not only to
provide inventories a shelter, but also to sort or consolidate goods. In a typical DC,
the products arriving by truck, rail, or internal transport are unloaded, checked and
stocked. After a certain time, items are retrieved from their storage locations and
transported to an order assembly area. In the simplest case (which occurs frequently
in CDCs (see Chapter 1)), the main activity is the storage of the goods. Here, the
merchandise is often received, stored and shipped in full pallets (all one product)
and, as a result, material handling is relatively simple (see Figure 5.1). In the most
complex case (which occurs frequently in RDCs (see Chapter 1)) large lots of prod-
ucts are received and shipments, containing small quantities of several items, have to
be formed and dispatched to customers. Consequently, order picking is quite com-
plex, and product sorting and consolidation play a mayor role in order assembly (see
Figure 5.2).

Ownership of the warehouses. With respect to ownership, there are three main
typologies of warehouses. Company-owned warehouses require a capital investment
in the storage space and in the material handling equipment. They usually represent
the least-expensive solution in the long run in the case of a substantial and constant
demand. Moreover, they are preferable when a higher degree of control is required
to ensure a high level of service, or when specialized personnel and equipment are

Introduction to Logistics Systems Planning and Control G. Ghiani, G. Laporte and R. Musmanno
© 2004 John Wiley & Sons, Ltd ISBN: 0-470-84916-9 (HB) 0-470-84917-7 (PB)
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Figure 5.1 The flow of items through the warehouse; the goods are received and
shipped in full pallets or in full cartons (all one product).
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Figure 5.2 The flow of items through the warehouse; the goods are received in full pallets
or in full cartons (all one product) and shipped in less than full pallets or cartons.

needed. Finally, they can be employed as a depot for the company’s vehicles or as a
base for a sales office. Public warehouses are operated by firms providing services
to other companies on a short-term basis. As a rule, public warehouses have stan-
dardized equipment capable of handling and storing specific types of merchandise
(e.g. bulk materials, temperature-controlled goods, etc.). Here, all warehousing costs
are variable, in direct proportion to the storage space and the services required. As
a result, it is easy and inexpensive to change warehouse locations as demand varies.
For these reasons, public warehouses can suitably accommodate seasonal inventories.
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Figure 5.3 Common warehouse costs.

Finally, leased warehouse space is an intermediate choice between short-term space
rental and the long-term commitment of a company-owned warehouse.

Warehouse costs. The total annual cost associated with the operation of a ware-
house is the result of four main activities: receiving the products, holding inventories
in storage locations, retrieving items from the storage locations, assembling customer
orders and shipping. These costs depend mainly on the storage medium, the stor-
age/retrieval transport technology and its policies. As a rule, receiving the incoming
goods and, even more so, forming the outgoing lots, are operations that are diffi-
cult to automate and often turn out to be labour-intensive tasks. Holding inventories
depends mostly on the storage medium, as explained in the following. Finally, picking
costs depend on the storage/retrieval transport system which can range from a fully
manual system (where goods are moved by human pickers travelling on foot or by
motorized trolleys) to fully automated systems (where goods are moved by devices
under the control of a centralized computer). Common warehouse costs are reported
in Figure 5.3.

5.1.1 Internal warehouse structure and operations

The structure of a warehouse and its operations are related to a number of issues:

• the physical characteristics of the products (on which depends whether the
products have to be stored at room temperature, in a refrigerated or ventilated
place, in a tank, etc.);

• the number of products (which can vary between few units to tens of thousands);

• the volumes handled in and out of the warehouse (which can range between a
few items per month to hundreds of pallets per day).
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Storage zone

Receiving zone

Shipping zone

Figure 5.4 Warehouse with a single receiving zone and a single shipping zone.

Typically, in each DC there are (see Figure 5.4)

• one or more receiving zones (each having one or more rail or truck docks),
where incoming goods are unloaded and checked;

• a storage zone, where SKUs are stored;

• one or more shipping zones (each having one or more rail or truck docks), where
customer orders are assembled and outgoing vehicles are loaded.

The storage zone is sometimes divided into a large reserve zone where products
are stored in the most economical way (e.g. as a stack of pallets), and into a small
forward zone, where goods are stored in smaller amounts for easy retrieval by order
pickers (see Figure 5.5). The transfer of SKUs from the reserve zone to the forward
zone is referred to as a replenishment. If the reserve/forward storage is well-designed,
the reduction in picking time is greater than replenishment time.

5.1.2 Storage media

The choice of a storage medium is strongly affected by the physical characteristics of
the goods in stock and by the average number of items of each product in a customer
order. Briefly, when storing solid goods three main alternatives are available: stacks,
racks and drawers. In the first case, goods are stored as cartons or as pallets, and
aisles are typically 3.5–4 m wide (see Figure 5.6). Stacks do not require any capital
investment and are suitable for storing low-demand goods, especially in reserve zones.
In the second case, goods are stored as boxes or pallets on metallic shelves separated
by aisles. Here quick picking of single load units is possible. When SKUs are moved
by forklifts, the racks (see Figure 5.7) are usually 5–6 m tall and aisles are around
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Figure 5.5 Warehouse with reserve and forward storage zones.

Figure 5.6 Block stacking system.

3.5 m wide. Instead, as explained in the following, in automated storage and retrieval
systems (AS/RSs), racks are typically 10–12 m tall and aisles are usually 1.5 m wide
(see Figure 5.8). Finally, in the third case, items are generally of small size (e.g.
metallic small parts), and are kept in fixed or rotating drawers.

5.1.3 Storage/retrieval transport mechanisms and policies

A common way of classifying warehouses is the method by which items are retrieved
from storage.
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Figure 5.7 Rack storage.

Figure 5.8 An AS/RS.

Picker-to-product versus product-to-picker systems. The picking operations can
be made

• by a team of human order pickers, travelling to storage locations (picker-to-
product system);

• by an automated device, delivering items to stationery order pickers (order-to-
picker system).

Clearly, mixed solutions are possible. For instance, in picker-to-belt systems, the
items are retrieved by a team of human order pickers and then transported to the order
assemblers by a belt conveyor. Picker-to-product systems can be further classified
according to the mode of travel inside the warehouse. In person-aboard AS/RS, pickers
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Figure 5.9 Item retrieval by trolley.

are delivered to storage locations by automated devices which are usually restricted
to a single aisle. In walk/ride and pick systems (W/RPSs), pickers travel on foot or by
motorized trolleys and may visit multiple aisles (see Figure 5.9).

The most popular order-to-picker systems are the AS/RSs. An AS/RS consists of
a series of storage aisles, each of which is served by a single storage and retrieval
(S/R) machine or crane. Each aisle is supported by a pick-up and delivery station
customarily located at the end of the aisle and accessed by both the S/R machine and
the external handling system. Therefore, assuming that the speeds vx and vy along
the axes x and y (see Figure 5.10) are constant, travel times t satisfy the Chebychev
metric,

t = max

{

�x

vx

,
�y

vy

}

,

where �x and �y are the distances travelled along the x- and y-axes.
AS/RSs were introduced in the 1950s to eliminate the walking that accounted for

nearly 70% of manual retrieval time. They are often used along with high racks and
narrow aisles (see Figure 5.11). Hence, their advantages include savings in labour
costs, improved throughput and high floor utilization.

Unit load retrieval systems. In some warehouses it is possible to move a single
load at a time (unit load retrieval system), because of the size of the loads, or of
the technological restrictions of the machinery (as in AS/RSs). In AS/RSs, an S/R
machine usually operates in two modes:

• single cycle: storage and retrieval operations are performed one at a time;

• dual cycle: pairs of storage and retrieval operations are made in sequence in an
attempt to reduce the overall travel time.
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Figure 5.10 An S/R machine.
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Figure 5.11 Item storage and retrieval by an AS/RS and a belt conveyor.

There exist systems in which it is possible to store or pick up several loads at the
same time (multi-command cycle).

Strict order picking versus batch picking. In multiple load retrieval systems,
customer orders can be assigned to pickers in two ways:

• each order is retrieved individually (strict order picking);

• orders are combined into batches.

In the latter case, each batch may be retrieved by a single picker (batch picking).
Otherwise, the warehouse is divided into a given number of zones and each picker is
in charge of retrieving items from a specific zone (zone picking).
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5.1.4 Decisions support methodologies

Warehouses are highly dynamic environments where resources have to be allocated in
real-time to satisfy customer orders. Because orders are not fully known in advance,
design and operational decisions are affected by uncertainty. To overcome the inher-
ent difficulty of dealing with complex queueing models or stochastic programs, the
following approach is often used.

Step 1. A limited number of alternative solutions are selected on the basis of expe-
rience or by means of simple relations linking the decision variables and simple
statistics of customer orders (the average number of orders per day, the average
number of items per order, etc.).

Step 2. Each alternative solution generated in Step 1 is evaluated through a detailed
simulation model and the best solution (e.g. with respect to throughput) is selected.

5.2 Warehouse Design

Designing a warehouse amounts to choosing its building shell, as well as its layout
and equipment. In particular, the main design decisions are

• determining the length, width and height of the building shell;

• locating and sizing the receiving, shipping and storage zones (e.g. evaluating
the number of I/O ports, determining the number, the length and the width of
the aisles of the storage zone and the orientation of stacks/racks/drawers);

• selecting the storage medium;

• selecting the storage/retrieval transport mechanism.

The objective pursued is the minimization of the expected annual operating cost
for a given throughput, usually subject to an upper bound on capital investment.

In principle, the decision maker may choose from a large number of alternatives.
However, in practice, several solutions can be discarded on the basis of a qualitative
analysis of the physical characteristics of the products, the number of items in stock
and the rate of storage and retrieval requests. In addition, some design decisions are
intertwined. For instance, when choosing an AS/RS as a storage/retrieval transport
mechanism, rack height can be as high as 12 m, but when traditional forklifts are used
racks must be much lower. As a result, each design problem must be analysed as a
unique situation.

Following the general framework introduced at the end of Section 5.1, we will
make in the remainder of this section a number of qualitative remarks and we will
illustrate two simple analytical procedures.
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5.2.1 Selecting the storage medium and the storage/retrieval
transport mechanism

The choice of storage and retrieval systems is influenced by the physical characteristics
of the goods, their packaging at the arrival and the composition of the outgoing
lots. For example, in a single storage zone warehouse, palletized goods are usually
stocked on racks if their demand is high enough, otherwise, stacks are used.Automated
systems are feasible if the goods can be automatically identified through bar codes
or other techniques. They have low space and labour costs, but require a large capital
investment. Hence, they are economically convenient provided that the volume of
goods is large enough.

5.2.2 Sizing the receiving and shipment subsystems

The receiving zone is usually wider than the shipping area. This is because the incom-
ing vehicles are not under the control of the warehouse manager, while the formation of
the outgoing shipments can be planned in order to avoid congesting the output stations.

Determining the number of truck docks

Goods are usually received and shipped by rail or by truck. In the latter case, the
number of docks nD can be estimated through the following formula,

nD =
⌈

dt

qT

⌉

,

where d is the daily demand from all orders, t is the average time required to
load/unload a truck, q is the truck capacity, and T is the daily time available to
load/unload trucks.

Sintang is a third-party Malaysian firm specialized in manufacturing electronic
devices. A new warehouse has been recently opened in Kuching. It is used for storing
digital satellite receivers, whose average daily demand is d = 27 000 units. Outgoing
shipments are performed by trucks, with a capacity equal to 850 boxes. Since the
average time to load a truck is t = 280 min and 15 working hours are available every
day, the warehouse has been designed with the following number nD of docks:

nD =
⌈

27 000 × 280

850 × 900

⌉

= 10.

5.2.3 Sizing the storage subsystems

The area of the storage zone must be large enough to accommodate goods in peak
periods. On the other hand, if the storage zone exceeds the real needs of the firm,
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storage and retrieval times become uselessly high. This could decrease throughput or
increase material handling costs.

Determining the capacity of a storage area

The size of a storage area depends on the storage policy. In a dedicated storage
policy, each product is assigned a pre-established set of positions. This approach is
easy to implement but causes an underutilization of the storing space. In fact, the
space required is equal to the sum of the maximum inventory of each product in time.
Let n be the number of products and let Ij (t), j = 1, . . . , n, be the inventory level of
item j at time t . The number of required storage locations md in a dedicated storage
policy is

md =
n

∑

j=1

max
t

Ij (t). (5.1)

In a random storage policy, item allocation is decided dynamically on the basis of
the current warehouse occupation and on future arrival and request forecast. Therefore,
the positions assigned to a product are variable in time. In this case the number of
storage locations mr is

mr = max
t

n
∑

j=1

Ij (t) � md. (5.2)

The random storage policy allows a higher utilization of the storage space, but
requires that each item be automatically identified through a bar code (or a similar
technique) and a database of the current position of all items kept at stock is updated
at every storage and every retrieval.

In a class-based storage policy, the goods are divided into a number of categories
according to their demand, and each category is associated with a set of zones where
the goods are stored according to a random storage policy. The class-based storage
policy reduces to the dedicated storage policy if the number of categories is equal to
the number of items, and to the random storage policy if there is a single category.

Potan Up bottles two types of mineral water. In the warehouse located in Hangzhou
(China), inventories are managed according to a reorder level policy (see Chapter 4).
The sizes of the lots and of the safety stocks are reported in Table 5.1. Inventory levels
as a function of time are illustrated in Figures 5.12 and 5.13. The company is currently
using a dedicated storage policy. Therefore, the number of storage locations is given
by Equation (5.1):

md = 600 + 360 = 960.

The firm is now considering the opportunity of using a random storage policy. The
number of storage locations required by this policy would be (see Equation (5.2))

mr = 600 + 210 = 810.
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Table 5.1 Lots and safety stocks (both in pallets) in the Potan Up problem.

Product Lot Safety stock

Natural water 500 100
Sparkling water 300 60

I(t)

t

100

350

600

Figure 5.12 Inventory level of natural mineral water in the Potan Up problem.

60

210

360

I(t)

t

Figure 5.13 Inventory level of sparkling mineral water in the Potan Up problem.

Determining length, width and height of a storage zone

In this section a methodology for determining length, width and height of a storage
zone (see Figure 5.14) is described. The same methodology can be easily extended to
other types of storage zone. As explained in the introductory section, the maximum
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Lx

Ly

Figure 5.14 A traditional storage zone.

height of the racks/stacks/drawers is determined by the storage technology. Therefore,
the sizing decision amounts to calculating the length and the width. Let m be the
required number of stocking positions; αx and αy the occupation of a unit load (e.g.
a pallet or a cartoon) along the directions x and y, respectively; wx and wy , the width
of the side aisles and of the central aisle, respectively; nz the number of stocking
zones along the z-direction allowed by the storage technology; v the average speed
of a picker. The decision variables are nx , the number of storage locations along the
x-direction, and ny , the number of storage locations along the y-direction.

The extension Lx of the stocking zone along the direction x is given by the following
relation,

Lx = (αx + 1
2wx)nx,

where, for the sake of simplicity, nx is assumed to be an even number. Similarly, the
extension Ly is

Ly = αyny + wy.

Therefore, under the hypothesis that a handling operation consists of storing or the
retrieving a single load, and all stocking points have the same probability of being
accessed, the average distance covered by a picker is: 2(Lx/2+Ly/4) = Lx +Ly/2.
Hence, the problem of sizing the storage zone can be formulated as follows.

Minimize

(αx + 1
2wx)

nx

v
+ αyny + wy

2v
(5.3)

subject to

nxnynz � m (5.4)

nx, ny � 0, integer, (5.5)
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where the objective function (5.3) is the average travel time of a picker, while inequal-
ity (5.4) states that the number of stocking positions is at least equal to m.

Problem (5.3)–(5.5) can be easily solved by relaxing the integrality constraints on
the variables nx and ny . Then, inequality (5.4) will be satisfied as an equality:

nx = m

nynz

. (5.6)

Therefore, nx can be removed from the relaxed problem in the following way.

Minimize

(αx + 1
2wx)

m

nynzv
+ αyny + wy

2v
(5.7)

subject to
ny � 0.

Since the objective function (5.7) is convex, the minimizer n′
y can be found through

the following relation:

d

d(ny)

(

(αx + 1
2wx)

m

nynzv
+ αyny + wy

2v

)∣

∣

∣

∣

ny=n′
y

= 0.

Hence,

n′
y =

√

2m(αx + 1
2wx)

αynz

. (5.8)

Finally, replacing ny in Equation (5.6) by the n′
y value given by Equation 5.8, n′

x is
determined:

n′
x =

√

mαy

2nz(αx + 1
2wx)

. (5.9)

Consequently, a feasible solution (n̄x, n̄y) is

n̄x = �n′
x� and n̄y = �n′

y�.
Alternatively, a better solution could be found by setting n̄x = �n′

x� (or n̄y = �n′
y�),

provided that Equation (5.4) is satisfied.

Wagner Bros is going to build a new warehouse near Sidney (Australia) in order
to supply its sales points in New South Wales. On the basis of a preliminary analysis
of the problem, it has been decided that the facility will accommodate at least 780
90×90 cm2 pallets. The goods will be stored onto racks and transported by means of
traditional trolleys. Each rack has four shelves, each of which can store a single pallet.
Each pallet occupies a 1.05 × 1.05 m2 area. Racks are arranged as in Figure 5.14,
where side aisles are 3.5 m wide, while the central aisle is 4 m wide. The average
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Reserve zone Forward zone

Figure 5.15 Warehouse with a reserve/forward storage system.

speed of a trolley is 5 km/h. Using Equations (5.8) and (5.9), variables nx and ny are
determined:

n′
x =

√

780 × 1.05

2 × 4 × (1.05 + 3.5
2 )

= 6.05,

n′
y =

√

2 × 780 × (1.05 + 3.5
2 )

1.05 × 4
= 32.25.

Assuming n̄x = 6 and n̄y = 33, the total number of storage locations turns out to be
792, while Lx = [1.05+ (3.5/2)]×6 = 16.8 m and Ly = 1.05×33+4 = 38.65 m.

Sizing a forward area

In a reserve/forward storage system (see Figure 5.15), the main decision is to deter-
mine how much space must be assigned to each product in the forward area. In
principle, once this decision has been made, the problem of determining the length,
width and height of the pick-up zone should be solved. However, since each picking
route in the forward area usually collects small quantities of several items, at every
trip a large portion of the total length of the aisles is usually covered (see Figure 5.15).
Hence, the dimensions of the pick-up zone are not critical and can be selected quite
arbitrarily.

If the number of items stored in the forward area increases, replenishments are less
frequent. However, at the same time the extension of the forward area increases and,
consequently, the average picking time also goes up.

Let (see Figure 5.16) n be the number of products, o the average number of orders
per time period; d the average number of orders in a batch; oj , j = 1, . . . , n, the
average number of orders containing product j ; uj , j = 1, . . . , n, the average number
of items of product j in an order; v the average speed of a picker in the forward area;
h the cost of a picker per time period; k the area and equipment cost per unit of lane
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wj

mj

Figure 5.16 Storage locations assigned to an item j, j = 1, . . . , n.

length and per time period; fj , j = 1, . . . , n, the fixed cost of a replenishment of
product j ; gj , j = 1, . . . , n, the variable cost for replenishing a unit of product j ;
wj , j = 1, . . . , n, the length of a portion of aisle occupied by an item of product j ;
mj , j = 1, . . . , n, the number of items of product j that can be stored in an aisle
position. The decision variables are the number of aisle positions sj , j = 1, . . . , n,
assigned to each product j .

The contribution of product j, j = 1, . . . , n, to the cost of picking items from the
reserve area is

c1j (sj ) = h
(o/d)wj sj

v
, (5.10)

where o/d represents the average number of batches picked up per time period (i.e. the
average number of times a picker passes in front of a position per time period); wjsj
is the total length of the portion of aisle assigned to the product j , [(o/d)wj sj ]/v
represents the average time spent during a time period by the picker because of
product j .

The contribution of product j, j = 1, . . . , n, to the average cost per time period
of replenishing the forward area is

c2j (sj ) = fj

ujoj

mj sj
+ gjujoj ,

where ujoj represents the average demand per time period of product j , while mjsj
is the number of storage locations assigned to product j , and (ujoj )/(mj sj ) is the
average number of resupplies of product j per time period.

The portion of the space and equipment costs due to product j, j = 1, . . . , n, is

c3j (sj ) = kwj sj .
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Moreover, let smin
j and smax

j , j = 1, . . . , n, be lower and upper bounds on the
number of positions of product j , respectively. The problem of sizing the forward
area can be modelled as follows.

Minimize
n

∑

j=1

[c1j (sj ) + c2j (sj ) + c3j (sj )] (5.11)

subject to

smin
j � sj � smax

j , j = 1, . . . , n, (5.12)

sj � 0, integer, j = 1, . . . , n, (5.13)

where the objective function (5.11) is the sum of the costs due to the various prod-
ucts, while constraints (5.12) impose lower and upper bounds on the number of aisle
positions assigned to each item j, j = 1, . . . , n.

Problem (5.11)–(5.13) can be decomposed into n subproblems, one for each product
j, j = 1, . . . , n, and solved by exploiting the convexity of the objective function.

Step 1. Determine the value s′
j , j = 1, . . . , n, that minimizes the total cost cj (sj ) =

c1j (sj ) + c2j (sj ) + c3j (sj ) due to product j :

dcj (sj )

dsj

∣

∣

∣

∣

sj =s′
j

= 0, j = 1, . . . , n,

s′
j =

√

fjujoj

mj [howj/dv + kwj ] , j = 1, . . . , n.

Set s̄j = �s′
j �, if cj (�s′

j �) < cj (�s′
j �), otherwise s = �s′

j �, j = 1, . . . , n.

Step 2. Compute the optimal solution s∗
j , j = 1, . . . , n, as follows:

s∗
j =











smin
j , if s̄j < smin

j ,

s̄j , if smin
j � s̄j � smax

j ,

smax
j , if s̄j > smax

j ,

j = 1, . . . , n.

The total length of the aisles wtot can then be obtained by the following relation:

wtot =
n

∑

j=1

wjs
∗
j . (5.14)

An estimate of the number of pickers can be computed by dividing the total work-
load per time period [(o/d)wtot]/v by the duration of a work shift. This approach
underestimates the number of pickers since it assumes that the orders are uniformly
distributed in time in such a way that pickers are never idle. A more realistic estimate
can be heuristically obtained by reducing v by an appropriate ‘utilization coefficient’
empirically estimated, or by using an appropriate simulation model.
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Table 5.2 Characteristics of the products at stock in the Wellen warehouse.

fj gj

Item (euros per (euros per wj

(j ) oj uj supply) unit of items) (m) mj

1 40 4 5 0.2 0.75 12
2 60 2 5 0.2 1.00 8
3 35 5 5 0.2 0.75 12
4 45 3 5 0.2 1.00 8
5 95 2 5 0.2 1.00 8
6 65 4 5 0.2 0.75 12
7 45 2 5 0.2 0.75 12
8 50 4 5 0.2 1.00 8
9 65 3 5 0.2 1.00 8

10 45 5 5 0.2 0.75 12

Wellen is a Belgian firm manufacturing and distributing mechanical parts for numer-
ical control machines. Its warehouse located in Herstal consists of a wide reserve zone
(where the goods are stocked as stacks), and of a forward zone. At present 10 prod-
ucts are stored (see Table 5.2). Then, o = 400 orders per day, d = 3 orders per lot,
v = 12 000 m per day, h = €75 per day, while the area and equipment cost per unit of
aisle length k is assumed to be negligible. The minimum and the maximum number of
positions for the various products are reported in Table 5.3. The number of positions
s∗
j , j = 1, . . . , 10, to be assigned to the different products in the forward zone can

be obtained through the two-stage procedure previously described. The results are
reported in Table 5.4. Consequently, the total length wtot of the aisles of the forward
zone is equal to 98.5 m (see Equation (5.14)), while the workload is around 1.09
working days, so that at least two pickers are required.

5.3 Tactical Decisions

The main tactical decision consists of allocating products to space. In this section, the
problem is modelled as a structured LP problem, namely, the classical transportation
problem.

5.3.1 Product allocation

The allocation of products within a warehouse is based on the principle that fast-
moving products must be placed closer to the I/O ports in order to minimize the overall
handling time. In the sequel, the case of a dedicated storage policy is examined. The
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Table 5.3 Minimum and maximum number of aisle positions in the Wellen warehouse.

Item (j ) smin
j

smax
j

1 9 14
2 5 12
3 13 15
4 8 10
5 7 20
6 9 11
7 10 13
8 8 15
9 11 16

10 14 19

Table 5.4 Number of aisle positions in the forward zone of the Wellen warehouse.

Item (j ) s′
j

�s′
j
� cj (�s′

j
�) �s′

j
� cj (�s′

j
�) sj s∗

j

1 10.33 10 44.92 11 44.94 10 10
2 9.49 9 39.83 10 39.83 9 9
3 10.80 10 48.54 11 48.50 11 13
4 10.06 10 43.77 11 43.84 10 10
5 11.94 11 57.96 12 57.90 12 12
6 13.17 13 68.46 14 68.49 13 11
7 7.75 7 27.73 8 27.69 8 10
8 12.25 12 60.42 13 60.45 12 12
9 12.09 12 59.16 13 59.21 12 12

10 12.25 12 60.31 13 60.34 12 14

allocation problem amounts to assigning each of the md storage locations available to
a product. Let n be the number of products; mj , j = 1, . . . , n, the number of storage
locations required for product j (in a dedicated storage policy, relation

∑n
j=1 mj �

md holds); R the number of I/O ports of the warehouse; pjr , j = 1, . . . , n, r =
1, . . . , R, the average number of handling operations on product j through I/O port
r per time period; trk, r = 1, . . . , R, k = 1, . . . , md, the travel time from I/O port r

and storage location k.
Under the hypothesis that all storage locations have an identical utilization rate,

it is possible to compute the cost cjk, j = 1, . . . , n, k = 1, . . . , md, of assigning
storage location k to product j ,

cjk =
R

∑

r=1

pjr

mj

trk, (5.15)
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Figure 5.17 Warehouse of the Malabar company.

where pjr/mj represents the average number of handling operations per time period
on product j between I/O port r and anyone of the storage locations assigned to the
product. Consequently, (pjr/mj )trk is the average travel time due to storage location
k if it is assigned to product j .

Let xjk, j = 1, . . . , n, k = 1, . . . , md, be a binary decision variable, equal to 1 if
storage location k is assigned to product j , 0 otherwise. The problem of seeking the
optimal product allocation to the storage locations can then be modelled as follows.

Minimize
n

∑

j=1

md∑

k=1

cjkxjk (5.16)

subject to

md∑

k=1

xjk = mj , j = 1, . . . , n, (5.17)

n
∑

j=1

xjk � 1, k = 1, . . . , md, (5.18)

xjk ∈ {0, 1}, j = 1, . . . , n, k = 1, . . . , md, (5.19)

where constraints (5.17) state that all the items at stock must be allocated, while
constraints (5.18) impose that each storage location k, k = 1, . . . , md, can be assigned
to at most one product.

It is worth noting that because of the particular structure of constraints (5.17) and
(5.18), relations (5.19) can be replaced with the simpler nonnegativity conditions,

xjk � 0, j = 1, . . . , n, k = 1, . . . , md, (5.20)
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Table 5.5 Features of the products of the Malabar company.

Number of storages and retrievals
per day in the Malabar warehouse

Storage ︷ ︸︸ ︷

Item locations I/O port 1 I/O port 2

1 12 25 18
2 6 16 26
3 8 14 30
4 4 24 22
5 8 22 22

Table 5.6 Distance (in metres) between storage
locations and I/O port 1 in the Malabar warehouse.

Storage Storage Storage Storage
location Distance location Distance location Distance location Distance

1 2 11 2 21 14 31 14
2 4 12 4 22 16 32 16
3 6 13 6 23 18 33 18
4 8 14 8 24 20 34 20
5 10 15 10 25 22 35 22
6 3 16 3 26 15 36 15
7 5 17 5 27 17 37 17
8 7 18 7 28 19 38 19
9 9 19 9 29 21 39 21

10 11 20 11 30 23 40 23

Table 5.7 Distance (in metres) between storage
locations and I/O port 2 in the Malabar warehouse.

Storage Storage Storage Storage
location Distance location Distance location Distance location Distance

1 22 11 22 21 10 31 10
2 20 12 20 22 8 32 8
3 18 13 18 23 6 33 6
4 16 14 16 24 4 34 4
5 14 15 14 25 2 35 2
6 23 16 23 26 11 36 11
7 21 17 21 27 9 37 9
8 19 18 19 28 7 38 7
9 17 19 17 29 5 39 5

10 15 20 15 30 3 40 3
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Table 5.8 Cost coefficients cjk, j = 1, . . . 5, k = 1, . . . , 20, in the Malabar problem.

Assignment cost
︷ ︸︸ ︷

Storage Product Product Product Product Product
location k j = 1 j = 2 j = 3 j = 4 j = 5

1 37.17 100.67 86.00 133.00 66.00
2 38.33 97.33 82.00 134.00 66.00
3 39.50 94.00 78.00 135.00 66.00
4 40.67 90.67 74.00 136.00 66.00
5 41.83 87.33 70.00 137.00 66.00
6 40.75 107.67 91.50 144.50 71.50
7 41.92 104.33 87.50 145.50 71.50
8 43.08 101.00 83.50 146.50 71.50
9 44.25 97.67 79.50 147.50 71.50

10 45.42 94.33 75.50 148.50 71.50

11 37.17 100.67 86.00 133.00 66.00
12 38.33 97.33 82.00 134.00 66.00
13 39.50 94.00 78.00 135.00 66.00
14 40.67 90.67 74.00 136.00 66.00
15 41.83 87.33 70.00 137.00 66.00
16 40.75 107.67 91.50 144.50 71.50
17 41.92 104.33 87.50 145.50 71.50
18 43.08 101.00 83.50 146.50 71.50
19 44.25 97.67 79.50 147.50 71.50
20 45.42 94.33 75.50 148.50 71.50

since it is known a priori that there exists an optimal solution of problem (5.16)–
(5.18), (5.20) in which the variables take 0/1 values.

Malabar Ltd is an Indian company having a warehouse with two I/O ports and
40 storage locations, arranged in four racks (see Figure 5.17). The characteristics of
the products at stock are reported in Table 5.5, while the distances between the two
I/O ports and the storage locations are indicated in Tables 5.6 and 5.7. The optimal
product allocation can found through model (5.16)–(5.18), (5.20), in which n = 5,
md = 40, while mj , j = 1, . . . , 5 are calculated on the basis of the second column
of Table 5.5. Cost coefficients cjk, j = 1, . . . , 5, k = 1, . . . , 40, are indicated in
Tables 5.8 and 5.9 and calculated using Equation (5.15), where it is assumed that
travel time trk from I/O port r = 1, 2, to storage location k, k = 1, . . . , 40, is
directly proportional to the corresponding distance. The optimal solution is reported
in Table 5.10. It is worth noting that two storage locations (locations 26 and 27) are
not used since the positions available are 40, while

∑5
j=1 mj = 38.
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Table 5.9 Cost coefficients cjk, j = 1, . . . 5, k = 21, . . . , 40, in the Malabar problem.

Assignment cost
︷ ︸︸ ︷

Storage Product Product Product Product Product
location k j = 1 j = 2 j = 3 j = 4 j = 5

21 44.17 80.67 62.00 139.00 66.00
22 45.33 77.33 58.00 140.00 66.00
23 46.50 74.00 54.00 141.00 66.00
24 47.67 70.67 50.00 142.00 66.00
25 48.83 67.33 46.00 143.00 66.00
26 47.75 87.67 67.50 150.50 71.50
27 48.92 84.33 63.50 151.50 71.50
28 50.08 81.00 59.50 152.50 71.50
29 51.25 77.67 55.50 153.50 71.50
30 52.42 74.33 51.50 154.50 71.50

31 44.17 80.67 62.00 139.00 66.00
32 45.33 77.33 58.00 140.00 66.00
33 46.50 74.00 54.00 141.00 66.00
34 47.67 70.67 50.00 142.00 66.00
35 48.83 67.33 46.00 143.00 66.00
36 47.75 87.67 67.50 150.50 71.50
37 48.92 84.33 63.50 151.50 71.50
38 50.08 81.00 59.50 152.50 71.50
39 51.25 77.67 55.50 153.50 71.50
40 52.42 74.33 51.50 154.50 71.50

Table 5.10 Optimal allocation of products in the Malabar warehouse.

Storage Storage Storage Storage
location Product location Product location Product location Product

1 1 11 1 21 5 31 5
2 4 12 4 22 2 32 2
3 4 13 4 23 2 33 2
4 5 14 5 24 2 34 2
5 5 15 5 25 3 35 3
6 1 16 1 26 — 36 5
7 1 17 1 27 — 37 5
8 1 18 1 28 3 38 3
9 1 19 1 29 3 39 3

10 1 20 1 30 3 40 3
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If the warehouse has a single I/O port (R = 1), the problem solving method-
ology can be simplified. In fact, under this hypothesis, cost coefficients cjk, j =
1, . . . , n, k = 1, . . . , md, take the following form,

cjk = pj1

mj

t1k = ajbk,

where aj = pj1/mj and bk = t1k depend only on product j and on storage location
k, respectively. Then, the optimal product allocation can be determined by using the
following procedure.

Step 1. Construct a vector α of
∑n

j=1 mj components, in which there are mj copies of
each aj , j = 1, . . . , n. Sort the vector α by nonincreasing values of its components.
Define σα(i) in such a way that σα(i) = j if αi = aj , i = 1, . . . ,

∑n
r=1 mr .

Step 2. Let b be the vector of md components corresponding to values bk, k =
1, . . . , md. Sort the vector b by nondecreasing values of its components. Let β be the
vector of

∑n
j=1 mj components, corresponding to the first

∑n
j=1 mj components

of the sorted vector b. Define σβ(i) in such a way that σβ(i) = k if βi = bk, i =
1, . . . ,

∑n
r=1 mr .

Step 3. Determine the optimal solution of problem (5.16)–(5.18), (5.20) as

x∗
σα(i),σβ(i) = 1, i = 1, . . . ,

n
∑

j=1

mj

and x∗
jk = 0, for all the remaining components.

This procedure is based on the fact that the minimization of the scalar product of
two vectors α and β is achieved by ordering α by nonincreasing values and β by
nondecreasing values.

If the warehouse of Malabar company (see the previous problem) has a single I/O
port (corresponding to port 1 in Figure 5.17), the coefficients aj , j = 1, . . . , 5, are
those reported in Table 5.11. For the sake of simplicity, travel times are assumed to
be equal to distances (see Table 5.6). Values of αi , σα(i), βi , σβ(i), i = 1, . . . , 38,
are reported in Table 5.12. The optimal solution is reported in Table 5.13. It is worth
noting that no item is allocated to the storage locations farthest from the I/O port
(locations 30 and 40).

5.4 Operational Decisions

Operational decisions comprise storage and retrieval planning as well as order assem-
bly. Because of the randomness of the orders, these decisions have to be made in real-
time. They may include one or more of the following activities depending on which
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Table 5.11 Characteristics of products in the Malabar problem.

Product Storage Number of storages and
(j ) locations retrievals per day aj

1 12 43 3.58
2 6 42 7.00
3 8 44 5.50
4 4 46 11.50
5 8 44 5.50

Table 5.12 Values of αi , σα(i), βi , σβ(i), for i = 1, . . . , 38, in the Malabar problem.

i αi σα(i) βi σβ(i) i αi σα(i) βi σβ(i)

1 11.50 4 2 1 20 5.50 5 11 20
2 11.50 4 2 11 21 5.50 5 14 21
3 11.50 4 3 6 22 5.50 5 14 31
4 11.50 4 3 16 23 5.50 5 15 26
5 7.00 2 4 2 24 5.50 5 15 36
6 7.00 2 4 12 25 5.50 5 16 22
7 7.00 2 5 7 26 5.50 5 16 32
8 7.00 2 5 17 27 3.58 1 17 27
9 7.00 2 6 3 28 3.58 1 17 37

10 7.00 2 6 13 29 3.58 1 18 23
11 5.50 3 7 8 30 3.58 1 18 33
12 5.50 3 7 18 31 3.58 1 19 28
13 5.50 3 8 4 32 3.58 1 19 38
14 5.50 3 8 14 33 3.58 1 20 24
15 5.50 3 9 9 34 3.58 1 20 34
16 5.50 3 9 19 35 3.58 1 21 29
17 5.50 3 10 5 36 3.58 1 21 39
18 5.50 3 10 15 37 3.58 1 22 25
19 5.50 5 11 10 38 3.58 1 22 35

technologies and policies are used: the formation of batches (see Section 5.4.1), picker
routing (see Section 5.4.2), S/R machine scheduling (see Problem 5.4) and vehicle
loading (see Section 5.4.3).

5.4.1 Batch formation

If batch picking is used, customer orders are combined into batches. Batches can be
formed in a number of ways depending on whether the warehouse is zoned or not.
In what follows a simple two-stage procedure for the single-zone case is presented.
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Table 5.13 Optimal product allocation to storage locations in the Malabar problem.

Storage Storage Storage Storage
location Product location Product location Product location Product

1 4 11 4 21 5 31 5
2 2 12 2 22 5 32 5
3 2 13 2 23 1 33 1
4 3 14 3 24 1 34 1
5 3 15 3 25 1 35 1
6 4 16 4 26 5 36 5
7 2 17 2 27 1 37 1
8 3 18 3 28 1 38 1
9 3 19 3 29 1 39 1

10 5 20 5 30 — 40 —

In the first stage, the optimal batch size d∗ is estimated in an attempt to balance the
picking and sorting efforts. Then in Step 2 batches are created according to a ‘first
come first served’ (FCFS) policy by aggregating d∗ consecutive orders.

Batch sizing. Batches are sized in an attempt to minimize the total workload, which
is the sum of the total picking and sorting times. In what follows, this approach is
illustrated for the configuration in Figure 5.18, in which goods are retrieved by one
or more pickers and then transported to the shipping zone by a belt conveyor.

Let o be the average number of orders per time period, u the average number of
items in an order, t1 the time needed to make a path including all storage locations,
t2 the traversal time on foot of the shipping zone, where orders are assembled. The
decision variable is the average number of orders in a lot d.

Under the hypothesis that the items are uniformly distributed and that each batch
is made up of many items, the time spent for picking a batch is approximately t1. As
o/d is the average number of pickings per time period, the time devoted to picking
operations is ot1/d per time period. On the other hand, the time spent for sorting the
items in the shipping zone is αuot2d, where α ∈ (0, 1) is a parameter to be defined
either empirically or through a simulation model. In order to determine the optimal
d value, the following model has to be solved.

Minimize
ot1

d
+ αuot2d (5.21)

subject to

d � 0, integer, (5.22)

where the objective function (5.21) is the workload per time period. The optimal solu-
tion of problem (5.21)–(5.22) can be obtained by means of the following procedure.
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Shipping zone

Figure 5.18 Batch picking in a warehouse equipped with a belt conveyor.

Step 1. Determine the minimum point d ′ of function c(d) = ot1/d + αuot2d , by
imposing that the first derivative of c(d) becomes zero:

d ′ =
√

t1

αut2
.

Step 2. Let d∗ = �d ′� if c(�d ′�) < c(�d ′�), otherwise d∗ = �d ′�.

Hence, d∗ increases as the size of the storage zone increases, and decreases as the
average number of items in an order increases.

Clavier distributes French ties in Brazil. Its warehouse located in Manaus has a
layout similar to the one represented in Figure 5.18, with 15 aisles, each one of which
is 25 m long and 3.5 m wide. The area occupied by a pallet is 1.05 × 1.05 m2. The
vehicles used for picking goods move at about 3.8 km/h, while the time to traverse
the shipping zone on foot is about 1.5 min. The average number of orders handled in
a day is 300, and the average number of items in an order is 10. The parameter α has
been empirically set equal to 0.1. Hence,

t1 = 1.05 + 25 × 30 + 3.5 × 15 + 1.05 × 28

3800
× 60 = 13.15 min.

and

d ′ =
√

13.15

0.1 × 10 × 1.5
= 2.96.

Finally, since c(�d ′�) > c(�d ′�), the batch size is d∗ = 3.
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Figure 5.19 Routing of a picker in a storage zone with side aisles having a single entrance
(the dark-coloured storage locations are the ones where a retrieval has to be performed).

5.4.2 Order picker routing

In W/RPSs, where pickers travel on foot or by motorized trolley and may visit multi-
ple aisles, order picker routing is a major issue. Picker routing is part of a large class
of combinatorial optimization problems known as vehicle routing problems (VRPs),
which will be examined extensively in Chapter 7 in the context of distribution man-
agement. In this section a single picker problem, known as road travelling salesman
problem (RTSP), is illustrated. The RTSP is a slight variant of the classical travelling
salesman problem (TSP) (see Section 7.3) and consists of determining a least-cost
tour including a subset of vertices of a graph. The RTSP is NP-hard, but, in the case
of warehouses, it is often solvable in polynomial time due to the particular charac-
teristics of the travel network. If each aisle has a single entrance, the least duration
route is obtained by first visiting all the required storage locations placed in the upper
side aisles and then the required storage locations situated in the lower side aisles
(see Figure 5.19). On the other hand, if the side aisles have some interruptions (i.e.
if there is more than one cross aisle), the problem can be solved to optimality by
using the Ratliff and Rosenthal dynamic programming algorithm, whose worst-case
computational complexity is a linear function of the number of side aisles. However,
if there are several cross aisles, the number of states and transitions increases rapidly
and the use of the dynamic programming procedure becomes impractical. Therefore,
in what follows, two simple heuristics are illustrated. The reader interested in the
Ratliff and Rosenthal algorithm is referred to the list at the end of the chapter.

S-shape heuristic. Any aisle containing at least one item to be retrieved is traversed
entirely. Aisles where there are no items to be picked are skipped.
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Figure 5.20 Routing of a picker in a storage zone with side aisles having two entrances (the
dark-coloured storage locations are the ones where a retrieval has to be performed).

Largest gap heuristic. In this context, a gap is the distance between any two adja-
cent items to be retrieved in an aisle, or the distance between the last item to be
retrieved in an aisle and the closest cross aisle. The picker goes to the front of the
side aisle, closest to the I/O port, including at least one item to be retrieved. Then the
picker traverses the aisle entirely, while the remaining side aisles are entered and left
once or twice, both times from the same side, depending on the largest gap of the
aisle.

Golden Fruit is an Honduran company manufacturing fruit juice. Last 17 Septem-
ber, a picker routing problem had to be solved at 10:30 a.m. in the warehouse located
in Puerto Lempira (see Figure 5.20). Travel times were assumed to be proportional
to distances. The routes provided by the S-shape and largest gap heuristics are shown
in Figures 5.21 and 5.22, respectively, and the least-cost route is illustrated in Fig-
ure 5.23.

5.4.3 Packing problems

Packing problems arise in warehouses when preparing the outgoing shipments. De-
pending on the characteristics of the products and on the transportation mode, items
or cartoons have to be mounted onto a pallet or inserted in a container, pallets have to
be loaded onto trucks, or containers have to be put on a ship or on a plane. All these
problems share a common mathematical structure as in both cases some ‘objects’
(named items in the following) have to packed into a set of bins. The objective is to
minimize the cost associated with using the bins, or simply to minimize the number
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Figure 5.21 Picker route provided by the S-shape heuristic in the Golden Fruit warehouse.

Figure 5.22 Picker route provided by the largest gap heuristic in
the Golden Fruit warehouse.

of required bins. Constraints on the stability of the load are sometimes imposed. From
a mathematical point of view, packing problems are mostly NP-hard, so that in most
decision support systems heuristics are used.

Classification. In some packing problems, not all physical characteristics of the
items have to be considered when packing. For instance, when loading high-density
goods onto a truck, items can be characterized just by their weight, without any
concern for their length, width and height. As a result, packing problems can be
classified according to the number of parameters needed to characterize an item.

• One-dimensional packing problems often arise when dealing with high-density
items, in which case weight is binding.
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Figure 5.23 Least cost picker route in the Golden Fruit warehouse.

• Two-dimensional packing problems usually arise when loading a pallet with
items having the same height.

• Three-dimensional packing problems occur when dealing with low-density
items, in which case volume is binding.

In the following, it is assumed, for the sake of simplicity, that items are rectangles
in two-dimensional problems, and that their sides must be parallel or perpendicular
to the sides of the bins in which they are loaded. Similarly, in three-dimensional
problems, the items are assumed to be parallelepipeds and their surfaces are parallel or
perpendicular to the surfaces of the bins in which they are loaded. These assumptions
are satisfied in most settings.

Packing problems are usually classified as off-line and on-line problems, depending
on whether the items to be loaded are all available or not when packing starts. In
the first case, item characteristics can be preprocessed (e.g. items can be sorted by
nondecreasing weights) in order to improve heuristic performance. A heuristic using
such preprocessing is said to be off-line, otherwise it is called on-line. Clearly, an
on-line heuristic can be used for solving an off-line problem, but an off-line heuristic
cannot be used for solving an on-line problem.

One-dimensional packing problems

The simplest one-dimensional packing problem is known as bin packing (1-BP) prob-
lem. It amounts to determining the least number of identical capacitated bins in which
a given set of weighted items can be accommodated. Let m be the number of items
to be loaded; n the number of available bins (or an upper bound on the number of
bins in an optimal solution); pi, i = 1, . . . , m, the weight of item i; qj the capacity
of bin j, j = 1, . . . , n. The problem can be modelled by means of binary variables
xij , i = 1, . . . , m, j = 1, . . . , n, each of them equal to 1 if item i is assigned to bin
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j or 0 otherwise, and binary variables yj , j = 1, . . . , n, equal to 1 if bin j is used, 0
otherwise. The 1-BP problem can then be modelled as follows.

Minimize
n

∑

j=1

yj (5.23)

subject to

n
∑

j=1

xij = 1, i = 1, . . . , m, (5.24)

m
∑

i=1

pixij � qyj , j = 1, . . . , n, (5.25)

xij ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n,

yj ∈ {0, 1}, j = 1, . . . , n.

The objective function (5.23) is the number of bins used. Constraints (5.24) state
that each item is allocated to exactly one bin. Constraints (5.25) guarantee that bin
capacities are not exceeded.

A lower bound z(I ) on the number of bins in any 1-BP feasible solution can be
easily obtained as

z(I ) = �(p1 + p2 + · · · + pm)/q�. (5.26)

The lower bound (5.26) can be very poor if the average number of items per bin
is low (see Problem 5.8 for an improved lower bound). Such lower bounds can be
used in a branch-and-bound framework or to evaluate the performance of heuristic
methods. In the remainder of this section, four heuristics are illustrated. The first two
procedures (the first fit (FF) and the best fit (BF) algorithms) are on-line heuristics
while the others are off-line heuristics.

FF algorithm.

Step 0. Let S be the list of items, V the list of available bins and T the list of bins
already used. Initially, T is empty.

Step 1. Extract an item i from the top of list S and insert it into the first bin j ∈ T

having a residual capacity greater than or equal to pi . If no such bin exists, extract
from the top of list V a new bin k and put it at the bottom of T ; insert item i into
bin k.

Step 2. If S = ∅, STOP, all bins have been loaded. Then T is the list of bins used,
while V provides the list of bins unused. If S 	= ∅, go back to step 1.
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BF algorithm.

Step 0. Let S be the list of items to be packed, V the list of available bins and T the
list of bins already used. Initially, T is empty.

Step 1. Extract an item i from the top of list S and insert it into the bin j ∈ T whose
residual capacity is greater than or equal to pi , and closer to pi . If no such bin
exists, extract a new bin k from the top of V and put it at the bottom of T ; insert
item i into bin k.

Step 2. If S = ∅, STOP, all the items have been loaded, T represents the list of the
bins used, while V is the list of bins unused. If S 	= ∅, go back to step 1.

The two procedures can both be implemented so that the computational complexity
is equal to O(m log m).

It is useful to characterize the performance ratios of such heuristics. Recall that the
performance ratio RH of a heuristic H is defined as

RH = sup
I

{

zH(I )

z∗(I )

}

,

where I is a generic instance of the problem, zH(I ) is objective function value of the
solution provided by heuristic H for instance I , while z∗(I ) represents the optimal
solution value for the same instance.

This means that

• zH(I )/z∗(I ) � RH, ∀I ;

• there are some instances I such that zH/z∗(I ) is arbitrarily close to RH.

Unfortunately, the worst-case performance ratios of the FF and BF heuristics are not
known, but it has been proved that

RFF � 7
4 and RBF � 7

4 .

The FF and BF algorithms can be easily transformed into off-line heuristics, by
preliminary sorting the items by nonincreasing weights, yielding the first fit decreasing
(FFD) and the best fit decreasing (BFD) algorithms. Their complexity is still equal to
O(m log m), while their performance ratios are

RFFD = RFBFD = 3
2 .

It can be proved that this is the minimum worst-case performance ratio that a
polynomial 1-BP heuristic can have.

Al Bahar is an Egyptian trucking company located in Alexandria which must plan
the shipment of 17 parcels, whose characteristics are reported in Table 5.14. For these
shipments the company can use a single van whose capacity is 600 kg. Applying the
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Table 5.14 Weight of the parcels (in kilograms) in the Al Bahar problem.

Number of parcels Weight

4 252
3 228
3 180
3 140
4 120

Table 5.15 Sorted list of the parcels in the Al Bahar problem
(parcel weights are expressed in kilograms).

Parcel Weight Parcel Weight

1 252 10 180
2 252 11 140
3 252 12 140
4 252 13 140
5 228 14 120
6 228 15 120
7 228 16 120
8 180 17 120
9 180

BFD heuristic, the parcels are sorted by nonincreasing weights (see Table 5.15) and
the solution reported in Table 5.16 is obtained. The number of trips is six. The lower
bound on the number of trips given by Equation (5.26) is �3132/600� = 6. Hence,
the BFD heuristic solution is optimal.

Two-dimensional packing problems

The simplest two-dimensional packing problem (referred to as the 2-BP problem in
the following) consists of determining the least number of identical rectangular bins
in which a given set of rectangular items can be accommodated. It is also assumed
that no item rotation is allowed. Let L and W be the length and the width of a bin,
respectively, and let li and wi, i = 1, . . . , m, be the length and the width of item i.

A lower bound z(I ) on the number of bins in any feasible solution is

z(I ) = �(l1w1 + l2w2 + · · · + lmwm)/LW�.
Most heuristics for the 2-BP problem are based on the idea of forming layers of

items inside the bins. Each layer has a width W , and a length equal to that of its
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Table 5.16 Parcel-to-trip allocation in the optimal solution of the Al Bahar problem
(parcel weights are expressed in kilograms).

Parcel Weight Trip Parcel Weight Trip

1 252 1 10 180 5
2 252 1 11 140 3
3 252 2 12 140 5
4 252 2 13 140 5
5 228 3 14 120 5
6 228 3 15 120 6
7 228 4 16 120 6
8 180 4 17 120 6
9 180 4

Layer 2  

W

L

Layer 1  

Figure 5.24 Layers of items inside a bin.

longest item. All the items of a layer are located on its bottom, which corresponds to
the level of the longest item of the previous layer (see Figure 5.24).

Here we illustrate two off-line heuristics, named finite first fit (FFF) and finite best
fit (FBF) heuristics.

FFF algorithm.

Step 0. Let S be the list of items, sorted by nonincreasing lengths, V the list of bins
and T the list of bins used. Initially, T is empty.

Step 1. Extract an item i from the top of S and insert it into the leftmost position
of the first layer (which can accommodate it) of the first bin j ∈ T . If no such
layer exists, create a new one in the first bin of T (which can accommodate it) and
introduce item i in the leftmost position of the layer. If there is no bin of T which
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can accommodate the layer, extract from the top of V a new bin k and put it at the
bottom of T , load item i into the leftmost position at the bottom of bin k.

Step 2. If S = ∅, STOP, all the item have been loaded. Then, T represents the list of
bins used, while V provides the list of the unused bins. If S 	= ∅, go back to step 1.

FBF algorithm.

Step 0. Let S be the list of items, sorted by nonincreasing lengths, V the list of bins
and T the list of bins used. Initially, T is empty.

Step 1. Extract an item i from the top of S and insert it into the leftmost position
of the layer of a bin j ∈ T whose residual width is greater than or equal to, and
closer to, item width. If no such layer exists, create a new one in the bin of T whose
residual length is greater than or equal to, and closer to, the length of item i. Then,
introduce item i in the leftmost position of the layer. If there is no bin of T which
can accommodate the layer, extract from the top of V a new bin k and put it at the
bottom of T , load item i into the leftmost position at the bottom of bin k.

Step 2. If S = ∅, STOP, all the item have been loaded. Then, T represents the list of
bins used, while V provides the list of the unused bins. If S 	= ∅, go back to step 1.

Such layer heuristics have a low computational complexity, since the effort for
selecting the layer where an item has to be inserted is quite small. However, they can
turn out to be inefficient if the average number of items per bin is relatively small. In
such a case, the following bottom left (BL) algorithm usually provides better solutions.

BL algorithm.

Step 0. Let S be the list of items, sorted by nonincreasing lengths, V the list of bins
and T the list of bins used. Initially, T is empty.

Step 1. Extract an item i from the top of list S and insert it into the leftmost position
at the bottom of the first bin j ∈ T able to accommodate it. If no such bin exists,
extract a new bin k from the top of V , and put it at the bottom of T ; load item i

into the leftmost position at the bottom of bin k.

Step 2. If S = ∅, STOP, all the items have been loaded, T represents the list of bins
used, while V provides the list of bins unused. If S 	= ∅, go back to step 1.

Kumi is a South Korean company manufacturing customized office furniture in
Pusan. Outgoing products for overseas customers are usually loaded into containers
ISO 40, whose characteristics are reported in Table 5.17. Once packaged, parcels are
2 or 1 m high. They are mounted on wooden pallets so that they cannot be rotated at
loading time. The list of parcels shipped last 14 May is reported in Table 5.18. Parcels
that are 1 m high are coupled in order to form six pairs of (1 × 1) m2 parcels and five
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Table 5.17 Characteristics of ISO 40 container.

Length Width Height Capacity Capacity
(m) (m) (m) (m3) (kg)

12.069 2.373 2.405 68.800 26.630

Table 5.18 Parcels shipped by Kumi company.

Length Width Height
Quantity (m) (m) (m)

6 1.50 1.50 2.00
5 1.20 1.70 2.00

13 1.00 1.00 1.00
11 0.80 0.50 1.00

L

2
W

2

2

2

2

2

2

22

2

L

W

2 2

Figure 5.25 Parcels allocated to the two containers shipped by Kumi company
(2 indicates two overlapped parcels).

pairs of (0.8 × 0.5) m2 parcels. Then, each such a pair is considered as a single item.
Applying the FBF algorithm, the solution reported in Figure 5.25 is obtained.

Three-dimensional packing problems

The simplest three-dimensional packing problem (referred to as the 3-BP problem in
the following) consists of determining the least number of identical parallelepipedic
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Table 5.19 Parcels loaded at McMillan company.

Length Width Height Volume Weight
Type Quantity (m) (m) (m) (m3) (kg)

1 2 2.50 0.75 1.30 2.4375 75.00
2 4 2.10 1.00 0.95 1.9950 68.00
3 7 2.00 0.65 1.40 1.8200 65.50
4 4 2.70 0.70 0.95 1.7900 63.00
5 3 1.40 1.50 0.80 1.6800 61.50

bins in which a given set of parallelepipedic items can be accommodated. It is also
assumed that no item rotation is allowed. Let L, W and H be the length, width and
height of a bin, respectively, and let li , wi and hi, i = 1, . . . , m, be the length, width
and height of item i.

A lower bound z(I ) on the number of bins is

z(I ) = �l1w1h1 + l2w2h2 + · · · + lmwmhm)/LWH�. (5.27)

The simplest heuristics for 3-BP problems insert items sequentially into layers
parallel to some bin surfaces (e.g. to W × H surfaces). In the following a heuristics
based on this principle is illustrated.

3-BP-L algorithm.

Step 0. Let S be the list of items.

Step 1. Solve the 2-BP problem associated with m items characterized by wi , hi, i =
1, . . . , m, and bins characterized by W and H . Let k be the number of bidimensional
bins used (referred to as sections in the following). The length of each section is
equal to the length of the largest item loaded into it.

Step 2. Solve the 1-BP problem associated with the k sections, each of which has a
weight equal to its length, while bins have a capacity equal to L.

If the items are all available when bin loading starts, it can be useful to sort list S

by nonincreasing values of the volume. However, unlike one-dimensional problems,
more complex procedures are usually needed to improve solution quality.

McMillan company is a motor carrier headquartered in Bristol (Great Britain).
The firm has recently semi-automatized the procedure for allocating outgoing parcels
to vehicles, using a decision support system. This software tool uses the 3-BP-L
algorithm as a basic heuristic, and then applies a local search procedure. Last 26
January the parcels to be loaded were those reported in Table 5.19. The characteristics
of the vehicles are indicated in Table 5.20. The parcels are mounted on pallets and
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Table 5.20 Characteristics of the vehicles in the McMillan problem.

Length Width Height Capacity Capacity
(m) (m) (m) (m3) (kg)

6.50 2.40 1.80 28.08 12.30

5 5

W

H

2
3

3

4

W

H

2  2  

3 4
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3 5
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Figure 5.26 Sections generated at the end of Step 1 of the 3-BP-L heuristic in
the McMillan problem.

cannot be rotated. First, the parcels are sorted by nonincreasing volumes. Then, the
3-BP-L algorithm (in which 2-BP problems are solved through the BL heuristic) is
used. The solution is made up of six (2.4 × 1.8) m2 sections, loaded as reported in
Figure 5.26. Finally, a 1-BP problem is solved by means of the BFD heuristic. In the
solution (see Table 5.22) three vehicles are used, the most loaded of which carries
a weight of 545.5 kg, much less than the weight capacity. It is worth noting that the
lower bound provided by Equation (5.27) is �37.795/28.08� = 2.

5.5 Questions and Problems

5.1 Show that a warehouse can be modelled as a queueing system.

5.2 A warehouse stores nearly 20 000 pallets. Goods turn about five times a year.
How much is the required labour force? Assume two eight-hour shifts per day
and about 250 working days per year. (Hint: apply Little’s Law stating that for
a queueing system in steady state the average length LQ of the queue equals
the average arrival rate λ times the average waiting time TW , LQ = λTW .)
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Table 5.21 Width of the sections generated at the end of
Step 1 of the 3-BP-L heuristic in the McMillan problem.

Width Weight
Section (m) (kg)

1 2.70 281.00
2 2.70 264.50
3 2.70 262.00
4 2.70 194.00
5 2.00 192.50
6 1.40 123.00

Table 5.22 Section allocation to vehicles at the end of
Step 2 of the 3-BP-L heuristic in the McMillan problem.

Section Vehicle

1 1
2 1
3 2
4 2
5 3

5.3 Let d be the daily demand from all orders, lC the average length of a rail car, q

the capacity of a rail car and nC the number of car changes per day. Estimate
the length of rail dock lD needed by a warehouse.

5.4 Show that scheduling an S/R machine can be modelled as a rural postman
problem on a directed graph. The rural postman problem consists of determining
a least-cost route traversing a subset of required arcs of a graph at least once
(see Section 7.6.2 for further details).

5.5 Show that an optimal picker route cannot traverse an aisle (or a portion of an
aisle) more than twice. Illustrate how this property can be used to devise a
dynamic programming algorithm.

5.6 Demonstrate that both the FF and BF heuristics for the 1-BP problem take
O(m log m) steps.

5.7 Devise a branch-and-bound algorithm based on formula (5.26).

5.8 Devise an improved 1-BP lower bound.

5.9 Modify the heuristics for the 1-BP problem for the case where each bin j, j =
1, . . . , n, has a capacity qj and a cost fj . Apply the modified version of the
BFD algorithm to the following problem. Brocard is a road carrier operating
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Table 5.23 List of the parcels to load and corresponding weight
(in kilograms) in the Brocard problem.

Parcel Weight Parcel Weight

1 228 18 170
2 228 19 170
3 228 20 170
4 217 21 170
5 217 22 95
6 217 23 95
7 217 24 95
8 210 25 95
9 210 26 75

10 210 27 75
11 210 28 75
12 195 29 75
13 195 30 75
14 195 31 75
15 170 32 55
16 170 33 55
17 170 34 55

mainly in France and in the Benelux. The vehicle fleet comprises 14 vans of
capacity equal to 800 kg and 22 vans of capacity equal to 500 kg. The company
has to deliver on behalf of the EU 34 parcels of different sizes from Paris to
Frankfurt (the distance between these cities is 592 km). The characteristics
of the parcels are reported in Table 5.13. As only five company-owned vans
(all having capacity of 800 kg) will be available on the day of the delivery,
Brocard has decided to hire additional vehicles from a third-party company.
The following additional vehicles will be available:

• two trucks with a capacity of 3 tons each, whose hiring total cost (inclusive
of drivers) is €1.4 per kilometre;

• one truck with trailer, with a capacity of 3.5 tons, whose hiring total cost
(inclusive of drivers) is €1.6 per kilometre.

Which trucks should Brocard hire?

5.10 Determine a lower bound on the optimal solution cost in the Brocard problem
by suitably modifying Equation (5.26). Also determine the optimal shipment
decision by solving a suitable modification of the 1-BP problem.
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Planning and Managing
Long-Haul Freight
Transportation

6.1 Introduction

Freight transportation plays a fundamental role in every modern supply chain. It
is essential to move raw materials from sources to plants, semi-finished products
between factories, and final goods to customers and retail outlets. As pointed out
in Chapter 1, transportation systems are rather complex organizations which require
considerable human, financial and material resources. Transportation cost accounts
for a significant part (often between one-third and two-thirds) of the logistics cost in
several industries.

Players. Several players are involved in freight transportation. Shippers, which
include both producers and brokers, originate the demand for transportation. Carriers,
such as railways, motor carriers and shipping lines, supply transportation services.
Some shippers operate their own transportation fleet so that they act as a dedicated
carrier. Governments construct and operate several transportation infrastructures, such
as rail facilities, roads, ports and airports, and regulate several aspects of the industry.
This chapter and the next deal with freight transportation planning and management
from a shipper’s or a carrier’s point of view. Strategic planning activities performed
on a regional, national or even international scale, by governments and international
organizations, are beyond the scope of this book.

Long-haul versus short-haul transportation problems. In long-haul freight trans-
portation, goods are moved over relatively long distances, between terminals or other
facilities (plants, warehouses, etc.). Commodities may be transported by truck, rail,
ship or any combination of modes. On the other hand, in short-haul freight transporta-
tion, goods are transported, usually by truck, between pick-up and delivery points

Introduction to Logistics Systems Planning and Control G. Ghiani, G. Laporte and R. Musmanno
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situated in the same area (e.g. between a warehouse, or a terminal, and a set of cus-
tomers). Such tasks are of short duration (much shorter than a work shift) and vehicle
tours are to be built through a sequence of tasks. Long-haul transportation is examined
in this chapter, while short-haul problems are dealt with in the next chapter.

Classification of long-haul transportation services. As explained in Chapter 1,
long-haul transportation services can be broadly classified into two groups, depending
on whether the movement of goods is performed by the shipper or by a public carrier.
In privately operated transportation, freight has to be moved from a restricted number
of origins (e.g. plants and warehouses) to several destinations (e.g. retail locations and
customers). This is the case of private truck fleet operations and of industrial cargo
shipping. These few-to-many transportation systems are relatively simple to manage
compared to many-to-many systems operated by public carriers. In such systems,
transportation demand is usually made up of several traffic classes, each characterized
by an origin, a destination, a commodity class and a freight tonnage. Public carrier
services can be customized or consolidation-based. In customized transportation,
such as TL trucking and tramp cargo shipping, a vehicle serves a single shipper
request at a time. When a shipper calls, a vehicle and a crew are sent to a pick-up
point. Goods are then loaded and the vehicle moves to a delivery point. Finally, the
vehicle is unloaded and the driving team is asked to move empty to a new location
(either a new pick-up point or a staging point). Hence, vehicle routes are built in an on-
going fashion as customer requests arrive. In consolidation-type transportation, such
as LTL trucking and liner cargo shipping, service is not individualized. A vehicle may
therefore move freight of different shippers with possibly different origin–destination
pairs. Carriers establish regular routes, each of which is characterized by a given
frequency. For instance, a route may be a container ship line operated once a month
from Rotterdam (The Netherlands) to Mumbay (India) with an intermediate stop at
Cape Town (South Africa). A consolidation-type transportation system is made up
of a network of terminals connected by physical (e.g. roads or rail tracks) or virtual
(e.g. air or sea lines) links. End-of-line terminals are places where small shipments
are brought (usually by a fleet of trucks) and consolidated into larger shipments.
Moreover, in end-of-line terminals, incoming consolidated shipments are broken and
delivered to their final destinations by a fleet of vans. In breakbulk terminals, freight
traffic from several end-of-line terminals is sorted (or classified) and consolidated.

6.2 Relevant Costs

Before illustrating the main decision problems arising in freight transportation, it is
useful to describe the various motion costs. Motion costs can be classified as trans-
portation costs and handling costs.

The cost of operating a fleet. The main costs in operating a fleet of vehicles are
related to crews’ wages, fuel consumption, vehicle depreciation, maintenance, insur-
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ance, administration and occupancy. Wages and insurance are time dependent, fuel
consumption and maintenance are distance dependent, depreciation depends on both
time and distance, while administration and occupancy costs are customarily allocated
as a fixed annual charge.

The cost paid by a carrier for transporting a shipment. The cost paid by a carrier
for transporting a shipment is somewhat arbitrary because different shipments usually
share some common costs. For example, in LTL trucking where several shipments
are moved jointly by the same vehicle, it is unclear how much of a trip cost has to
be assigned to each shipment. Similarly, in TL trucking, a shipment cost is not well
defined because of empty trips necessary to move trucks from each delivery point to
the subsequent pick-up point.

The cost paid for hiring a vehicle. Hire charges include, in addition to the costs
paid by the carrier, an undisclosed mark-up.

The cost of a shipment when a public carrier is used. When a shipper uses a
public carrier, the cost for transporting a shipment can be calculated on the basis of
the rates published by the carrier. For customized transportation, the cost of a full load
depends on both the origin and destination of the movement, as well as on the size
and equipment of the vehicle required. For consolidation-based transportation, each
shipment is given a rating (called a class) which depends on the physical character-
istics (weight, density, etc.) of the goods. For example, in North America the railway
classification includes 31 classes, while the National Motor Freight Classification
(NMFC) comprises 23 classes. Rates (i.e. the transportation cost per unit of weight)
depend on the origin and the destination of the movement, as well as on the shipment
weight and its class (see Figures 6.1–6.3). Rates are usually reported in tables, or
can be calculated through rating engines available on the Internet. In Table 6.1, the
LTL rates published by a USA carrier for two NMFC classes are shown. Costs often
present discontinuities, as illustrated in Figure 6.4 (cost may decrease by adding extra
weight).

Handling costs. Handling costs are incurred when inserting individual items into
a bin (e.g. a pallet or a container), loading the bin onto an outbound vehicle, and
reversing these operations at destination.

6.3 Classification of Transportation Problems

In principle, managing a transportation system gives rise to several decision problems.
However, the way these issues are addressed is greatly influenced by the nature of
the operational constraints. A typical example is the vehicle and crew scheduling
problem, which amounts to finding a least-cost allocation over time of vehicles and
crews to transportation tasks in such a way that rules and regulations on vehicle
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Figure 6.1 Transportation rates for parcels.
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Figure 6.2 Transportation rates for LTL trucking.
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Figure 6.3 Transportation rates for TL trucking.
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Table 6.1 LTL rates (dollars per 100 pounds) from New York to Los Angeles published by
the USA National Classification Committee (classes 55 and 70 correspond to products having
densities higher than 15 and 35 pounds per cubic feet, respectively).

Weight (W ) Class 55 Class 70

0 � W < 500 129.57 153.82
500 � W < 1000 104.90 124.60

1000 � W < 2000 89.43 106.10
2000 � W < 5000 75.17 89.24
5000 � W < 10 000 64.82 76.95

10 000 � W < 20 000 53.13 63.05
20 000 � W < 30 000 46.65 55.37
30 000 � W < 40 000 40.15 47.67

W � 40 000 37.58 44.64

Cost

Weight

Rate
zone 1

Rate
zone 2

Rate
zone 3

Rate
zone 4

Tabled rates

Real rates

Figure 6.4 Transportation rates for LTL trucking.

maintenance and crew rests are satisfied. In air and rail transportation, where regular
lines are usually operated, vehicle and crew scheduling is a tactical problem solved
a few times a year. On the other hand, in TL trucking both vehicles and crews are
allocated to tasks in an on-going fashion as customer requests arrive. As a result,
freight transportation planning and management problems come in a large number
of variants. Some of them are common to all transportation systems, while others are
specific to a transportation mode or to a way of operating the system.

Common decision problems. Common decision problems include, at the strate-
gic level, a broad definition of the operating strategy of the system, the design of
the physical network (if any exists) and the acquisition of expensive resources, such
as airplanes. The tactical level covers the allocation of existing resources (vehicles,
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crews, etc.) as well as the purchase of additional capacity to cope with variations in
demand. At the operational level, the focus is on adjusting vehicle and crew sched-
ules in order to take into account last-minute events, such as order modifications,
equipment failures, strikes and unfavourable weather conditions.

Privately operated transportation systems. The decisions to be made are rela-
tively simple. If demand varies over the year, one must determine the optimal mix
between owned and hired vehicles (see Section 6.4). Moreover, on a short-term basis,
decisions have to be made on order consolidation and on shipment scheduling (see
Section 6.7). The objective is usually to minimize total cost while meeting a pre-
established service level.

Consolidation-based transportation systems. At the strategic level, a carrier has
to decide what kind of commodities to transport and which origin–destination pairs to
serve. Moreover, the number of terminals (e.g. crossdocks or railway terminals) to be
used and their locations must be determined. This class of problems may be tackled
by using the methods illustrated in Chapter 3. In addition, the features of the terminals
(shape, number of doors, etc.) have to be determined (see Section 6.8). At the tactical
level, an important decision is the design of the network on which transportation
services will be offered (the service network). This problem consists of determining
the characteristics (frequency, number of intermediate stops, etc.) of the routes to be
operated, the way traffic is routed, the operating rules for each terminal, as well as
the repositioning of empty vehicles and containers (see Sections 6.5 and 6.6).

Tailored transportation systems. At the strategic level, one must decide the most
suitable fleet and the required number of crews. At the tactical level, the price of full-
load trips must be determined. At the operational level, important decisions relate to
the dynamic allocation of resources such as tractors, trailers, containers and crews,
without a full knowledge of future requests. Once a resource is allocated to a request,
it is no longer available for a certain interval. Then, when it becomes available again, it
is usually located in a different place. Therefore, in such settings one must also decide
which requests have to be accepted and which have to be rejected, as well as how the
accepted requests have to be serviced and how idle resources (e.g. idle tractors, empty
trailers and empty containers) have to be repositioned (see Sections 6.9 and 6.10).
A further operational problem is spot pricing, i.e. the pricing of unallocated vehicle
capacity. In both tailored and consolidation-based transportation, a carrier aims at
maximizing the expected profit over a pre-established planning horizon.

6.4 Fleet Composition

When demand varies over the year, carriers usually cover the baseload of demand
through an owned fleet, while using hired vehicles to cover peak periods. In what
follows, the least-cost mix of owned and hired vehicles is determined under the
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Figure 6.5 Fleet composition when demand varies over the year.

assumption that all vehicles are identical. Let n be the number of time periods into
which the time horizon of a year is decomposed (for example, n = 52 if the time
period corresponds to a week); v be the decision variable corresponding to the number
of owned vehicles; vt , t = 1, . . . , n, be the required number of vehicles at time period
t ; m be the number of time periods per year in which vt > v. Moreover, let cF and cV

be the fixed and variable cost per time period of an owned vehicle, respectively, and
let cH be the cost per time period of hiring a vehicle (clearly, cF + cV < cH). Then,
the annual transportation cost as a function of the number of owned vehicles is

C(v) = ncFv + cV

n
∑

t=1

min(vt , v) + cH

∑

t :vt>v

(vt − v), (6.1)

where the right-hand side is the sum of the annual fixed cost, the annual variable cost
of the owned vehicles and the annual cost of hiring vehicles to cover peak demand.
The minimum annual transportation cost is achieved when the derivative of C(v) with
respect to v is zero. As the two summations in Equation (6.1) are equal to the areas
below and above the line vt = v, respectively (see Figure 6.5), then their derivatives
are equal to m and −m, respectively. Consequently, C(v) is minimal when

ncF + cVm − cHm = 0.

Hence, the optimal fleet size can be determined by requiring that

m = n
cF

cH − cV
. (6.2)
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Table 6.2 Weekly number of vans used by Fast Courier during 2002.

t vt t vt t vt t vt

1 12 14 18 27 23 40 25
2 15 15 17 28 22 41 25
3 16 16 16 29 24 42 24
4 17 17 14 30 26 43 22
5 17 18 13 31 27 44 22
6 18 19 13 32 28 45 19
7 20 20 14 33 30 46 20
8 20 21 15 34 32 47 18
9 21 22 16 35 32 48 17

10 22 23 17 36 30 49 16
11 24 24 19 37 29 50 16
12 22 25 21 38 28 51 14
13 20 26 22 39 26 52 13

Fast Courier is a USA transportation company located in Wichita (Kansas), spe-
cializing in door-to-door deliveries. The company owns a fleet of 14 vans and turns
to third parties for hiring vans when service demand exceeds fleet capacity. In 2002,
the number of vans used weekly for meeting all the transportation demand is reported
in Table 6.2. For 2003, the company has decided to redesign the fleet composition,
with the aim of reducing the annual transportation cost. Assuming that cF = $350,
cV = $150 and cH = $800, Equation (6.2) gives m = 28. Hence, the number
of owned vehicles is v∗ = 19, which corresponds to an annual transportation cost
C(v∗) = $606 600. The saving with respect to the previously adopted solution is
$31 850.

6.5 Freight Traffic Assignment Problems

Freight traffic assignment problems (TAPs) consist of determining a least-cost routing
of goods over a network of transportation services from their origins (e.g. manufactur-
ing plants) to their destinations (e.g. retail outlets). In a sense, the demand allocation
problems illustrated in Chapter 3 are particular freight TAPs. From a mathematical
point of view, TAPs can be cast as NF problems. NF problems include, as special
cases, several remarkable network optimization problems, such as the shortest-path
problem and the transportation problem.

Classification. TAPs can be classified as static or dynamic. Static models are suit-
able when the decisions to be made are not affected explicitly by time. They are
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formulated on a directed graph (or multigraph) G = (V , A), where the vertex set V

often corresponds to a set of facilities (terminals, plants, warehouses) and the arcs in
the set A represent possible transportation services linking the facilities. Some vertices
represent origins of transportation demand for one or several products, while others
are destinations, or act as a transshipment points. Let K be the set of traffic classes (or
simply, commodities). With each arc is associated a cost (possibly dependent on the
amount of freight flow on the arc) and a capacity. Cost functions may represent both
monetary costs (see, for example, Figures 6.1–6.3) and congestion effects arising at
terminals.

In dynamic models, a time dimension is explicitly taken into account by modelling
the transportation services over a given planning horizon through a time-expanded
directed graph. In a time-expanded directed graph, the horizon is divided into a number
of time periods t1, t2, . . . , and the physical network (containing terminals and other
material resources) is replicated in each time period. Then, temporal links are added.
A temporal link connecting two representations of the same terminal at two different
time periods may represent freight waiting to be loaded onto an incoming vehicle,
or the time required for freight classification at the terminal. On the other hand, a
temporal link connecting two representations of different terminals may describe a
transportation service. Further vertices and arcs may be added to model the arrival of
commodities at destinations and impose penalties in case of delays. With each link
may be associated a capacity and a cost, similar to those used in static formulations.
An example of static transportation service network is shown in Figure 6.6, while an
associated time-expanded network is reported in Figure 6.7. In the static network there
are three terminals (A, B, C) and four transportation services operating from A to B,
from B to A, from B to C and from C to A. The travel durations are 2, 2, 1 and 1 days,
respectively. If the planning horizon includes four days, a dynamic representation has
four vertices for each terminal (Ai, i = 1, . . . , 4, describes terminal A at the ith day).
Some arcs (such as (A1, B3)) represent transportation services, while others (such as
(B1, B2)) describe commodities standing idle at terminals. In addition, there may be
supersinks for some terminals (such as terminal C in Figure 6.7), in which case the
costs on the arcs entering the supersinks reflect service penalties.

6.5.1 Minimum-cost flow formulation

Let O(k), k ∈ K , be the set of origins of commodity k; D(k), k ∈ K , the set of
destinations of commodity k; T (k), k ∈ K , the set of transshipment points with
respect to commodity k; ok

i , i ∈ O(k), k ∈ K , the supply of commodity k of vertex
i; dk

i , i ∈ D(k), k ∈ K , the demand of commodity k of vertex i; uij , (i, j) ∈ A, the
capacity of arc (i, j) (i.e. the maximum flow that arc (i, j) can carry); uk

ij , (i, j) ∈
A, k ∈ K , the maximum flow of commodity k on arc (i, j). The variables xk

ij ,
(i, j) ∈ A, k ∈ K , represent the flow of commodity k on arc (i, j). Moreover, let
Ck

ij (x
k
ij ), (i, j) ∈ A, k ∈ K , be the cost for transporting xk

ij flow units of commodity
k on arc (i, j).
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Figure 6.6 A static representation of a three-terminal transportation system.
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Figure 6.7 Dynamic network representation of the transportation system
illustrated in Figure 6.6.

In the following, G is assumed to be a strongly connected directed graph. The
extension to the case where G is a multigraph, or a collection of strongly connected
directed subgraphs, is straightforward. A quite general multicommodity minimum-
cost flow (MMCF) formulation is as follows:

Minimize
∑

k∈K

∑

(i,j)∈A

Ck
ij (x

k
ij ) (6.3)
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subject to

∑

{j∈V :(i,j)∈A}
xk
ij −

∑

{j∈V :(j,i)∈A}
xk
ji =









ok
i , if i ∈ O(k),

−dk
i , if i ∈ D(k),

0, if i ∈ T (k),

i ∈ V, k ∈ K,

(6.4)

xk
ij � uk

ij , (i, j) ∈ A, k ∈ K, (6.5)
∑

k∈K

xk
ij � uij , (i, j) ∈ A, (6.6)

xk
ij � 0, (i, j) ∈ A, k ∈ K.

The objective function (6.3) is the total cost, constraints (6.4) correspond to the
flow conservation constraints holding at each vertex i ∈ V and for each commodity
k ∈ K . Constraints (6.5) impose that the flow of each commodity k ∈ K does not
exceed capacity uk

ij on each arc (i, j) ∈ A. Constraints (6.6) (bundle constraints)
require that, for each (i, j) ∈ A, the total flow on arc (i, j) is not greater than the
capacity uij .

It is worth noting that ok
i , k ∈ K, i ∈ O(k) and dk

i , k ∈ K, i ∈ D(k), must satisfy
the following conditions:

∑

i∈O(k)

ok
i =

∑

i∈D(k)

dk
i , k ∈ K,

otherwise the problem is infeasible.
In the remainder of this section some of the most relevant solution methods for

some special cases of the MMCF problem are illustrated.

6.5.2 Linear single-commodity minimum-cost flow problems

The linear single-commodity minimum-cost flow (LMCF) model can be formulated
as follows.

Minimize
∑

(i,j)∈A

cij xij (6.7)

subject to

∑

{j∈V :(i,j)∈A}
xij −

∑

{j∈V :(j,i)∈A}
xji =









oi, if i ∈ O,

−di, if i ∈ D,

0, if i ∈ T ,

i ∈ V, (6.8)

xij � uij , (i, j) ∈ A, (6.9)

xij � 0, (i, j) ∈ A. (6.10)
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Figure 6.8 A spanning tree (full line arcs) and the associated (infeasible) basic solution
(x12 = −20, x23 = 10, x45 = 50, x52 = 10, all other variables are equal to 0).

The LMCF model is a structured LP problem and, as such, can be solved through
the simplex algorithm or any other LP procedure. Instead of using a general-purpose
algorithm, it is common to employ a tailored procedure, the (primal) network simplex
algorithm, a specialized version of the classical simplex method, which takes advan-
tage of the particular structure of the coefficient matrix associated with constraints
(6.8) (corresponding to the vertex-arc incidence matrix of the directed graph G).

We first examine the case where there are no capacity constraints (6.9). In such a
case, it is useful to exploit the following characterization of the basic solutions of the
system of equations (6.8), which is stated without proof.

Property. The basic solutions of the system of equations (6.8) have |V | − 1 basic
variables. Moreover, each basic solution corresponds to a tree spanning G and vice
versa.

In order to find a basic solution of problem (6.7), (6.8), (6.10) it is therefore sufficient
to select a tree spanning G, set to zero the variables associated with the arcs which
are not part of the tree, and then solve the system of linear equations (6.8). The latter
step can be easily accomplished through a substitution method. Of course, the basic
solution associated with a spanning tree is not always feasible, since the nonnegativity
constraints (6.10) may be violated (see Figure 6.8).

The network simplex algorithm has the same structure as the standard simplex
procedure. However, the optimality test and the pivot operations are performed in a
simplified way.

Step 1. Find an initial basic feasible solution x(0). Set h = 0.

Step 2. Determine the reduced costs c′(h) associated with x(h).
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Step 3. If c
′(h)
ij � 0, (i, j) ∈ A, STOP, x(h) is an optimal solution; otherwise choose

a variable xvw such that c
′(h)
vw < 0.

Step 4. Select a variable xpq coming out of the basis, make a pivot in order to sub-
stitute xpq for xvw in the basis; set h = h + 1 and go back to Step 2.

The particular structure of problem (6.7), (6.8), (6.10) and of its dual,

Maximize
∑

i∈O

oiπi −
∑

i∈D

diπi

subject to
πi − πj � cij , (i, j) ∈ A,

enables the execution of Steps 2–4 as follows. At Step 2, the reduced costs can be
computed through the formula:

c
′(h)
ij = cij − π

(h)
i + π

(h)
j , (i, j) ∈ A, (6.11)

where π(h) ∈ R|V | can be determined by requiring that the reduced costs of the basic
variables be zero:

c
′(h)
ij = cij − π

(h)
i + π

(h)
j = 0, (i, j) ∈ A : x

(h)
ij is a basic variable.

At Step 3, if c
′(h)
ij � 0, (i, j) ∈ A, then π

(h)
i − π

(h)
j � cij , (i, j) ∈ A, i.e. solution

π(h) ∈ R|V |, is feasible for the dual problem. Then, x(h) and π(h) are optimal for the
primal and the dual problems, respectively.

On the other hand, if there is a variable xvw whose reduced cost is negative at
iteration h, then arc (v, w) does not belong to the spanning tree associated with
iteration h. It follows that, by adding (v, w) to the tree, a single cycle Ψ is created.
In order to decrease the objective function value as much as possible, the flow on arc
(v, w) has to be increased as much as possible while satisfying constraints (6.8) and
(6.10).

Let Ψ + be the set of arcs in Ψ oriented as (v, w), and let Ψ − be the set of the arcs
in Ψ oriented in the opposite direction (obviously, Ψ = Ψ + ∪Ψ −). If the flow on arc
(v, w) is increased by t units, then constraints (6.8) require that the flow on all arcs
(i, j) ∈ Ψ + be increased by t units, and the flow on all arcs (i, j) ∈ Ψ − be decreased
by the same amount.

The maximum increase of flow on (v, w) is therefore equal to the minimum flow
on the arcs oriented in the opposite direction as (v, w), i.e.

t = min
(i,j)∈Ψ −{x(h)

ij }.

The arc (p, q) ∈ Ψ − for which such a condition holds determines which variable
xpq will come out from the basis.

The previous description shows that an iteration of the network simplex algorithm
requires only a few additions and subtractions. As a result, this procedure is much
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faster than the standard simplex method and, in addition, does not make rounding
errors.

In order to find a feasible solution (if any exists), the big M method can be used.
A new vertex i0 ∈ T and |V | dummy arcs between vertex i0 and all the other vertices
i ∈ V are introduced. If i ∈ O, then a dummy arc (i, i0) is inserted. Otherwise, an arc
(i0, i) is added. Let A(a) be the set of dummy arcs. With each dummy arc is associated
an arbitrarily large cost M .

The dummy problem is as follows.

Minimize
∑

(i,j)∈A

cij xij + M
∑

(i,i0)∈A(a)

xii0 + M
∑

(i0,i)∈A(a)

xi0i (6.12)

subject to

∑

{j∈V :(i,j)∈A∪A(a)}
xij −

∑

{j∈V :(j,i)∈A∪A(a)}
xji =









oi, if i ∈ O,

−di, if i ∈ D,

0, if i ∈ T ,

i ∈ V ∪ {i0},

(6.13)

xij � 0, (i, j) ∈ A ∪ A(a). (6.14)

Of course, the |V | dummy arcs make up a spanning tree of the modified directed
graph, corresponding to the following basic feasible solution to problem (6.12)–(6.14)
(see Figure 6.9):

x
(0)
ii0

= oi, i ∈ O;
x

(0)
i0i

= di, i ∈ D;
x

(0)
i0i

= 0, i ∈ T ;
x

(0)
ij = 0, (i, j) ∈ A.

By solving the dummy problem (6.12)–(6.14), a basic feasible solution to the
original problem (6.7), (6.8), (6.10) is then obtained.

NTN is a Swiss intermodal carrier located in Lausanne. When a customer has to
transport goods between an origin and a destination, NTN supplies it with one or
more empty containers in which the goods can be loaded. Once arrived at destina-
tion, the goods are unloaded and the empty containers have to be transported to the
pick-up points of new customers. As a result, NTN management needs to reallocate
the empty containers periodically (in practice, on a weekly basis). Empty container
transportation is very expensive (its cost is nearly 35% of the total operating cost).
Last 13 May, several empty ISO 20 containers had to be reallocated among the termi-
nals in Amsterdam (The Netherlands), Berlin (Germany), Munich (Germany), Paris
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Figure 6.9 Dummy directed graph for the original directed graph in Figure 6.8 (0 is the
dummy vertex. Full line arcs belong to the spanning tree. For each basic variable, the associated
flow is reported).

1
2

3
4

5

6

7

20

20

20

55

30

30

50

30

70

25

30
40

30

50

−50

−20
−10

−10

Berlin
Amsterdam

Madrid

Munich

Milan

Paris

Barcelona

i jcij = cji

oj (or −dj)oi (or −di)

Figure 6.10 Graph representation of the empty container allocation problem.

(France), Milan (Italy), Barcelona (Spain) and Madrid (Spain). The number of empty
containers available or demanded at the various terminals is reported, along with
transportation costs (in euros/container), in Figure 6.10.

The problem can be formulated as follows.
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Figure 6.11 Optimal solution for the NTN empty container allocation problem. (Full line
arcs belong to the spanning tree. For each basic variable, the associated flow is reported. The
optimal cost is equal to €3900.)

Minimize

30x12 + 30x21 + 40x13 + 40x31 + 20x14 + 20x41 + 30x23 + 30x32

+ 55x34 + 55x43 + 30x35 + 30x53 + 30x45 + 30x54 + 50x46

+ 50x64 + 70x47 + 70x74 + 30x56 + 30x65 + 25x67 + 25x76

subject to

x12 + x13 + x14 − x21 − x31 − x41 = −10,

x21 + x23 − x12 − x32 = 20,

x31 + x32 + x34 + x35 − x13 − x23 − x43 − x53 = 50,

x41 + x43 + x45 + x46 + x47 − x14 − x34 − x54 − x64 − x74 = 20,

x53 + x54 + x56 − x35 − x45 − x65 = −50,

x64 + x65 + x67 − x46 − x56 − x76 = −20,

x74 + x76 − x47 − x67 = −10,

x12, x21, x13, x31, x14, x41, x23, x32, x34, x43, x35,

x53, x45, x54, x46, x64, x47, x74, x56, x65, x67, x76 � 0.

Using the network simplex method, the optimal solution illustrated in Figure 6.11
is obtained.

The above procedure can be easily adapted to the case of capacitated arcs. To this
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Table 6.3 Transportation costs (in euros) per item from the warehouses to
the sales districts in the Boscheim problem.

London Birmingham Leeds Edinburgh

Bristol 9.6 7.0 15.2 28.5
Middlesborough 19.5 13.3 5.0 11.3

purpose, constraints (6.9) are rewritten by introducing auxiliary variables γij � 0:

xij + γij = uij , (i, j) ∈ A.

If the variable xij is equal to uij , then the associated auxiliary variable γij takes the
value zero and is therefore out of the basis (if the solution is not degenerate). Based
on this observation, the following optimality conditions can be derived (the proof is
omitted for the sake of brevity).

Theorem 6.1. A basic feasible solution x(h) is optimal for problem (6.7)–(6.10) if,
for each nonbasic variable x

(h)
ij , (i, j) ∈ A, the following conditions hold,

x
(h)
ij = 0, if c

′(h)
ij � 0,

x
(h)
ij = uij , if c

′(h)
ij � 0,

where c
′(h)
ij are the reduced costs defined by (6.11).

Let x(h) be the basic feasible solution at iteration h of the network simplex method
(for simplicity, x(h) is assumed to be nondegenerate). If the value of a nonbasic
variable x

(h)
ij , (i, j) ∈ A is increased, the objective function value increases if the

reduced cost c
′(h)
ij is negative. On the other hand, if x

(h)
ij = uij , then a decrease in the

objective function value is obtained if the reduced cost c
′(h)
ij is positive.

Let xvw be the variable entering the basis at iteration h (Step 4). If x
(h)
vw = 0, then

c
′(h)
vw < 0 and arc (v, w) ∈ A is not part of the spanning tree associated with x(h). By

adding the arc (v, w) to the tree, a single cycle Ψ is formed. In the new basic feasible
solution, the variable xvw will take a value t equal to

t = min
{

min
(i,j)∈Ψ +{uij − x

(h)
ij }, min

(i,j)∈Ψ −{x(h)
ij }

}

. (6.15)

Let (p, q) be the arc outgoing the basis according to (6.15). Then, x
(h+1)
pq = upq ,

if (p, q) ∈ Ψ +, or x
(h+1)
pq = 0, if (p, q) ∈ Ψ −. Observe that the outgoing arc (p, q)

may be the same as the outgoing (v, w) if t = uvw.

Boscheim is a German company manufacturing electronics convenience goods. Its
VCR-12 video recorder is specifically designed for the British market. The VCR-
12 is assembled in a plant near Rotterdam (The Netherlands), then stocked in two
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warehouses located in Bristol and Middlesborough and finally transported to the
retailer outlets. The British market is divided into four sales districts whose centres of
gravity are in London, Birmingham, Leeds and Edinburgh. Yearly demands amount
to 90 000, 80 000, 50 000 and 70 000 items, respectively. The transportation costs
per item from the assembly plant of Rotterdam to the warehouses of Bristol and
Middlesborough are €24.5 and €26.0, respectively, whereas the transportation costs
per item from the warehouses to the sales districts are reported in Table 6.3. Both
warehouses have an estimated capacity of 15 000 items and are supplied 10 times a
year. Consequently their maximum yearly throughput is 150 000 items.

The annual minimum cost distribution plan can be obtained by solving the following
LMCF problem (see Figure 6.12).

Minimize

24.5x12 + 26.0x13 + 9.6x24 + 7.0x25 + 15.2x26

+ 28.5x27 + 19.5x34 + 13.3x35 + 5.0x36 + 11.3x37

subject to

x12 + x13 = 290 000,

x24 + x25 + x26 + x27 − x12 = 0,

x34 + x35 + x36 + x37 − x13 = 0,

−x24 − x34 = −90 000,

−x25 − x35 = −80 000,

−x26 − x36 = −50 000,

−x27 − x37 = −70 000,

x12 � 150 000,

x13 � 150 000,

x12, x13, x24, x25, x26, x27, x34, x35, x36, x37 � 0.

By using the network simplex method, the optimal solution is determined:

x∗
12 = 150 000, x∗

13 = 140 000, x∗
24 = 90 000, x∗

25 = 60 000,

x∗
35 = 20 000, x∗

36 = 50 000, x∗
37 = 70 000

(as usual, only nonzero variables are reported). It is worth noting that the district of
London will be entirely served by the warehouse of Bristol, while the sales districts
of Leeds and Edinburgh will be served by the Middlesborough warehouse. The sales
district of Birmingham is supplied by both the warehouse of Bristol (75%) and the
warehouse of Middlesborough (25%). The total transportation cost is €9 906 000 per
year.
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Figure 6.12 Graph representation of the Boscheim problem.

6.5.3 Linear multicommodity minimum-cost flow problems

The linear multicommodity minimum-cost flow (LMMCF) problem can be formu-
lated as the following LP model.

Minimize
∑

k∈K

∑

(i,j)∈A

ck
ij x

k
ij

subject to

∑

{j∈V :(i,j)∈A}
xk
ij −

∑

{j∈V :(j,i)∈A}
xk
ji =









ok
i , if i ∈ O(k),

−dk
i , if i ∈ D(k),

0, if i ∈ T (k),

i ∈ V, k ∈ K,

xk
ij � uk

ij , (i, j) ∈ A, k ∈ K,
∑

k∈K

xk
ij � uij , (i, j) ∈ A, (6.16)

xk
ij � 0, (i, j) ∈ A, k ∈ K.

The LMMCF problem can be solved efficiently through a tailored Lagrangian pro-
cedure. Let λij (� 0) be the multipliers attached to constraints (6.16). The Lagrangian
relaxation of the LMMCF problem is as follows.

Minimize
∑

k∈K

∑

(i,j)∈A

ck
ij x

k
ij +

∑

(i,j)∈A

λij

(
∑

k∈K

xk
ij − uij

)

(6.17)
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subject to

∑

{j∈V :(i,j)∈A}
xk
ij −

∑

{j∈V :(j,i)∈A}
xk
ji =









ok
i , if i ∈ O(k),

−dk
i , if i ∈ D(k),

0, if i ∈ T (k),

i ∈ V, k ∈ K,

(6.18)

xk
ij � uk

ij , (i, j) ∈ A, k ∈ K, (6.19)

xk
ij � 0, (i, j) ∈ A, k ∈ K. (6.20)

The relaxation (6.17)–(6.20), referred in the sequel to as the r-LMMCF problem, is
made up of |K| independent single-commodity minimum-cost flow problems, since
the sum

∑

(i,j)∈A λijuij in the objective function (6.17) is constant for a given set
of multipliers λij , (i, j) ∈ A. Therefore, the kth LMCF subproblem, k ∈ K , is as
follows.

Minimize
∑

(i,j)∈A

(ck
ij + λij )x

k
ij (6.21)

subject to

∑

{j∈V :(i,j)∈A}
xk
ij −

∑

{j∈V :(j,i)∈A}
xk
ji =









ok
i , if i ∈ O(k),

−dk
i , if i ∈ D(k),

0, if i ∈ T (k),

i ∈ V, (6.22)

xk
ij � uk

ij , (i, j) ∈ A, (6.23)

xk
ij � 0, (i, j) ∈ A, (6.24)

can be solved through the network simplex algorithm. Let LBk
LMCF(λ), k ∈ K , be

the optimal objective function value of the kth subproblem (6.21)–(6.24) and let
LBr-LMMCF(λ) be the lower bound provided by solving the r-LMMCF problem. For
a given set of multipliers, LBr-LMMCF(λ) is given by

LBr-LMMCF(λ) =
∑

k∈K

LBk
LMCF(λ) −

∑

(i,j)∈A

λijuij .

Of course, LBr-LMMCF(λ) varies as the multiplier λ changes. The Lagrangian relax-
ation attaining the maximum lower bound value LBr-LMMCF(λ) as λ varies is called
the dual Lagrangian relaxation. The following property follows from LP theory.

Property. The lower bound provided by the dual Lagrangian relaxation is equal to
the optimal objective function value of the LMMCF model, i.e.

max
λ�0

{LBr-LMMCF(λ)} = z∗
LMMCF.
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Moreover, the dual Lagrangian multipliers λ∗
ij , (i, j) ∈ A, are equal to the optimal

dual variables π∗
ij , (i, j) ∈ A, associated with the relaxed constraints (6.16).

In order to compute the dual Lagrangian multipliers, or at least a set of multipliers
associated with a ‘good’ lower bound, the classical subgradient procedure, already
illustrated in Chapter 3, can be used.

Step 0. (Initialization). Let H be a pre-established maximum number of subgradient
iterations. Set LB = −∞, h = 1 and λ

(h)
ij = 0, (i, j) ∈ A. Set UB equal to the

cost of the best feasible solution if any is available, or set UB = ∞, otherwise.

Step 1. (Calculation of a new lower bound). Solve the r-LMMCF problem using λ(h)

as a vector of multipliers. If LBr-LMMCF(λ(h)) > LB, set LB = LBr-LMMCF(λ(h)).

Step 2. (Checking the stopping criterion). If solution x
k,(h)
ij , (i, j) ∈ A, k ∈ K , of

the r-LMMCF problem satisfies the relaxed constraints (6.16), and

λ
(h)
ij

(
∑

k∈K

x
k,(h)
ij − uij

)

= 0, (i, j) ∈ A,

STOP, the solution found is optimal (z∗
LMMCF = LB). If x

k,(h)
ij , (i, j) ∈ A, k ∈ K ,

satisfies the relaxed constraints (6.16), update UB if necessary. If UB = LB, STOP,
the feasible solution attaining UB is proved to be optimal. If h = H , STOP, LB
represents the best lower bound available for z∗

LMMCF.

Step 3. (Updating the multipliers). Determine, for each (i, j) ∈ A, the subgradient
of the relaxed constraint:

s
(h)
ij =

∑

k∈K

x
k,(h)
ij − uij , (i, j) ∈ A.

Then set
λ

(h+1)
ij = max(0, λ

(h)
ij + β(h)s

(h)
ij ), (i, j) ∈ A,

where β(h) is a suitable coefficient

β(h) = α

h
, (i, j) ∈ A, (6.25)

with α arbitrarily chosen in the interval (0, 2]. Alternatively, if a feasible solution
the problem is available, set

β(h) = α(UB − LBLMCF(λ(h)))
∑

(i,j)∈A(s
(h)
ij )2

, (i, j) ∈ A,

with UB equal to the objective function value of the best feasible solution available.
Set h = h + 1 and go back to Step 1.

The subgradient method converges to z∗
LMMCF provided that the variations of the

multipliers are ‘small enough’ (this assumption is satisfied if, for example, Equation
(6.25) is used). However, this assumption makes the algorithm very slow.



220 LONG-HAUL FREIGHT TRANSPORTATION

Table 6.4 Demand (in tons) dkt , k = 1, 2, t = 1, 2, in the Exofruit problem.

t = 1 t = 2

k = 1 18 000 18 000
k = 2 12 000 14 000

Table 6.5 Maximum amounts available (in tons) okt , k = 1, 2, t = 1, 2,
in the Exofruit problem.

t = 1 t = 2

k = 1 26 000 20 000
k = 2 14 000 13 000

Table 6.6 Purchase prices (in euros/ton) pkt , k = 1, 2, t = 1, 2, in the Exofruit problem.

t = 1 t = 2

k = 1 500 700
k = 2 600 400

If the solution x
k,(h)
ij , (i, j) ∈ A, k ∈ K , of the r-LMMCF problem satisfies the

relaxed constraints (6.16), it is not necessarily the optimal solution for the LMMCF
problem. A sufficient (but not necessary) condition for it to be optimal is given by the
complementary slackness conditions:

λ
(h)
ij

(
∑

k∈K

x
k,(h)
ij − uij

)

= 0, (i, j) ∈ A. (6.26)

If relations (6.26) are not satisfied, then the feasible solution x
k,(h)
ij , (i, j) ∈ A,

k ∈ K , is a simply a candidate optimal solution.
If h = H , the solution attaining LB could be infeasible for the LMMCF, or, if

feasible, may not satisfy the complementarity slackness conditions. In any case, if
subproblems (6.21)–(6.24) are solved by means of the network simplex method, a
basic (feasible or infeasible) solution for the LMMCF model is available. In fact, the
basic variables of the |K| subproblems (6.21)–(6.24) make up a basis of the LMMCF
problem. The basic solution obtained this way can be used as the starting solution for
the primal or dual simplex method depending on whether the solution is feasible for
the LMMCF problem or not. If initialized this way, the simplex method is particularly
efficient since the initial basic solution provided by the subgradient algorithm is a good
approximation of the optimal solution.
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Figure 6.13 Graph representation of the Exofruit problem.

Exofruit Ltd imports to the EU countries several varieties of tropical fruits, mainly
coming from Northern Africa, Mozambique and Central America. The company pur-
chases the products directly from farmers and transports them by sea to its warehouses
in Marseille (France). The goods are then stored in refrigerated cells or at room tem-
perature. As purchase and selling prices varies during the year, Exofruit has to decide
when and how much to buy in order to satisfy demand over the year. The problem
can be modelled as an LMMCF problem. In what follows, a simplified version of the
problem is examined. It is assumed that a single source exists, products are grouped
into two homogeneous groups (macro-products), and the planning horizon is divided
into two semesters. Let dkt and okt , k = 1, 2, t = 1, 2, be the demand and the
maximum amount (in tons) of macro-product k available in semester t , respectively
(see Tables 6.4 and 6.5). Purchase prices (in euros/tons) pkt , k = 1, 2, t = 1, 2, of
macro-product k in semester t are reported in Table 6.6.

The transportation cost v of 1 ton of a macro-product is equal to €100, while
the stocking cost w of 1 ton of a macro-product is €100 per semester. Finally, the
maximum quantity q of goods that can be stored in a semester is 8000 tons.

The problem can be formulated as an LMMCF problem with two commodities
(one for each macro-product) on the directed graph shown in Figure 6.13. In such a
representation,

• vertices 1 and 5 represent the source and the destination of macro-product 1,
respectively;

• vertices 2 and 6 represent the source and the destination of macro-product 2,
respectively;

• vertices 3 and 4 represent the warehouse in the first and in the second semester,
respectively;
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• arc (1,3) has a cost per unit of flow equal to c1
13 = p11 + v = 600 euros/ton

and a capacity equal to u13 = o11 = 26 000 tons;

• arc (1,4) has a cost per unit of flow equal to c1
14 = p12 + v = 800 euros/ton

and a capacity equal to u14 = o12 = 20 000 tons;

• arc (2,3) has a cost per unit of flow equal to c2
23 = p21 + v = 700 euros/ton

and a capacity equal to u23 = o21 = 14 000 tons;

• arc (2,4) has a cost per unit of flow equal to c2
24 = p22 + v = 500 euros/ton

and a capacity equal to u24 = o22 = 13 000 tons;

• arc (3,4) represents the storage of goods for a semester and is therefore associ-
ated with a cost per unit of flow equal to c1

34 = c2
34 = w = 100 euros/ton and

a capacity of u34 = q = 8000 tons;

• arc (3,5) has a zero cost per unit of flow and a capacity equal to u35 = d11 =
18 000 tons;

• arc (4,5) has a zero cost per unit of flow and a capacity equal to u45 = d12 =
18 000 tons;

• arc (3,6) has a zero cost per unit of flow and a capacity equal to u36 = d21 =
12 000 tons;

• arc (4,6) has a zero cost per unit of flow and a capacity equal to u46 = d22 =
14 000 tons.

The problem is formulated as follows.

Minimize

600x1
13 + 800x1

14 + 100x1
34 + 700x2

23 + 500x2
24 + 100x2

34

subject to

x1
35 + x1

45 = 36 000,

x1
13 − x1

34 − x1
35 = 0,

x1
14 + x1

34 − x1
45 = 0,

x2
36 + x2

46 = 26 000,

x2
23 − x2

36 − x2
34 = 0,

x2
24 + x2

34 − x2
46 = 0,
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x1
13 � 26 000,

x1
14 � 20 000,

x1
35 � 18 000,

x1
45 � 18 000,

x2
23 � 14 000,

x2
24 � 13 000,

x2
36 � 12 000,

x2
46 � 14 000,

x1
34 + x2

34 � 8000,

x1
13, x1

14, x1
34, x1

35, x1
45, x2

23, x2
24, x2

34, x2
36, x2

46 � 0.

By relaxing in a Lagrangian fashion the constraint x1
34 + x2

34 � 8000 with a multi-
plier λ34, the problem decomposes into two single-commodity linear minimum-cost
flow problems. By initializing the subgradient algorithm with λ

(0)
34 = 0 and using the

updating formula (6.25) with α = 0.05, the procedure provides, after 20 iterations,
a lower bound LB = €40 197 387 (λ(20)

34 = 99.887). At the end, the procedure con-
verges to λ∗

34 = 100, which corresponds to an optimal objective value z∗
LMMCF equal

to €40 200 000. Subproblem k = 1 has, for λ∗
34, two optimal basic solutions

x
1,∗
13 = x

1,∗
14 = x

1,∗
35 = x

1,∗
45 = 18 000, x

1,∗
34 = 0

and

x
1,∗
13 = 26 000, x

1,∗
14 = 10 000, x

1,∗
34 = 8000, x

1,∗
35 = 18 000, x

1,∗
45 = 18 000,

while subproblem k = 2 has a single optimal solution equal to

x
2,∗
23 = x

2,∗
24 = 13 000, x

2,∗
34 = 1000, x

2,∗
36 = 12 000, x

2,∗
46 = 14 000.

By combining the two partial solutions, the following two solutions are obtained:

x
1,∗
13 = x

1,∗
14 = x

1,∗
35 = x

1,∗
45 = 18 000, x

1,∗
34 = 0,

x
2,∗
23 = x

2,∗
24 = 13 000, x

2,∗
34 = 1000, x

2,∗
36 = 12 000, x

2,∗
46 = 14 000

and

x
1,∗
13 = 26 000, x

1,∗
14 = 10 000, x

1,∗
34 = 8000,

x
1,∗
35 = 18 000, x

1,∗
45 = 18 000, x

2,∗
23 = x

2,∗
24 = 13 000,

x
2,∗
34 = 1000, x

2,∗
36 = 12 000, x

2,∗
46 = 14 000.

The former solution has an objective function value equal to €41 000 000 and is
feasible, but does not satisfy the complementarity slackness conditions (6.26), while
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Figure 6.14 Two alternative service networks for a
three end-of-line terminal transportation system.

the latter is infeasible. It can be easy verified that the optimal solution is a convex
combination of the two previous solutions and corresponds to

x
1,∗
13 = 25 000, x

1,∗
14 = 11 000, x

1,∗
34 = 7000, x

1,∗
35 = 18 000, x

1,∗
45 = 18 000,

x
2,∗
23 = 12 000, x

2,∗
24 = 13 000, x

2,∗
34 = 1000, x

2,∗
36 = 12 000, x

2,∗
46 = 14 000.

6.6 Service Network Design Problems

The design of a network of transportation services is a tactical/operational decision
particularly relevant to consolidation-based carriers. Given a set of terminals, the
service network design problem consists of deciding on the characteristics (frequency,
number of intermediate stops, etc.) of the routes to be operated, the traffic assignment
along these routes, the operating rules at each terminal, and possibly the relocation
of empty vehicles and containers. The objective is the minimization of a generalized
cost taking into account a combination of carrier’s operating costs and customers’
expectations. Figure 6.14 shows two alternative service networks for a three-terminal
transportation system in which it is assumed that each arc is associated with a line
operated once a day. In the former network, each terminal is connected directly to
every other terminal (so that each shipment takes one day) but this comes at the
expense of a higher operating cost. In the latter network, operating costs are lower
but the transportation between certain origin–destination pairs may require two days
(unless all lines are synchronized).
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Classification. Service network design models can be classified into two main cate-
gories: frequency-based and dynamic models. In frequency-based models the decision
variables express how often each transportation service is operated in a given time
horizon, while in dynamic models a time-expanded network is used to provide a more
detailed description of the system. In the remainder of this chapter, the focus is on basic
network design problems (namely, fixed-charge network design (FCND) problems)
and on dynamic service network design models. For a description of frequency-based
models, the reader should consult the references listed at the end of the chapter.

6.6.1 Fixed-charge network design models

FCND problems may be viewed as a generalization of NF problems in which a fixed
cost fij has to be paid for using each arc (i, j) ∈ A. Therefore, FCND problems
amount to determining

• which arcs have to be employed;

• how to transport the commodities on the selected arcs.

Let xk
ij , (i, j) ∈ A, k ∈ K , be the flow of commodity k on arc (i, j), and let yij ,

(i, j) ∈ A, be a binary design variable, equal to 1 if arc (i, j) is used, 0 otherwise. A
quite general formulation of the FCND problem is as follows.

Minimize
∑

k∈K

∑

(i,j)∈A

Ck
ij (x

k
ij ) +

∑

(i,j)∈A

fij yij (6.27)

subject to

∑

{j∈V :(i,j)∈A}
xk
ij −

∑

{j∈V :(j,i)∈A}
xk
ji =









ok
i , if i ∈ O(k),

−dk
i , if i ∈ D(k),

0, if i ∈ T (k),

i ∈ V, k ∈ K,

(6.28)

xk
ij � uk

ij , (i, j) ∈ A, k ∈ K, (6.29)
∑

k∈K

xk
ij � uij yij , (i, j) ∈ A, (6.30)

xk
ij � 0, (i, j) ∈ A, k ∈ K,

yij ∈ {0, 1}, (i, j) ∈ A.

The objective function (6.27) is the total transportation cost. Constraints (6.28)
correspond to the flow conservation constraints holding at each vertex i ∈ V and for
each commodity k ∈ K; the constraints (6.29) impose that the flow of each commodity
k ∈ K does not exceed capacity uk

ij on each arc (i, j) ∈ A; the constraints (6.30)
(bundle constraints) require that, for each (i, j) ∈ A, the total flow on arc (i, j) is
zero if the arc is not used, or not greater than capacity uij , otherwise.
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In practice, some side constraints may be needed to represent economic and topo-
logical restrictions. For example, when several links share a common resource, the
following budget constraint has to be added to the FCND model,

∑

(i,j)∈A

hij yij � H,

where hij , (i, j) ∈ A, is the consumption of resource made by arc (i, j) ∈ A, and H

is the total amount of resource available.

6.6.2 The linear fixed-charge network design model

The linear fixed-charge network design (LFCND) problem is a particular FCND
problem in which the transportation costs per flow unit ck

ij are constant (hence the
objective function (6.27) is linear).

More formally, the LFCND model can be formulated as follows.

Minimize
∑

k∈K

∑

(i,j)∈A

ck
ij x

k
ij +

∑

(i,j)∈A

fij yij

subject to

∑

{j∈V :(i,j)∈A}
xk
ij −

∑

{j∈V :(j,i)∈A}
xk
ji =









ok
i , if i ∈ O(k),

−dk
i , if i ∈ D(k),

0, if i ∈ T (k),

i ∈ V, k ∈ K,

xk
ij � uk

ij , (i, j) ∈ A, k ∈ K,
∑

k∈K

xk
ij � uij yij , (i, j) ∈ A,

xk
ij � 0, (i, j) ∈ A, k ∈ K,

yij ∈ {0, 1}, (i, j) ∈ A.

The LFCND problem is NP-hard and branch-and-bound algorithms can hardly
solve instances with a few hundreds of arcs and tens of commodities. Since instances
arising in applications are much larger, heuristics are often used. To evaluate the
quality of the solutions provided by heuristics, it is useful, as already observed in
Chapter 3, to compute lower bounds on the optimal objective function value z∗

LFCND. In
the following, two distinct continuous relaxations and a simple heuristic are illustrated.

The weak continuous relaxation

The weak continuous relaxation is obtained by relaxing the integrality requirement
on the design variables.
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Minimize
∑

k∈K

∑

(i,j)∈A

ck
ij x

k
ij +

∑

(i,j)∈A

fij yij (6.31)

subject to

∑

{j∈V :(i,j)∈A}
xk
ij −

∑

{j∈V :(j,i)∈A}
xk
ji =









ok
i , if i ∈ O(k),

−dk
i , if i ∈ D(k),

0, if i ∈ T (k),

i ∈ V, k ∈ K,

(6.32)

xk
ij � uk

ij , (i, j) ∈ A, k ∈ K, (6.33)
∑

k∈K

xk
ij � uij yij , (i, j) ∈ A, (6.34)

xk
ij � 0, (i, j) ∈ A, k ∈ K, (6.35)

0 � yij � 1, (i, j) ∈ A. (6.36)

It is easy to verify that every optimal solution of such a relaxation satisfies each
constraint (6.34) as an equality since fixed costs fij , (i, j) ∈ A, are nonnegative.
Therefore, design variables yij , (i, j) ∈ A, can be expressed as a function of flow
variables xk

ij , (i, j) ∈ A, k ∈ K:

yij =
∑

k∈K xk
ij

uij

, (i, j) ∈ A.

Hence, the constraints (6.36) can be replaced by the following conditions:

∑

k∈K

xk
ij � uij , (i, j) ∈ A.

The relaxed problem (6.31)–(6.36) can be therefore equivalently formulated as
follows.

Minimize
∑

k∈K

∑

(i,j)∈A

(

ck
ij + fij

uij

)

xk
ij (6.37)

subject to

∑

{j∈V :(i,j)∈A}
xk
ij −

∑

{j∈V :(j,i)∈A}
xk
ji =









ok
i , if i ∈ O(k),

−dk
i , if i ∈ D(k),

0, if i ∈ T (k),

i ∈ V, k ∈ K,

(6.38)
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xk
ij � uk

ij , (i, j) ∈ A, k ∈ K, (6.39)
∑

k∈K

xk
ij � uij , (i, j) ∈ A, (6.40)

xk
ij � 0, (i, j) ∈ A, k ∈ K. (6.41)

The model (6.37)–(6.41) is a minimum-cost flow problem with |K| commodities.
Let LB∗

w be the lower bound on z∗
LFCND given by the optimal objective function value

of the above relaxation.

The strong continuous relaxation

The strong continuous relaxation is obtained by adding the following valid inequalities

xk
ij � uk

ij yij , (i, j) ∈ A, k ∈ K, (6.42)

to the LFCND model and removing the integrality constraints on the design variables
yij , (i, j) ∈ A. Taking into account the fact that constraints (6.6.2) are dominated by
constraints (6.42), and can therefore eliminated, the relaxed problem is as follows.

Minimize
∑

k∈K

∑

(i,j)∈A

ck
ij x

k
ij +

∑

(i,j)∈A

fij yij (6.43)

subject to

∑

{j∈V :(i,j)∈A}
xk
ij −

∑

{j∈V :(j,i)∈A}
xk
ji =









ok
i , if i ∈ O(k),

−dk
i , if i ∈ D(k),

0, if i ∈ T (k),

i ∈ V, k ∈ K,

(6.44)

xk
ij � uk

ij yij , (i, j) ∈ A, k ∈ K, (6.45)
∑

k∈K

xk
ij � uij yij , (i, j) ∈ A, (6.46)

xk
ij � 0, (i, j) ∈ A, k ∈ K, (6.47)

0 � yij � 1, (i, j) ∈ A. (6.48)

Let LB∗
s be the lower bound on z∗

LFCND given by the optimal objective function
value of the relaxation (6.43)–(6.48). Such problem has no special structure and can
therefore be solved by using any general purpose LP algorithm. By comparing the
two continuous relaxations, it is clear that LB∗

s is always better than, or at least equal
to, LB∗

w, i.e.
LB∗

s � LB∗
w.

This observation leads us to label the former relaxation as weak, and the latter as
strong. Computational experiments have shown that LB∗

w can be as much as 40%
lower than LB∗

s .
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Table 6.7 Forecasted transportation demand of refrigerated goods
(pallets per day) in the FHL problem.

Bologna Genoa Milan Padua

Bologna — 3 8 2
Genoa 0 — 1 2
Milan 4 2 — 1
Padua 3 1 1 —

Table 6.8 Forecasted transportation demand of goods at room temperature
(pallets per day) in the FHL problem.

Bologna Genoa Milan Padua

Bologna — 3 4 2
Genoa 1 — 1 0
Milan 6 2 — 2
Padua 1 1 1 —

FHL is an Austrian fast carrier located in Lienz, whose core business is the trans-
portation of small-sized and high-valued refrigerated goods (such as chemical reagents
used by hospitals and laboratories). Goods are picked up from manufacturers’ ware-
houses by small vans and carried to the nearest transportation terminal operated by
the carrier. These goods are packed onto pallets and transported to destination termi-
nals by means of large trucks. Then, the merchandise is unloaded and delivered to
customers by small vans (usually the same vans employed for pick-up). In order to
make capital investment in equipment as low as possible, FHL makes use of one-way
rentals of trucks. Recently, the company has decided to enter the Italian fast parcel
transportation market by opening four terminals in the cities of Bologna, Genoa,
Padua and Milan. This choice made necessary a complete revision of the service net-
work. The decision was complicated by the need to transport the refrigerated goods
by special vehicles equipped with refrigerators, while parcels can be transported by
any vehicle. The forecasted daily average demand of the two kinds of products in the
next semester is reported in Tables 6.7 and 6.8.

Between each pair of terminals, the company can operate one or more lines (see
Figure 6.15). Vehicles are of two types:

• trucks with refrigerated compartments, having a capacity of 12 pallets and a
cost (inclusive of all charges) of €0.4 per kilometre;

• trucks with room-temperature compartments, having a capacity of 18 pallets
and a cost (inclusive of all charges) of €0.5 per kilometre.
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In addition, the company considers the possibility of transporting goods at room
temperature through another carrier, by paying €0.1 per kilometre for each pallet. A
directed graph representation of the problem is given in Figure 6.15.

Distances between terminals are reported in Table 6.9. The least-cost service net-
work can be obtained as the solution of an LFCND model with |K| = 22 commodities
(one for each combination of an origin–destination pair with positive demand and a
kind of product). Let A1 and A2 be the set of lines operated by means of trucks having
capacity equal to 12 pallets and 18 pallets, respectively, and let A3 be the set of lines
operated by an external carrier. Arc parameters are

ck
ij = 0, (i, j) ∈ A1, k ∈ K,

fij = 0.4 dij , (i, j) ∈ A1,

uij = 12, (i, j) ∈ A1,

ck
ij = 0, (i, j) ∈ A2, k ∈ K,

fij = 0.5, dij , (i, j) ∈ A2,

uij = 18, (i, j) ∈ A2,

ck
ij = 0.1, dij , (i, j) ∈ A3, k ∈ K,

fij = 0, (i, j) ∈ A3,

uij = ∞, (i, j) ∈ A3,

where dij is the distance between terminals i and j .
The LFCND formulation is as follows.

Minimize
∑

k∈K

∑

(i,j)∈A1∪A2∪A3

ck
ij x

k
ij +

∑

(i,j)∈A1∪A2∪A3

fij yij

subject to

∑

{j∈V :(i,j)∈A1∪A2∪A3}
xk
ij −

∑

{j∈V :(j,i)∈A1∪A2∪A3}
xk
ji =









ok
i , if i ∈ O(k),

−dk
i , if i ∈ D(k),

0, if i ∈ T (k),

i ∈ V, k ∈ K,

∑

k∈K

xk
ij , (i, j) ∈ A1 ∪ A2 ∪ A3,

xk
ij � 0, (i, j) ∈ A1 ∪ A2 ∪ A3, k ∈ K

yij ∈ {0, 1}, (i, j) ∈ A1 ∪ A2 ∪ A3.
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Figure 6.15 Graph representation of the FHL service network design problem (in order to
make the picture clean, a single edge is drawn for each pair of opposite arcs).

Table 6.9 Distances (in kilometres) between terminals in the FHL problem.

Bologna Genoa Milan Padua

Bologna 0 225 115 292
Genoa 225 0 226 166
Milan 115 226 0 362
Padua 292 166 362 0

The strong continuous relaxation gives a lower bound LB∗
s = €534.60 per day. A

branch-and-bound algorithm based on the strong continuous relaxation generates 696
nodes. The least-cost solution is reported in Figure 6.16 and has a cost of €886.70 per
day. In the optimal solution, 7 lines are operated by 12-pallet trucks while a single line
is operated by an 18-pallet truck (travelling from Bologna to Milan with 5 pallets of
parcels). The number of pallets transported between each pair of terminals by means
of 12-pallet trucks and by the external carrier is reported in Tables 6.10 and 6.11.

Add–drop heuristics

Add–drop heuristics are simple constructive procedures in which at each step one
decides whether a new arc has to be used (add procedure) or an arc previously used
has to be left out (drop procedure). Several criteria can be employed to choose which
arc has to be added or dropped. In the following, a very simple drop procedure is
illustrated. In order to describe such an algorithm, it is worth noting that a candidate
optimal solution is characterized by the set A′ ⊆ A of selected arcs. A solution
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Table 6.10 Number of pallets of parcels/number of pallets of refrigerated goods
transported by means of 12-pallet trucks in the FHL problem.

Bologna Genoa Milan Padua

Bologna — 4/8 — 4/8
Genoa 0/7 — 2/10 —
Milan — 5/7 — —
Padua 8/3 4/5 — —

Table 6.11 Number of pallets of parcels/number of pallets of refrigerated goods
transported by an external carrier in the FHL problem.

Bologna Genoa Milan Padua

Bologna — 1/0 — —
Genoa — — 4/0 9/0
Milan — — — —
Padua — — — —

3

2 1

4

Milan Padua

BolognaGenoa

Figure 6.16 Transportation lines used in the optimal solution of the FHL problem.

is feasible if the LMMCF problem on the directed graph G(V, A′) induced by A′ is
feasible. If so, the solution cost is made up of the sum of the fixed costs fij , (i, j) ∈ A′,
plus the optimal solution cost of the LMMCF problem. Moreover, it is worth noting
that the LFCND solution associated with A′ = A, if feasible, is characterized by a
large fixed cost and by a low transportation cost. On the other hand, a feasible solution
associated with a set A′ with a few arcs is expected to be characterized by a low fixed
cost and by a high variable cost. Consequently, an improved LFCND solution can be
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Figure 6.17 Solution provided by the drop heuristic in the FHL problem.

obtained by iteratively removing arcs from the set A′ = A, while the current solution
is still feasible and the total cost decreases. The drop procedure is as follows.

Step 1. Set h = 0 and A(h) = A. Let x
k,(h)
ij , (i, j) ∈ A, k ∈ K , be the optimal

solution (if any exists) of the LMMCF problem on the directed graph G(V, A(h))

and let z
(h)
LFCND be the cost of the associated LFCND problem. If the LMMCF

problem is infeasible, STOP, the LFCND problem is also infeasible.

Step 2. For each arc (i, j) ∈ A(h), set A′(h) = A(h) \ {(i, j)} and solve the LMMCF
problem on the directed graph (G(V, A′(h)). If all the LMMCF problems are infea-
sible, STOP, the set of the arcs A(h) and the flow pattern x

k,(h)
ij , (i, j) ∈ A(h), k ∈ K ,

are associated with the best feasible solution found; otherwise, let (v, w) be the
arc whose removal from A(h) allows us to attain the least-cost LFCND feasible
solution.

Step 3. Set A(h+1) = A(h) \ (v, w), h = h + 1 and go back to Step 2.

The number of iterations of the algorithm is no more than the number of arcs and,
at each iteration, Step 2 requires the solution of O(|A|) LMMCF problems.

By applying the drop heuristic to the FHL problem, a solution having a cost equal
to €899 per day is obtained (see Figure 6.17).

6.7 Shipment Consolidation and Dispatching

In this section, we examine a consolidation and dispatching problem often faced by
manufacturers. A producer has to choose the best way of delivering timely a set of
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orders to its customers over a planning horizon made up of T days. The producer
must decide

• the best mode of transportation for each shipment;

• how orders have to be consolidated;

• the features of owned vehicle schedules (start times, intermediate stops (if any),
the order in which stops are visited, etc.).

Each order k ∈ K is characterized by a destination ik ∈ N , a weight wk � 0, a
release time rk (the day in which order k is ready for delivery), and a deadline dk

(the day within which order k must be delivered to ik). The company may transport
its products by renting ‘one-way’ truck trips, or by using an LTL carrier. A rented
truck may follow any route r of a pre-established set R. With each route r ∈ R are
associated a set of stops Sr (visited in a given order), a (fixed) cost fr , and a capacity
qr (the maximum weight that the vehicle operating route r can carry). Moreover, let
τkr , k ∈ K , r ∈ R, be the number of travel days needed to deliver order k on route r .
Transporting order k to its destination by common carrier costs gk and takes τ ′

k days.
The decision variables are xkrt , k ∈ K , r ∈ R, t = 1, . . . , T , of a binary type, having
a value equal to 1 if order k is assigned to route r starting on day t , 0 otherwise; yrt ,
r ∈ R, t = 1, . . . , T , a binary variable equal to 1 if route r is operated on day t , 0
otherwise; wk , a binary variable equal to 1 if order k is transported by the common
carrier, 0 otherwise (such a variable is defined only if rk + τ ′

k � dk).

Minimize
∑

r∈R

T
∑

t=1

fryrt +
∑

k∈K

gkwk (6.49)

subject to
∑

k:rk�t�dk−τkr ,ik∈Sr

wkxkrt � qryrt , r ∈ R, t = 1, . . . , T , (6.50)

∑

r:ik∈Sr

∑

t :rk�t�dk−τkr

xkrt + wk = 1, k ∈ K, (6.51)

xkrt ∈ {0, 1}, k ∈ K, r ∈ R, t = 1, . . . , T , (6.52)

yrt ∈ {0, 1}, r ∈ R, t = 1, . . . , T , (6.53)

wk ∈ {0, 1}, k ∈ K. (6.54)

The objective function (6.49) is the total cost paid to transport orders. Constraints
(6.50) state that, for each route r ∈ R and for each day t = 1, . . . , T the total weight
carried on route r , on day t , must not exceed capacity qr if yrt is equal to 1, and is
equal to 0, otherwise. Constraints (6.51) impose that each order is assigned to a route
operated by a rented truck or to the common carrier. It is easy to show that formulation
(6.49)–(6.54) can be transformed into a network design model on a time-expanded
directed graph.
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Table 6.12 Trip fixed costs (in euros) in the Oxximet problem.

Trip Fixed cost

Bari–Marseille 800
Bari–Milan 750
Bari–Ancona 400
Bari–Ancona–Milan 780
Bari–Ancona–Marseille 830
Bari–Milan–Marseille 830
Bari–Ancona–Milan–Marseille 860

Table 6.13 Customers orders (in hundreds of kilograms) in the Oxximet problem.

Order Customer location Release time Deadline Weight

1 Marseille 16 June 3 July 15.44
2 Ancona 14 June 15 June 242.65
3 Ancona 14 June 16 June 102.54
4 Milan 13 June 13 June 100.46
5 Marseille 14 June 15 June 154.79
6 Marseille 14 June 14 June 78.53
7 Marseille 13 June 13 June 56.89
8 Marseille 14 June 14 June 45.42
9 Marseille 13 June 13 June 39.55

10 Marseille 11 June 15 June 207.34
11 Marseille 11 June 16 June 19.05
12 Marseille 11 June 16 June 19.59
13 Marseille 11 June 16 June 35.23
14 Marseille 11 June 16 June 61.54
15 Milan 11 June 16 June 38.31

Oxximet manufactures semi-finished chemical products in a plant located close to
Bari (Italy). The main customers are located in Marseille (France), Milan (Italy) and
Ancona (Italy). Oxximet rents ‘one-way’ truck trips visiting one or more customers.
No common carrier is used. Trip fixed costs are reported in Table 6.12. Truck capacity
is 260 hundred kilograms. Last 11 June, 15 customer orders were waiting to be satisfied
(Table 6.13). Oxximet solved model (6.49)–(6.54) with a six-day horizon (T = 6)
and gk = ∞. No trips were allowed on the subsequent Saturday and Sunday. The
optimal solution is reported in Table 6.14. It is worth noting that no truck trip was
rented on 12 June.
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Table 6.14 Optimal trip schedule in the Oxximet problem.

Day Trip Orders

11 June Bari–Marseille 10, 13
12 June — —
13 June Bari–Milan–Marseille 4, 7, 9, 11, 15

Bari–Marseille 5, 6, 12
14 June Bari–Ancona 2

Bari–Ancona–Marseille 3, 8, 14
17 June Bari–Marseille 1

6.8 Freight Terminal Design and Operations

Freight terminals are places where shipments are classified, consolidated, possibly
stored for a short time, and moved from incoming to outgoing vehicles. These include
LTL terminals, crossdocks, package-handling terminals (such as those of UPS and
FedEx) as well as rail, port and airport terminals. These facilities share several features
and consequently their design and management can be approached using common
methodologies. However, there are also significant differences among them. In this
section the analysis is restricted to terminals where material handling is labour inten-
sive (e.g. loads are moved by forklifts). This is the case, e.g. of LTL terminals and
crossdocks, where, as packages often have different sizes, it is difficult to make use
of automatic equipment.

6.8.1 Design issues

The first design decision that has to be made is how many doors (or gates) a terminal
should have. Crossdocks have two kinds of doors: receiving doors and shipping doors
(see Chapter 1). In both cases, a door is assigned a share of floor space (see Fig-
ure 6.18). The numbers of receiving and shipping doors are customarily set equal to
the number of destinations that have to be served, although high-volume destinations
may be assigned more than one door in order to accommodate multiple trucks at the
same time. In LTL terminals, the number of doors may be estimated by means of
simple formulae like those used in Chapter 5 for calculating the number of docks of
a warehouse. A better evaluation can be done through simulation models once other
design variables have been set.

Another key design decision is related to the choice of the terminal shape. Terminals
may have hundreds of doors so that distances travelled by workers in a trip may
exceed several hundred metres. It is then crucial to choose a shape that minimizes
the expected overall workload for a given number of doors. In practice, docks in the
shape of an I, L, T and H are quite common. In order to compare the different shapes,
two performance measures (named the diameter and the centrality of a terminal) have
been introduced. The diameter of a terminal is the largest distance between any pair
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Table 6.15 Characteristics of the most common terminal shapes.

Number of corners
Shape Centrality (Inside − Outside)

I 4/2 = 2 0 − 4
L 4/2 = 2 1 − 5
T 6/2 = 3 2 − 6
H 8/2 = 4 4 − 8

of doors. The centrality is the rate at which the diameter grows as the number of door
increases. For an I-shaped terminal the diameter is 2. In fact, if two doors are added
at each end, the diameter increases by two doors so that the centrality is 4/2 = 2.
The centrality of the most common shapes are reported in Table 6.15. Larger values
of centrality are better for two reasons: the workload is smaller and the forklift traffic
congestion is lighter. For example, for an I-shape, forklift traffic may be very heavy
in the middle of the terminal (in fact, it varies with the square of the number of the
doors) while for an H-shape it is much lighter ceteris paribus. On the other hand,
designs different from the I-shape show a deterioration in efficiency due to the higher
number of corners. Corners reduce the potential number of doors along the perimeter
for two reasons (see Figures 6.18 and 6.19). First, each door needs a suitable amount
of floor space, otherwise there is an interference between adjacent doors. Second,
where orthogonal segments of a terminal join, doors are unusable because vehicles
would overlap otherwise. As a result, for a given number of doors, the terminal has
to be larger if the number of corners increases.

The previous considerations suggest discarding L-shape designs because they have
the same value of centrality as the I-shape but more corners. Simulation-based studies
have shown that the I-shape is best for small to mid-sized terminals. The T-shape is
best for terminals with about 150 to 250 doors, while for larger terminals the H-shape
should be selected. Figure 6.20 illustrates qualitatively the expected workloads for
the I, T and H-shapes. The exact breakpoints depend on the material flow pattern and
on how vehicles are assigned to doors.

6.8.2 Tactical and operational issues

At a tactical or operational level, one must decide how vehicles should be assigned to
gates. Such a decision is influenced mostly by the type of terminal. In rail terminals
and airports, vehicles are dynamically assigned to doors, while in crossdocks doors
are permanently labelled as receiving or shipping doors. Moreover, in a crossdock,
doors do not usually change designations because this allows workers to be more
efficient when handling freight.

For a crossdock, a good quality assignment can be obtained through the following
constructive heuristic (alternating heuristic), possibly followed by a local search
procedure.



238 LONG-HAUL FREIGHT TRANSPORTATION

Share of
floor space

Share of
floor space

Congestion

Congestion

Figure 6.18 I-shaped terminal.

No doors

Congestion

Congestion

Figure 6.19 L-shaped terminal (unusable doors are shadowed).

Step 1. Sort doors by nondecreasing average distance to all other doors.

Step 2. Sort outbound trailers by nonincreasing freight flows.

Step 3. Assign alternatively the busiest inbound vehicle (trailer) and the busiest out-
bound trailer to the best locations still available. If there exist some more trailers
to allocate, repeat Step 3, otherwise STOP.

Blue Freight has a T-shaped crossdock with 200 doors in Denver (Colorado, USA).
By applying the alternating heuristic the solution shown in Figure 6.21 is obtained.
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Figure 6.20 Expected workloads for the I, T and H-shapes.
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Figure 6.21 Trailer allocation provided by the alternating heuristic in
the Blue Freight crossdock (receiving doors are bold).

6.9 Vehicle Allocation Problems

Vehicle allocation problems (VAPs) are faced by carriers that generate revenue by
transporting full loads over long distances, as in TL trucking and container shipping.
Once a vehicle delivers a load, it becomes empty and has to be moved to the pick-
up point of another load, or has to repositioned in anticipation of future demands.
A VAP amounts to deciding which loads have to be accepted and which ones have
to be rejected, as well as repositioning empty vehicles. In what follows, the VAP is
modelled as a minimum-cost flow problem on a time-expanded directed graph for
the case where all demands are known in advance. For the sake of simplicity, we
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examine the case where a single vehicle type exists, while the extension to the multi-
vehicle type case is left to the reader as an exercise (see Problem 6.9). The case in
which demands are random is much more complex and is currently under study by the
scientific community. The planning horizon is assumed to comprise a finite number
{1, . . . , T } of time periods. Let N be the set of points (e.g. cities) where the (full)
loads have to picked up and delivered; dijt , i ∈ N , j ∈ N, t = 1, . . . , T , the number
of loads available at time period t to be moved from origin i to destination j ; τij ,
i ∈ N , j ∈ N , the travel time from point i to point j ; pij , i ∈ N , j ∈ N , the profit
(revenue minus direct operating costs) derived from moving a load from point i to
point j ; cij , i ∈ N , j ∈ N , the cost of moving an empty vehicle from point i to
point j . Moreover, denote by mit , i ∈ N, t = 1, . . . , T , the number of vehicles that
enter the system in period t at point i. The following decision variables are used: xijt ,
i ∈ N , j ∈ N, t = 1, . . . , T , representing the number of vehicles that start moving
a load from point i to point j at time period t ; yijt , i ∈ N , j ∈ N, t = 1, . . . , T ,
representing the number of vehicles that start moving empty from point i to point j

at time period t . The deterministic single-vehicle VAP can be formulated as follows.

Maximize
T

∑

t=1

∑

i∈N

∑

j∈N,j �=i

(pij xij t − cij yij t ) (6.55)

subject to

∑

j∈N

(xij t + yijt ) −
∑

k∈N,k �=i:t>τki

(xki(t−τki ) + yki(t−τki )) − yiit−1 = mit ,

i ∈ V, t ∈ {1, . . . , T }, (6.56)

xijt � dijt , i ∈ N, j ∈ N, t ∈ {1, . . . , T }, (6.57)

xijt � 0, i ∈ N, j ∈ N, t ∈ {1, . . . , T },
yij t � 0, i ∈ N, j ∈ N, t ∈ {1, . . . , T }.

The objective function (6.55) is the total discounted profit over the planning horizon.
Constraints (6.56) impose flow conservation at the beginning of each time period,
while constraints (6.57) state that the number of loaded movements is bounded above
by the demand. It is worth noting that the dijt − xijt differences, i ∈ N , j ∈ N, t =
1, . . . , T , represent the loads that should be rejected, while yiit variables, i ∈ N, t =
1, . . . , T , represent vehicles staying idle (the so-called inventory movements). It is
easy to recognize that the VAP can be modelled as a minimum-cost flow problem
on a time-expanded directed graph in which vertices are associated with (i, t) pairs,
i ∈ N , j ∈ N , and arcs represent loaded, empty and inventory movements. Therefore,
integrality constraints on xiit and yiit variables, i ∈ N , j ∈ N, t = 1, . . . , T , are
implicitly satisfied. Since there exists a pair of arcs between each pair of distinct
nodes, such a network is a directed multigraph.
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Table 6.16 Travel times (in days) between terminals in the Murty problem.

Ananthapur Chittoor Ichapur Khammam Srikakulam

Ananthapur 0 1 2 2 2
Chittoor 1 0 2 2 2
Ichapur 2 2 0 2 1
Khammam 2 2 2 0 2
Srikakulam 2 2 1 2 0

Murty is a motor carrier operating in the Andhraachuki region (India). Last 11 July,
four TL transportation requests were made: from Chittoor to Khammam on 11 July,
from Srikakulam to Ichapur on 11 July, from Ananthapur to Chittoor on 13 July (two
loads). On 11 July, one vehicle was available in Chittoor and one in Khammam. A fur-
ther vehicle was currently transporting a previously scheduled shipment and would be
available in Chittoor on 12 July. Transportation times between terminals are shown in
Table 6.16. The revenue provided by a truck carrying a full load is 1.8 times the trans-
portation cost of a deadheading truck. Let T = {11 July, 12 July, 13 July} = {1, 2, 3}
and N = {Ananthapur, Chittoor, Ichapur, Khammam, Srikakulam} = {1, 2, 3, 4, 5}.
The optimal VAP solution is x141 = 1, x123 = 1, y441 = 1, y443 = 2, while the
remaining variables are zero. It is worth noting that the requests from Srikakulam to
Ichapur on 11 July and from Ananthapur to Chittoor on 13 July are not satisfied.

6.10 The Dynamic Driver Assignment Problem

The dynamic driver assignment problem (DDAP) arises in TL trucking where full-
load trips are assigned to drivers in an on-going fashion. In TL trucking a trip may take
several days (a four-day duration is not unusual both in Europe and in North America)
and customer service requests arrive at random. Consequently, each driver is assigned
a single trip at a time. Let D = {1, . . . , n} be the set of drivers waiting to be assigned
a task and let L = {1, . . . , n} be the current set of full-load trips to be performed.
When the number of drivers exceed the number of loads, a dummy load 0 is inserted
in L, while if the number of loads exceed the number of drivers, a dummy driver
0 is inserted in D. The DDAP can be formulated as a particular single-commodity
uncapacitated minimum-cost flow problem (a classical transportation problem) and
can be solved efficiently through the network simplex method or a tailored algorithm.
The cost cij , i ∈ D, j ∈ L, of assigning driver i to load j is set equal to the cost of
moving empty from the current location of driver i to the pick-up point of load j . Let
xij , i ∈ D, j ∈ L, be a binary variable equal to 1 if driver i is assigned to load j ,
0 otherwise. If the number of drivers exceed the number of loads, the DDAP can be
formulated as follows (see Figure 6.22).
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Figure 6.22 Driver assignment network.

Minimize
∑

i∈D

∑

j∈L

cij xij

subject to
∑

j∈L

xij = 1, i ∈ D,

∑

i∈D

xij = 1, j ∈ L \ {0},

xij ∈ {0, 1}, i ∈ D, j ∈ L.

Costs ci0, i ∈ D, can be set equal to 0. In practice, the previous model is reoptimized
as vehicle locations and customer requests are revealed during the planning horizon
(this explains the dynamic component of the model). In addition, penalties or bonuses
may have added to arc costs cij , i ∈ D, j ∈ L, to reflect the cost of taking drivers
home after a given number of weeks. A dispatcher who wants to take a driver i ∈ D

home at a given point in time can simply reduce the cost of the assignment of that
particular driver to loads j ∈ L whose delivery points are close to the driver home
location. This can be accomplished by subtracting a suitable quantity from such cij

costs.

Planet Transport Ltd is an Illinois (USA) motor carrier specializing in TL trucking.
Last 26 January, the company had to solve the problem of assigning four full-load
trips each three days long. The pick-up points were in Champaign, Danville, Peoria
and Springfield. At that time six drivers were available. The first four were located
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Table 6.17 Distance (in miles) between driver locations and trip pick-up points in
the Planet Transport problem.

Champaign Danville Peoria Springfield

Bloomington 51.9 84.1 42.0 67.4
Decatur 46.8 83.3 107.0 40.0
Mason City 97.0 129.1 51.2 47.5
Pekin 95.4 127.6 13.1 69.4
Springfield 85.5 121.9 74.3 0.0

Table 6.18 Optimal driver assignment in the Planet Transport problem.

Driver Location driver Trip Trip pick-up point

1 Bloomington 2 Danville
2 Decatur 1 Champaign
3 Mason City — —
4 Pekin 3 Peoria
5 Springfield 4 Springfield
6 Springfield — —

in Bloomington, Decatur, Mason City and Pekin, the last two in Springfield. The
company formulated and solved a DDAP model with |D| = 6, and a dummy load 0.
Costs cij , i ∈ D, j ∈ L \ {0}, were assumed to be proportional to distances between
driver locations i and full-load trip pick-up points j (see Table 6.17). The optimal
driver assignment is reported in Table 6.18. It is worth noting that the driver located
in Mason City and one of the two drivers situated in Springfield were not assigned.

6.11 Questions and Problems

6.1 Assuming that the transportation rates for parcel, LTL trucking and TL trucking
are those depicted in Figures 6.1, 6.2, 6.3, respectively, draw the most conve-
nient rate as a function of load weight.

6.2 Canberra Freight is in charge of transporting auto parts for a US car manufac-
turer in Australia. Every week a tractor and one or two trailers move from the
port of Melbourne to a warehouse located 430 km away. A tractor costs $75
per day, a trailer $30, a driver $7.5 per hour while running costs are $0.75 per
kilometre. A trailer can contain 36 pallets. Derive the transportation cost per
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pallet as a function of shipment size for the case where one or two trailers are
used.

6.3 Truckload trucking rates from Boston (Massachusetts, USA) to Miami (Florida,
USA) are usually higher than those from Miami to Boston. Why?

6.4 Class 55 rates is cheaper than analogous class 70 rates (see Table 6.1). Why?

6.5 Extend Equation (6.2) to the case where two types of vehicles are available.

6.6 Devise a local search heuristic for the service network design problem in which
at each step an existing arc is removed or a new arc is added.

6.7 Why should U-shapes be avoided when designing a crossdock?

6.8 Apply the alternating heuristic to an H-shaped terminal. How are shipping doors
located?

6.9 Show that the deterministic VAP with multiple vehicle types can be modelled
as an LMMCF problem on a time-expanded directed graph.

6.10 Show that, in the DDAP, costs ci0, i ∈ D, can be set equal equivalently to ∞.
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7

Planning and Managing
Short-Haul Freight
Transportation

7.1 Introduction

Short-haul freight transportation concerns the pick-up and delivery of goods in a
relatively small area (e.g. a city or a county) using a fleet of trucks. As a rule, vehicles
are based at a single depot, and vehicle tours are performed in a single work shift and
may include several pick-up and delivery points.

Classification of short-haul transportation services. Short-haul transportation is
relevant to distribution companies that have to supply retail outlets or customer orders
from a warehouse using small vans (see Figure 7.1a). It is also crucial to local fast
couriers transporting loads between origin–destination pairs situated in the same area.
Similarly, long-haul carriers need to collect locally outbound parcels before sending
them to a remote terminal as a consolidated load, and to locally distribute loads
coming from remote terminals (see Figure 7.1b). Short-haul transportation problems
also arise in garbage collection, mail delivery, appliance repair services, dial-a-ride
systems (providing transportation services to the elderly and the handicapped), and
emergency services (including fire fighting and ambulance services).

Decision problems. Short-haul transportation often involves a large number of
users. For instance, in soft drink and beer distribution, the average number of cus-
tomers visited daily can be up to 600, while in sanitation applications the number
of sites visited daily is often between 200 and 1000. At a strategic level, the main
decision is related to warehouse location. For this purpose, the methods illustrated
in Chapter 3 can be used, although some adaptations are sometimes needed in order
to take vehicle routes into account explicitly (see Section 7.8). At a tactical level,
the main issue is fleet sizing (see Section 6.4). Finally, at an operational level, the

Introduction to Logistics Systems Planning and Control G. Ghiani, G. Laporte and R. Musmanno
© 2004 John Wiley & Sons, Ltd ISBN: 0-470-84916-9 (HB) 0-470-84917-7 (PB)
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at warehouse 1

Delivery routes based
at warehouse 2
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Terminal C
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at terminal B

Pickup routes based
at terminal A

(a) (b)

Figure 7.1 (a) Delivery routes based at warehouses. (b) Pickup and
delivery routes based at terminals of a long-haul carrier.

main problem (usually referred to as the vehicle routing and scheduling problem
(VRSP)) is to build vehicle routes in order to satisfy user requests. At this stage, a
number of operational constraints have to be taken into account. In some settings,
vehicle routes can be planned on a regular basis as all data are known beforehand.
This is the case of a company devising daily its distribution plan on the basis of the
customer orders collected the day before. Another example arises in sanitation appli-
cations, where vehicle routes are designed two or three times a year as the amount
of garbage to be collected daily is the same over several months. In contrast to such
static environments, there are settings where vehicle routes are built in an on-going
fashion as customer requests arrive. This is the case, for example, of long-distance
carriers whose pick-up requests arise during the day of operations and have to be
serviced the same day whenever possible. Due to recent advances in information
and communication technologies, vehicle fleets can now be managed easily in real-
time. When jointly used, devices like GIS, GPS, traffic flow sensors and cellular
telephones are able to provide relevant real-time data, such as current vehicle loca-
tions, new customer requests and up-to-date estimates of road travel times. If suitably
processed, these data can be used to devise revised vehicle routes. The main features
of such vehicle routing and dispatching problems (VRDPs) are briefly illustrated in
Section 7.7.

A slightly different class of operational problems arises in vendor-managed dis-
tribution systems which are quite common in the petrochemical and gas industry as
well as in the soft drink business. Vendor-managed resupplying (VMR) requires that
the distribution companies estimate customer inventory levels so that replenishment
can occur before they run out of stock. Such systems are discussed in Section 7.9.
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Figure 7.2 (a) A road network where 10 customers (represented by black dots)
are to be served. Streets A and C are two-way. Street B is one-way.

7.2 Vehicle Routing Problems

VRPs consist of determining the routes to be used by a fleet of vehicles to serve a set
of users. VRPs can be defined on a mixed graph G = (V , A, E), where V is a set of
vertices, A is a set of arcs and E is a set of edges. A vertex 0 represents the depot at
which m vehicles are based, while a subset U ⊆ V of required vertices and a subset
R ⊆ A ∪ E of required arcs and required edges represent the users. VRPs amount to
determining a least-cost set of m tours based at a depot, and including the required
vertices, arcs and edges.

In this graph representation, arcs and edges correspond to road segments, and
vertices correspond to road intersections. Isolated users are represented by required
vertices, whereas subsets of customers distributed almost continuously along a set of
customers are modelled as required arcs or edges (this is often the case of mail delivery
and solid waste collection in urban areas). See Figures 7.2 and 7.3 for an example. If
R = ∅, the VRP is called a node routing problem (NRP), while if U = ∅ it is called
an arc routing problem (ARP). NRPs have been studied more extensively than ARPs
and are usually referred to simply as VRPs. However, for the sake of clarity, in this
textbook we use the appellation NRPs. If m = 1 and there are no side constraints,
the NRP is the classical travelling salesman problem, which consists of determining
a single circuit spanning the vertices of G, whereas the ARP is the rural postman
problem (RPP), which amounts to designing a single circuit including the arcs and
edges of R. The RPP reduces to the Chinese postman problem (CPP) if every arc and
edge has to be serviced (R = A ∪ E).
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(b) (c)

1 2

3 to 10 3 to 7 8 to 10

1 2

Figure 7.3 (b) A graph representation in case a vehicle traversing road B can serve the
customers on both sides. (c) A graph representation in case a vehicle traversing road B can
serve the customers on a single side. Bold vertices, arcs and edges are required.

Operational constraints. The most common operational constraints are

• the number of vehicles m can be fixed or can be a decision variable, possibly
subject to an upper bound constraint;

• the total demand transported by a vehicle at any time must not exceed its
capacity;

• the duration of any route must not exceed a work shift duration;

• customers require to be served within pre-established time windows;

• some customers must be served by specific vehicles;

• the service of a customer must be performed by a single vehicle or may be
shared by several vehicles;

• customers are subject to precedence relations.

When customers impose service time windows or when travel times vary during
the day, time issues have to be considered explicitly in the design of vehicle routes,
in which case VRPs are often referred to as VRSPs.

Precedence constraints arise naturally whenever some goods have to be transported
between specified pairs of pick-up and delivery points. In such problems, a pick-up
and delivery pair is to be serviced by the same vehicle (no transshipment is allowed
at the depot) and each pick-up point must be visited before the associated delivery
point. Another kind of precedence relation has to be imposed whenever vehicles have
first to perform a set of deliveries (linehaul customers) and then a set of pick-ups
(backhaul customers), as is customary in some industries (VRPs with backhauls, see
Figure 7.4).
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Figure 7.4 Vehicle routing with backhauls (L, linehaul customer; B, backhaul customers).

Objective. With each arc and edge (i, j) ∈ A ∪ E are associated a travel time tij
and a travel cost cij . In addition, with each vehicle may be associated a fixed cost.
The most common objective is to minimize the cost of traversing the arcs and edges
of the graph plus the sum of the fixed costs associated with using the vehicles.

Travel time estimate. While the computation of distances in a road network is
straightforward, the accurate estimation of travel times is often difficult. A rough
evaluation of the travel time along a road segment can be obtained by dividing road
length by the average speed at which the road segment can normally be traversed.
This method is fairly accurate for inter-city roads, for which a constant speed can be
kept for a long time, but performs poorly for intra-city streets. In such a case, average
travel times can be estimated by using a regression method. To this end, the factors
affecting travel time along a street are identified, and then a regression equation is used
to forecast the average travel time as a function of these factors. The most relevant
factors are the number of lanes, street width, whether the street is one-way or two-way,
parking regulations, traffic volume, the number of traffic lights, the number of stop
signs and the quality of the road surface.

In a school bus routing and scheduling study, the traversal times of the streets and
avenues of Manhattan (New York, USA) were computed by estimating vehicle speed
v through the following formula,

v = v̄ + 2.07x1 + 7.52x2 + 1.52x3 + 1.36x4 − 3.26x5 + 4.04x6,

where v̄ = 7.69 miles per hour is the average bus speed in normal conditions, x1 is
the total number of street lanes, x2 is the number of street lanes available for buses,
x3 is a binary constant, equal to 1 in case of one-way street, 0 otherwise, x4 is equal
to 1 in case of bad road surface conditions, 2 in case of good road surface conditions,
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x5 takes into account the traffic volume (1 = low, 2 = medium, 3 = high), and x6 is the
time fraction of green lights. Variable coefficients were estimated through regression
analysis.

In the remainder of the chapter, the emphasis is on heuristics, although some rel-
atively simple lower bounds are illustrated in order to gain some insight into the
mathematical structure of VRPs. This choice is motivated by two factors: first, exact
algorithms for VRPs are often quite complex tailored procedures able to solve only
small instances of specific problems; second, feasible solutions usually have to be
generated in a small amount of time.

7.3 The Travelling Salesman Problem

In the absence of operational constraints, there always exists an optimal NRP solution
in which a single vehicle is used (see Problem 7.3). Hence, the NRP reduces to a TSP
which consists of finding a least-cost tour including all the required vertices and the
depot. In any TSP feasible solution on graph G, each vertex of U ∪ {0} appears at
least once and two successive vertices of U ∪ {0} are linked by a least-cost path. As
a consequence, the TSP can be reformulated on an auxiliary complete directed graph
G′ = (V ′, A′), where V ′ = U ∪ {0} is the vertex set and A′ is the arc set. With each
arc (i, j) ∈ A′ is associated a cost cij equal to that of a least-cost path from i to j in
G. These costs satisfy the triangle inequality:

cij � cik + ckj , ∀(i, j) ∈ A′, ∀k ∈ V ′, k �= i, j.

Because of this property, there exists a TSP optimal solution which is a Hamiltonian
tour in G′, i.e. a cycle in which each vertex in V ′ appears exactly once. In what follows,
the search for an optimal or suboptimal TSP solution is restricted to Hamiltonian tours.

If cij = cji for each pair of distinct vertices i, j ∈ V ′, the TSP is said to be
symmetric (STSP), otherwise it is called asymmetric (ATSP). The STSP is suitable
for inter-city transportation, while theATSP is recommended in urban settings because
of one-way streets. Of course, the solution techniques developed for the ATSP can
also be applied to the STSP. This approach could, however, be very inefficient, as
explained later. It is therefore customary to deal with the two cases separately.

7.3.1 The asymmetric travelling salesman problem

The ATSP can be formulated as follows. Let xij , (i, j) ∈ A′, be a binary decision
variable equal to 1 if arc (i, j) is part of the solution, 0 otherwise.

Minimize
∑

(i,j)∈A′
cij xij
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subject to
∑

i∈V ′\{j}
xij = 1, j ∈ V ′, (7.1)

∑

j∈V ′\{i}
xij = 1, i ∈ V ′, (7.2)

xij ∈ X, (i, j) ∈ A′, (7.3)

xij ∈ {0, 1}, (i, j) ∈ A′.

Equations (7.1) and (7.2) are referred to as degree constraints. Constraints (7.1)
mean that a unique arc enters each vertex j ∈ V ′. Similarly, constraints (7.2) state
that a single arc exits each vertex i ∈ V ′. Constraints (7.3) specify that the xij values
must lie in a set X that will yield a feasible solution consisting of a single directed
tour (circuit). They can be formulated in two alternative ways, which are algebraically
equivalent (see Problem 7.10):

∑

i∈S

∑

j /∈S

xij � 1, S ⊂ V ′, |S| � 2, (7.4)

∑

i∈S

∑

j∈S

xij � |S| − 1, S ⊂ V ′, |S| � 2. (7.5)

Inequalities (7.4) guarantee that the circuit has at least one arc coming out from each
proper and nonempty subset S of vertices in V ′ (connectivity constraints). Inequalities
(7.5) prevent the formation of subcircuits containing less than |S| vertices (subcircuit
elimination constraints). It is worth noting that the number of constraints (7.4) (or,
equivalently, (7.5)) is 2|V ′| − |V ′| − 2. Constraints (7.4) and (7.5) are redundant for
|S| = 1 because of constraints (7.2).

A lower bound. The ATSP has been shown to be NP-hard. A good lower bound
on the ATSP optimal solution cost z∗

ATSP can be obtained by removing constraints
(7.3) from ATSP formulation. The relaxed problem is the following linear assignment
problem (AP).

Minimize
∑

i∈V ′

∑

j∈V ′
cij xij

subject to
∑

i∈V ′
xij = 1, j ∈ V ′,

∑

j∈V ′
xij = 1, i ∈ V ′,

xij ∈ {0, 1}, i, j ∈ V ′,

where cii = ∞, i ∈ V ′, in order to force x∗
ii = 0, for all i ∈ V ′.
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The optimal AP solution x∗
AP corresponds to a collection of p directed subcircuits

C1, . . . , Cp, spanning all vertices of the directed graph G′. If p = 1, the AP solution
is feasible (and hence optimal) for the ATSP.

As a rule, z∗
AP is a good lower bound on z∗

ATSP if the cost matrix is strongly asym-
metric (in this case, it has been empirically demonstrated that the deviation from
the optimal solution cost (z∗

ATSP − z∗
AP)/z∗

AP is often less than 1%). On the contrary,
in the case of symmetric costs, the deviation is typically 30% or more. The reason
of this behaviour can be explained by the fact that for symmetric costs, if the AP
solution contains arc (i, j) ∈ A′, then the AP optimal solution is likely to include
arc (j, i) ∈ A′ too. As a result, the optimal AP solution usually shows several small
subcircuits and is quite different from the ATSP optimal solution.

Bontur is a pastry producer founded in Prague (Czech Republic) in the 19th cen-
tury. The firm currently operates, in addition to four modern plants, a workshop in
Gorazdova street, where the founder began the business. The workshop serves Prague
and its surroundings. Every day at 6:30 a.m. a fleet of vans carries the pastries from
the workshop to several retail outlets (small shops, supermarkets and hotels). In par-
ticular, all outlets of the Vltava river district are usually served by a single vehicle.
For the sake of simplicity, arc transportation costs are assumed to be proportional to
arc lengths. In Figure 7.5 the road network is modelled as a mixed graph G(V, A),
where a length is associated with each arc/edge (i, j). The workshop and the vehicle
depot are located in vertex 0. Last 23 March, seven shops (located at vertices 1, 3, 9,
18, 20 and 22) needed to be supplied. The problem can be formulated as an ATSP on
a complete directed graph G′ = (V ′, A′), where V ′ is formed by the seven vertices
associated with the customers and by vertex 0. With each arc (i, j) ∈ A′ is associ-
ated a cost cij corresponding to the length of the shortest path from i to j on G (see
Table 7.1). The optimal AP solution x∗

AP is made up of the following three subcircuits
(see Figure 7.6):

C1 = {(1, 4), (4, 3), (3, 9), (9, 1)},
of cost equal to 11.0 km;

C2 = {(0, 18), (18, 0)},
of cost equal to 5.2 km;

C3 = {(20, 22), (22, 20)},
of cost equal to 4.6 km. Therefore, the AP lower bound z∗

AP on the objective function
value of ATSP is equal to

z∗
AP = 11.0 + 5.2 + 4.6 = 20.8 km.

Patching heuristic. The patching heuristic works as follows. First, theAP relaxation
is solved. If a single circuit is obtained, the procedure stops (the AP solution is
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Figure 7.5 A graph representation of Bontur distribution problem (one-way street segments
are represented by arcs, while two-way street segments are modelled through edges).
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Figure 7.6 Optimal solution of the AP relaxation in the Bontur problem.

the optimal ATSP solution). Otherwise, a feasible ATSP solution is constructed by
merging the subcircuits of the AP solution. When merging two subcircuits, one arc
is removed from each subcircuit and two new arcs are added in such a way a single
connected subcircuit is obtained.

Step 0 (Initialization). Let C = {C1, . . . , Cp} be the set of the p subcircuits in theAP
optimal solution. If p = 1, STOP. The AP solution is feasible (and hence optimal)
for the ATSP.

Step 1. Identify the two subcircuits Ch, Ck ∈ C with the largest number of vertices.
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Table 7.1 Shortest-path length (in kilometres) from i to j , i, j ∈ V ′ in the Bontur problem.

0 1 3 4 9 18 20 22

0 0.0 5.5 4.2 2.6 2.4 1.3 2.5 4.3
1 4.7 0.0 3.7 2.1 5.1 6.0 7.2 9.0
3 4.2 4.5 0.0 1.6 3.2 5.5 6.7 8.5
4 2.6 2.9 1.6 0.0 3.0 3.9 5.1 6.9
9 3.8 4.1 2.8 1.2 0.0 5.1 6.3 8.1

18 3.9 7.4 6.1 4.5 3.3 0.0 1.2 3.0
20 3.5 7.0 5.7 4.1 2.9 1.2 0.0 2.3
22 5.8 9.3 8.0 6.4 5.2 3.0 2.3 0.0

20

18

22

0

i j

1

3

9

4

2.1

1.6

1.3

4.2
4.1

2.3

2.3

3.3

cij

Figure 7.7 Partial solution at the end of the first iteration of
the patching algorithm in the Bontur problem.

Step 2. Merge Ch and Ck in such a way that the cost increase is kept at minimum.
Update C and let p = p − 1. If p = 1, STOP, a feasible solution ATSP has been
determined, otherwise go back to Step 1.

In order to find a feasible solution x̄ATSP to the Bontur distribution problem, the
patching algorithm is applied to the AP solution shown in Figure 7.6. At the first
iteration, C1 and C2 are selected to be merged (alternatively, C3 could have been used
instead of C2). By merging C1 and C2 at minimum cost (through the removal of arcs
(3,9) and (18,0) and the insertion of arcs (3,0) and (18,9)), the following subcircuit
(having length equal to 16.6 km) is obtained (see Figure 7.7):

C4 = {(0, 18), (18, 9), ((9, 1), (1, 4), (4, 3), (3, 0))}.
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Figure 7.8 ATSP feasible solution generated by
the patching algorithm in the Bontur problem.

The partial solution, formed by the two subcircuits C3 and C4, is depicted in
Figure 7.7. The total length increases by 0.4 km with respect to the initial solution.
At the end of the second iteration, the two subcircuits in Figure 7.7 are merged at the
minimum cost increase of 0.3 km through the removal of arcs (18,9) and (20,22) and
the insertion of arcs (18,22) and (20,9). This way, a feasible ATSP solution of cost
z̄ATSP = 21.5 km is obtained (see Figure 7.8). In order to evaluate the quality of the
heuristic solution, the following deviation from the AP lower bound can be computed,

z̄ATSP − z∗
AP

z∗
AP

= 21.5 − 20.8

20.8
= 0.0337,

which corresponds to a percentage deviation of 3.37%.

7.3.2 The symmetric travelling salesman problem

As explained in the previous section, the ATSP lower and upper bounding procedures
perform poorly when applied to the symmetric TSP. For this reason, several STSP
tailored procedures have been developed.

The STSP can be formulated on a complete undirected graph G′ = (V ′, E′), in
which with each edge (i, j) ∈ E′ is associated a transportation cost cij equal to that of
a least-cost path between i and j in G. Hence, cij costs satisfy the triangle inequality,
and there exists an optimal solution which is a Hamiltonian cycle in G′. Let xij ,
(i, j) ∈ E′, be a binary decision variable equal to 1 if edge (i, j) ∈ E′ belongs to the
least-cost Hamiltonian cycle, and to 0 otherwise. The formulation of the STSP is as
follows (recall that i < j for each edge (i, j) ∈ E′).
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Minimize
∑

(i,j)∈E′
cij xij

subject to
∑

i∈V ′:(i,j)∈E′
xij +

∑

i∈V ′:(j,i)∈E′
xji = 2, j ∈ V ′, (7.6)

∑

(i,j)∈E′:i∈S,j /∈S

xij +
∑

(j,i)∈E′:i∈S,j /∈S

xji � 2, S ⊂ V ′, 2 � |S| � �|V ′|/2�, (7.7)

xij ∈ {0, 1}, (i, j) ∈ E′.

Equations (7.6) mean that exactly two edges must be incident to every vertex
j ∈ V ′ (degree constraints). Inequalities (7.7) state that, for every vertex subset S,
there exist at least two edges with one endpoint in S ⊂ V ′ and the other endpoint in
V ′ \ S (connectivity constraints). Since the connectivity constraints of a subset S and
that of its complement V ′ \ S are equivalent, one has to consider only inequalities
(7.7) associated with subsets S ⊂ V ′ such that |S| � �|V ′|/2�. Constraints (7.7) are
redundant if |S| = 1 because of (7.6). Alternatively, the connectivity constraints (7.7)
can be replaced with the following equivalent subcycle elimination constraints:

∑

(i,j)∈E′:i∈S,j∈S

xij � |S| − 1, S ⊂ V ′, 2 � |S| � �|V ′|/2�.

A lower bound. The STSP is an NP-hard problem. A lower bound on the optimal
solution cost z∗

STSP can be obtained by solving the following problem (see Exer-
cise 7.5).

Minimize
∑

(i,j)∈E′
cij xij (7.8)

subject to
∑

i∈V ′:(i,r)∈E′
xir +

∑

i∈V ′:(r,i)∈E′
xri = 2, (7.9)

∑

(i,j)∈E′:i∈S,i �=r,j /∈S,j �=r

xij +
∑

(j,i)∈E′:i∈S,i �=r,j /∈S,j �=r

xji � 1,

S ⊂ V ′, 1 � |S| � �|V ′|/2�, (7.10)

xij ∈ {0, 1}, (i, j) ∈ E′, (7.11)

where r ∈ V ′ is arbitrarily chosen (root vertex). Model (7.8)–(7.11) corresponds to a
minimum-cost spanning r-tree problem (MSrTP), for which the optimal solution is
a least-cost connected subgraph spanning G′ and such that vertex r ∈ V ′ has degree
2. The MSrTP can be solved in O(|V ′|2)) steps with the following procedure:
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Table 7.2 Shortest distances (in kilometres) between terminals in the Saint-Martin problem.

Betteville Bolbec Dieppe Fécamp Le Havre Luneray Rouen Valmont

Betteville 0.0 27.9 54.6 42.0 56.5 37.0 30.9 34.1
Bolbec 27.9 0.0 67.2 25.6 28.8 48.4 57.4 21.6
Dieppe 54.6 67.2 0.0 60.5 95.8 18.8 60.4 52.1
Fécamp 42.0 25.6 60.5 0.0 39.4 43.1 70.2 12.2
Le Havre 56.5 28.8 95.8 39.4 0.0 77.2 84.5 44.4
Luneray 37.0 48.4 18.8 43.1 77.2 0.0 51.6 34.0
Rouen 30.9 57.4 60.4 70.2 84.5 51.6 0.0 59.3
Valmont 34.1 21.6 52.1 12.2 44.4 34.0 59.3 0.0

Step 1. Determine a minimum-cost tree T ∗(V ′ \ {r}, ET ) spanning V ′ \ {r}.

Step 2. Insert in T ∗ vertex r as well as the two least-cost edges incident to vertex r .

Saint-Martin distributes fresh fishing products in Normandy (France). Last 7 June,
the company received seven orders from sales points all located in northern Normandy.
It was decided to serve the seven requests by means of a single vehicle sited in
Betteville.The problem can be formulated as an STSP on a complete graph G′(V ′, E′),
where V ′ is composed of eight vertices corresponding to the sales points and of vertex
0 associated with the depot. With each edge (i, j) ∈ E′, is associated a cost cij equal
to the shortest distance between vertices i and j (see Table 7.2). The minimum-cost
spanning r-tree is depicted in Figure 7.9, to which corresponds a cost z∗

MSrTP =
225.8 km.

The MSrTP lower bound can be improved in two ways. In the former approach,
the MSrTP relaxation is solved for more choices of the roots r ∈ V ′ and then the
largest MSrTP lower bound is selected. In the latter method, r ∈ V ′ is fixed but each
constraint (7.6) with the only exception of j = r is relaxed in a Lagrangian fashion.
Let λj , j ∈ V ′ \ {r}, be the Lagrangian multiplier attached to vertex j ∈ V ′ \ {r}. A
Lagrangian relaxation of the STSP is as follows.

Minimize

∑

(i,j)∈E′
cij xij +

∑

j∈V ′\{r}
λj

(
∑

i∈V ′:(i,j)∈E′
xij +

∑

i∈V ′:(j,i)∈E′
xji − 2

)

(7.12)

subject to
∑

i∈V ′:(i,r)∈E′
xir +

∑

i∈V ′:(r,i)∈E′
xri = 2, (7.13)
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Figure 7.9 Minimum-cost spanning r-tree in the Saint-Martin problem.

∑

(i,j)∈E′:i∈S,i �=r,j /∈S,j �=r

xij +
∑

(j,i)∈E′:i∈S,i �=r,j /∈S,j �=r

xji � 1,

S ⊂ V ′, 1 � |S| � �|V ′|/2�, (7.14)

xij ∈ {0, 1}, (i, j) ∈ E′. (7.15)

Setting arbitrarily λr = 0, the objective function (7.12) can be rewritten as
∑

(i,j)∈E′
(cij + λi + λj )xij − 2

∑

j∈V ′
λj . (7.16)

To determine the optimal multipliers (or at least a set of ‘good’ multipliers), a
suitable variant of the subgradient method illustrated in Section 3.3.1 can be used. In
particular, at the kth iteration the updating formula of the Lagrangian multipliers is
the following,

λk+1
j = λk

j + βksk
j , j ∈ V ′ \ {r},

where

sk
j =

∑

i∈V ′:(i,j)∈E′
xk
ij +

∑

i∈V ′:(j,i)∈E′
xk
ji − 2, j ∈ V ′ \ {r},

xk
ij , (i, j) ∈ E′, is the optimal solution of the Lagrangian relaxation MSrTP(λ) (7.16),

(7.13)–(7.15) at the kth iteration, and βk can be set equal to

βk = 1

k
, k = 1, . . . .
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The results of the first three iterations of the subgradient method in the Saint-Martin
problem (r = 0) are

λ1
j = 0, j ∈ V ′ \ {r}; z∗

MSrTP(λ1)
= 225.8; s1 = [1, −1, −1, −1, 1, 0, 1]T;

β1 = 1;
λ2 = [1, −1, −1, −1, 1, 0, 1]T; z∗

MSrTP(λ2)
= 231.8;

s2 = [1, −1, −1, −1, 1, 0, 1]T; β2 = 0.5;
λ3 = [ 3

2 , − 3
2 , − 3

2 , − 3
2 , 3

2 , 0, 3
2 ]T; z∗

MSrTP(λ3)
= 234.8.

Nearest-neighbour heuristic. The nearest-neighbour heuristic is a simple con-
structive procedure that builds a Hamiltonian path by iteratively linking the vertex
inserted at the previous iteration to its nearest unrouted neighbour. Finally, a Hamil-
tonian cycle is obtained by connecting the two endpoints of the path. The nearest-
neighbour heuristic often provides low-quality solutions, since the edges added in the
final iterations may be very costly.

Step 0. Set C = {r}, where r ∈ V ′, is a vertex chosen arbitrarily, and set h = r .

Step 1. Identify the vertex k ∈ V ′ \ S such that chk = minj∈V ′\C{chj }. Add k at the
end of C.

Step 2. If |C| = |V ′|, add r at the end of C, STOP (C corresponds to a Hamiltonian
cycle), otherwise let h = k and go back to Step 1.

In order to find a feasible solution x̄STSP to the Saint-Martin distribution problem,
the nearest-neighbour heuristic is applied (r = 0), and the following Hamiltonian
cycle is obtained (see Figure 7.10),

C = {(0, 1), (1, 7), (3, 7), (3, 4), (4, 5), (2, 5), (2, 6), (0, 6)},
whose cost is 288.4 km. The deviation of this solution cost from the available lower
bound LB = 234.8 is

z̄STSP − LB

LB
= 288.4 − 234.8

234.8
= 22.8%.

The Christofides heuristic. The Christofides heuristic is a constructive procedure
that works as follows.

Step 1. Compute a minimum-cost tree T = (V ′, E′
T ) spanning the vertices of

G′(V ′, E′). Let z∗
MSTP be the cost of this tree.
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Figure 7.10 STSP feasible solution generated by the nearest-neighbour
algorithm in the Saint-Martin problem.

Step 2. Compute a least-cost perfect matching M(V ′
D, E′

D) among the vertices of
odd degree in the tree T (|V ′

D| is always an even number). Let z∗
M be the optimal

matching cost. Let H(V ′, E′
H) be the Eulerian subgraph (or multigraph) of G′

induced by the union of the edges of T and M (E′
H = E′

T ∪ E′
D).

Step 3. If there is a vertex j ∈ V ′ of degree greater than 2 in subgraph H , eliminate
from E′

S two edges incident in j and in vertices h ∈ V ′ and k ∈ V ′, with h �= k.
Insert in E′

H edge (h, k) ∈ E′ (or the edge (k, h) ∈ E′ if (h, k) /∈ E′) (the shortcuts
method, see Figure 7.11). Repeat Step 3 until all vertices in V ′ have a degree of 2
in subgraph H .

Step 4. STOP, the set E′
H is a Hamiltonian cycle.

It is worth stressing that the substitution of a pair of edges (h, j) and (j, k) with
edge (h, k) (Step 3 of the algorithm) generally involves a cost reduction since the
triangle inequality holds. It can be shown that the cost of the Christofides solution is
at most 50% higher than the optimal solution cost. The proof is omitted for brevity.

The Saint-Martin distribution problem is solved by means of the Christofides algo-
rithm. The minimum-cost spanning tree is made up of edges {(0,1), (0,6), (1,4), (1,7),
(2,5), (3,7), (5,7)}, and has a cost of 174.2 km. The optimal matching of the odd-
degree vertices (1, 2, 3, 4, 6 and 7) is composed of edges (1,4), (2,6) and (3,7), and
has a cost of 101.4 km. The Eulerian multigraph generated at the end of Step 2 is
illustrated in Figure 7.12. Edges (1,7) and (3,7) are substituted for edge (1,3), edges
(0,1) and (1,4) are substituted for edge (0,4). At this stage a Hamiltonian cycle of
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Figure 7.11 The Christofides algorithm. (a) Partial solution at the end of Step 2 (mini-
mum-cost spanning tree edges are continuous lines while matching edges are dashed lines).
(b) The Hamiltonian cycle obtained after Step 3 (where the degree of vertex 2 is reduced by
removing edges (0,2) and (2,1) and by inserting edge (0,1), and the degree of vertex 4 is reduced
by removing edges (1,4) and (4,6) and by inserting edge (1,6)).

cost equal to 267.2 km is obtained (see Figure 7.13). The deviation from the available
lower bound LB is

z̄STSP − LB

LB
= 267.2 − 234.8

234.8
= 13.8%.

Local search algorithms. Local search algorithms are iterative procedures that try
to improve an initial feasible solution x(0). At the kth step, the solutions contained in
a ‘neighbourhood’ of the current solution x(k) are enumerated. If there are feasible
solutions less costly than the current solution x(k), the best solution of the neigh-
bourhood is taken as the new current solution x(k+1) and the procedure is iterated.
Otherwise, the procedure is stopped (the last current solution is a local optimum).

Step 0. (Initialization). Let x(0) be the initial feasible solution and let N(x(0)) be its
neighbourhood. Set h = 0.

Step 1. Enumerate the feasible solutions belonging to N(x(h)). Select the best fea-
sible solution x(h+1) ∈ N(x(h)).

Step 2. If the cost of x(h+1) is less than that of x(h), set h = h + 1 and go back to
Step 1; otherwise, STOP, x(h) is the best solution found.
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Figure 7.12 Eulerian multigraph generated by the Christofides heuristic in the Saint-Martin
problem (minimum cost spanning tree edges are full lines and minimum-cost matching edges
are dashed lines).
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Figure 7.13 Hamiltonian cycle provided by the Christofides algorithm
in the Saint-Martin problem.

For the STSP, N(x(h)) is commonly defined as the set of all Hamiltonian cycles
that can be obtained by substituting k edges (2 � k � |V ′|) of x(h) for k other edges
in E′ (k-exchange) (Figure 7.14).

Step 0. Let C(0) be the initial Hamiltonian cycle and let z
(0)
STSP be the cost of C(0).

Set h = 0.

Step 1. Identify the best feasible solution C(h+1) that can be obtained through a
k-exchange. If z

(h+1)
STSP < z

(h)
STSP, STOP, C(h) is a Hamiltonian cycle for the STSP.
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Figure 7.14 A feasible 3-exchange (dotted edges are removed, dashed edges are inserted).

Step 2. Let h = h + 1 and go back to Step 1.

In a local search algorithm based on k-exchanges, k can be constant or can be
dynamically increased in order to intensify the search when improvements are likely
to occur. If k is constant, each execution of Step 1 requires O(|V ′|k) operations. In
general, k is set equal to 2 or 3 at most, in order to limit the computational effort.

If a 2-exchange procedure is applied to the solution provided by the Christofides
heuristic in the Saint-Martin problem, a less costly Hamiltonian cycle (see Figure 7.15)
is obtained at the first iteration by replacing edges (0,4) and (1,3) with edges (0,1)
and (3,4). As a consequence, the solution cost decreases by 14.8 km.

7.4 The Node Routing Problem with Capacity and
Length Constraints

As illustrated in Section 7.2, in several settings operational constraints come into
play when designing vehicle routes. These restrictions lead to a large number of
variants and the algorithms described in the literature are often dependent on the type
of constraint. For this reason, in the remainder of the chapter the most important
constrained NRPs are examined and a limited number of techniques, representative
of the most-used approaches, are described. As usual, the interested reader should
consult the references listed at the end of the chapter for further information.

The node routing problem with capacity and length constraints (NRPCL) consists
of designing a set of m least-cost vehicle routes starting and ending at the depot, such
that
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Figure 7.15 Best 2-exchange neighbour of the STSP feasible solution in Figure 7.13.

• each customer is visited exactly once;

• with each customer i is associated a demand pi (demands are either collected
or delivered, but not both); then the total demand of each vehicle cannot exceed
a given vehicle capacity q (vehicles are assumed to be identical) (capacity
constraints);

• with each customer is associated a service time si ; then the total duration of
each route, including service and travel times, may not exceed a given work
shift duration T .

This problem can be formulated on a complete directed graph G′ = (V ′, A′) or on
a complete undirected graph G′ = (V ′, E′) depending on whether the cost matrix is
asymmetric or symmetric. In both cases, the vertex set V ′ is composed of the depot
0 and the customers in U . In what follows, the focus is on the symmetric version of
the problem.

The NRPCL can be formulated by suitably modifying the STSP model.

Minimize
∑

(i,j)∈E′
cij xij

subject to
∑

i∈V ′:(i,j)∈E′
xij +

∑

i∈V ′:(j,i)∈E′
xji = 2, j ∈ U, (7.17)

∑

i∈V ′:(0,i)∈E′
x0i = 2m, (7.18)

∑

(i,j)∈E′:i∈S,j /∈S

xij +
∑

(j,i)∈E′:i∈S,j /∈S

xji � 2α(S), S ⊆ V ′ \ {0}, |S| � 2, (7.19)
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∑

(i,j)∈E′:i∈S,j /∈S

xij +
∑

(j,i)∈E′:i∈S,j /∈S

xji � 4, S ⊆ V ′ \{0}, |S| � 2, t∗STSP(S) > T,

(7.20)
xij ∈ {0, 1}, (i, j) ∈ E′.

Constraints (7.17) state that two edges are incident to each customer j ∈ U (cus-
tomer degree constraints). Similarly, constraints (7.18) guarantee that 2m edges are
incident to vertex 0 (depot degree constraints). Capacity constraints (7.19) impose
that the number of vehicles serving customers in S is at least a lower bound α(S) on the
optimal solution value of a 1-BP problem with |S| items having weights pi, i ∈ S and
bins of capacity q. In practice, it is common to use α(S) = �(∑i∈S pi)/q�. Length
constraints (7.20) state that a single route is not sufficient to serve all the customers in
S whenever the duration t∗STSP(S) of a least-cost Hamiltonian cycle spanning S ∪ {0}
exceeds T .

Set partitioning formulation. An alternative formulation of the NRPCL can be
obtained as follows. Let K be the set of routes in G′ satisfying the capacity and length
constraints and let ck , k ∈ K , be the cost of route k. Define aik, i ∈ V ′, k ∈ K , as
a binary constant equal to 1 if vertex i is included into route k, and to 0 otherwise.
Let yk , k ∈ K , be a binary decision variable equal to 1 if route k used in an optimal
solution, and to 0 otherwise. The NRPCL can be reformulated as a set partitioning
problem (NRPSP) in the following way.

Minimize
∑

k∈K

ckyk

subject to
∑

k∈K

aikyk = 1, i ∈ V ′, (7.21)

∑

k∈K

yk = m, (7.22)

yk ∈ {0, 1}, k ∈ K.

Constraints (7.21) establish that each customer i ∈ V ′ must be served, while
constraint (7.22) requires that exactly m vehicles are used.

The NRPSP is very flexible as it can be easily modified in order to include additional
operational constraints. Its main weakness is the large number of variables, especially
for ‘weakly constrained’ problems. For example, if pi = 1, i ∈ U , and the length
constraints are not binding, |K| = O(

∑q
h=1 |V ′|/h). Consequently, even if |U | = 50

and q = 10, there can be several billion variables. However, in some applications
the characteristics of the operational constraints can considerably reduce |K|. This
happens very often, for example, in fuel distribution where the demand of a user
i ∈ U (a gas pump) is customarily a small part (usually a half or a third) of a vehicle



268 SHORT-HAUL FREIGHT TRANSPORTATION

Table 7.3 Orders (in hectolitres) received by Bengalur Oil.

Gas station Orders

1 50
2 75
3 50
4 50
5 75

Table 7.4 Distance (in kilometres) between the gas stations and the firm’s depot
in the Bengalur Oil problem (depot corresponds to vertex 0).

0 1 2 3 4 5

0 0 90 100 90 80 80
1 90 0 10 20 10 30
2 100 10 0 10 20 40
3 90 20 10 0 10 30
4 80 10 20 10 0 20
5 80 30 40 30 20 0

capacity. Therefore, the customers visited in each route can be three at most. As a
consequence,

|K| = O

((|V ′|
3

)

+
(|V ′|

2

)

+
(|V ′|

1

))

= O(|V ′|3).

It is easy to show (see Problem 7.6) that constraints (7.21) can be replaced with the
following relations,

∑

k∈K

aikyk � 1, i ∈ V ′,

in which case an easier-to-solve set covering formulation (NRPSC) is obtained.
Finally, both the NRPSP and NRPSC models can be used to generate a heuristic

solution by including only a limited number K ′ ⊂ K of feasible routes in the model.

Bengalur Oil manufactures and distributes fuel to filling stations in the Karnataka
region (India). Last 2 July, the firm received five orders (see Table 7.3). The distances
between the gas stations and the firm’s depot are reported in Table 7.4. The vehicles
have a capacity of 150 hectolitres. In order to formulate the problem as an NRPSC,
the feasible routes are enumerated (Table 7.5).

The NRPSC model is as follows.
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Table 7.5 Feasible routes in the Bengalur Oil problem (costs are expressed in kilometres).

Route Vertices Cost Route Vertices Cost

1 {0,1,0} 180 9 {0,1,5,0} 200
2 {0,2,0} 200 10 {0,2,3,0} 200
3 {0,3,0} 180 11 {0,2,4,0} 200
4 {0,4,0} 160 12 {0,2,5,0} 220
5 {0,5,0} 160 13 {0,3,4,0} 180
6 {0,1,2,0} 200 14 {0,3,5,0} 200
7 {0,1,3,0} 200 15 {0,4,5,0} 180
8 {0,1,4,0} 180 16 {0,1,3,4,0} 200

Minimize

180y1 + 200y2 + 180y3 + 160y4 + 160y5 + 200y6 + 200y7 + 180y8

+ 200y9 + 200y10 + 200y11 + 220y12 + 180y13 + 200y14 + 180y15 + 200y16

subject to

y1 + y6 + y7 + y8 + y9 + y16 � 1,

y2 + y6 + y10 + y11 + y12 � 1,

y3 + y7 + y10 + y13 + y14 + y16 � 1,

y4 + y8 + y11 + y13 + y15 + y16 � 1,

y5 + y9 + y12 + y14 + y15 � 1,

y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16 ∈ {0, 1}.
In the optimal solution, the 12th and the 16th routes are used (y∗

12 = y∗
16 = 1) (see

Figure 7.16), and the total distance covered by the vehicles is 420 km.

7.4.1 Constructive heuristics

In the remainder of this section, some constructive procedures for the NRPCL are
illustrated.

‘Cluster first, route second’ heuristics. Cluster first, route second heuristics at-
tempt to determine a good NRPCL solution in two steps. First, customers are par-
titioned into subsets Uk ⊂ V ′ \ {0}, each of which is associated with a vehicle
k = 1, . . . , m. Second, for each vehicle k = 1, . . . , m, the STSP on the complete
subgraph induced by Uk ∪ {0} is solved (exactly or heuristically). The partitioning of
the customer set can be made visually or by more formalized procedures (as the one
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Figure 7.16 Optimal solution of the Bengalur Oil problem.

proposed by Fisher and Jaikumar). Readers interested in a deeper examination of this
subject are referred to the references listed at the end of the chapter.

In the Bengalur Oil problem, customers can be partitioned into two clusters:

U1 = {2, 5},
U2 = {1, 3, 4}.

Then, two STSPs are solved on the complete subgraphs induced by U1 ∪ {0} and
U2 ∪ {0}, respectively. The result of this ‘cluster first, route second’ procedure is
shown in Figure 7.16 (the total transportation cost is equal to 420 km).

‘Route first, cluster second’ heuristics. Route first, cluster second heuristics at-
tempt to determine an NRPCL solution in two stages. First, a single Hamiltonian
cycle (generally infeasible for the NRPCL) is generated through an exact or heuristic
STSP algorithm. Then, the cycle is decomposed into m feasible routes, originating
and terminating at the depot. The route decomposition can be performed visually
or by means of formalized procedures, like the one proposed by Beasley. Readers
interested in this method should consult the references listed at the end of the chapter.

Applying a ‘route first, cluster second’ procedure to the Bengalur Oil problem, a
Hamiltonian cycle, having cost equal to 240 km, is generated (Figure 7.17). At the
second stage, the cycle is decomposed into two feasible routes, which are the same
as those illustrated in Figure 7.16.
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Figure 7.17 Hamiltonian cycle generated at the first step of the ‘route first, cluster second’
procedure in the Bengalur Oil problem.

Savings heuristic. The savings heuristic is an iterative procedure that initially gen-
erates |U | distinct routes each of which serves a single customer. At each subsequent
iteration, the algorithm attempts to merge a pair of routes in order to obtain a cost
reduction (a saving). The cost saving sij achieved when servicing customers i and j ,
i, j ∈ U on one route, as opposed to servicing them individually, is (see Figure 7.18)

sij = c0i + c0j − cij , i, j ∈ V ′ \ {0}}, i �= j. (7.23)

It is worth noting that sij , i, j ∈ V ′ \ {0}, are nonnegative since the triangle inequality
holds for all costs cij , i, j ∈ E′. The savings formula still holds if i ∈ U is the last
customer of the first route involved in a merge, and j ∈ U is the first customer of the
second route. The algorithm stops when it is no more possible to merge feasibly a
pair of routes.

Step 0. (Initialization). Let C be the set of |U | initial routes Ci = {0, i, 0}, i ∈
V ′ \ {0}. For each pair of vertices i, j ∈ V ′ \ {0}, i �= j , compute the saving sij
by using Equations (7.23). Let L be the list of savings sorted in a nonincreasing
fashion (since sij = sji , i, j ∈ V ′ \ {0}, i �= j , then the list L contains only one
saving value for each pair of different customers).

Step 1. Extract from the top of list L a saving sij . If vertices i and j belong to two
separate routes of C in which i and j are directly linked to the depot (Figure 7.19),
and if the route obtained by replacing edges (0, i) and (0, j) with edge (i, j) is
feasible, then merge the two routes and update C.

Step 2. If L = ∅, STOP, it is not possible to merge further pairs of routes. If L �= ∅,
go back to Step 1.

The computational complexity of the algorithm is determined by the saving sorting
phase and is therefore O(|V ′|2 log |V ′|2) = O(|V ′|2 log |V ′|). In practice, the algo-
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Figure 7.18 Computation of saving sij : (a) the cost of the two individual routes is
2c0i + 2c0j ; (b) the cost of the merged route is c0i + c0j − cij .
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Figure 7.19 Merging two routes in a single route (the saving sij = c0i + c0j − cij ).

rithm is very fast as it takes less than a second on the most common computers to
solve a problem with hundreds of customers. However, the quality of the solutions
can be poor. According to extensive computational experiments, the error made by
the savings algorithm is typically in the 5–20% range.

The savings method is very flexible since it can easily be modified to take into
account additional operational constraints (such as customer time window restric-
tions). However, with such variations, solution quality can be very poor. For this
reason, tailored procedures are usually employed when dealing with constraints dif-
ferent from capacity and length constraints.
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Table 7.6 Savings sij , i, j ∈ V ′ \ {0}, i �= j , in the Bengalur Oil problem.

1 2 3 4 5

1 — 180 160 160 140
2 — 180 160 140
3 — 160 140
4 — 140
5 —

By applying the savings algorithm to the Bengalur Oil problem, five individual
routes are initially generated:

C1 = {0, 1, 0},
C2 = {0, 2, 0},
C3 = {0, 3, 0},
C4 = {0, 4, 0},
C5 = {0, 5, 0}.

Then savings sij , i, j ∈ V ′ \ {0}, i �= j , are calculated (see Table 7.6) and list L is
initialized:

L = {s12, s23, s13, s14, s24, s34, s15, s25, s35, s45}.
Subsequently, routes C1 and C2 are merged while savings s23, s13, s14, s24 are dis-
carded. Then, saving s34 is implemented by merging routes C3 and C4. At this stage
there are no further feasible route merges. The final solution has a cost of 540 km (see
Figure 7.20).

7.5 The Node Routing and Scheduling Problem with
Time Windows

In several settings, customers need to be serviced within specified time windows.
This is the case, for example, with retail outlets that cannot be replenished during
busy periods. In the simplest version of the node routing and scheduling problem
with time windows (NRSPTW), each customer specifies a single time window, while
in other variants each customer can set multiple time windows (e.g. a time window
in the morning and one in the afternoon). Let ei, i ∈ U , be the earliest time at which
service can start at customer i, and let li , i ∈ U , be the latest time (or deadline) at
which service must start at customer i. Similarly, let e0 be the earliest time at which
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Figure 7.20 Solution provided by the savings algorithm for the Bengalur Oil problem.

vehicles can leave the depot, and let l0 be the deadline within which vehicles must
return to the depot. In the NRSPTW, the service starting time at each customer i ∈ U ,
is a decision variable bi . If a vehicle arrives too early at a customer j ∈ U , it has to
wait. Therefore, bj , j ∈ U , is given by

bj = max{ej , bi + si + tij }, j ∈ U,

where i is the customer visited just before j , tij is the quickest travel time between
customers i and j and si is the service time of customer i.

It is worth noting, that, even though travel costs and times are symmetric, a solution
is made up of a set of circuits, because of the time windows that do not allow reversals
of route orientations.

In the remainder of this section, a constructive procedure is illustrated for the
NRSPTW, while in Subsection 7.5.2 a tabu search procedure capable of providing
high-quality solutions to a large number of constrained NRPs is described.

7.5.1 An insertion heuristic

Insertion-type heuristics are among the most efficient for the NRSPTW. In this section,
the I1 Solomon heuristic is described. The procedure builds a feasible solution by
constructing one route at a time. At each iteration the procedure decides which new
customeru∗ ∈ U has to be inserted in the current solution, and between which adjacent
customers i(u∗) and j (u∗) the new customer u∗ has to be inserted on the current route.
When choosing u∗, the algorithm takes into account both the cost increase associated
with the insertion of u∗, and the delay in service time at customers following u∗ on
the route.

Step 0. (Initialization). The first route is initially C1 = {0, ī, 0}, where ī is the cus-
tomer with the earliest deadline. Set k = 1.
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Step 1. Let Ck = {i0, i1, . . . , im} be the current route, where i0 = im = 0. Set

f1(ip−1, u, ip) = α(cip−1u + cuip − µcip−1ip ) + (1 − α)(bu
ip

− bip ), (7.24)

where 0 � α � 1, µ � 0 and bu
ip

is the time when service begins at customer
ip provided that customer u is inserted between ip−1 and ip. For each unrouted
customer u, compute its best feasible insertion position in route Ck as

f1(i(u), u, j (u)) = min
p=1,...,m

f1(ip−1, u, ip),

where i(u) and j (u) are the two adjacent vertices of the current route between
which u should to be inserted. Determine the best unrouted customer u∗ to be
inserted yielding

f2(i(u
∗), u∗, j (u∗)) = max

u
{f2(i(u), u, j (u)},

where
f2(i(u), u, j (u)) = λc0u − f1(i(u), u, j (u)) (7.25)

with λ � 0.

Step 2. Insert customer u∗ in route Ck between i(u∗) and j (u∗) and go back to Step 1.
If u∗ does not exist, but there are still unrouted customers, set k = k + 1, initialize
a new route Ck (as in Step 0) and go back to Step 1. Otherwise, STOP, a feasible
solution of the NRSPTW has been found.

The insertion heuristic tries to maximize the benefit obtained when servicing a
customer on the current route rather than on an individual route. For example, when
µ = α = λ = 1, Equation (7.25) corresponds to the saving in distance from servicing
customer u on the same route as customers i and j rather than using an individual
route. The best feasible insertion place of an unrouted customer is determined by
minimizing a measure, defined by Equation (7.24), of the extra distance and the extra
time required to visit it. Different values of the parameters µ, α and λ lead to different
possible criteria for selecting the customer to be inserted and its best position in the
current route.

McNish is a chain of supermarkets located in Scotland. Last 13 October, the ware-
house situated in Aberdeen was required to serve 12 sales points located in Banchory,
Clova, Cornhill, Dufftown, Fyvie, Huntly, Newbyth, Newmill, Peterhead, Strichen,
Towie and Turriff. The number of requested pallets and the time windows within
which service was allowed are reported in Table 7.7, whereas distances and travel
times on the fastest routes between the cities are reported in Tables 7.8–7.11. Each
vehicle had a capacity of 30 pallets.

Each vehicle leaves the warehouse at 9:00 a.m. and must return to the warehouse
by 2:00 p.m. Service time (time needed for unloading a vehicle) can be assumed to
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Table 7.7 Number of pallets and time windows for the sales point in the McNish problem.

Sales point Vertex Number of pallets Time window

Banchory 1 9 9:00 a.m. – 11:30 a.m.
Clova 2 7 9:00 a.m. – 12:30 a.m.
Cornhill 3 5 9:00 a.m. – 12:30 a.m.
Dufftown 4 4 11:00 a.m. – 2:30 a.m.
Fyvie 5 8 9:00 a.m. – 12:30 a.m.
Huntly 6 8 11:00 a.m. – 1:30 p.m.
Newbyth 7 7 9:00 a.m. – 12:30 a.m.
Newmill 8 6 10:00 a.m. – 12:30 a.m.
Peterhead 9 6 9:00 a.m. – 10:30 a.m.
Strichen 10 6 9:00 a.m. – 11:15 a.m.
Towie 11 4 10:00 a.m. – 12:45 a.m.
Turriff 12 6 10:00 a.m. – 12:30 a.m.

Table 7.8 Distance (in kilometres) between cities computed on the fastest route in
the McNish problem (Part I).

Aberdeen Banchory Clova Cornhill Dufftown Fyvie Huntly

Aberdeen 0.0 28.4 58.1 84.7 83.4 41.1 63.0
Banchory 28.4 0.0 48.1 89.7 76.1 52.7 67.9
Clova 58.1 48.1 0.0 46.3 34.1 48.6 24.5
Cornhill 84.7 89.7 46.3 0.0 36.8 34.9 23.2
Dufftown 83.4 76.1 34.1 36.8 0.0 53.8 21.8
Fyvie 41.1 52.7 48.6 34.9 53.8 0.0 33.4
Huntly 63.0 67.9 24.5 23.2 21.8 33.4 0.0
Newbyth 59.5 75.3 66.1 35.1 63.4 22.7 42.9
Newmill 31.8 36.8 48.6 55.2 64.4 21.0 43.9
Peterhead 51.5 82.5 95.3 70.0 100.4 50.2 79.9
Strichen 56.7 87.8 80.0 47.0 77.3 34.8 56.8
Towie 62.1 47.5 13.0 53.3 41.0 55.5 31.4
Turriff 55.1 66.7 51.9 21.0 49.2 14.2 28.7

be 15 min on average for every sales point, regardless of demand. For the sake of
simplicity, time is computed in minutes starting at 9:00 a.m. (for example, 11:00 a.m.
corresponds to 120 min). The I1 insertion procedure (with parameters α = 0.9; µ =
λ = 1) gave the following results. At the first iteration,

C1 = {0, 9, 0}.
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Table 7.9 Distance (in kilometres) between cities computed on the fastest route in
the McNish problem (Part II).

Newbyth Newmill Peterhead Strichen Towie Turriff

Aberdeen 59.5 31.8 51.5 56.7 62.1 55.1
Banchory 75.3 36.8 82.5 87.8 47.5 66.7
Clova 66.1 48.6 95.3 80.0 13.0 51.9
Cornhill 35.1 55.2 70.0 47.0 53.3 21.0
Dufftown 63.4 64.4 100.4 77.3 41.0 49.2
Fyvie 22.7 21.0 50.2 34.8 55.5 14.2
Huntly 42.9 43.9 79.9 56.8 31.4 28.7
Newbyth 0.0 43.5 39.8 16.9 72.9 15.1
Newmill 43.5 0.0 50.3 43.9 52.7 34.9
Peterhead 39.8 50.3 0.0 24.7 100.6 47.8
Strichen 16.9 43.9 24.7 0.0 86.9 28.4
Towie 72.9 52.7 100.6 86.9 0.0 58.8
Turriff 15.1 34.9 47.8 28.4 58.8 0.0

Table 7.10 Travel times (in minutes) on the fastest routes between cities in
the McNish problem (Part I).

Aberdeen Banchory Clova Cornhill Dufftown Fyvie Huntly

Aberdeen 0 34 74 89 87 51 65
Banchory 34 0 58 96 87 63 72
Clova 74 58 0 56 42 70 31
Cornhill 89 96 56 0 43 42 27
Dufftown 87 87 42 43 0 65 26
Fyvie 51 63 70 42 65 0 43
Huntly 65 72 31 27 26 43 0
Newbyth 70 90 80 38 74 27 51
Newmill 37 44 61 68 67 28 44
Peterhead 58 88 117 80 113 63 90
Strichen 62 92 97 52 91 43 68
Towie 67 54 19 61 47 75 36
Turriff 67 79 64 27 58 16 35

For each unrouted customer u, its best feasible insertion position in route C1 is com-
puted, as reported in Table 7.12. Based on these evaluations, it is decided to insert
vertex 10 in C1 as follows:

C1 = {0, 9, 10, 0}.
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Table 7.11 Travel times (in minutes) on the fastest routes between cities in
the McNish problem (Part II).

Newbyth Newmill Peterhead Strichen Towie Turriff

Aberdeen 70 37 58 62 67 67
Banchory 90 44 88 92 54 79
Clova 80 61 117 97 19 64
Cornhill 38 68 80 52 61 27
Dufftown 74 67 113 91 47 58
Fyvie 27 28 63 43 75 16
Huntly 51 44 90 68 36 35
Newbyth 0 54 49 21 84 18
Newmill 54 0 63 57 63 44
Peterhead 49 63 0 30 118 59
Strichen 21 57 30 0 102 35
Towie 84 63 118 102 0 69
Turriff 18 44 59 35 69 0

Then, two more customers are accommodated in route C1:

C1 = {0, 9, 10, 7, 12, 0}.
At this stage the length of C1 is 163.3 km. Hence, a new route C2 is initialized:

C2 = {0, 1, 0}.
After three more iterations, C2 is

C2 = {0, 1, 8, 5, 3, 0},
with a distance of 205.8 km. Finally, route C3 is constructed,

C3 = {0, 11, 2, 4, 6, 0},
with a distance of 194.0 km. The final solution covers 563.1 km and corresponds to
the schedule reported in Tables 7.13–7.15.

7.5.2 A unified tabu search procedure for constrained node
routing problems

In recent years the field of heuristics has been transformed by the development of
tabu search (TS). This is essentially a local search method that generates a sequence
of solutions in the hope of generating better local optima. TS differs from classical
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Table 7.12 Best feasible insertion positions in route C1 for each unrouted customer in
the McNish problem at the first iteration of the I1 algorithm.

u f1(i, u, j) i(u) j (u) f2(i, u, j)

2 106.51 9 0 −48.41
3 105.48 9 0 −20.78
4 134.77 9 0 −51.37
5 42.92 9 0 −1.82
6 93.46 9 0 −30.46
7 50.62 9 0 8.88
8 33.24 9 0 −1.44
9 — — — —

10 31.81 9 0 24.89
11 114.28 9 0 −52.18
12 54.56 9 0 0.54

Table 7.13 Schedule of the first route in the McNish problem.

City Arrival Departure Cumulated load

Aberdeen — 9:00 a.m. 0
Peterhead 9:58 a.m. 10:13 a.m. 6
Strichen 10:43 a.m. 10:58 a.m. 12
Newbyth 11:19 a.m. 11:34 a.m. 19
Turriff 11:52 a.m. 12:07 p.m. 25
Aberdeen 1:14 p.m. —

Table 7.14 Schedule of the second route in the McNish problem.

City Arrival Departure Cumulated load

Aberdeen — 9:00 a.m. 0
Banchory 9:34 a.m. 9:49 a.m. 9
Newmill 10:33 a.m. 10:48 a.m. 15
Fyvie 11:16 a.m. 11:31 a.m. 23
Cornhill 12:13 a.m. 12:28 a.m. 28
Aberdeen 1:57 p.m. —

methods in that the successive solutions it examines do not necessarily improve upon
each other. A key concept at the heart of TS is that of neighbourhood. The neighbour-
hood N(s) of a solution s is the set of all solutions that can be reached from s by
performing a simple operation. For example, in the context of the NRP, two common
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Table 7.15 Schedule of the third route determined for the McNish problem.

City Arrival Departure Cumulated load

Aberdeen — 9:00 a.m. 0
Towie 10:07 a.m. 10:22 a.m. 4
Clova 10:41 a.m. 10:56 a.m. 11
Dufftown 11:38 a.m. 11:53 a.m. 15
Huntly 12:19 a.m. 12:34 a.m. 23
Aberdeen 1:39 p.m. —

neighbourhood structures are obtained by moving a customer from its current route
to another route or by swapping two customers between two different routes. The
standard TS mechanism is to move from s to the best neighbour in N(s). This way of
proceeding may, however, induce cycling. For example, s′ may be the best neighbour
of s which, in turn, is the best neighbour of s′. To avoid cycling the search process is
prevented from returning to solutions processing some attributes of solutions already
considered. Such solutions are declared tabu for a number of iterations. For example,
if a customer v is moved from route r to route r ′ at iteration t , then moving v back
to route r will be declared tabu until iteration t + θ , where θ is called the length
of the tabu tenure (typically θ is chosen between 5 and 10). When the tabu tenure
has expired, v may be moved back to route r at which time the risk of cycling will
most likely have disappeared because of changes that have occurred elsewhere in the
solution.

Not only is it possible to accept deteriorating solutions in TS, but it may also be
interesting to consider infeasible solutions. For example, in the sequence of solutions
s, s′, s′′, both s and s′′ may be feasible while s′ is infeasible. If s′′ cannot be reached
directly from s, but only from s′, and if it improves upon s, then it pays to go through the
infeasible solution s′. This can occur if, for example, s′ contains a route r that violates
vehicle capacity due to the inclusion of a new customer in that route. Feasibility may
be restored at the next iteration if a customer is removed from route s′. A practical way
of handling infeasible solutions in TS is to work with a penalized objective function.
If f (s) is the actual cost of solution s, then the penalized objective is defined as

f ′(s) = f (s) + αQ(s) + βD(s) + γW(s), (7.26)

where Q(s), D(s), W(s) are the total violations of the vehicle capacity constraints,
route duration constraints and time window constraints, respectively. Other types of
constraints can of course be handled in the same way. The parameters α, β and γ are
positive weights associated with constraint violations. These parameters are initially
set equal to 1 and self-adjust during the course of the search to produce a mix of
feasible and infeasible solutions. For example, if at a given iteration s is feasible with
respect to the vehicle capacity constraint, then dividing α by a factor 1 + δ (where
δ > 0) will increase the likelihood of generating an infeasible solution at the next
iteration. Conversely, if s is infeasible, multiplying α by 1 + δ will help the search
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move to a feasible solution. A good choice of δ is typically 0.5. The same principle
applies to β and γ .

The algorithm repeatedly performs these operations starting from an initial solution
which may be infeasible. It stops after a preset number of iterations. As is common
in TS, this number can be very large (e.g. several thousands).

The article by Cordeau, Laporte and Mercier quoted at the end of this chapter
illustrates how this implementation of TS has been employed to generate high-quality
solutions for a large class of difficult NRPs.

7.6 Arc Routing Problems

According to the definition given in Section 7.2, an ARP consists of designing a least-
cost set of vehicles routes in a graph G(V, A, E), such that each arc and edge in a
subset R ⊆ A ∪ E should be visited. Unlike NRPs (which are formulated and solved
on an auxiliary complete graph G′), ARPs are generally modelled directly on G.

In this section, unconstrained ARPs, namely the CPP and the RPP, are examined.
Constrained ARPs can be approached using the algorithmic ideas employed for the
constrained NRPs along with the solution procedures for the CPP and the RPP. For
example, the ARP with capacity and length constraints, whose applications arise in
garbage collection and mail delivery, can be heuristically solved using a ‘cluster first,
route second’ approach: in a first stage, the required arcs and edges are divided into
clusters, each of which is assigned to a vehicle, while at a second stage an RPP is
solved for each cluster. In this textbook, constrained ARPs are not tackled for the sake
of brevity.

7.6.1 The Chinese postman problem

The CPP is to determine a minimum-cost route traversing all arcs and all edges of a
graph at least once. Its main applications arise in garbage collection, mail delivery,
network maintenance, snow removal and meter reading in urban areas.

The CPP is related to the problem of determining whether a graph G(V, A, E) is
Eulerian, i.e. whether it contains a tour traversing each arc and each edge of the graph
exactly once. Obviously, in an Eulerian graph with nonnegative arc and edge costs,
each Eulerian tour constitutes an optimal CPP solution. In a nonEulerian graph, an
optimal CPP solution must traverse at least one arc or edge twice.

Necessary and sufficient conditions for the existence of an Eulerian tour depend
on the type of graph G considered (directed, undirected or mixed), as stated in the
following propositions, whose proofs are omitted for brevity.

Property. A directed and strongly connected graph G is Eulerian if and only if it is
symmetric, i.e. for any vertex the number of incoming arcs (incoming semi-degree)
is equal to the number of outgoing arcs (outgoing semi-degree) (symmetric vertex).
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i j

Figure 7.21 A mixed Eulerian graph which is not symmetric.

Property. An undirected and connected graph G is Eulerian if and only if it is even,
i.e. each vertex has an even degree (even vertex).

Property. A mixed and strongly connected graph G is Eulerian if and only if

(a) the total number of arcs and of edges incident to any vertex is even (even graph);

(b) for each set S of vertices (S ⊂ V and S �= ∅), the difference between the
number of the arcs traversing the cut (S, V \ S) in the two directions is less
than or equal to the number of edges of the cut (balanced graph).

Furthermore, since an even and symmetric graph is balanced, the following propo-
sition holds.

Property. A mixed, strongly connected, even and symmetric graph G is Eulerian.
This condition is sufficient, but not necessary, as illustrated in the example reported

in Figure 7.21.
The solution of the CPP can be decomposed in two steps.

Step 1. Define a least-cost set of arcs A(a) and of edges E(a) such that the multigraph
G(a) = (V , A ∪ A(a), E ∪ E(a)) is Eulerian (if G is itself Eulerian, then A(a) = ∅
and E(a) = ∅ and, therefore, G = G(a)).

Step 2. Determine an Eulerian tour in G(a).

The first step of the procedure can be executed in polynomial time if G is a directed
or undirected graph, while it results in an NP-hard algorithm if G is mixed. The second
step can be performed in O(|A∪E|) time with the following end-pairing procedure.

Step 1. Determine a covering of the edges and arcs of G(a) through a set C of tours,
in such a way that an edge/arc is traversed exactly once.

Step 2. If |C| = 1, STOP, the tour obtained is Eulerian.

Step 3. Determine two tours in C which contain at least one common vertex. Merge
the two tours, update C and go back to step 1.

In step 1, a tour in G(a) can be obtained by visiting the multigraph randomly until
the initial vertex is included twice. Then, the edges/arcs of the tour are removed. In
the new multigraph a new tour can be looked for.

In the sequel it is shown how to determine G(a) in the cases where G is directed or
undirected.
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Directed Chinese postman problem. When G is directed, in an optimal solution
the arcs in A(a) form a set of least-cost paths connecting the asymmetric vertices.
Therefore A(a) can be obtained by solving a minimum-cost flow problem (a trans-
portation problem, see Section 3.4) on a bipartite directed graph suitably defined.
Let V + and V − be the subsets of V whose vertices have a positive and a negative
difference between the incoming semi-degree and the outgoing semi-degree, respec-
tively. The bipartite directed graph is GT (V + ∪ V −, AT ), where AT = {(i, j) : i ∈
V +, j ∈ V −}.

With each arc (i, j) ∈ AT is associated a cost wij equal to that of a least-cost
path in G from vertex i to vertex j . Let also oi(> 0), i ∈ V +, be the supply of the
vertex i, equal to the difference between its incoming semi-degree and its outgoing
semi-degree. Similarly, let di(> 0), i ∈ V −, be the demand of vertex i, equal
to the difference between its outgoing semi-degree and its incoming semi-degree.
Furthermore, let sij , (i, j) ∈ AT , be the decision variable associated with the flow
along arc (i, j). The transportation problem is as follows.

Minimize
minimize

∑

(i,j)∈AT

wij sij (7.27)

subject to
∑

j∈V −
sij = oi, i ∈ V +, (7.28)

∑

i∈V +
sij = dj , j ∈ V +, (7.29)

sij � 0, (i, j) ∈ AT . (7.30)

Of course,
∑

i∈V + oi = ∑

j∈V − dj , so that problem (7.27)–(7.30) is feasible. Let
s∗
ij , (i, j) ∈ AT , be an optimal (integer) solution of the transportation problem. A(a)

is formed by the arcs (r, s) ∈ A belonging to the least-cost paths associated with the
arcs (i, j) ∈ AT such that s∗

ij > 0 ((r, s) is taken sij times).

In the directed graph G(V, A) shown in Figure 7.22, the differences between the
incoming and outgoing semi-degrees of vertices 0, 1, 2, 3, 4 and 5 are −1, 0, 1, 0,
1, −1, respectively. The least-cost paths from vertex 2 to vertex 0 and from vertex
2 to vertex 5 are given by the sequences of arcs {(2,3), (3,4), (4,5), (5,0)} (of cost
equal to 109) and {(2,3), (3,4), (4,5)} (of cost equal to 86), respectively. Similarly,
the least-cost path from vertex 4 to vertex 0 is formed by {(4,5), (5,0)}, of cost 51,
while the least-cost path from vertex 4 to vertex 5 is given by arc (4,5) whose cost is
equal to 28. We can therefore formulate the transportation problem on the bipartite
directed graph GT (V + ∪ V −, AT ) represented in Figure 7.23. The optimal solution
to the transportation problem is

s∗
20 = 0, s∗

25 = 1, s∗
40 = 1, s∗

45 = 0.
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Figure 7.22 A directed graph G(V, A).
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Figure 7.23 Bipartite directed graph GT (V + ∪ V −, AT ) associated
with graph G in Figure 7.22.

Therefore, set A(a) is formed by the arcs of the least-cost paths from vertex 2 to
vertex 5 and from vertex 4 to vertex 0. Adding such arcs to the directed graph G,
a least-cost Eulerian multigraph is obtained (Figure 7.24). Hence, an optimal CPP
solution of cost 368 is defined by the following arcs:

{(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 0), (0, 4),

(4, 2), (2, 3), (3, 4), (4, 5), (5, 4), (4, 5), (5, 0)}.
In this solution some arcs are traversed more than once (for example, arc (4,5)), but
on these arcs it is performed only once.
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Figure 7.24 Least-cost Eulerian multigraph associated with
the directed graph G in Figure 7.22.

Undirected Chinese postman problem. When G is undirected, the set E(a) can
be obtained as a solution of a matching problem on an auxiliary graph GD(VD, ED).
VD is the set of odd vertices in G (VD is formed by an even number of vertices) and
ED = {(i, j) : i ∈ VD, j ∈ VD, i �= j}. With each edge (i, j) ∈ ED is associated a
cost wij equal to that of a least-cost chain in G between vertices i and j . The set E(a)

is therefore obtained as the union of the edges which are part of the least-cost chains
associated with the edges of the optimal matching on GD .

Welles is in charge of maintaining the road network ofWales (Great Britain).Among
other things, the company has to monitor periodically the roads in order to locate craps
and potholes in the asphalt. To this purpose, the road network has been divided into
about 10 subnetworks, each of which has to be visited every 15 days by a dedicated
vehicle. The graph representing one such subnetwork is shown in Figure 7.25. In
order to determine the optimal undirected CPP solution, a minimum-cost matching
problem between the odd-degree vertices (vertices 2, 3, 6, 7, 9 and 11) is solved. The
optimal matching is 2–3, 6–7, 9–11. The associated set of chains in G is (2,3), (6,7)
and (9,11) (total cost is 7.5 km). Adding these edges to G, the Eulerian multigraph in
Figure 7.26 is obtained.

Finally, by using the end-pairing procedure, the optimal undirected CPP solution
is obtained:

{(0, 1), (1, 3), (3, 2), (2, 5), (5, 4), (4, 3), (3, 2), (2, 0),

(0, 6), (6, 7), (7, 8), (8, 5), (5, 6), (6, 7), (7, 9), (9, 11),

(11, 10), (10, 8), (8, 9), (9, 11), (11, 12), (12, 9), (9, 0)}
(total cost is 52.8 km, the cost of the edges of G, plus 7.5 km). In this solution, edges
(2, 3), (6, 7) and (9, 11) are traversed twice.
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Figure 7.25 Graph representation used in the Welles problem.
Costs cij , (i, j) ∈ E, are in kilometres.
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Figure 7.26 Least-cost Eulerian multigraph in the Welles problem.

7.6.2 The rural postman problem

The RPP is to determine in a graph G(V, A, E) a least-cost route traversing a subset
R ⊆ A ∪ E of required arcs and edges at least once. Its applications arise in garbage
collection, mail delivery, network maintenance, snow removal and meter reading in
scarcely populated areas.

Let G1(V1, A1, E1), . . . , Gp(Vp, Ap, Ep) be the p connected components of
graph G(V, R) induced by the required arcs and edges (see Figures (7.27) and (7.28)).
The RPP solution can be obtained in two steps.
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Figure 7.27 A mixed graph G(V, A, E).
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Figure 7.28 Connected components induced by the required arcs and
edges of graph G in Figure 7.27.

Step 1. Determine a least-cost set of arcs A(a) and edges E(a) such that the multigraph
G(a) = (V , (R ∩ A) ∪ A(a), (R ∩ E) ∪ E(a)) is Eulerian (see Figure 7.29).

Step 2. Determine an Eulerian tour in G(a).

The first step is NP-hard even for directed and undirected graphs, if p > 1. For
p = 1, the RPP can be reduced to a CPP. The second step can be solved in polynomial
time with the end-pairing procedure. In what follows, the first stage of two constructive
heuristics is illustrated for directed and undirected graphs.

Directed rural postman problem. A heuristic solution to the directed RPP can be
obtained through the ‘balance-and-connect’ heuristic.

Step 1. Using the procedure employed for the directed CPP, construct a directed
symmetric graph G′(a)(V , R ∪ A′(a)), by adding to G(V, R) a suitable set of least-
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Figure 7.29 Least-cost Eulerian multigraph associated with graph G(V, R) of Figure 7.27.

cost paths between nonsymmetric vertices. If G′(a)(V , R ∪ A′(a)) is connected,
STOP, G′(a) = G(a) is Eulerian.

Step 2. Let p′ (1 < p′ � p) be the number of connected components of G′(a)(V , R∪
A′(a)). Construct an auxiliary undirected graph G(c) = (V (c), E(c)), in which there
is a vertex h ∈ V (c) for each connected component of G′(a), and, between each pair
of vertices h, k ∈ V (c), h �= k, there is an edge (h, k) ∈ E(c). With edge (h, k) is
associated a cost ghk equal to

ghk = min
i∈Vh,j∈Vk

{wij + wji},

where wij and wji are the costs of the least-cost paths from vertex i to vertex
j and from vertex j to vertex i in G, respectively. Compute the minimum-cost
tree T (c) = (V (c), E

(c)
T ) spanning the vertices of graph G(c). Construct a sym-

metric, connected and directed graph G(a)(V , R ∪ A′(a) ∪ A′′(a)) by adding to
G′(a)(V , R ∪ A′(a)) the set of arcs A′′(a) belonging to the least-cost paths cor-
responding to the edges E

(c)
T of the tree T (c).

Step 3. Apply, when possible, the shortcuts method (see the Christofides algorithm
for the STSP) in order to reduce the solution cost.

The ‘balance and connect’ algorithm is applied to problem represented in Fig-
ure 7.30. The directed graph G(V, R) has five connected components of required
arcs. At the end of Step 1 (see Figure 7.31), A′(a) is formed by arcs (2,1) (the least-
cost path from vertex 1 to vertex 2), (3,4) (the least-cost path from vertex 3 to vertex 4),
(5,6) (the least-cost path from vertex 5 to vertex 6), (8,9) and (9,11) (the least-cost
path from vertex 8 to vertex 11), and (10,7) (the least-cost path from vertex 10 to
vertex 7). At Step 2, V (c) = {1, 2, 3}, and the least-cost paths from vertex 1 to vertex
4 (arc (1,4) and vice versa (arc (4,1)), and from vertex 6 to vertex 7 (arc (6,7)) and vice
versa (arcs (7,2), (2,3) and (3,6)) are added to the partial solution (see Figure 7.32).
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Figure 7.30 Directed graph G(V, A).
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Figure 7.31 Directed graph G′(a)(V , R ∪ A′(a)) obtained at the end of Step 1 of
the ‘balance and connect’ algorithm.

Finally, using the end-pairing procedure, the following circuit of cost 379 is obtained:

{(0, 2), (2, 1), (1, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 11),

(11, 10), (10, 7), (7, 2), (2, 3), (3, 6), (6, 3), (3, 4), (4, 1), (1, 0)}.
It can be shown that in this case the ‘balance and connect’ solution is optimal.
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Figure 7.32 Symmetric and connected directed graph G(a)(V , R ∪ A′(a) ∪ A′′(a))

obtained at the end of Step 2 of the ‘balance and connect’ algorithm.

Undirected rural postman problem. A heuristic solution to the undirected RPP
can be obtained through the Frederickson procedure.

Step 1. Using the matching procedure illustrated for the undirected CPP, construct
an even graph G′(a)(V , R ∪ E′(a)). If G′(a)(V , R ∪ E′(a)) is also connected, STOP,
G′(a) = G(a) is Eulerian.

Step 2. Let p′ (1 < p′ � p) be the number of connected components of G′(a)(V , R∪
E′(a)). Construct an auxiliary undirected graph G(c)(V (c), E(c)), in which there is
a vertex h ∈ V (c) for each connected component of G′(a), and between each couple
of vertices h, k ∈ V (c), h �= k, there is an edge (h, k) ∈ E(c). With each edge (h, k)

is associated a cost ghk equal to

ghk = min
i∈Vh,j∈Vk

{wij },

where wij is the cost of the least-cost path between vertices i and j in G. Com-
pute a minimum-cost tree T (c) = (V (c), E

(c)
T ) spanning the vertices of graph G(c).

Construct an even and connected graph G(a)(V , R ∪ E′(a) ∪ E′′(a)) by adding to
R ∪ E′(a) the set of edges E′′(a) (each of which taken twice) belonging to the
least-cost chains corresponding to the edges E

(c)
T of tree T (c).

Step 3. Apply, if possible, the shortcuts method (see the Christofides algorithm for
the STSP) in order to reduce solution cost.

Tracon distributes newspapers and milk door-to-door all over Wales. In the same
road subnetwork as in the Welles problem, customers are uniformly distributed along
some roads (represented by continuous lines in Figure 7.33). The entire demand of the
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Figure 7.33 Graph G(V, E) associated with the Tracon problem (costs are in kilometres).

subnetwork can be served by a single vehicle. By applying the Frederickson heuris-
tic, the even and connected multigraph G(a)(V , R ∪ E(a)) shown in Figure 7.34 is
obtained. Finally, by using the end-pairing procedure, the following cycle is gener-
ated:

{(0, 9), (9, 12), (12, 11), (11, 10), (10, 8), (8, 7), (7, 6),

(6, 5), (5, 4), (4, 3), (3, 1), (1, 3), (3, 2), (2, 5), (5, 6), (6, 0)

(total cost is 31.3 km). It is worth noting that edge (5,6) is traversed twice without
being served. It can be shown that the Frederickson solution is optimal.

7.7 Real-Time Vehicle Routing and Dispatching

As pointed out in Section 7.2, there exist several important short-haul transportation
problems that must be solved in real time. In this section, the main features of such
problems are illustrated.

In real-time VRDPs, uncertain data are gradually revealed during the operational
interval, and routes are constructed in an on-going fashion as new data arrive. The
events that lead to route modifications can be

• the arrival of new user requests,

• the arrival of a vehicle at a destination,

• the update of travel times.
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Figure 7.34 Even and connected multigraph G(a)(V , R ∪ E(a)), obtained at the end of
Step 2 of the Frederickson algorithm applied to the Tracon problem.

Every event must be processed according to the policies set by the company or orga-
nization operating the fleet of vehicles. As a rule, when a new request is received, one
must decide whether it can be serviced on the same day, or whether it must be delayed
or rejected. If the request is accepted, it is assigned temporarily to a position in a vehi-
cle route. The request is effectively serviced as planned if no other event occurs in the
meantime. Otherwise, it can be assigned to a different position of the same vehicle
route, or even dispatched to a different vehicle. It is worth noting that at any time each
driver just needs to know his next stop. Hence, when a vehicle reaches a destination
it has to be assigned a new destination. Because of the difficulty of estimating the
current position of a moving vehicle, reassignments could not easily made until quite
recently. However, due to advances in vehicle positioning and communication tech-
nologies, route diversions and reassignments are now a feasible option and should
take place if this results in a cost saving or in an improved service level. Finally, if an
improved estimation of vehicle travel times is available, it may be useful to modify
the current routes or even the decision of accepting a request or not. For example, if
an unexpected traffic jam occurs, some user services can be deferred. If the demand
rate is low, it is sometimes useful to relocate idle vehicles in order to anticipate future
demands or to escape a forecasted traffic congestion.

Real-time problems possess a number of particular features, some of which have
just been described. In the following, the remaining characteristics are outlined.

Quick response. Algorithms for solving real-time VRDPs must provide a quick
response so that route modifications can be transmitted timely to the fleet. To this
end, two approaches can be used: simple policies (like the FCFS), or more involved
algorithms running on parallel hardware. The choice between them depends mainly
on the objective, the degree of dynamism and the demand rate.
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Denied or deferred service. In some applications it is valid to deny service to
some users, or to forward them to a competitor, in order to avoid excessive delays or
unacceptable costs. For instance, requests that cannot be serviced within a given time
windows are rejected.

Congestion. If the demand rate exceeds a given threshold, the system becomes
saturated, i.e. the expected waiting time of a request goes to infinity.

The degree of dynamism. Designing an algorithm for solving real-time VRDPs
depends to a large extent on how dynamic the problem is. To quantify this concept,
the degree of dynamism of a problem has been defined. Let [0, T ] be the operational
interval and let ns and nd be the number of static and dynamic requests, respectively
(ns + nd = |U |). Moreover, let ti ∈ [0, T ] be the occurrence time of service request
of customer i ∈ U . Static requests are such that ti = 0, i ∈ U , while dynamic ones
have ti ∈ (0, T ], i ∈ U . The degree of dynamism δ can be simply defined as

δ = nd

ns + nd

and may vary between 0 and 1. Its meaning is straightforward. For instance, if δ is
equal to 0.3, then 3 customers out of 10 are dynamic. This definition can be generalized
in order to take into account both dynamic request occurrence times and possible time
windows. For a given δ value, a problem is more dynamic if immediate requests occur
at the end of the operational interval [0, T ]. As a result, the measure of dynamism can
be generalized as follows:

δ′ =
∑nd

i=1 ti/T

ns + nd
.

Again δ′ ranges between 0 and 1. It is equal to 0 if all user requests are known in
advance while it is equal to 1 if all user requests occur at time T . Finally, the definition
of δ′ can be modified to take into account possible time windows on user service time.
Let ai and bi be the ready time and deadline of customer i ∈ U , respectively. Then,

δ′′ =
∑nd

i=1 [T − (bi − ti )]/T

ns + nd
.

It can be shown that δ′′ also varies between 0 and 1. Moreover, it is worth noting that
if no time windows are imposed (i.e. ai = ti and bi = T for each customer i ∈ U ),
then δ′′ = δ′. As a rule, vendor-based distribution systems (such as those distributing
heating oil) are weakly dynamic. Problems faced by long-distance couriers and appli-
ance repair service companies are moderately dynamic. Finally, emergency services
exhibit a strong dynamic behaviour.

Objectives. In real-time VRDPs the objective to be optimized is often a combina-
tion of different measures. In weakly dynamic systems the focus is on minimizing
routing cost but, when operating a strongly dynamic system, minimizing the expected
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response time (i.e. the expected time lag between the instant a user service begins and
its occurrence time) becomes a key issue. Another meaningful criterion which is often
considered (alone or combined with other measures) is throughput optimization, i.e.
the maximization of the expected number of requests serviced within a given period
of time.

7.8 Integrated Location and Routing

Facility location and vehicle routing are two of the most fundamental decisions in
logistics. Location decisions that are very costly and difficult to change are said to
be strategic, e.g. those involving major installations such as factories, airports, fixed
transportation links, etc. Others are said to be tactical, because, while still being
relatively costly, they can still be modified after several years. Warehouse and store
location fall in that category. Finally, operational location decisions involve easily
movable facilities such as parking areas, mail boxes, etc. Once facilities are located,
a routing plan must be put in place to link them together on a regular basis. All
too often, facilities are first located without sufficient consideration of transportation
costs, which may result in systemic inefficiencies. When planning to locate facilities
it is preferable to integrate into the analysis the routing costs that these will generate.
This applies equally well to strategic, tactical and operational decisions. A strategic
location-routing decision is the location of airline hubs whose choice bears on routing
costs. The location of depots and warehouses in a supply chain is a tactical decision
influencing delivery costs to customers. A simple example arising at the operational
level is mail box location. Locating a large number of mail boxes in a city will
improve customer convenience since average walking distance to a mail box will be
reduced. At the same time, the cost of emptying a larger number of mail boxes on a
regular basis will be higher. Unfortunately, integrated location-routing mathematical
models combining these two aspects will often contain too many integer variables and
constraints to be solvable optimally. Heuristics based on a decomposition principle
are often used instead. Facilities are first located, customers are assigned to facilities,
and routing is then performed. These three decisions are then iteratively updated until
no significant improvement can be reached. A detailed account of location-routing
applications and methods can be found in the survey by Laporte.

7.9 Vendor-Managed Inventory Routing

VMR refers to situations where decisions about the timing and level of customer
replenishment is determined not by the customer, but by the supplier. Traditionally,
VMR has been the practice in the gas, petroleum and heating oil distribution but it
is now becoming more frequent in automobile parts distribution and in the food and
beverage industries. It requires the supplier to be aware of the customers’ stock levels,
which is not a major difficulty in cases where consumption is easily predictable, as
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in heating oil distribution. It is now possible to link vending machines to automatic
dialing systems in order to inform suppliers of their stock level. There are two distinct
advantages to VMR: by deciding when to deliver, the supplier can better plan its
routes and delivery times by suitably combining deliveries to customers located in
the same geographical zone; VMR also relieves customers of the costs associated
with inventory monitoring and ordering.

The particular problem of combining routing and resupply decisions is known as
the inventory-routing problem (IRP). The IRP consists of deciding which customers
to visit during each period (e.g. one day) of a given time horizon (e.g. one week), and
how much to deliver to each of them at each visit. In the simplest of cases, consider
a planning horizon of t days, a single customer whose initial inventory is zero and
whose usage rate (per day) is r . Denote by Q the customer capacity, by q the vehicle
capacity, and by c the delivery cost. Then it is optimal to make deliveries only when
customer stock is zero, which generates a cost of

z = c max

{⌈

tr

Q

⌉

,

⌈

tr

q

⌉}

.

The term within the braces is the number of deliveries per period of t days. It is
driven by the smallest of the two capacities Q or q. To provide an idea of just how
difficult the problem becomes when there is more than one customer, even with initial
inventories of zero, consider two customers i = 1, 2, each of them with a capacity
Qi , usage rate ri , and delivery cost ci . Two extreme policies are possible here. Under
the first policy, each customer is visited separately, generating a cost,
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. (7.31)

Under the second policy, the two customers are always visited jointly, yielding a cost,

z2 = c1,2 max
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q
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, (7.32)

where c1,2 is the combined routing cost through the two customers. The first two terms
in braces apply if the number of deliveries is driven by Q1 or Q2. In the third case,
vehicle capacity is the most binding constraint. In this case, one must also decide how
much to deliver to each customer. Matters complicate when the number of customers
is larger than two since all possible ways of making joint deliveries must be considered
and the joint routing cost through a given set of customers is the solution value of a
TSP.

Another level of difficulty arises from the fact that usage rates are not constant in
practice and must be treated as random variables. As a result, safety margins must be
incorporated into the models and the cost of stockout must be explicitly accounted
for.

With respect to the standard VRP, research on the IRP is still in its early stages
and it is doubtful whether this problem can be solved exactly for any meaningful
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size. A practical and relatively simple heuristic is to select at each period a subset of
customers having a high degree of urgency, i.e. a low inventory level, and solve a VRP
associated with that set of customers, using one of the known VRP heuristics. The
same process can be applied to each period. Solution improvements can be obtained
by rescheduling some visits between sets of consecutive days and reoptimizing the
individual VRP solutions.

An interesting account of VRM and IRP can be found in the article by Campbell
et al. listed in the references.

Monsanto is a company based at Guimares (Portugal) distributing soft drinks in
the Costa Verde and Montanhas regions. The main two customers are located in Porto
and Braga and have demand rates equal to 42 and 26 cartons per day, respectively.
The planning horizon consists of 30 days. The vehicle capacity is 100 cartons. Both
a round trip from Guimares to Porto and a round trip from Guimares to Braga cost
€180, while a tour Guimares–Porto–Braga–Guimares costs €210. The customer in
Porto can hold at most 70 cartons while the customer in Braga can stock at most 85
cartons. If each customer is visited separately, the cost computed by using Equation
7.31 is z1 = 5040 euros/month, while, if the two customers are visited jointly, the
costs given by Equation 7.32 is z2 = 4410 euros/month.

7.10 Questions and Problems

7.1 Show that if the costs associated with the arcs of a complete directed graph
G satisfy the triangle inequality property, then there exists an ATSP optimal
solution which is a Hamiltonian circuit in G′.

7.2 You have an algorithm capable of solving the capacitated NRP with no fixed
vehicle costs and you would like to solve a problem where a fixed cost f is
attached to each vehicle. Show how such a problem can be solved using the
algorithm at hand.

7.3 Show that, if there are no operational constraints, there always exists an optimal
NRP solution in which a single vehicle is used. (Hint: least-cost path costs
satisfy the triangle inequality.)

7.4 Show that the two alternative subcircuit elimination constraints (7.4) and (7.5)
are equivalent.

7.5 Demonstrate that the optimal solution value of MSrTP is a lower bound on the
optimal solution value of STSP.

7.6 Show that the NRPSC formulation is correct.

7.7 Explain why the distances in Tables 7.8 and 7.9 do not necessarily satisfy the
triangle inequality.
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7.8 Modify the savings algorithm for the case in which the same vehicle may be
assigned to several routes during a given planning period (node routing problem
with multiple use of vehicles).

7.9 Devise a local search for the capacitated ARP.

7.10 Illustrate how the Christofides and Frederickson heuristics can be adapted to the
undirected general routing problem, which consists of determining a least-cost
cycle including a set of required vertices and edges.
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8

Linking Theory to Practice

8.1 Introduction

Many real-world logistics problems possess slightly different features from those
found in the problems we have discussed so far. Some of these features can easily be
taken into account, while some others require more complex modifications, both in
models and algorithms. Two examples will help illustrate this statement.

• When designing vehicle routes in practice, a meal break may have to be inserted
in each route. In the single vehicle case, this can be simply accomplished by
introducing a dummy customer with a service time equal to the required rest
time, and a service time window equal to the interval within which meals are
allowed.

• When designing vehicle routes in garbage collection applications, the street
network is often modelled as a mixed graph. As a result, the single vehicle
case amounts to solving a mixed RPP (see Section 7.6). This can be done,
in principle, by suitably assigning a traversal direction to each edge and then
applying the ‘balance-and-connect’ heuristic for the directed RPP. However,
while this approach is easy to implement, it is not clear whether it yields a good
quality solution for the mixed RPP. Devising a good heuristic for this problem
may indeed require a substantial effort and is a research topic on its own.

The aim of this chapter is to link theory to practice in logistics management planning
and control by providing supplementary material and cases. In Sections 8.2 to 8.6 a few
real-world logistics systems are depicted while in Sections 8.7 to 8.15 some studies,
taken from the scientific literature, illustrate the adaptation of basic techniques to more
complex settings. Finally, further insightful case studies are listed in Section 8.17.

Introduction to Logistics Systems Planning and Control G. Ghiani, G. Laporte and R. Musmanno
© 2004 John Wiley & Sons, Ltd ISBN: 0-470-84916-9 (HB) 0-470-84917-7 (PB)
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Figure 8.1 ExxonMobil corporation functional companies.

8.2 Shipment Consolidation and Dispatching at
ExxonMobil Chemical

ExxonMobil Chemical is a functional company of ExxonMobil corporation. Exxon-
Mobil is a US corporation formed in 1999 by the combination of Exxon and Mobil,
two companies whose roots can be traced back to the late 19th century. ExxonMobil
is an industry leader in almost every aspect of the energy and petrochemical busi-
ness. Its activities range from the exploration and production of oil and gas to coal
and copper mining, from the refining of petroleum products to the marketing of fuels
(under the Exxon, Mobil and Esso brands), waxes, asphalt and chemicals. In addition,
ExxonMobil is active in electric power generation. Figure 8.1 depicts the organization
of ExxonMobil into several functional companies.

ExxonMobil Chemical is one of the largest petrochemical companies in the world.
Its products include olefins, aromatics, synthetic rubber, polyethylene, polypropylene
and oriented polypropylene packaging films. The company operates its 54 manufac-
turing plants in more than 20 countries and markets its products in more than 150
countries (see Table 8.1).

At many sites, the ExxonMobil Chemical operations are integrated with refining
operations within a single complex. The ExxonMobil Chemical plant in Brindisi
(Italy) is devoted to the manufacturing of oriented polypropylene packaging films for
the European market. Oriented polypropylene (OPP) is a flexible material derived
from melting and orienting (i.e. stretching) a polymer called polypropylene. This raw
material is unaffected by most chemical agents encountered in everyday life. It meets
the requirements of the US Food and Drug Administration and other relevant author-
ities throughout the world. By orienting polypropylene, one can improve its physical
properties, such as water vapour impermeability, stiffness, dimensional stability and
optics. OPP films are used as flexible packages for food (e.g. biscuits, bakery prod-
ucts and frozen food) and as high strength films for garbage bags and liners. Every
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Table 8.1 ExxonMobil Chemical manufacturing plants.

Site Country Site Country

Adelaide Australia Karlsruhe Germany
Al-Jubayl Saudi Arabia Kashima Japan
Altona Australia Kawasaki Japan
Amsterdam The Netherlands Kerkrade∗ The Netherlands
Antwerp Belgium LaGrange∗ Georgia (USA)
Augusta Italy Managua Nicaragua
Baton Rouge Louisiana (USA) Meerhout Belgium
Baytown Texas (USA) Mont Belvieu Texas (USA)
Bayway New Jersey (USA) Newport United Kingdom
Beaumont Texas (USA) Notre-Dame-

de-Gravenchon France
Belleville∗ Canada Panyu China
Botany Bay Australia Paulina Brazil
Brindisi∗ Italy Pensacola Florida (USA)
Campana Argentina Plaquemine Louisiana (USA)
Chalmette Louisiana (USA) Rotterdam The Netherlands
Cologne Germany Sakai Japan
Dartmouth Canada San Antonio Chile
Edison New Jersey (USA) Sarnia Canada
Fawley United Kingdom Shawnee∗ Arkansas (USA)
Fife United Kingdom Singapore Singapore
Fos-sur-Mer France Sriracha Thailland
Geleen The Netherlands Stratford∗ New Jersey (USA)
Harnes France Trecate Italy
Houston Texas (USA) Virton∗ Belgium
Ingolstadt Germany Wakayama Japan
Jeffersonville Indiana (USA) Yanbu’ al Bahr Saudi Arabia
Jinshan China Yosu South Korea

∗ = oriented polypropylene film plant

packaging application is different. For example, special OPP films are needed for
complex products containing chocolate, sugar and cream that are more sensitive and
need special protection, particularly against oxidation, odour loss and uptake of off-
odours. OPP films may be transparent, opaque or metallized. ExxonMobil Chemical
rigorously tests every packaging product before it is used commercially.

Although overall market growth is slow, indicating maturity across most sectors,
there remain significant growth prospects within niche markets, such as those for
individually wrapped biscuits. ExxonMobil Chemical produces more than 230 000
tonnes of OPP annually in seven plants in the USA, Canada, Belgium, Italy and The
Netherlands (shown by asterisks in Table 8.1). The OPP process begins with pellets
of polypropylene resin derived from crude oil or natural gas. Resins are transported
to the Brindisi harbour by boat and then moved to the plant by a local dedicated train.
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Figure 8.2 OPP film manufacturing process.

The manufacturing process is made up of three main stages (see Figure 8.2). First,
the pellets are fed into an extruder, where they are melted by heat and friction from a
continuously revolving screw. At the end of this stage the molten plastic is cast into a
sheet form. Then, sheets are stretched lengthwise or crosswise and an acrylic coating
is applied on one or both sides. Finally, large rolls are cut into smaller rolls to meet
customers’ specifications. At the end of this process, the custom slit film is shipped to
an end-user or to third-party plants to be metallized or printed. Films manufactured in
Brindisi needing to be metallized are sent either to the Metalvuoto plants in Termoli
and Roncello (Italy), to the Neograf plant in Cuneo (Italy), or to the Metlux plant
in Luxembourg, where a very thin coating of aluminium is applied to one side (see
Figure 8.3).

As a rule, Italian end-users are supplied directly by the Brindisi plant, while cus-
tomers and third-party plants outside Italy are replenished through the DC located
in Milan (Italy). In particular, this warehouse supplies three DCs located in Herstal,
Athus and Zeebrugge (Belgium), which in turn replenish customers in Eastern Europe,
Central Europe and United Kingdom, respectively.

8.3 Distribution Management at Pfizer

The Pfizer Pharmaceuticals Group is the largest pharmaceutical corporation in the
world. Its mission is ‘to discover, develop, manufacture and market innovative, value-
added products that improve the quality of life of people around the world and help
them enjoy longer, healthier, and more productive lives’. The Pfizer range of products
includes a broad portfolio of human pharmaceuticals meeting essential medical needs,
a wide range of consumer products in the area of self-care and well-being, and health
products for livestock and pets.
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Figure 8.3 OPP film distribution patterns at ExxonMobil Chemical
(dotted lines represent metallized OPP film flows).

Founded in 1849 by Charles Pfizer, the company was first located in a modest red-
brick building in the Williamsburg section of Brooklyn, NewYork (USA), that served
as office, laboratory, factory and warehouse. The firm’s first product was santonin, a
palatable antiparasitic, which was an immediate success. In 1942 Pfizer responded
to an appeal from the US Government to expedite the manufacture of penicillin,
the first real defence against bacterial infection, to treat Allied soldiers fighting in
World War II. Of the companies pursuing mass production of penicillin, Pfizer alone
used the innovative fermentation technology. Building value for its shareholders,
Pfizer manufactures and markets some of the most effective and innovative medicines
including atorvastatin calcium, the most prescribed cholesterol-lowering medicine
in the USA, amlodipine besylate, the world-leading medicine for hypertension and
angina, azithromycin, the most-prescribed brand-name oral antibiotic in the USA, and
sildenafil citrate, a breakthrough treatment for erectile dysfunction.

With a portfolio that includes five of the world’s 20 top-selling medicines, Pfizer
sets the standard for the pharmaceutical industry. Ten of its medicines are ranked first
in their therapeutic class in the US market, and eight earn a revenue of more than one
billion dollars annually. Research and development is the lifeblood of Pfizer business.
To pursue its heritage of innovation, Pfizer supports the world’s largest privately
funded biomedical research organization, employing 12 000 scientists worldwide.
The research investment was 5.3 billion dollars in 2002.

8.3.1 The Logistics System

The Pfizer logistics system comprises 58 manufacturing sites around the world (see
Table 8.2), producing medicines for more than 150 countries.
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Table 8.2 Manufacturing sites of Pfizer.

Location Number of sites

Africa 7
Asia 13
Australia 2
Europe 16
North America 16
South America 4

Table 8.3 Features of some Pfizer plants in Europe.

Number of Number of Items
Country plants Articles (millions per year)

Belgium 1 29 6.5
France 1 14 2.4
Germany 1 3 11.4
Italy 3 182 87.1
United Kingdom 1 8 5.0

Because manufacturing pharmaceutical products requires highly specialized and
costly machines, each Pfizer plant produces a large amount of a limited number of
pharmaceutical ingredients or medicines for an international market (see Table 8.3).

In order to illustrate the main characteristics of a typical Pfizer supply chain, we
will examine the supply chain of a cardiovascular product, named ALFA10. The
product form is a 5 or 10 mg tablet, packaged in blisters. ALFA10 is based on a patent
owned by Pfizer, and every plant involved in its manufacturing is Pfizer’s property.
ALFA10 is produced in a unique European plant (EUPF plant) for an international
market including 90 countries (see Figure 8.4). Every year the plant produces over
117 million blisters. The product expires 60 months after its production and must be
stored at a temperature varying between 8 and 25 ◦C.

The main component of ALFA10 is an active pharmaceutical ingredient (API),
based on a Pfizer property patent, manufactured in a North American plant. APIs are
transferred by air to the European Logistics Center (ELC) located in Belgium which
in turn replenishes the European plants on a monthly basis (see Figure 8.5). Freight
transportation between the ELC and the manufacturing sites is performed by overland
transport providers such as Danzas. The EUPF plant manufactures ALFA10 tablets
that are subsequently packaged into 120 blister boxes and sent weekly to a third-party
CDC.

The CDC has five docks, a 1250 m2 receiving zone, a 7700 m2 storage zone (where
10 000 pallets can be kept in stock), and a 2000 m2 shipping zone. Products are pal-
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Figure 8.4 Pfizer ALFA10 supplied markets (grey area).
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Figure 8.5 ALFA10 supply chain.

letized, and pallets are moved by forklifts and stored onto shelves. The transportation
of finished goods is performed in refrigerated trucks by accredited haulers.

8.3.2 The Italian ALFA10 distribution system

ALFA10 sales are fairly stable in Italy, as shown in Figure 8.6. The distribution
system is made up of two channels. Hospitals are supplied directly by Pfizer while
pharmacies are replenished through wholesalers (see Figure 8.6). Pfizer plants, third-
party DCs and wholesalers communicate through a dedicated information system
named Manugistics.
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Figure 8.6 Pfizer ALFA10 monthly demand pattern in Italy.

The hospital distribution channel. In order to supply 2000 Italian hospitals in a
timely manner, Pfizer makes use of a CDC and seven regional warehouses. Hospitals
may be supplied by more than one warehouse, depending on stock levels. Transporta-
tion is performed by specialized haulers in refrigerated vans.

The pharmacy distribution channel. Pharmacies are supplied through whole-
salers. There are almost 16 000 pharmacies in Italy. Pharmacy locations are revised
every two years by the Minister of Health in such a way that citizens located in
rural areas can reach the nearest pharmacy within a given amount of time (indeed,
5000 rural pharmacies are helped by state subsidies). Pharmacies sell both prescribed
medicines (86% of their entire business) and over-the-counter products. Pharmacies
have a high contractual power on wholesalers. Their average revenue margin is 27%
for prescribed medicines and 33% for over-the-counter products. Wholesaler orders
are collected directly by Pfizer and shipped weekly by the CDC. The maximum lead
time between order receipt and shipment is 24 hours. Again ALFA10 transportation
is performed by specialized haulers. The CDC is able to deliver the product in any
Italian location within at most 60 hours. Wholesalers receive orders from pharmacies
very frequently (up to four times a day). Pharmacies expect the wholesalers deliver
medicines within 4–12 hours.

Compared with other EU countries, the number of Italian pharmaceutical whole-
salers is very high (see Table 8.4). In addition, the pharmaceutical distribution business
is very fragmented, as shown in Table 8.5. In particular, four pan-European companies
have a 42% share.

Each wholesaler has an extensive network of RDCs in order to provide a high level
of service to pharmacies.As a result, their average revenue margin is low.As illustrated
in the above description, Pfizer makes use of 3PL. The relationship between Pfizer
and its partners is regulated by contracts. Audits on a regular basis are performed by
Pfizer on all its logistics partners.
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Table 8.4 Features of pharmaceutical wholesalers in four major EU countries.

Country Wholesalers Wholesaler warehouses

France 14 203
Germany 17 102
Italy 198 302
Spain 101 189

Table 8.5 Classification of Italian pharmaceutical wholesalers.

Companies Warehouses Share

Pan-European groups 4 86 42%
Local wholesalers 164 184 36%
Others (cooperatives, etc.) 30 32 22%

Further distribution channels. Unlike prescribed medicines (such as ALFA10),
over-the-counter product distribution is not very critical and is performed directly by
Pfizer. Due to the increasing popularity of the Internet among patients and physicians,
prescribed medicines are expected to be delivered directly by Pfizer to the pharmacies
in years to come, resulting in large savings.

8.4 Freight Rail Transportation at Railion

Railion is an international carrier, based in Mainz (Germany), whose core business
is rail transport. Railion is the result of a merger involving DB Cargo AG and NS
Cargo NV, and is Europe’s first truly international rail company. In The Netherlands,
Belgium and Luxembourg, Railion operates under the name Railion Benelux, while
in Germany it will continue to operate as DB Cargo for the time being.

Railion transports a vast range of products, such as steel, coal, iron ore, paper,
timber, cars, washing machines, computers as well as chemical products. In 2001 the
company moved about 500 000 containers. Besides offering high-quality rail trans-
port, Railion is also engaged in the development of integrated logistics chains. This
involves close cooperation with third parties, such as trucking firms, maritime trans-
porters, as well as forwarding and transshipment companies. This approach allows
Railion to meet the increasingly complex demands of a market which is no longer
prepared to settle for the mere carriage of goods, but requires a complete logistics
package including all the service aspects this entails.

Railion Benelux offers a variety of transport services, tailored to the type of product
to be carried, the destination and the customer’s logistics requirements.
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• Scheduled services. For the transport of smaller volumes of cargo (a few car-
loads at a time), the scheduled service concept is generally the best and least
expensive option. Individual wagons are delivered to and collected from cus-
tomers, whereupon they are coupled together at the marshalling yards to form
complete trains. From there, they are transported directly to destinations (gener-
ally outside the Benelux), where individual wagonloads are sorted for delivery
to the recipients. If required, Railion can also arrange terminal road services by
truck. European scheduled services generally take between 24 and 48 hours,
depending on the distance involved and the facilities available at the destination
station. The range of different wagon types available includes bulk goods wag-
ons, flat wagons for machinery and plant, special car transporters, tank wagons
for chemical products, and covered wagons for palletized goods, industrial and
consumer products.

• Charter trains. A charter train is often the perfect solution for the transport of
large quantities of goods, especially if such shipments take place on a regular
basis. A complete train offers tailor-made solutions enabling the delivery of up
to several thousand tonnes of cargo. A charter train requires a so-called branch
line to reach its final destination. Many industrial plants throughout Europe
already have their own branch lines, often as a result of government subsidies.

• Intermodal trains (container shuttles). Railion Benelux operates as a sort of
wholesaler in the intermodal market, supplying complete trains consisting of
various types of container-carrying wagon to the intermodal operators. Inter-
modal trains almost invariably operate on the basis of a shuttle service with
the same composition, and running back and forth between the same desti-
nations. Intermodal operators can either utilize train capacity for their own
containers (e.g. shipping lines) or sell ‘slots’ to other shippers, thereby operat-
ing as a ‘forwarding agent’. Railion Benelux currently offers shuttle services
to 24 European destinations. Table 8.6 lists the main features of the intermodal
shuttles.

8.5 Yard Management at the Gioia Tauro
Marine Terminal

The Gioia Tauro marine terminal is the largest container transshipment hub on the
Mediterranean Sea and one of the largest in the world (see Table 8.7). Medcenter, the
company set up to manage container handling at Gioia Tauro, is owned by Contship
SpA, which controls 90% of the equity, and by Maersk, a leading international sea
carrier.

The terminal is situated on the western coast of the Calabria region (Southern Italy),
along major deep-sea vessel routes. Deep sea vessels are large highly automated
container ships capable of transporting up to 6000 containers. They include both
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Table 8.6 Features of the intermodal shuttles provided by Railion
(‘r’ and ‘s’ stand for roundtrip and single trip, respectively).

Frequency TEUs
Origin Destination per week

Rotterdam Antwerp (Belgium) 11r 81/86
Rotterdam Athus (Belgium) 5r 30
Rotterdam Mouscron (Belgium) 5r 43
Rotterdam Muizen (Belgium) 5r 10
Born Antwerp (Belgium) 5r 60
Rotterdam Germersheim (Germany) 6r 81
Rotterdam Mainz (Germany) 3r 68
Rotterdam Mannheim/Munich (Germany) 5r 81
Rotterdam Neuss (Germany) 5r 81
Rotterdam Milan–Melzo (Italy) 9r 74.5
Rotterdam Novara (Italy) 12r 78
Rotterdam Brescia (Italy) 5r 78
Rotterdam Padova (Italy) 6r 74.5
Rotterdam Bettembourg (Luxembourg) 4r 75
Rotterdam Wels (Austria) 2r 77
Rotterdam Malaszewicze (Poland) 3s 80
Rotterdam Poznan/Warsaw (Poland) 3r 78
Rotterdam Prague (Czech Republic) 6r 70
Rotterdam Basel SBB (Switzerland) 5r 75
Rotterdam Zurich (Switzerland) 5r 75
Rotterdam Basel Bad (Switzerland) 2r 75

Table 8.7 The first 20 largest containerized ports in the world.

Traffic in 1999 Traffic in 1999
Port (TEUs) Port (TEUs)

Hong Kong 16 100 000 New York 2 863 000
Singapore 15 900 000 Dubai 2 844 000
Kaohsiung 6 985 000 Felixstowe 2 700 000
Pusan 6 439 000 Tokyo 2 700 000
Rotterdam 6 400 000 Port Klang 2 550 000
Long Beach 4 400 000 Tanjung Priok 2 273 000
Shanghai 4 200 000 Gioia Tauro 2 253 000
Los Angeles 3 828 000 Kobe 2 200 000
Hamburg 3 750 000 Yokohama 2 200 000
Antwerp 3 614 000 Brema 2 180 000
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Figure 8.7 Hub and spoke sea transportation system (bold and dotted lines represent deep-sea
vessel and feeder routes, respectively; grey and white vertices are hubs and spokes, respec-
tively).

container ships performing around-the-world trips (through the Panama Canal) and
Post-Panamax vessels performing North America–Europe, Europe–Asia Pacific and
Asia Pacific–NorthAmerica trips (the Post-Panamax vessel name is due to the fact that
they are so large that they cannot traverse the Panama Canal). Because the operating
costs of deep-sea vessels are very high, these ships stop at very few transshipment
terminals (hubs), where they pick up and deliver traffic originating from or arriving at
end-of-line ports (spokes). Then, smaller vessels (feeder or short sea vessels) transport
goods between hubs and end-of-line ports (hub and spoke system, Figure 8.7).

The Gioia Tauro hub is linked to nearly 50 end-of-line ports on the Mediterranean
Sea. When Gioia Tauro began trading in 1996, its traffic amounted to a modest 570 736
TEUs, followed by a dazzling 1.44 million TEUs in 1997, 2.12 million TEUs in 1998,
and 2.25 million TEUs in 1999.

Like other hubs, the Gioia Tauro sea terminal (see Figure 8.8) is made up of

• a harbour, where vessels can wait for an available berth;

• a set of quays, where ships can be tied up and loaded or unloaded;

• a yard, where containers and bulk goods can be stored after being unloaded
from incoming vehicles and before being loaded onto outgoing vehicles;

• a railway station, where wagons can be loaded or unloaded and convoys can
be formed;

• some docks where trucks can be loaded or unloaded;

• a material handling system.

At the Gioia Tauro port, the yard can store nearly 50 000 TEUs (1100 of them can
be refrigerated). The storage area is divided into bays. Each bay is made up of 32
rows, each having 16 slots. In each slot, up to three containers are stacked. Empty
containers (which occupy approximately 40% of the storage area) have an 8–10 day
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Figure 8.8 A sea container terminal layout.

average dwell time (much more than a full container) and are located in the more
remote positions.

The railway station has six tracks where 20 convoys are formed every day (400 000
TEUs are handled annually). The Gioia Tauro port is close to the Salerno–Reggio
Calabria highway traversing southern Italy from north to south. The material handling
system is made up of 14 portainers, three Gottwald cranes, 51 straddle carriers, five
multitrailers, six reach stackers, as well as 11 tractors and 60 trailers. Portainers
and Gottwald cranes are used for unloading containers from the vessels. Portainers
are cranes moving along tracks parallel to the quayside. Each portainer has a buffer
where up to six containers can be stored. When the buffer is full, the portainer has
to stop. Gottwal cranes are wheeled vehicles also used for moving containers in the
yard. Straddle carriers are usually utilized for moving full containers over relatively
short distances (less than 500 m) between railroad, yard and berth. These are wheeled
vehicles capable of transporting one or two containers at a time. As a rule, for longer
container transfers, different vehicles are used, namely multitrailers. Empty containers
are stacked and moved five at a time by reach stackers. In addition, reach stackers
are used for moving containers from the yard to the railway station and vice versa.
Portainers and straddle carriers are the most important pieces of equipment and can
handle seven and 24 containers per hour on average, respectively. Terminal operating
cycles consist of a series of container movements, each carried out by several different
movers. Once a ship is tied up, sea-side cranes load straddle carriers (or similar
movers) that transfer outgoing containers to the terminal yard beside the assigned slot.
Then dedicated yard movers insert containers in the right slot. Alternatively, prime
movers can perform board–board, board–train or board–truck movements depending
on the stowage plan. Similarly, incoming containers can be picked up from the yard
or transferred directly from a train or a truck.
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8.6 Municipal Solid Waste Collection and Disposal
Management at the Regional Municipality of
Hamilton-Wentworth

The regional municipality of Hamilton-Wentworth is situated in south-central Ontario
(Canada), approximately 50 miles west of Niagara Falls. The region has an area of
1100 km2, includes six cities and towns (Ancaster, Dundas, Flamborough, Glanbrook
Hamilton and Stoney Creek), and has a population of 450 000 inhabitants. Every year,
more than 300 000 tons of residential, industrial and commercial waste are produced
in the region. The waste management system is made up of two major subsystems:
the solid waste collection system and the regional disposal system. Each city or town
is in charge of its own kerbside garbage collection, using either its own workforce
or a contracted service. The regional municipality is responsible for the treatment
and disposal of the collected waste. The primary reason for this is the existence
of economies of scale (i.e. the decline of average cost as scale increases) in refuse
transportation and disposal.

For the purpose of solid waste management, the region is divided into 17 districts.
In 1992, the total cost was approximately 21.7 million dollars. The regional manage-
ment is made up of a waste-to-energy facility, a recycling facility, a 550 acre landfill,
a hazardous waste depot, and three transfer stations located in Dundas, Kenora and
Hamilton Mountain. Transfer stations receive waste from municipal collection (or
individual deliveries) and move it either to the waste-to-energy facility, to the recy-
cling facility, or to the landfill. The waste picked up through kerbside collection from
Flamborough, Dundas and northwest Ancaster goes to the transfer station in Dundas,
garbage from Glanbrook, Hamilton Mountain and southeast Ancaster is delivered
to the transfer station in Hamilton Mountain, while waste from lower Hamilton and
Stoney Creek is delivered directly to the waste-to-energy facility. The transfer stations
in Dundas and Hamilton Mountain also receive individual deliveries from local indus-
tries and institutions, while the transfer station in Kenora accepts only truckloads of
industrial, commercial and institutional waste. The 1992 waste flow allocation pattern
is shown in Figure 8.9.

8.7 Demand Forecasting at Adriatica Accumulatori

AdriaticaAccumulatori is an electromechanical firm, headquartered in Termoli (Italy),
manufacturing car spare parts for the Italian market. In 1993 the results of a
survey showed that, although Adriatica Accumulatori car battery sales constantly
increased during the previous decade, the company progressively lost market share
(see Table 8.8). Until 1993, the company had traditionally based its production and
marketing plans on sales forecasts provided by a time series extrapolation technique
(see Section 2.4). If applied to the data in Table 8.8, this technique would result in the
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Figure 8.9 The waste flow allocation pattern in the regional municipality of
Hamilton-Wentworth (all numbers in the figure are average waste flows in tons per week).

following regression equation (the trend is linear),

y = 126 364.184 + 15 951.091t, t = 1, 2, . . . ,

which would provide the following demand forecasts: 301 826 units in 1994 (t = 11)
(with a 9.41% increase with respect to 1993), and 317 777 units in 1995 (t = 12)
(with a 15.19% increase with respect to 1993). However, the results of the survey
convinced the company’s management that during the previous decade Adriatica
Accumulatori had lost an opportunity to sell more, mainly because its forecasts were
not related to market demand. Based on this reasoning, it was decided to predict sales
by first estimating the Italian market demand and then evaluating different scenarios
corresponding to the current market share and increased shares achievable through
appropriate marketing initiatives. In order to forecast the Italian market sales, a causal
method was used (see Section 2.3). The historical series of national sales of batteries
was correlated to the number of cars sold two years before (see Table 8.9). Then the
following linear regression model was used,

y = a0 + a1x,

where y is the Italian demand of spare batteries in a given year, x represents
car sales two years before, a0 and a1 are two parameters. These parameters were
estimated through the least-squares error method, yielding the regression equation
y = 52 429.797 + 1.924x, with a correlation index ρ equal to 0.95. Using this equa-
tion, the demand of spare batteries in the Italian market in 1994 and 1995 was estimated
to be 2 396 003 and 2 676 295 units, respectively. Then, the company’s management
generated several scenarios based on different market shares. In the case where the
firm maintained a market share equal to 11%, the demand would be equal to 263 560
units in 1994 (with a 4.46% decrease with respect to 1993), and 294 392 units in 1995
(with a 6.71% increase with respect to 1993).
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Table 8.8 Number of spare batteries sold.

Italian Adriatica Market
Year market sales Accumulatori sales share

1984 693 326 138 665 20%
1985 803 666 152 696 19%
1986 947 243 170 503 18%
1987 1 136 433 193 192 17%
1988 1 406 432 210 964 15%
1989 1 666 011 233 241 14%
1990 1 869 683 243 058 13%
1991 2 136 463 256 375 12%
1992 2 316 402 266 386 11%
1993 2 507 929 275 872 11%

Table 8.9 Car sales in Italy.

Year Number Year Number

1982 253 321 1988 886 297
1983 381 385 1989 1 014 975
1984 491 755 1990 1 162 246
1985 634 706 1991 1 167 614
1986 951 704 1992 1 217 929
1987 830 175 1993 1 363 594

The time series technique and the casual method resulted in quite different forecasts.
The company therefore decided to analyse in greater detail the logic underlying the
two approaches. Because the Italian economy was undergoing a period of quick and
dramatic change, the latter method was deemed to provide more accurate predictions
than the former technique, which is more suitable when the past demand pattern is
likely to be replicated in the future.

8.8 Distribution Logistics Network Design at
DowBrands

In 1985 Dow Consumer Products, Inc. acquired a division of Morton Thikol, Inc.
giving rise to DowBrands, which produces and markets more than 80 convenience
goods all over North America. On that occasion, the management of the new-born
company decided to redesign the distribution network. After a preliminary analysis, it
was decided that the new distribution system should be made up of CDCs and RDCs.
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In the proposed system, CDCs receive TL shipments from the production plants
and supply the RDCs as well as a restricted number of major supermarkets. RDCs
are suburban warehouses from which customers are replenished (see Figure 8.10).
Shipments originating from a CDC are TL, while shipments from an RDC may be TL
or LTL. In all cases freight transportation is performed by common carriers. Each RDC
can be served by a single CDC and each customer can be assigned to a single CDC
or RDC. Thirteen potential CDCs and 23 potential RDCs were selected. The demand
points were aggregated into 93 sales districts while the products were combined in
two macro-products (home products, HP, and food products, FP).

Because customers issue their orders within short notice (a single day or even a
few hours) the management of DowBrands decided to impose an upper bound L

on the maximum distance of an LTL shipment, but no limit was imposed for TL
transportation which is much faster and reliable (see Section 1.2.3).

The distribution system redesign was designed in two stages: first, the curve of the
total logistics cost as a function of the service level (represented by L) was defined;
then, an efficient configuration was selected on the basis of a qualitative analysis
(see Section 1.3). The cost versus level of service curve was drawn as follows. For
a pre-established set of values of L, the least-cost configuration was determined by
solving an IP model. The outcome was the number and the locations of the CDCs and
of the RDCs, the allocation of the RDCs to the CDCs, the assignment of the demand
points to the RDCs and to the CDCs, as well as freight routes through the distribution
network.

In order to simplify the formulation, for each sales district and for each macro-
product, a dummy macro-customer TL and a dummy macro-customer LTL were
defined. Therefore, each demand point was represented by four macro-customers:
TL-HP, LTL-HP, TL-FP, LTL-FP. Finally, a virtual RDC for each CDC was introduced
so that, in the next modelling representation, all macro-customers would be served
by an RDC.
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Let V1 be the set of the CDCs; V2 the set of the RDCs; V3 the set of the macro-
customers; fi, i ∈ V1, the fixed cost of the ith potential CDC (inclusive of all the
fixed expenses connected to the site and to the expected value of the stock); gj ,
j ∈ V2, the fixed cost of the j th potential RDC (inclusive of all the fixed expenses
connected to the site and to the expected value of the stock); tijk, i ∈ V1, j ∈ V2,
k ∈ V3, the unit transportation cost from the production plant to the demand point k

through the ith CDC and the j th RDC; dk , k ∈ V3, the demand of macro-customer
k; cijk = dktijk, i ∈ V1, j ∈ V2, k ∈ V3, the transportation cost whether macro-
customer k is serviced through the ith CDC and the j th RDC. Moreover, let zi, i ∈ V1,
be a binary decision variable equal to 1 if the ith CDC is selected, and 0 otherwise;
yij , i ∈ V1, j ∈ V2, a binary decision variable equal to 1 if the j th RDC is opened
and supplied by the ith potential CDC, and 0 otherwise; xijk, i ∈ V1, j ∈ V2, k ∈ V3,
a variable representing the fraction of the total demand of the customer k served
through the ith CDC and the j th RDC.

The problem was formulated as follows.

Minimize
∑

i∈V1

fizi +
∑

j∈V2

gj

∑

i∈V1

yij +
∑

i∈V1

∑

j∈V2

∑

k∈V3

cijkxijk (8.1)

subject to
∑

i∈V1

∑

j∈V2

xijk = 1, k ∈ V3, (8.2)

yij � zi, i ∈ V1, j ∈ V2, (8.3)
∑

i∈V1

yij � 1, j ∈ V2, (8.4)

xijk � yij , i ∈ V1, j ∈ V2, k ∈ V3, (8.5)

zi ∈ {0, 1}, i ∈ V1, (8.6)

yij ∈ {0, 1}, i ∈ V1, j ∈ V2, (8.7)

xijk ∈ {0, 1}, i ∈ V1, j ∈ V2, k ∈ V3, (8.8)

where constraints (8.2) establish that each customer k ∈ V3 must be served by one and
only one CDC–RDC pair, constraints (8.3) impose that a CDC must be opened if an
RDC is assigned to it; constraints (8.4) require that each RDC is assigned to a single
CDC; constraints (8.5) impose that the transportation service between a CDC–RDC
pair is activated if it is used by at least one macro-customer.

Because no capacity constraint is imposed, problem (8.1)–(8.8) satisfies the single
assignment property (see Section 3.3.1). In order to satisfy the service level constraint,
the LTL services j–k between RDC–customer pairs distant by more than a pre-
established threshold L are discarded by setting the associated xijk variables equal
to 0.
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Figure 8.11 Total cost (in thousands of euros)-service level curve at DowBrands.

The solution of problem (8.1)–(8.8) was evaluated through a general-purpose MIP
solver for various values of L between 300 and 1200 km (see Figure 8.11). It is worth
noting that, as L decreases, at first the cost increases slowly, then it increases sharply.
Also, when L becomes very large, there is no need for RDCs. On the basis of these
evaluations, the company’s management set L equal to 430 km. By implementing
this solution the company achieved a saving of about 1.5 million dollars per year
compared to the previous configuration.

8.9 Container Warehouse Location at Hardcastle

Hardcastle is a North European leader in intermodal transportation. In 2001 the com-
pany operated nearly 240 000 containers, with an annual transportation cost of about
50 million euros.

Like other intermodal transportation companies, Hardcastle manages both full and
empty containers. When a customer places an order for freight transportation, Hard-
castle sends one or several empty containers of the appropriate type in terms of size,
refrigeration, etc., to the pick-up point (see Figure 8.12). The containers are then
loaded and sent to destination using a combination of modes (e.g. railway and sea
transportation). At the destination, the containers are emptied and sent back to the
company unless there is an outgoing load requiring the same kind of container (corre-
sponding to compensation between the demand and the supply of empty containers).
Unless compensation is possible, empty containers are then moved to a new pick-
up point. Relocating empty containers is a resource-consuming activity whose cost
should be kept at minimum. Unfortunately, compensation between the demand and
the supply of empty containers is seldom possible for three main reasons:

• the origin–destination demand matrix is strongly asymmetrical (some loca-



318 LINKING THEORY TO PRACTICE

Consolidated load transfer

Collection

Distribution

Independent transfer

Rio de
Janeiro

Brasilia

San Paolo
(Depot)

Genoa
(Depot)

Vercelli Novara

Milan

Buenos Aires

Figure 8.12 Freight transportation at Hardcastle.

tions are mainly sources of materials while some others are mainly points of
consumption);

• at a given location, the demand and supply for empty containers do not usually
occur at the same time;

• containers may have a large number of sizes and features; as a result, it is
unlikely that the containers incoming at a customer facility are suitable for
outgoing goods.

For these reasons, the compensation between demand and supply is neglected in
the following.

Because of the economies of scale in transportation, it is not convenient to move
containers directly from supply to demand points. Instead, containers are sent to a
nearby warehouse. Then, on a weekly basis, convoys of empty and full containers are
moved between warehouses (see Figure 8.13). Warehouses are often public so that
their location can easily be changed if necessary. Prior to its redesign, the logistics
system contained 87 depots (64 close to a railway station and 23 close to a sea
terminal). Moreover, empty container movements accounted for nearly 40% of the
total freight traffic.

The management of the empty containers is a complex decision process made up
of two stages (see Figure 8.14):

• at a tactical level, one has to determine, on the basis of forecasted origin–
destination transportation demands, the number and locations of warehouses,
as well as the expected container flows among warehouses;

• at an operational level, shipments are scheduled and vehicles are dispatched on
the basis of the orders collected and of short-term forecasts.
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In order to redesign its logistics system, Hardcastle aggregated its customers into
300 demand points. Further, containers types were grouped into 12 types. Let C be
the set of customers, D the set of potential depots, P the set of different types of
containers, fj , j ∈ D, the fixed cost of depot j , aijp, i ∈ C, j ∈ D, p ∈ P , the
transportation cost of a container of type p from customer i to depot j ; bijp, i ∈ C,
j ∈ D, p ∈ P , the transportation cost of a container of type p from depot j to
customer i; cjkp, j ∈ D, k ∈ D, p ∈ P , the transportation cost of an empty container
of type p from depot j to depot k; dip, i ∈ C, p ∈ P , the number of containers of
type p requested by the customer i; oip, i ∈ C, p ∈ P , the supply of containers of
type p from customer i. Furthermore, let yj , j ∈ D, be a binary decision variable
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equal to 1 if the depot j is selected, and 0 otherwise; xijp, i ∈ C, j ∈ D, p ∈ P , the
flow of empty containers of type p from customer i to depot j ; sijp, i ∈ C, j ∈ D,
p ∈ P , the flow of empty containers of type p from depot j to customer i; wjkp,
j ∈ D, k ∈ D, p ∈ P , the flow of empty containers of type p from depot j to depot
k. The problem was formulated as follows.

Minimize
∑

j∈D

fjyj +
∑

p∈P

[
∑

i∈C

∑

j∈D

(aijpxijp + bijpsijp) +
∑

j∈D

∑

k∈D

cjkpwjkp

]

(8.9)

subject to
∑

j∈D

xijp = oip, i ∈ C, p ∈ P, (8.10)

∑

j∈D

sijp = dip, i ∈ C, p ∈ P, (8.11)

∑

i∈C

xijp +
∑

k∈D

wkjp −
∑

i∈C

sijp −
∑

k∈D

wjkp = 0, j ∈ D, p ∈ P, (8.12)

∑

p∈P

∑

i∈C

(xijp + sijp) +
∑

p∈P

∑

k∈D

(wjkp + wkjp)

� yj

∑

p∈P

∑

i∈C

(oip + dip + 2M), j ∈ D, (8.13)

xijp � 0, i ∈ C, j ∈ D, p ∈ P, (8.14)

sijp � 0, i ∈ C, j ∈ D, p ∈ P, (8.15)

wjkp � 0, j ∈ D, k ∈ D, p ∈ P, (8.16)

yj ∈ {0, 1}, j ∈ D, (8.17)

where M is an upper bound on the wjkp flows, j ∈ D, k ∈ D, p ∈ P . The objec-
tive function (8.9) is the sum of warehouse fixed costs and empty container vari-
able transportation costs (between customers and warehouses, and between pairs of
warehouses). Constraints (8.10)–(8.12) impose empty container flow conservation.
Constraints (8.13) state that if yj = 0, j ∈ D, then the incoming and outgoing flows
from site j are equal to 0. Otherwise, constraints (8.13) are not binding since

xijp � oip, i ∈ C, j ∈ D, p ∈ P,

sijp � dip, i ∈ C, j ∈ D, p ∈ P,

wjkp � M, j ∈ D, k ∈ D, p ∈ P.

The implementation of the optimal solution of model (8.9)–(8.17) yielded a reduction
in the number of warehouses to 48 and a 47% reduction in transportation cost.
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8.10 Inventory Management at Wolferine
Wolferine is a division of the industrial group UOP Limited, which manufactures
copper and brass tubes. The company’s production processes take place in a factory
located in London (Ontario, Canada) with highly automated systems operating with
a very low work-in-process. The raw materials originate from mines located close
to the factory. Consequently, the firm does not need to stock a large amount of raw
materials (as a rule, no more than a two-week demand). As far as the finished product
inventories are concerned, Wolferine makes use of EOQ models (see Section 4.4.2).
In the autumn of 1980, the firm operated with a production level close to the plant’s
capacity. At that time the interest rate was around 10%. Using this value in the EOQ
model, the company set the finished goods inventory level equal to 833 tons. During
the subsequent two years, an economic recession hit the industrialized countries. The
interest rate underwent continuous and quick variations (up to 20% in August 1981),
the demand of finished products went down by 20%, and the price level increased
sharply. According to the EOQ model, the finished goods inventory level should
have been lower under those conditions. In order to illustrate this result, let n be the
number of products; k an order fixed cost (assumed independent from the product);
di, i = 1, . . . , n, the annual demand of the product i; p the interest rate (increased to
take into account warehousing costs); ci, i = 1, . . . , n, the price of product i; Ī the
average stock level at time period t0 (January 1981). On the basis of Equation (4.28),

Ī (t0) = 1

2

n
∑

i=1

√

2kdi

pci

.

We can express parameter p as the sum of a bank interest rate p1 and of a rate p2
associated with warehousing costs:

p = p1 + p2.

Moreover, let δ1, δ2 and δ3 be the variation rates (assumed equal for all products) of
price, demand and interest rate at time period t , respectively. The average stock level
is equal to

Ī (t) = 1

2

n
∑

i=1

√

2[k(1 + δ1)][di(1 + δ2)]
[p1(1 + δ3) + p2][ci(1 + δ1)]

= Ī (t0)

√

(1 + δ2)p

p1(1 + δ3) + p2
. (8.18)

According to Equation (8.18), if demand decreases (δ2 < 0) and the interest rate
increases (δ3 > 0), the stock level should be lower. However, the managers of Wolfer-
ine continued to operate as in 1981. As a result, the ITR (see Section 4.1) suddenly
decreased. Moreover, to protect the manufacturing process against strikes at the mines,
the firm also decided to hold an inventory of raw materials. Consequently, when the
recession ended in 1983, the firm had an exceedingly large stock of both raw materials
and finished products.
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Figure 8.15 Percentage of success in loading an aircraft as a function of
the percentage of load capacity (simulation made by FedEx).

8.11 Airplane Loading at FedEx

FedEx is one of the leading express carriers in the world, with a freight traffic estimated
at about 2 million parcels per day. Its sales offices are located in 187 countries and
the company uses a fleet of 437 airplanes and about 30 000 trucks and vans.

In the USA, parcels whose origin and destination exceed a given distance are
consolidated in containers and sent by air. An airplane may fly between a pair of
destinations or may follow a multi-stop route where containers are loaded or unloaded
at intermediate stops.

In order to use airplane capacity efficiently, a key issue is to devise good loading
plans, taking into account a number of aspects: the load must be balanced around the
centre of gravity of the aircraft, the total weight in the various areas of the aircraft
must not exceed given thresholds in order to limit the cutting forces on the plane,
etc. These aspects are critical, especially for some planes, such as the Airbus A300,
a low fuel consumption aircraft. In addition, when loading an airplane assigned to a
multi-stop route, containers to be unloaded at intermediate stops must be positioned
close to the exit.

In order to allow airplanes to take off on time, allocating containers on-board must
be done in real time, i.e. containers must be loaded on the aircraft as soon as they arrive
at the airport. As a matter of fact, 30% to 50% of the containers are already on board
when the ground staff has a complete knowledge of the features of the containers
to be loaded. Of course, once some containers have been loaded, it may become
impossible to load the subsequent containers. As a result, when new containers arrive
at the airport, it is sometimes necessary to define a new loading plan in which some
containers previously loaded are unloaded. This situation arises frequently when the
total load is close to the capacity of the aircraft, as shown in Figure 8.15, where the
percentage of success in loading an airplane is reported as a function of the percentage
of the load capacity used.
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The objective pursued by FedEx consists of loading the largest number of con-
tainers as possible. If no container is yet loaded, the following solution procedure is
implemented.

Step 1. Let m be the number of containers to be loaded, n the number of positions
in the loading area, q the number of areas into which the plane is divided, pi, i =
1, . . . , m, the weight of container i; Pj , j = 1, . . . , n, the maximum weight that
can be loaded in position j ; dj , j = 1, . . . , n, the distance from position j to the
centre of gravity O, Mmin and Mmax the minimum and maximum moments of the
loads with respect to O, Lk, k = 1, . . . , q, the total maximum weight that can
be placed in area k; fjk, j = 1, . . . , n, k = 1, . . . , q, the fraction of position
j contained in area k. Also let xij , i = 1, . . . , m, j = 1, . . . , n, be a binary
decision variable equal to 1 if container i is placed in position j , and 0 otherwise,
uj , j = 1, . . . , n, a binary decision variable equal to 1 if position j is used, and 0
otherwise. A feasible solution is defined by the following set of constraints:

n
∑

j=1

xij = 1, i = 1, . . . , m, (8.19)

m
∑

i=1

xij � muj , j = 1, . . . , n, (8.20)

m
∑

i=1

pixij � Pjuj , j = 1, . . . , n, (8.21)

m
∑

i=1

n
∑

j=1

djpixij � Mmax, (8.22)

m
∑

i=1

n
∑

j=1

djpixij � Mmin, (8.23)

m
∑

i=1

n
∑

j=1

pifjkxij � Lk, k = 1, . . . , q, (8.24)

xij ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n, (8.25)

uj ∈ {0, 1}, j = 1, . . . , n. (8.26)

Constraints (8.19) guarantee that each container is allocated to a position. Con-
straints (8.20) state that if a position j, j = 1, . . . , n, accommodates a container,
then its uj variable must be equal to 1. Constraints (8.21) ensure that the total
weight loaded in any position does not exceed a pre-established upper bound. Con-
straints (8.22) and (8.23) impose that the total moment, with respect to point O,
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is within the pre-established interval. Constraints (8.24) ensure the respect of the
weight bounds in each section.

Step 2. If problem (8.19)–(8.26) is infeasible, a container ī is eliminated from the
loading list and the problem is solved again (where, of course, xīj = 0, j =
1, . . . , n). Step 2 is repeated until a feasible solution is found.

If some containers have already been loaded, the previous procedure is modified
as follows. Let Ī be the set of the containers already loaded and let ji, i ∈ Ī , be the
position assigned to container i. Then, additional constraints,

xiji
= 1, i ∈ Ī , (8.27)

are added to (8.19)–(8.26). If this problem is feasible, the procedure stops since
the partly executed loading plan can be completed. Otherwise, the constraint (8.27)
associated with container i ∈ Ī allocated to the position closest to the entrance/exit
is removed (this corresponds to unloading the container from the aircraft). This step
is repeated until a feasible solution is obtained.

8.12 Container Loading at Waterworld

Like other commodities derived from wood, paper is typically produced a long way
from the main points of consumption and then often transported by sea in containers.
As a rule, the transportation cost accounts for a significant part of the selling price.
Moreover, competition among manufacturers is fierce so that profits are very low. In
this context, it is crucial to reduce transportation costs as much as possible. To this
purpose, a key issue is to consolidate loads efficiently.

Paper is usually transported in rolls having a diameter ranging between 0.5 m and
1.5 m, or in large size sheets. In the first case, rolls are loaded directly into containers,
while in the second case, the sheets are loaded onto pallets which are put in containers.
Generally, an order is composed of a set of different products of varying size, thickness
and density. A typical order can fill several tens of containers.

Waterworld determines its own loading plans through an ad hoc heuristic procedure
outlined below.

8.12.1 Packing rolls into containers

Rolls vary in diameter and height. Roll packing amounts to loading rolls into con-
tainers with the circular base parallel to the bottom surface. The packing procedure
is divided into two steps.

Step 1. In the first step, each roll is characterized by its circular section and the aim
is to determine the least number of rectangles (representing bottom surfaces) that
can accommodate such sections (referred to as objects in the following). Let (X, Y )
be a Cartesian reference system with origin in the bottom left corner of a container.
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Figure 8.16 Two ways circular objects can be loaded in the Waterworld problem.

The objects are introduced in the container one at a time, the position of each
object being defined in such a way that λ1x + λ2y is minimized ((x, y) are the
coordinates of the centre of the object, λ1 and λ2 are two positive constants). The
choice of (x, y) must result in a feasible solution, i.e. the object must be entirely
kept in the container and must not be overlapping the objects already inserted (see
Figure 8.16). The following combinations of parameters λ1 and λ2 were used:
(a) λ1 = 1 and λ2 = 0; (b) λ1 = 0 and λ2 = 1; (c) λ1 = λ2 = 0.5.

Step 2. With each cluster of rolls formed in the first step is associated a weight equal to
the height of the tallest roll of the cluster. Then, a classical 1-BP (see Section 5.4.3)
is solved heuristically in order to determine the least number of containers (each
characterized by a capacity equal to container height) that can accommodate all
clusters (see Figure 8.17).

8.12.2 Packing pallets into containers

Paper sheets are mounted on pallets in such a way that the total height of two stacked
pallets is equal to the container height. These pallet pairs are then packed through a
2-BP heuristic (see Section 5.4.3). The procedure followed by Waterworld is a slight
variant of the BL method (see Section 5.4.3).

8.13 Air Network Design at Intexpress

Intexpress is a firm whose core business is express freight delivery all over North
America. The services provided to customers are (a) delivery within 24 hours (next
day service); (b) delivery within 48 hours (second day service); (c) delivery within 3–5
days (deferred service). In order to provide quick deliveries, long-haul transportation
is made by plane.
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Figure 8.17 Roll packing in the Waterworld example.

The Intexpress logistics system comprises a set of shipment centres (SCs), of a
single hub, of a fleet of airplanes and of a fleet of trucks. Loads are consolidated
both in the SCs and in the hub. In particular, goods originating from the same SC are
transported as a single load to the hub while all the goods assigned to the same SC are
sent jointly from the hub. Freight is first transported to an originating SC, where it is
consolidated; it is then transported to a final SC by air, by truck (ground service), or
by using a combination of the two modes. Finally, freight is moved from the final SC
to the destination by truck. Of course, an SC to SC transfer by truck is feasible only
if distance does not exceed a given threshold. Air transportation is performed by a
company-owned fleet (dedicated air service) or by commercial airlines (commercial
air service). The outgoing freight is collected in the evening and delivered the morning
after. Every day a company-owned aircraft leaves the hub, makes a set of deliveries,
then travels empty from the last delivery point to the first pick-up point, where it
makes a set of pick-ups and finally goes back to the hub. Each SC is characterized by
an ‘earliest pick-up time’ and by a ‘latest delivery time’. Moreover, all arrivals in the
hub must take place before a pre-established arrival ‘latest delivery time’(cut-off time,
COT) in such a way that incoming airplanes can be unloaded, sorted by destination,
and quickly reloaded on to outgoing aircraft.

Since it is not economically desirable nor technically feasible that airplanes visit
all SCs, a subset of SCs must be selected as aircraft loading and unloading points (air-
stops, ASs). An SC that is not an AS is connected to an AS by truck (ground feeder
route). Figure 8.18 depicts a possible freight route between an origin–destination pair.
Commercial air services are less reliable than dedicated air services and their costs
are charged depending on freight weight. These are used when either the origin and
its closest SC are so far apart that no quick truck service is possible, or when the
overall transportation demand exceeds the capacity of company-owned aircraft.

Planning the Intexpress service network consists of determining

• the set of ASs served by each aircraft of the firm;
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Figure 8.18 A possible freight route between an origin–destination pair at Intexpress.

• truck routes linking SCs (which are not ASs) to ASs;

• the transportation tasks performed by commercial airlines.

The objective pursued is the minimization of the operational cost subject to ‘earliest
pick-up time’ and ‘latest delivery time’ constraints at SCs, to the COT restriction, etc.

The solution methodology used by Intexpress is made up of two stages: in the
first stage, the size of the problem is reduced (preprocessing phase) on the basis of a
qualitative analysis; in the second stage, the reduced problem is modelled and solved
as an IP program. In the first stage,

• origin–destination pairs that can be serviced by truck (in such a way that all
operational constraints are satisfied) are allocated to this mode and are not
considered afterwards;

• origin–destination pairs that cannot be served feasibly by dedicated aircraft or
by truck are assigned to the commercial flights;

• low-priority services (deliveries within 48 hours or within 3–5 days) are made
by truck or by using the residual capacity of a company-owned aircraft;

• the demands of origin/destination sites are concentrated in the associated SC.

A route is a partial solution characterized by

• a sequence of stops of a company-owned aircraft ending or beginning in the
hub (depending on whether it is a collection or a delivery route, respectively).

• a set of SCs (not ASs) allocated to each aircraft AS.

Therefore, two routes visiting the same AS in the same order can differ because
of the set of SCs (which are not ASs), or because of the allocation of these SCs
to the ASs. If the demand of a route exceeds the capacity of the allocated aircraft,
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the exceeding demand is transported by commercial flights. The cost of a route is
therefore the sum of costs associated with air transportation, land transportation, and
possibly a commercial flight if demand exceeds dedicated aircraft capacity.

The IP model solved in the second stage is defined as follows. Let K be the set of
available airplane types; Uk , k ∈ K , the set of the pick-up routes that can be assigned
to an airplane of type k; V k , k ∈ K , the set of the delivery routes that can be assigned
to an airplane of type k; R the set of all routes (R = ⋃

k∈K(Uk ∪ V k)); nk , k ∈ K ,
the number of company-owned airplanes of type k; S the set of SCs, oi, i ∈ S, the
demand originating at the ith SC; di, i ∈ S, the demand whose destination is the ith
SC; cr , r ∈ R, the cost of route r; qi, i ∈ S, the cost paid if the whole demand oi

is transported by a commercial flight; si, i ∈ S, the cost paid if the whole demand
di is transported by a commercial flight; αr

i , i ∈ S, r ∈ R, a binary constant equal
to 1 if route r includes picking up traffic at the ith SC, and 0 otherwise; δr

i , i ∈ S,
r ∈ R, a binary constant equal to 1 if route r includes delivering traffic to the ith SC,
and 0 otherwise; γ r

i , i ∈ S, r ∈ R, a binary constant equal to 1 if the first (last) AS
of pick-up (delivery) route r is the ith SC, and 0 otherwise. The decision variables of
binary type are vi, i ∈ S, equal to 1 if demand oi is transported by commercial flight,
and 0 otherwise; wi, i ∈ S, equal to 1 if demand di is transported by commercial
flight, and 0 otherwise; xr , r ∈ R, equal to 1 if (pick-up or delivery) route r is selected,
and 0 otherwise.

The integer program is as follows.

Minimize
∑

k∈K

∑

r∈Uk∪V k

crxr +
∑

i∈S

(qivi + siwi) (8.28)

subject to
∑

k∈K

∑

r∈Uk

xrα
r
i + vi = 1, i ∈ S, (8.29)

∑

k∈K

∑

r∈V k

xrδ
r
i + wi = 1, i ∈ S, (8.30)

∑

r∈Uk

xrγ
r
i −

∑

r∈V k

xrγ
r
i = 0, i ∈ S, k ∈ K, (8.31)

∑

r∈Uk

xr � nk, k ∈ K, (8.32)

xr ∈ F, r ∈ R, (8.33)

xr ∈ {0, 1}, r ∈ R, (8.34)

vi ∈ {0, 1}, i ∈ S, (8.35)

wi ∈ {0, 1}, i ∈ S. (8.36)

The objective function (8.28) is the total transportation and handling cost. Con-
straints (8.29) and (8.30) state that each SC is served by a dedicated route or by a
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commercial route; constraints (8.31) guarantee that if a delivery route of type k ∈ K

ends in SC i ∈ S, then there is a pick-up route of the same kind beginning in i. Con-
straints (8.32) set upper bounds on the number of routes which can be selected for
each dedicated aircraft type. Finally, constraints (8.33) express the following further
restrictions. The arrivals of the airplanes at the hub must be staggered in the period
before the COT because of the available personnel and of the runway capacity. Simi-
larly, departures from the hub must be scheduled in order to avoid congestion on the
runways. Let na be the number of time intervals in which the arrivals should be allo-
cated; np the number of time intervals in which the departures should be allocated;
fr , r ∈ R, the demand along route r; at the maximum demand which can arrive to
the hub in interval t, . . . , na ; At the set of routes with arrival time from t on; Pt the
set of routes with departure time before t ; pt the maximum number of airplanes able
to leave before t . Hence, constraints (8.33) are

∑

k∈K

∑

r∈Uk∩At

frxr � at , t = 1, . . . , na, (8.37)

∑

k∈K

∑

r∈V k∩Pt

xr � pt , t = 1, . . . , np. (8.38)

Constraints (8.37) ensure that the total demand arriving at the hub is less than or
equal to the capacity of the hub in each time interval t = 1, . . . , na , while constraints
(8.38) impose that the total number of airplanes leaving the hub is less than or equal
to the maximum number allowed by runaway capacity in each time interval t =
1, . . . , np.

Other constraints may be imposed. For instance, if goods are stored in containers
one must ensure that once a container becomes empty it is brought back to the orig-
inating SC. To this end, it is necessary that the aircraft arriving at and leaving from
each SC be compatible. In the Intexpress problem, there are four types of airplanes,
indicated by 1, 2, 3 and 4. Aircraft of type 1 are compatible with type 1 or 2 planes,
while aircraft of type 2 are compatible with those of type 1, 2 and 3. Therefore, the
following constraints hold:

−
∑

r∈U1

xrα
r
i +

∑

r∈V 1∪V 2

xrδ
r
i � 0, i ∈ S, (8.39)

∑

r∈U1∪U2

xrα
r
i −

∑

r∈V 1

xrδ
r
i � 0, i ∈ S, (8.40)

−
∑

r∈U2

xrα
r
i +

∑

r∈V 1∪V 2∪V 3

xrδ
r
i � 0, i ∈ S, (8.41)

∑

r∈U1∪U2∪U3

xrα
r
i −

∑

r∈V 2

xrδ
r
i � 0, i ∈ S. (8.42)

Moreover, some airplanes cannot land in certain SCs because of noise restrictions
or insufficient runaway length. In such cases, the previous model can easily be adapted
by removing the routes r ∈ R including a stop at an incompatible SC.
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The variables in the model (8.28)–(8.32), (8.34)–(8.42) are numerous even if the
problem is of small size. For example, in the case of four ASs (a, b, c and d), there
are 24 pick-up routes (abcd , acbd , adbc, etc.) each of which has a different cost and
arrival time at the hub. If, in addition, two SCs (e and f ) are connected by truck to one
of theASs a, b, c and d , then the number of possible routes becomes 16×24 = 384 (as
a matter of fact, for each AS sequence, each of the two SCs e and f can be connected
independently by land to a, b, c or d). Finally, for each delivery route making its last
stop at an AS d , one must consider the route making its last stop in a different SC
g ∈ S \ {d}. Of course, some of the routes can be infeasible and are not considered
in the model (in the case under consideration the number of feasible routes is about
800 000).

The solution methodology is a classical branch-and-bound algorithm in which at
each branching node a continuous relaxation of (8.28)–(8.32), (8.34)–(8.42) is solved.
The main disadvantage of this approach is the large number of variables. Since the
number of constraints is much less than the number of variables, only a few variables
take a nonzero value in the optimal basic solution of the continuous relaxation. For
this reason, the following modification of the method is introduced. At each iteration,
in place of the continuous relaxation of (8.28)–(8.32), (8.34)–(8.42), a reduced LP
problem is solved (in which there are just 45 000 ‘good’variables, chosen by means of
a heuristic criterion); then, using the dual solution of the problem built in this manner,
the procedure determines some or all of the variables with negative reduced costs,
introducing the corresponding columns in the reduced problem (pricing out columns).
Various additional devices are also used to quicken the execution of the algorithm.
For example, in the preliminary stages only routes with an utilization factor between
30% and 185% are considered. This criterion rests on two observations: (a) because
of the reduced number of company aircraft, it is unlikely that an optimal solution
will contain a route with a used capacity less than 30%; (b) the cost structure of the
air transportation makes it unlikely that along a route more than 85% of the traffic is
transported by commercial airlines.

The above method was first used to generate the optimal service network using
the current dedicated air fleet. The cost reduction obtained was more than 7%, cor-
responding to a yearly saving of several million dollars. Afterwards, the procedure
was used to define the optimal composition of the company’s fleet (fleet planning).
For this purpose, in formulation (8.28)–(8.32), (8.34)–(8.42), it was assumed that nk

was infinite for each k ∈ K . The associated solution shows that five aircraft of type 1,
three of type 2 and five of type 3 should be used. This solution yielded a 35% saving
(about 10 million dollars) with respect to the current solution.

8.14 Bulk-Cargo Ship Scheduling Problem at the
US Navy

The Tanker Division of the US Navy is in charge of planning the fuel replenishment
of the US naval bases in the world. This task is accomplished by a fleet of 17 tankers
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owned by the US Navy and, if needed, of specialized companies (spot carriers). Every
three months a team of the Tanker Division works out a replenishment plan including
both a scheduling of the military tanks and a possible list of tasks for the spot carriers.
The objective is to minimize the operational expenses of the military tanks plus the
hiring costs of additional tankers provided by spot carriers. The main operational
constraints are related to delivery times, which must be included in pre-established
time windows, and the impossibility for some ships to moor in certain ports. The
replenishment plans must also consider the current position and initial status of the
fleet. Plans are revised daily in order to consider new demands, or delays due to
unfavourable weather conditions.

Each fuel request consists of a type of product, a demand, a delivery point and a
delivery time. On the basis of fuel availability at the depots, the team establishes how
each request must be satisfied.After this preliminary analysis, the demand is expressed
by a set of elementary fuel transfers. An elementary transfer is composed of two or
three pick-ups in a same port or in adjacent ports, and of two or three deliveries to
adjacent demand points. Typically, a tank is able to make two elementary transfers
in a month. The formulation of the model takes into account the fact that because of
the operational constraints, a tank can only complete a limited number of elementary
transfers (generally, no more than 10) in the planning period.

Let n be the number of elementary transfers; m the number of ports, K (= 17) the
number of military tanks; Sk, k = 1, . . . , K , the set of the feasible working plans
for tank k; aijk, i = 1, . . . , n, j ∈ Sk, k = 1, . . . , K , a binary constant equal
to 1 if working plan j for tank k includes elementary transfer i, and 0 otherwise;
fi, i = 1, . . . , n, the cost paid if transfer i is committed to a spot carrier; gjk ,
j ∈ Sk, k = 1, . . . , K , the variation of cost incurred if tank k executes working plan
j , as opposed to the situation in which the tank lies idle for all the planning period.
Further, let xjk , j ∈ Sk , k = 1, . . . , K , be a binary decision variable equal to 1 if
working plan j is selected for tank k, and 0 otherwise; yi, i = 1, . . . , n, a binary
decision variable equal to 1 if transfer i is made by a spot carrier, and 0 otherwise.

The problem was formulated as follows.

Minimize
K

∑

k=1

∑

j∈Sk

gjkxjk +
n

∑

i=1

fiyi (8.43)

subject to
K

∑

k=1

∑

j∈Sk

aijkxjk + yi = 1, i = 1, . . . , n, (8.44)

∑

j∈Sk

xjk � 1, k = 1, . . . , K, (8.45)

xjk ∈ {0, 1}, j ∈ Sk, k = 1, . . . , K, (8.46)

yi ∈ {0, 1}, i = 1, . . . , n. (8.47)
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The objective function (8.43) is equal to the total transportation cost. Constraints
(8.44) impose that each transfer is realized by a military tank or by a spot carrier.
Constraints (8.45) establish that, for each tank, at most one working plan must be
selected. Model (8.43)–(8.47) is therefore a set partitioning problem with some addi-
tional constraints (relations (8.45)). The US Navy has almost 30 elementary transfers
in each planning period, to which correspond various thousands of feasible work-
ing plans. Using a general-purpose IP solver it is generally possible to solve these
instances exactly.

The optimal solution yielded an average monthly cost of $341 900, inferior by
$467 000 to the manual scheduling. The yearly saving was about 1.5 million dollars.
Further cost reductions were obtained by simulating various compositions of the
military fleet. This analysis suggested a reduction of the current fleet, no longer using
five tanks and using mainly the spot carriers. This solution generated a cost reduction
of 3.2 million dollars per year.

8.15 Meter Reader Routing and Scheduling at Socal

Socal (Southern California Gas Company) distributes, with its own pipe network,
domestic and industrial gas in an area including all of southern California (USA).
The task of surveying user consumption is accomplished by motorized operators.
Every day a meter reader makes an initial car trip from the offices of the company up
to a parking point; afterwards, he walks along several streets (or segments of streets)
where he does some surveying; finally, he reaches the parking point from which he
returns to the company by car. According to the working contract, if the duration of
a shift exceeds a pre-established maximum value T max, a meter reader receives an
additional remuneration, proportional to the overtime. For reasons of equity, Socal
prefers solutions in which all service routes have a similar duration. The planning
of the meter-reading activities then consists of partitioning the set of street segments
into subsets yielding service routes with a duration close to T max.

In 1988 Socal mandated a consulting firm, Distinct Management Consultants, Inc.
(DMC) to evaluate the costs and the potential benefits resulting from the use of an
optimization software for the planning of meter-reading activities. A pilot study was
conducted in a sample region including the townships of Culver City, Century City,
Westwood, West Hollywood and Beverly Hills. This area corresponds to about 2.5%
of the entire service territory and to 242.5 working days per month. The interest of
Socal in this project was prompted by the sizeable expense (about 15 million dollars
per year) resulting from meter-reading activities.

DMC built a model of the problem integrating the data contained in the Socal
archives with those derived from a GIS. In the case of streets having users on both sides,
it was assumed that the meter reader would cover both sides separately. Therefore, the
problem was represented by a multigraph G(V, E) in which the road intersections
are described by vertices in V and street segments are associated with single edges or
to pair of parallel edges. The street sides containing some consumers formed a subset
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Figure 8.19 An example of a multigraph used for modelling the Socal problem
(bold edges are required, while those with a dotted line are not required).

R ⊆ E (see Figure 8.19). With each edge (i, j) ∈ E was associated a traversing time
tij , and with each edge (i, j) ∈ R, was associated a service time sij (> tij ).

The duration t (R′) of a work shift corresponding to a subset of the service edges
R′ ⊆ R has a cost equal to the sum of three terms: (a) the time spent to deal with
administrative issues at the company headquarter (generally 15 min); (b) the travel
time by car from the headquarter to a parking site; (c) the duration T (R′) of the
solution of the RPP (see Section 7.6.2) associated with the service on foot of all edges
of R′. Socal prefers work shifts associated with subsets R′ ⊆ R whose duration is
included between T min = 7.9 hours and T max = 8 hours (balanced work shifts).

A partition {R1, . . . , Rn} of R is feasible if each pair of parallel service arcs belongs
to the same subset Ri , i = 1, . . . , n (feasible partition). The search for a feasible bal-
anced partition (or, at least, ‘almost’balanced) of R can be viewed as the minimization
of a penalty associated with a violation of the desired length [T min, T max] of each
work shift (edge partitioning problem).

Denoting by U and L the penalties associated with the two types of violation, the
objective function to minimize is

U

n
∑

i=1

max{t (Ri) − T max, 0} + L

n
∑

i=1

max{T min − t (Ri), 0}.

DMC solved the problem by means of the following procedure.

Step 0. The workloads associated withT (R′),R′ ⊆ R, are approximated asW(R′) =
∑

(i,j)∈R′ tij . This approach is justified by the presence of consumers on both sides
of most of the street segments. An evaluation of the average useful time T̄ of a route
(the time a meter reader will take on average to travel on foot) was calculated as
the difference between T max and the average time required for the administrative
tasks and for driving.
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Table 8.10 Comparison between the results provided by DMC procedure and
the manual solution used by Socal.

Socal DMC Savings
routes routes (%)

Number of routes 242,5 236 2.7
Average shift duration (hours) 7.82 7.95
Shift interval duration [7.03; 8.56] [7.77; 8.11]
Overtime (minutes) 293.4 110.4 62.3
Total deadheading time 693.4 63.1 90.9

(without service)
Total travel time by car 545.5 133.2 75.6

Step 1. The number n of shifts was evaluated by rounding down the ratio between
the total workload W(R′) of the service area and T̄ .

Step 2. The load of remaining workload (W(R′)−nT max) was assigned to an ‘incom-
plete’ auxiliary route, built with a heuristic criterion along the border of the service
area.

Step 3. The n ‘complete’ shifts were defined by means of a local search procedure
(see Section 7.3.2). The algorithm first selected n seed vertices appropriately spaced
out and then progressively generated the routes by adding to each of them couples
of parallel edges in order to constantly have balanced work shifts. The solution
obtained in this manner was improved, where possible, with some exchanges of
couples of edges (or of groups of couples of edges) among the work shifts.

The solution generated by this procedure for the sample district was characterized,
compared to the one obtained manually by Socal, by a reduced number of meter
readers, by a remarkable reduction of overtime and by an increase in the average
useful time of an operator (see Table 8.10). Extrapolating the savings associated with
these improvements, DMC estimated at about $870 000 the saving expected after the
use of the optimization method for the entire area served by Socal.

The previous analysis convinced the Socal management to order from DMC a
decision support system with a user-friendly interface, based on the optimization
method just described. The system development required one year and was installed
at the beginning of 1991.
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8.17 Further Case Studies
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Operational Research, the Journal of the Operational Research Society, Omega and
Interfaces. In what follows, a few remarkable articles are introduced and summarized.
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analysis at Heinz. Interfaces 20(5), 1–13.
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Arntzen BC, Brown GG, Harrison TP and Trafton LL 1995 Global supply chain
management at Digital Equipment Corporation. Interfaces 25(1), 69–93.
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Rosenfield DB, Engelstein I and Feigenbaum D 1992 An application of sizing
service territories. European Journal of Operational Research 63, 164–172.

A decision support system is developed to reduce the cost of transporting materials,
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in:

Blumenfeld DE, Burns LD, Daganzo CF and Hall RH 1987 Reducing logistics
costs at General Motors. Interfaces 17(1), 26–47.

A system for dispatching and processing customer orders for gasoline and distillates
at ExxonMobil Corporation is illustrated in:

Brown GG, Ellis CJ, Graves GW and Ronen D 1987 Real time, wide area
dispatch of Mobil Tank Trucks. Interfaces 17(1), 107–120.

A combined location-routing problem is illustrated in:
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Rosenfield DB, Engelstein I and Feigenbaum D 1992 Plant location and vehicle
routing in the Malaysian smallholder sector: a case study. European Journal of
Operational Research 38, 14–26.

A routing problem associated with the collection and delivery of skips is described
in:

De Meulemeester L, Laporte G, Louveaux FV and Semet F 1997 Optimal
sequencing of skip collection and deliveries. Journal of the Operational Re-
search Society 48, 57–64.

A complex vehicle routing problem occurring in a major Swiss company is analysed
in:

RochatY and Semet F 1994 A tabu search approach for delivering pet food and
flour in Switzerland. Journal of the Operational Research Society 45, 1233–
1246.
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