

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

FACULTAD DE INGENIERÍA SYLLABUS

PROYECTO CURRICULAR DE INGENIERÍA ELÉCTRICA

Nombre del Docente														
ESPACIO ACA	DÉMIC	CO (Asign	Código:											
SIST	EMAS	DE PUE	STA A	TIERRA										
Obligatorio Básico				Complementario			262							
Electivo	X	Intrínseco	X	Extrínseco										
Número de Estudiant	tes					Grupo	Grupo							
Número de Créditos				Tres (3)										
TIPO DE CURSO:		Teórico)		Práctico		Teórico - Práctico	×						
Alternativas Metodológ														
Clase Magistral	X	Seminario		Seminario-Taller		Taller	X	Prácticas	×					
Proyectos Tutoriados	X	Otros												
				НОГ	RARIO									
D			HO	RAS			SALÓN							
		I. Jl	JSTIF	ICACIÓN DEI	ESPACI	O ACADÉN	/IICO							

La continua expansión de los sistemas eléctricos y de telecomunicaciones ha provocado que se fije especial atención en los esquemas de protección y seguridad. Las puestas a tierra son esenciales para preservar la seguridad de las personas y de los equipos bajo condiciones normales y de falla y su uso está orientado en espacial a proporcionar los medios para disipar las corrientes eléctricas a tierra sin exceder los límites de operación de la red y de los equipos. Estas funciones hacen del diseño y la instalación adecuada de una puesta a tierra una tarea de especial cuidado en ingeniería eléctrica. De hecho, si se presentan fallas o problemas en el diseño o construcción de una puesta a tierra pueden aparecer sobretensiones que comprometan el aislamiento y la vida útil de los equipos, o en el peor de los casos se pueden provocar choques eléctricos que puedan causar heridas graves y hasta la muerte de personal técnico o personas que estén en contacto con las redes eléctricas.

La asignatura de Sistemas de Puesta Tierra ha sido diseñada y propuesta como una electiva intrínseca del núcleo profesional en ingeniería eléctrica con el propósito de brindar a los estudiantes herramientas conceptuales (teórico-prácticas) que le permitan comprender y analizar todos los procedimientos técnicos y normativos que se deben seguir para un adecuado diseño de un sistema de puesta a tierra, su construcción y su adecuado mantenimiento. Adicionalmente, proporcionará a los estudiantes criterios para la selección de materiales y la estimación del desempeño del sistema de puesta a tierra.

Conocimientos Previos:

- Circuitos eléctricos
- Campos electromagnéticos
- Instalaciones Eléctricas

II. PROGRAMACIÓN DEL CONTENIDO

OBJETIVO GENERAL

Analizar los conceptos, técnicas y normatividad actual para el diseño y operación de sistemas de puesta a tierra para aplicaciones residenciales, comerciales e industriales

OBJETIVOS ESPECIFICOS

- Revisar los fundamentos teóricos y técnicos de los sistemas de puesta a tierra
- Identificar los materiales y elementos en la instalación de un sistema de puesta a tierra y analizar su influencia dentro de su proceso de diseño
- Determinar cualitativamente y cuantitativamente los efectos de altas tensiones, altas corrientes y transitorios sobre un sistema de puesta a tierra
- Establecer los procedimientos para diseñar y construir sistemas de puesta a tierra de acuerdo a la normatividad vigente
- Desarrollar habilidades prácticas para el diseño de circuitos de prueba, la realización de montajes y la estimación de los parámetros característicos de un sistema de puesta a tierra
- Analizar diferentes alternativas y optar por la mejor solución para el diseño y construcción de un sistema de puesta a tierra
- Evaluar criterios de seguridad en sistemas de puesta a tierra

COMPETENCIAS DE FORMACIÓN:

Competencias de Contexto

- Consolidar una formación profesional con responsabilidad social y valores éticos para tomar decisiones en favor del bien común
- Interactuar y trabajar de manera conjunta con otras personas para dar solución a un problema planteado
- Desarrollar actitudes enfocadas a fortalecer la responsabilidad y la participación
- Desarrollar habilidades para protegerse y proteger otras personas frente a problemas que generen riesgo eléctrico

Competencias Básicas:

- Conocer sobre las condiciones de riesgo y la manera en que se deben evitar para garantizar una mayor vida útil de los equipos eléctricos
- Calcular y seleccionar los materiales y equipos necesarios para la implementación de un sistema de puesta a tierra, teniendo en cuenta requerimientos particulares
- Hacer los diseños eléctricos de un sistema de puesta a tierra y evaluar su interacción y efectividad respecto a las instalaciones a proteger
- Evaluar los efectos de altas tensiones, altas corrientes y transitorios sobre el sistema de puesta a tierra
- Aplicar la reglamentación vigente en la construcción y prueba de sistemas de puesta a tierra

Competencias Laborales:

- Calcular, diseñar, construir y mantener sistemas de puesta a tierra para uso residencial, comercial e industrial
- Conocer y aplicar la normatividad relacionada con el diseño e instalación de sistemas de puesta a tierra
- Diseñar y construir sistemas eléctricos de baja, media y alta tensión
- Usar equipos de medición e instrumentación para pruebas técnicas según normatividad
- Determina procedimientos técnicos de la conexión de sistemas de puesta a tierra

PROGRAMA (UNIDADES TEMÁTICAS)

Unidad 1. Generalidades y conceptos básicos

- Conceptos básicos de riesgo eléctrico
- Efectos fisiológicos de la electricidad en el cuerpo humano
- Terminología y equipos

Unidad 2. Fundamentos de SPT

- Introducción: definiciones básicas, importancia de las puestas a tierra
- Esquemas de conexión a tierra
- Componentes de un SPT: conductores y conectores, bajantes, pararrayos y electrodos
- Configuraciones de electrodos

• Mallas de puesta a tierra

Unidad 3. Análisis de corrientes a tierra y evaluación de potenciales riesgosos

- Modelos (representación) y equivalentes de un sistema eléctrico
- Corrientes simétricas o asimétricas
- Cálculo de corrientes de falla
- Impedancia del cuerpo humano
- Tensiones de paso y de contacto
- Potenciales permisibles
- Gradiente de potencial a tierra
- Equipos de protección personal

Unidad 4. Características eléctricas del suelo

- La tierra y la resistividad del suelo
- Tipos de suelos y resistividades típicas
- Permitividad eléctrica y permeabilidad eléctrica del suelo
- Parámetros eléctricos en función de la frecuencia
- Resistividad aparente
- Medición de la resistividad del suelo: método Wenner, Schlumberger y otros
- Medición de parámetros del suelo en función de la frecuencia
- Procedimientos y precauciones en la medición
- PRACTICAS 1 y 2

Unidad 5. Modelamiento del suelo

- Modelos lineales del suelo
- Modelos del suelo: suelo homogéneo, dos capas y múltiples capas
- Otros modelos de suelos
- Estimación de parámetros del suelo usando herramientas computacionales
- PROYECTO FINAL PARTE 1

PARCIAL 1

Unidad 6. Impedancia y Resistencia de puesta a tierra (RPT)

- Valores aceptables de RPT
- Cálculo de la RPT para diferentes configuraciones de electrodos
- Selección de conductores de puesta a tierra de equipos
- Medición de RPT de electrodos a tierra: caída de potencial, método de dos y tres puntos, pérdidas, errores
- Medición de RPT para mallas y torres de transporte de energía
- Procedimientos y precauciones en la medición
- PRACTICAS 3 y 4

Unidad 7. Diseño de SPT en sistemas de baja y media tensión

- Generalidades y componentes esenciales del diseño de SPT
- Valores aceptables (recomendados)
- Cálculo de RPT en sistemas de BT y MT
- Aspectos de seguridad: potenciales de paso y de contacto

Unidad 8. Diseño de SPT en sistemas de alta tensión y subestaciones eléctricas

- Detalles constructivos del SPT en subestaciones y sistemas HV
- Valores aceptables de la RPT (recomendados)
- Cálculo de RPT en sistemas de alta tensión: sección de conductor, tensión de retículo, tensiones de paso, diseño según IEEE-80
- Aspectos de seguridad: potenciales de paso y de contacto
- Optimización de mallas de puesta a tierra
- Protección contra rayos: cable de guarda y apantallamiento

• PROYECTO FINAL PARTE 2

Unidad 9. Casos de estudio y condicionamientos especiales

- Puesta a tierra para equipos eléctricos y electrónicos en BT
- Tierras aisladas y tierras temporales
- SPT en sistemas de corriente directa (DC)
- Respuesta transitoria de los SPT
- Estimación del comportamiento de SPT usando herramientas computacionales
- PROYECTO FINAL PARTE 3

Unidad 10. Mantenimiento de sistemas de puesta a tierra

- Soldadura exotérmica y conexiones
- Corrosión por acción electroquímica
- Mediciones de mantenimiento a SPT
- Monitoreo continuo
- Alteración de la resistividad del terreno y suelos artificiales
- PRACTICA 5 PARCIAL 2

Unidad 11. Sustentación proyecto final

III. ESTRATEGIAS

Metodología Pedagógica y Didáctica

- Asistencia a clases magistrales
- Talleres y estudios de caso
- Prácticas de laboratorio
- Análisis y diseño de sistemas

- Investigaciones e Informes
- Simulaciones
- Sustentación de actividades y proyectos

		Horas		Horas profesor/sem	Horas Estudiante/sem	Total Horas Estudiante/semestre	- Créditos	
Tipo de Curso	TD	TC	TA	(TD + TC)	(TD+TC+TA)	X 16 semanas		
Teórico	3	1	4	4	8	128	3	

Trabajo Directo (TD): trabajo de aula con plenaria de todos los estudiantes.

Trabajo Cooperativo (TC): Trabajo de tutoría del docente a pequeños grupos o de forma individual a los estudiantes.

Trabajo Autónomo (TA): Trabajo del estudiante sin presencia del docente, que se puede realizar en distintas instancias en grupos de trabajo o en forma individual en casa o en biblioteca, laboratorio, etc.

IV. RECURSOS

Medios y Ayudas

- Video beam y proyector de acetatos
- Herramientas multimedia y documentos audiovisuales
- Laboratorio de pruebas de alta tensión
- Sistemas de medición e instrumentación
- Herramientas de software especializado (ATP/EMTP, COMSOL, ETAP, DIgSILENT, MATLAB)
- Normas técnicas (NTC, IEEE, IEC, ANSI, ASTM)

Bibliografía

Textos Guías

- SALAM, MD., RAHMAN, A., MEHBUBAR, Q., Power Systems Grounding, Springer, 2016
- RAMIREZ J. S., CANO E. A., Sistemas de Puesta a Tierra: Diseñado con IEEE-80 y evaluado con MEF. Editorial Universidad Nacional de Colombia. Manizales, 2010

- MEJIA VILLEGAS S.A, Subestaciones de Alta y Extra Alta Tensión, 2003
- Reglamento Técnico en Instalaciones Eléctricas RETIE. Ministerio de minas y energía -- disponible en (http://www.minminas.gov.co)
- NTC 2050. Código eléctrico Colombiano
- NTC 2206. Equipo de conexión y puesta a Tierra
- NTC 4552. Protección contra rayos. Principios Generales
- NTC 4591. Técnicas de ensayo de alta tensión. Definiciones generales y requisitos de ensayo
- Std. IEEE 80. Guide for Safety in AC Substation Grounding
- Std. IEEE 142. Recommended Practice for Grounding of Industrial and Commercial Power Systems

Textos Complementarios:

- MORENO G., VALENCIA J., CARDENAS C., Villa W., Fundamentos e ingeniería de las puestas a tierra. Editorial Universidad de Antioquia. 2007
- Comisión de Regulación de Energía y Gas (CREG). Resoluciones generales
- Stevenson, William D. "Análisis de Sistemas Eléctricos de Potencia"

Revistas:

- IEEE Industry Applications
- Magazine IEEE Industry
- Applications Transactions

V. ORGANIZACIÓN / TIEMPOS

Espacios, Tiempos, Agrupamientos

PROGRAMA SINTÉTICO		SEMANAS ACADÉMICAS														
		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Unidad 1. Generalidades y conceptos básicos																
Unidad 2. Fundamentos de SPT																
Unidad 3. Análisis de corrientes a tierra y evaluación de potenciales riesgosos																
Unidad 4. Características eléctricas del suelo																
Unidad 5. Modelamiento del suelo																
Unidad 6. Impedancia y Resistencia de puesta a tierra (RPT)																
Unidad 7. Diseño de SPT en sistemas de baja y media tensión																
Unidad 8. Diseño de SPT en sistemas de alta tensión																
Unidad 9. Casos de estudio																
Unidad 10. Mantenimiento de sistemas de puesta a tierra																

Unidad 11. Sustenta final	ación proyecto							
VI. EVALUACIÓN								
	TIPO DE EVALUACIÓN	FECHA	PORCENTAJE					
PRIMER CORTE	Talleres y otras actividades	Semana 8 de clases	35%					
SEGUNDO CORTE	Talleres y exposición	Semana 16 de clases	35%					
EXAMEN FINAL	Talleres, proyecto y evaluación final	Semana 17 -18 de clases	30%					
ASPECTOS A EVALU	JAR DEL CURSO							
 Evaluación del desempeño docente Evaluación de los aprendizajes de los estudiantes en sus dimensiones: individual/grupo, teórica/práctica, oral/escrita. Autoevaluación y Co-evaluación del curso: de forma oral entre estudiantes y docente. 								

Datos del Profesor					
Nombre:					
Pregrado:					
Postgrado:					
Correo Electrónico:					