Principios del Diseiio Basicos Orientado a Objetos

“Asi como conocer las reglas del ajedrez no te hace un buen jugador, lo mismo pasa con la
programacion orientada a objetos: se puede conocer los conceptos pero no saber utilizarlos.”
(Adrian Paredes)

¢éTe consideras hijo del Drag and Drop? (Construir productos para entregar al cliente, de la forma
mas rapida posible). Que ha pasado con la Ingenieria de Software?

Inicial | Significado Concepto

S SRP Principio de Unica Responsabilidad (Single responsibility principle): A class
should have one, and only one, reason to change.

o] ocp Principio Abierto/Cerrado: You should be able to extend a classes behavior,
without modifying it.

L LSP Principio de sustitucidn de Liskov: Derived classes must be substitutable for
their base classes. Ver también disefio por contrato.

| ISP Principio de Segregacion de la Interface (Interface segregation principle):
Make fine grained interfaces that are client specific.

D DIP Principio de Inversidn de Dependencia (Dependency inversion principle):
Depend on abstractions, not on concretions.
La Inyeccién de Dependencias es una de los métodos que siguen este
principio.

SRP: THE SINGLE RESPONSIBILITY PRINCIPLE

(Fuente: https://docs.google.com/file/d/0ByOwmgah nuGNHEtcU50ekdDMkk/edit?pli=1)

This principle was described in the work of Tom DeMarco and Meilir Page-Jones. They called it
cohesion. They defined cohesion as the functional relatedness of the elements of a module. In this
chapter we’ll shift that meaning a bit, and relate cohesion to the forces that cause a module, or a
class, to change.

“A CLASS SHOULD HAVE ONLY ONE REASON TO CHANGE.”

Consider the bowling game. For most of its development the Game class was handling two
separate responsibilities. It was keeping track of the current frame, and it was calculating the
score. In the end, RCM and RSK separated these two responsibilities into two classes. The Game
kept the responsibility to keep track of frames, and the Scorer got the responsibility to calculate
the score.

Why was it important to separate these two responsibilities into separate classes? Because each
responsibility is an axis of change. When the requirements change, that change will be manifest
through a change in responsibility amongst the classes. If a class assumes more than one
responsibility, then there will be more than one reason for it to change.

If a class has more than one responsibility, then the responsibilities become coupled. Changes to
one responsibility may impair or inhibit the class’ ability to meet the others. This kind of coupling
leads to fragile designs that break in unexpected ways when changed.

For example, consider the design in Figure 1. The Rectangle class has two methods shown. One
draws the rectangle on the screen, the other computes the area of the rectangle.

Computational Rectangle Graphical
Geornet_ry + draw() Application
Application + area() - double
/
Gul
Figure 1

Two different applications use the Rectangle class. One application does computational geometry.
It uses Rectangle to help it with the mathematics of geometric shapes. It never draws the
rectangle on the screen. The other application is graphical in nature. It may also do some
computational geometry, but it definitely draws the rectangle on the screen.

This design violates the SRP. The Rectangle class has two responsibilities. The first responsibility is
to provide a mathematical model of the geometry of a rectangle. The second responsibility is to
render the rectangle on a graphical user interface. The violation of SRP causes several nasty
problems. Firstly, we must include the GUI in the computational geometry application. In .NET the
GUI assembly would have to be built and deployed with the computational geometry application.
Secondly, if a change to the GraphicalApplication causes the Rectangle to change for some reason,
that change may force us to rebuild, retest, and redeploy the ComputationalGeometryApplication.
If we forget to do this, that application may break in unpredictable ways.

A better design is to separate the two responsibilities into two completely different classes as
shown in Figure 2. This desigh moves the computational portions of Rectangle into the
GeometricRectangle class. Now changes made to the way rectangles are rendered cannot affect
the ComputationalGeometryApplication.

Computational Graphical
Geometry L
Application Application
Geometric Rectangle
Rectangle
+draw() Gul
+ area() : double

Figure 2

What is a Responsibility?

In the context of the Single Responsibility Principle (SRP) we define a responsibility to be “a reason
for change.” If you can think of more than one motive for changing a class, then that class has
more than one responsibility. This is sometimes hard to see. We are accustomed to thinking of
responsibility in groups. For example, consider the Modem interface in Listing 1. Most of us will
agree that this interface looks perfectly reasonable. The four functions it declares are certainly
functions belonging to a modem.

public interface Modem{
public void Dial(string pno);
public void Hangup();
public void Send(char c);
public char Recv();

}
Listing 1

However, there are two responsibilities being shown here. The first responsibility is connection
management. The second is data communication. The dial and hangup functions manage the
connection of the modem, while the send and recv functions communicate data. Should these two
responsibilities be separated? That depends upon how the application is changing. If the
application changes in ways that affect the signature of the connection functions, then the design
will smell of Rigidity because the classes that call send and read will have to be recompiled and
redeployed more often than we like. In that case the two responsibilities should be separated as
shown in Figure 3. This keeps the client applications from coupling the two responsibilities.

ginterfaces ainterfaces
Data .
Channel Connection
+ send(:char) + dial(pno : String)
+recv() : char + hangup()
5 ;
| |
| I
| |
| I
| |
N Madem I
Implementation

Figure 3

If, on the other hand, the application is not changing in ways that cause the the two
responsibilities to change at differen times, then there is no need to separate them. Indeed,
separating them would smell of Needless Complexity. There is a corrolary here. An axis of change
is only an axis of change if the changes actually occurr. It is not wise to apply the SRP, or any other
principle for that matter, if there is no symptom.

Separating coupled responsibilities.

Notice that in Figure 3 | kept both responsibilities coulped in the ModemIimplementation class.
This is not desirable, but it may be necessary. There are often reasons, having to do with the
details of the hardware or OS, that force us to couple things that we’d rather not couple.

However, by separating their interfaces we have decoupled the concepts as far as the rest of the
application is concerned.

We may view the ModemlImplementation class as a kludge, or a wart; however, notice that all
dependencies flow away from it. Nobody need depend upon this class.

Nobody except main needs to know that it exists. Thus, we’ve put the ugly bit behind a fence. It's
ugliness need not leak out and pollute the rest of the application.

Persistence.

Figure 4 shows a common violation of the SRP. The Employee class contains business rules and
persistence control. These two responsibilities should almost never be mixed. Business rules tend
to change frequently, and though persistence may not change as frequently, it changes for
completely different reasons. Binding business rules to the persistence subsystem is asking for
trouble.

Employee
Persistence
Subsystem + CalculatePay
+ Store

Figure 4

Fortunately, the practice of test driven development will usually force these two responsibilities to
be separated long before the design begins to smell. However, in cases where the tests did not
force the separation, and the smells of Rigidity and Fragility become strong, the design should be
refactored using the FACADE, DAO, or PROXY patterns to separate the two responsibilities.

Ejemplo No 1:

a. Se tiene una clase Pedido con dos métodos: cargar, que traeria de la base de datos la
informacién del pedido y de los productos que lo componen, y calcularCosto, que sumaria el
precio de los productos, aplicando cualquier descuento pertinente.

Esto podria parecer un buen disefio, porque, al fin y acabo, ambos métodos se encargan de cosas
relacionadas con los pedidos, pero la realidad es que la clase se encarga de tareas relacionadas
con los pedidos y de tareas relacionadas con la base de datos

