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PREFACE

Goals of This Book

In the past few decades, the study of supply chain management has evolved into a cohesive
body of knowledge—not merely a haphazard collection of models, algorithms, and theo-
rems, but a rich theory whose components intersect and inform each other. We wrote this
book to help codify the foundations of this emerging supply chain theory and to demon-
strate how recent developments build upon the classical models. Our focus is primarily
on the seminal models and algorithms of supply chain theory—the building blocks that
underlie much of the supply chain literature. We believe that an understanding of these
models provides researchers with a sort of guidebook to the literature, as well as a toolbox
to draw from when developing new models. We also discuss some more recent models
that demonstrate how the classical models can be extended and applied in richer settings.
These models provide graduate students and other new researchers in the field with some
examples of the trajectory of research on supply chain theory—how the building blocks
can be assembled to create something more complex, interesting, or useful.

Studying supply chain theory as a whole allows us the luxury of gaining some perspective
on the field, a perspective that is not always evident when we immerse ourselves deeply
in the literature on a particular topic. To that end, wherever possible, we have attempted
to highlight the connections among supply chain models—for example, the conceptual
similarities among different supply chain pooling models, the ways that inventory and
location models can be combined, or the ways that inventory theory interacts with game
theory to produce supply chain coordination models.

XXXi
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Who Should Read This Book

This book was written for anyone who is interested in quantitative approaches for studying
supply chains. This includes people from a wide range of disciplines, such as industrial
engineering/operations research, mathematics, management, economics, computer science,
and finance. This also includes students (primarily graduate students), faculty, researchers,
and practitioners of supply chain theory. And it includes scholars who are new to supply
chain theory and want a gentle but rigorous introduction to it, or scholars who are well
versed in the field and want a refresher or a reference for the seminal models. Finally, since
you are holding this book, it most likely includes you.

One of the hallmarks—and, in our opinion, the great pleasures—of supply chain theory
is that it makes use of a wide variety of the tools of operations research, mathematics,
and computer science. In this book, you will find mathematical programming models (lin-
ear, integer, nonlinear, conic, stochastic, robust), duality theory, optimization techniques
(Lagrangian relaxation, column generation, dynamic programming, line search, plus op-
timization by calculus and finite differences), heuristics and approximations, probability,
stochastic processes, game theory, combinatorics, simulation, and complexity theory.

To make use of this book, you need not be an expert in all of these. (We are not.)
We assume that you are familiar with basic optimization theory—that you know how to
formulate a linear program and its dual, that you know how branch-and-bound works, and
that you can perform a simple line search method such as bisection search. We also assume
that you understand probability distributions and know how to compute expectations of
random variables and functions thereof. We assume that your calculus is in good working
order, that you can compute derivatives and integrals, including ones that involve multiple
variables or other derivatives or integrals. We assume you have met Markov chains before,
but we don’t require you to remember much about them. For just about everything else,
we will start from the ground up and tell you (or remind you of) what you need to know
in order to understand the topic at hand. For some topics, you will find a useful reference
in Appendix C, which lists formulas for calculating expectations, loss functions, geometric
series, and some tricky derivatives and integrals. Because Lagrangian relaxation and
column generation play a role in several chapters of this book, we have included a brief
primer on those topics in Appendix D.

Probably the single most important prerequisite for this book is a high level of general
mathematical maturity. We discuss a lot of mathematical proofs, and ask you to write your
own in the homework problems. If you do not have much experience in this area, you
may find the proofs to be the most challenging aspect of this book. To help you out, we
have included in Appendix B a short guide to proof-writing. We hope this appendix will
familiarize you with some of the basic principles of proof-writing, as well as some of the
finer points of proof style and syntax. But, proof-writing is perhaps more art than science,
and the appendix will only get you so far. You will learn to be a good proof-writer mainly
by practicing the craft.

Organization of This Book

Our intention in writing this book was to cover a broad range of topics in supply chain
theory, even if that meant that we could not cover some topics as deeply as we might have
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liked. Most of the material in this book is derived from earlier papers, and of course we
have cited those papers carefully so that readers can delve deeper into any topics they wish.
We have also cited important related references, and review articles where possible, so that
readers can find more information about topics that interest them.

Most of this book (Chapters 2—12) deals with centralized supply chain models, in which
all of the decision variables are under the control of a single decision-maker. Most classical
supply chain models, such as those for optimizing inventories and facility locations, are
centralized models. In contrast, the decentralized models of Chapters 13—15 involve
multiple parties with independent, conflicting objectives and the autonomy to choose their
decision variables to optimize those objectives. The bullwhip effect (Chapter 13) is an
example of a result of this decentralization, while the models of Chapters 14 and 15 discuss
strategies for mitigating the negative financial effects of decentralization.

This chapters of this book are as follows:

e Chapter 1 (“Introduction”) gives an overview of supply chain management and
defines terms that we will use throughout the book.

e Chapter 2 (“Forecasting and Demand Modeling”) discusses classical and machine-
learning—based forecasting methods, as well as three approaches—the Bass diffusion
model, leading indicators, and choice models—that have been used more recently
to predict demand. We refer to these latter approaches as “demand modeling” to
differentiate them from classical forecasting techniques and to emphasize the fact
that they aim to provide a model of the demand itself and not merely of its statistical
properties.

e We discuss classical single-location inventory models in Chapters 3 (“Deterministic
Inventory Models”), 4 (“Stochastic Inventory Models: Periodic Review”), and 5
(“Stochastic Inventory Models: Continuous Review”). For most of these models,
we discuss how to formulate the objective function as well as how to optimize
it—exactly or heuristically, in closed form or using algorithms—by our choice of
inventory parameters. We also explore the theoretical properties of some of these
models, including the optimality of inventory policies and the worst-case performance
of heuristics.

e In Chapter 6 (“Multiechelon Inventory Models”), we discuss multiechelon inventory
models, including both stochastic-service models (including the Clark—Scarf model
for serial systems and the Shang and Song approximation) and guaranteed-service
models (also known as strategic safety stock placement problems).

e Chapter 7 (“Pooling and Flexibility””) discusses risk pooling, as well as other tech-
niques, such as postponement, transshipments, and process flexibility, that can pro-
vide similar pooling benefits.

e In Chapter 8 (“Facility Location Models”), we turn our attention to facility loca-
tion models. We present the classical uncapacitated fixed-charge location problem
(UFLP) in some detail, including its formulation as an integer programming problem
and its solution by Lagrangian relaxation. We then discuss other classical location
models such as the p-median problem and covering models, as well as stochastic
versions of the UFLP. Finally, we cover network design problems, including both



XXXiv

PREFACE

problems in which we make yes/no decisions on the nodes and those in which we do
the same for the arcs.

In Chapter 9 (“Supply Uncertainty”), we consider randomness in the availability or
quantity of supply and develop models for coping with this uncertainty in inventory
and facility location models.

Chapter 10 (“The Traveling Salesman Problem”) discusses perhaps the most famous
supply chain problem, the traveling salesman problem (TSP). We discuss both exact
and heuristic solution methods for the TSP, as well as theoretical properties of the
model and the algorithms. We conclude with a digression on TSP “world records.”

In Chapter 11 (“The Vehicle Routing Problem”), we extend the TSP to consider
the more practical problem of routing multiple vehicles simultaneously to deliver
to many customers, a problem known as the vehicle routing problem (VRP). We
present algorithms, focusing mainly on heuristics for this very difficult computational
problem. We discuss theoretical properties of the problem, as well as some of the
many extensions that have been proposed to add more practical features to the
classical model.

Chapter 12 (“Integrated Supply Chain Models”) discusses models that combine
multiple types of models discussed earlier in the book. In particular, we include
location—inventory, location-routing, and inventory—routing models.

In Chapter 13 (“The Bullwhip Effect”), we discuss a phenomenon of demand vari-
ability amplification known as the bullwhip effect. The bullwhip effect can occur
because of irrational or suboptimal behavior on the part of supply chain managers,
but it can also occur as the result of rational, optimizing behavior. We cover math-
ematical models for proving that the bullwhip effect occurs as a result of the latter

type.

When supply chain partners each optimize their own objective functions, they typi-
cally arrive at solutions that are suboptimal from the point of view of the total supply
chain. In Chapter 14 (“Supply Chain Contracts”), we discuss contracts that achieve
coordination within a supply chain made up of individual players with differing
objectives.

Chapter 15 (“Auctions”) introduces mathematical models for auctions, which are
frequently used to set prices within supply chains. Auctions can be thought of as
another way to mitigate the effects of decentralized decision-making and to bring
supply chains into closer coordination.

Chapter 16 (“Applications of Supply Chain Theory”) explores three non-supply-chain
fields in which supply chain theory has been widely applied: electricity systems,
health care, and public sector operations. In each of these topics, we cover a few
(typically more recent) models that directly apply the tools you will have learned
earlier in the book. Our aim is to demonstrate the application of supply chain theory,
now that you have mastered its methodologies.

The book concludes with four appendices. Appendix A contains homework problems
whose solutions use material from multiple chapters. Appendix B provides a short
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primer on how to write mathematical proofs. Appendix C lists helpful formulas that
are used throughout the book. Appendix D gives a brief overview of Lagrangian
relaxation and column generation.

The material in this book can accommodate a good deal of reordering and omission
by the instructor. The only real exception is the inventory-theoretic material (Chapters 3—
6), which is at the core of much of the subsequent material in the book and therefore
should be covered early on. However, not all of the material in the inventory chapters
is used elsewhere, and much of it can be skipped if desired. A bare-bones treatment of
the essential inventory topics would include Section 3.2 on the EOQ model, Section 4.3.2
on the newsvendor problem, and Section 5.1 on (r, Q) policies—and even this material
could be omitted for students who are already familiar with it. In addition, the material
in Section 9.6 and Chapter 12 relies on the facility location chapter (Chapter 8), primarily
Section 8.2. And of course, Chapter 16, on applications of supply chain theory, draws on
material from throughout the book. Other than these, there are no precedence constraints
regarding the sequence of material covered, and the instructor is free to rearrange the topics
according to his or her preferences, interests, and expertise, as well as those of the students.

The final section of each chapter (except Chapter 1) contains a case study, a new feature
in the second edition. The case studies are drawn from the journal Interfaces (now called
the INFORMS Journal on Applied Analytics). Each case study illustrates an application
by a real company or organization of the ideas discussed in the chapter. The case studies
show the reader how supply chain theory can be applied, sometimes as-is and sometimes
with substantial modifications, to solve real-world problems with significant impact.

We have adapted the original notation for the models discussed in the case studies, in
order to be consistent with the rest of the book. In some cases we have also simplified or
made other minor modifications to the models, while striving to maintain the main ideas of
the original models. Each case study gives some basic facts about the company involved—
for example, its ranking within its industry. We have attempted to update these facts where
possible, but in general the reader should assume the facts were correct at the time that the
original Interfaces article was published, if not still true today, even if we use the present
tense in stating them.

Each of the chapters (again, except Chapter 1) is followed by a set of homework problems,
and Appendix A presents problems that use material from multiple chapters. The problems
challenge readers to understand, interpret, and extend the models and algorithms discussed
in the text. Some of them involve simply applying the models and algorithms presented in
the book as-is. Most of them, however, ask the reader to prove theorems, develop models,
or somehow explore the material more deeply than it is covered in the chapters. Some of
the problems require data sets that are too large to include in the text itself. These data sets
are posted on the web site for this book. Where relevant, citations to the original sources
for homework problems are given in the solutions, rather than in the problems themselves.

The book’s web site also contains a list of errata. If you find errors not contained on this
list, please e-mail the authors, whose contact information can also be found on the site.

New in the Second Edition

The second edition of Fundamentals of Supply Chain Theory is nearly twice as long as
the first. The book has been revised from beginning to end. We have added three entirely
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new chapters, on the TSP, the VRP, and applications of supply chain theory. The inventory
chapters have been reorganized and significantly expanded, as has the facility location
chapter. We have rearranged the material on risk pooling and supply uncertainty into
(we feel) more logical groupings. Other new topics include machine learning models
for forecasting (Section 2.4), a multisupplier inventory model with supply uncertainty
(Section 9.4), a conic optimization approach for the LMRP (Section 12.2.8), location—
routing and inventory—routing models (Sections 12.3 and 12.4), a game-theoretic analysis
of the VCG auction (Section 15.4.3), and a primer on column generation (Section D.2).
The end-of-chapter case studies are a new feature for the second edition. We have added
nearly 200 new homework problems and over 60 new worked examples. We redesigned all
of the figures for improved clarity and have added 140 new ones. The algorithm pseudocode
has been updated to a more modern format, and the index is now more comprehensive.

Resources for Instructors

We have developed the following resources to assist instructors:
e An instructor’s manual containing full solutions to the homework problems
e PowerPoint slides for in-class presentation of the book material

o In-depth MATLAB coding assignments so that students can implement the models
and algorithms discussed in the book

These resources are available to verified instructors via links on the book’s web site.
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CHAPTER 1

INTRODUCTION

1.1 THE EVOLUTION OF SUPPLY CHAIN THEORY

The field of supply chain management arose from managers’ recognition that buying,
selling, manufacturing, assembling, warehousing, transporting, and delivering goods—that
is, the activities of a supply chain—are expensive endeavors, and that careful attention to
how these activities are carried out may reduce their cost. Supply chains used to be viewed,
at least by some managers, as “necessary evils.” As a result, the mindset for supply chain
managers revolved around reducing costs, by reducing inventory levels, taking advantage
of economies of scale in shipping, optimizing network designs, reducing volatility in
demands, and so on. By and large, these improvements were invisible to companies’
customers, provided that they did not result in longer lead times, more frequent stockouts,
or other degraded service.

By the end of the last century, however, the purpose of the supply chain had begun
to change as some firms discovered that supply chains could be a source of competitive
advantage, rather than simply a cost driver. For example, Dell demonstrated that, through
excellent supply chain management, it could deliver computers—fully customized to the
buyer’s specifications—just a few days after they were ordered. In doing so, it shattered
the existing paradigm for computer purchases, in which consumers could choose from only
a limited number of preconfigured options. Similarly, Walmart showed that, by operating
an extremely high-volume supply chain, it could land products on shelves for less money
per item. As aresult, Walmart offered its customers a high level of product availability and
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low prices, and this combination ushered the company to its place as the world’s largest
retailer. Amazon built a supply chain that is not only quick and reliable, but also feature-
rich, offering users varied shipping options, convenient tracking tools, and flexible return
policies. This expansive supply chain has allowed Amazon to overcome consumers’ desire
for instant gratification and their preference for seeing and touching products before they
buy them.

Just as the practice of supply chain management has come into its own, so, we would
argue, has the study of supply chain management. In the past several decades, a huge
number of papers have been published that introduce mathematical models for evaluating,
analyzing, and optimizing supply chains. Supply chain management has become one of
the most popular applications of operations research (OR), and one of its greatest success
stories. But recently, the mathematical study of supply chains has begun to be viewed not
simply as an application area for OR tools, but rather as a methodological area, capable of
standing on its own two feet, with its own tools and theory. These tools are now themselves
starting to be applied, not just to supply chains, but to health care, energy, humanitarian
relief, the service sector, and other industries. This emerging supply chain theory is the
subject of this book.

Although the models and algorithms in this book are most commonly applied to tradi-
tional, private-sector supply chains, many can be applied to new kinds of supply chains, and
even to areas we might not think of as supply chains. Understanding the building blocks of
traditional supply chains will prepare you to understand more recent applications of supply
chain theory. The final chapter of this book is devoted to exploring how the tools of supply
chain theory are used in a few of these application areas—electricity systems, health care,
and public sector operations.

1.2 DEFINITIONS AND SCOPE

The term supply chain management is difficult to define, and its definition has changed
over time as the purposes and components of supply chains have evolved. Perhaps the most
authoritative definition comes from the Council of Supply Chain Management Professionals
(CSCMP), who define supply chain management as follows:

Supply chain management encompasses the planning and management of all activities

involved in sourcing and procurement, conversion, and all logistics management activi-

ties. Importantly, it also includes coordination and collaboration with channel partners,

which can be suppliers, intermediaries, third party service providers, and customers. In

essence, supply chain management integrates supply and demand management within

and across companies. (Council of Supply Chain Management Professionals 2018b)

In the interest of keeping things a little simpler, we offer the following definitions:
A supply chain consists of the activities and infrastructure whose purpose is to move
products from where they are produced to where they are consumed. Supply chain
management is the set of practices required to perform the functions of a supply chain
and to make them more efficient, less costly, and more profitable.
Supply chain management costs firms nearly US$1.5 trillion per year in the United States
alone, representing nearly 8% of gross domestic product (GDP) (Council of Supply Chain
Management Professionals 2018a). These practices include a huge range of tasks, such
as forecasting, production planning, inventory management, warehouse location, supplier
selection, procurement, and shipping. Mathematical models have been developed to analyze
and optimize each of these practices, and these models are the primary focus of this book.
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Suppliers Plants Warehouses Customers

Figure 1.1 Schematic diagram of supply chain network.

Figure 1.2 Supply “chain.”

The terms “logistics” and “logistics management” are closely related to “supply chain
management,” and it can be difficult to draw a clear distinction. Some companies use “lo-
gistics” to refer to the physical movement of goods; “supply chain management” includes
logistics, as well as nonmovement activities such as inventory management and procure-
ment. For other companies, “logistics” means functions carried out by the company itself,
while “supply chain management” includes activities it conducts with partners, suppliers,
and customers. Often, though, the two terms are used more or less interchangeably.

Supply chains are often represented graphically as a schematic network that illustrates
the relationships between its elements. (See Figure 1.1.) Each vertical “level” of the supply
chain (suppliers, plants, etc.) is called an echelon. A location in the network is referred to
as a stage or node. The links between stages represent some type of flow—typically, the
flow of goods, but sometimes the flow of information or money. The portion of the supply
chain from which products originate (the left-hand portion in Figure 1.1) is referred to as
upstream, while the demand end is referred to as downstream.

Actually, the phrase “supply chain” is a bit of a misnomer, since “chain” implies a linear
system similar to the one pictured in Figure 1.2. In this system, sometimes referred to as a
serial system, each echelon has only a single stage. But today’s supply chains more closely
resemble the complex network in Figure 1.1; each echelon may have dozens, hundreds,
or even thousands of nodes. (Nevertheless, we will often study serial systems of the type
pictured in Figure 1.2. Even more frequently, we will study single-stage systems.)

The models we study generally try to find the least-cost or greatest-profit solution that
satisfies some constraints. For example, a firm might want to choose warehouse locations to
minimize transportation costs, subject to the constraint that every customer must be served.
Or it might want to decide how much inventory should be stored at a given warehouse in



4 INTRODUCTION

order to minimize the cost of holding inventory, subject to a “service level” constraint that
requires a certain percentage of customer orders to be satisfied on time. Or it might want
to design a contract with its supplier to maximize its own profit, or that of the supply chain
as a whole.

The ideal supply chain management model would globally optimize every aspect of the
supply chain, but such a model is impossible both because of the difficulties in modeling
some aspects of the supply chain mathematically and because the resulting model would
be too large and complex to solve. Instead, supply chain models typically focus on local
optimization of one element of the supply chain, or on the integration of two or more
aspects of the supply chain, generally in less detail.

1.3 LEVELS OF DECISION-MAKING IN SUPPLY CHAIN MANAGEMENT

It is convenient to think about three levels of supply chain management decisions: strategic,
tactical, and operational.

e Strategic aspects of the supply chain involve decisions that take effect over a long
time horizon, typically years or decades. These aspects have a major impact on all
functions of the firm. Examples include locations and sizes of warehouses, locations
and capabilities of factories, and contracts with suppliers.

o Tactical aspects of the supply chain involve decisions over a moderate time horizon
like months. Tactical decisions can be changed periodically but generally with some
difficulty. Examples include assignments of customers to warehouses and inventory
replenishment policies at warehouses.

e Operational aspects of the supply chain occur over short planning horizons such
as days or weeks, during which policies must be executed but cannot be changed.
Examples include filling customer orders and routing of delivery vehicles.

The models in this book are concerned with all three levels of decisions. For example,
the facility location models of Chapters 8 and 12 are strategic, the inventory models of
Chapters 36 are tactical, and the routing models of Chapters 10 and 11 are operational.



CHAPTER 2

FORECASTING AND DEMAND MODELING

2.1 INTRODUCTION

Demand forecasting is one of the most fundamental tasks that a business must perform.
It can be a significant source of competitive advantage by improving customer service
levels and by reducing costs related to supply—demand mismatches. In contrast, biased or
otherwise inaccurate forecasting results in inferior decisions and thus undermines business
performance.

For example, the toy retailer Toys “R” Us made a huge mistake in demand forecasting
for the 2015 Christmas season. For several days, the actual number of online orders was
more than twice the company’s forecasts, and the company’s distribution centers were
overwhelmed. As aresult, the company was forced to throttle demand by terminating some
online sales, resulting in lower demand and lower revenue (Ziobro 2016).

The goal of the forecasting models discussed in this chapter is to estimate the quantity
of a product or service that consumers will purchase. Most classical forecasting techniques
involve time-series methods that require substantial historical data. Some of these methods
are designed for demands that are stable over time. Others can handle demands that
exhibit trends or seasonality, but even these require the trends to be stable and predictable.
However, products today have shorter and shorter life cycles, in part driven by rapid
technology upgrades for high-tech products. As a result, firms have much less historical
data available to use for forecasting, and any trends that may be evident in historical data
may be unreliable for predicting the future.

Fundamentals of Supply Chain Theory, Second Edition. Lawrence V. Snyder and Zuo-Jun Max Shen. 5
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In this chapter, we first discuss some classical methods for forecasting demand, in
Sections 2.2 and 2.3. Next, in Section 2.4, we discuss more recent approaches to forecasting
demand using machine learning when we have large quantities of historical data available.
In Sections 2.5-2.8, we discuss several methods that can be used to predict demands for new
products or products that do not have much historical data. To distinguish these methods
from classical time-series—based methods, we call them demand modeling techniques.

The methods that we discuss in this chapter are quantitative. They all involve mathe-
matical models with parameters that must be calibrated. In contrast, some popular methods
for forecasting demand with little or no historical data, such as the Delphi method, rely on
experts’ qualitative assessments or questionnaires to develop forecasts.

Demand processes may exhibit various forms of nonstationarity over time. These include
the following:

e Trends: Demand consistently increases or decreases over time.
e Seasonality: Demand shows peaks and valleys at consistent intervals.

e Product life cycles: Demand goes through phases of rapid growth, maturity, and
decline.

Moreover, demands exhibit random error—variations that cannot be explained or predicted—
and this randomness is typically superimposed on any underlying nonstationarity.

2.2 CLASSICAL DEMAND FORECASTING METHODS

Classical forecasting methods use prior demand history to generate a forecast. Some of
the methods, such as moving average and (single) exponential smoothing, assume that past
patterns of demand will continue into the future, that is, no trend is present. As a result,
these techniques are best used for mature products with a large amount of historical data.
On the other hand, regression analysis and double and triple exponential smoothing can
account for a trend or other pattern in the data. We discuss each of these methods next.

In each of the models that follow, we use D1, Ds, ..., D;, ... to represent the historical
demand data, i.e., the realized demands in periods 1, 2, .. ., ¢, . ... We also use y; to denote
the forecast of period t’s demand that is made in period ¢ — 1.

2.2.1 Moving Average

The moving average method calculates the average amount of demand over a given interval
of time and uses this average to predict the future demand. As a result, moving average
forecasts work best for demand that has no trend or seasonality. Such demand processes
can be modeled as follows:

Dy =1+ ¢, (2.1)

where I is the mean or “base” demand and ¢, is a random error term.
A moving average forecast of order N uses the /N most recent observed demands. The
forecast for the demand in period ¢ is simply given by

t—1

1
=y > D (2.2)
i=t—N
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Table 2.1 Monthly historical demand of books and CDs for Examples 2.1-2.5.

Demand (Thousands)
Month  An Inventory Story  The TSP Mystery  CDs
1 10.61 12.61 10.21
2 12.01 16.01 23.01
3 9.77 15.77 10.97
4 10.19 18.19 14.59
5 9.44 19.44 29.44
6 11.40 23.40 16.80
7 9.66 23.66 18.86
8 9.90 25.90 38.90
9 9.01 27.01 18.61
10 10.20 30.20 24.20
11 10.90 32.90 48.90
12 8.98 32.98 22.78

That is, the forecast is simply the arithmetic mean of the previous N observations. This is
known as a simple moving average forecast of order N.

A generalization of the simple moving average forecast is the weighted moving average,
which allows each period to carry a different weight. For instance, if more recent demand
is deemed more relevant, then the forecaster can assign larger weights to recent demands
than to older ones. If w; is the weight placed on the demand in period ¢, then the weighted
moving average forecast is given by

t—1
Y = M (2.3)
Dimt—N Wi
Typically, the weights decrease by 1 in each period: wy;—1 = N, wy_o = N — 1, ...,
Wt—N = 1.

U0 EXAMPLE 2.1

A book store has historical demand data for the book An Inventory Story for the past
12 months, as shown in Table 2.1. From a quick look, it is clear that the demand
is relatively stable, fluctuating around the value 10, which makes it suitable for
the moving average method. Suppose the book store manager wants to predict the
demand of this book for the next month. Using an order of N = 5, the forecast is
given by

Dg + Dy + D1g + D11 + D12
Y13 = 5 = 9.80.

2.2.2 Exponential Smoothing

Exponential smoothing is a technique that uses a weighted average of all past data as the
basis for the forecast. It gives more weight to recent information and smaller weight to
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observations in the past. Single exponential smoothing assumes that the demand process
is stationary. Double exponential smoothing assumes that there is a trend, while triple
exponential smoothing accounts for both trends and seasonality. These methods all require
user-specified parameters that determine the relative weights placed on recent and older
observations when predicting the demand, trend, and seasonality. These three weights are
called, respectively, the smoothing factor, the trend factor, and the seasonality factor. We
discuss each of these three methods next.

2.2.2.1 Single Exponential Smoothing Define 0 < « < 1 as the smoothing
constant. Then, we can express the current forecast as the weighted average of the previous
forecast and most recently observed demand value:

yr =aDi_ 1 + (1 —a)ys—1. (2.4)

Note that «v is the weight placed on the demand observation and 1 — « is the weight placed
on the last forecast. Typically, we place more weight on the previous forecast, so « is closer
to O than to 1.

Since each forecast depends on the previous forecast, we need a way to get the process
started. One simple way to do this is to set y; = D;. Note that this method requires one
historical demand observation D1 ; the first “real” forecast, i.e., the first forecast that uses
(2.4), is yo.

Using (2.4), we can write

Yi—1 =aDi_o + (1 — a)y—o,

)
yr =aDi_ 1 +a(l —a)Dy_o + (1 — a)y_o.
We can continue the substitution in this way and eventually obtain

oo

Z 1704 Dt i— 1*204th i—1,
=0 i=0
where a; = a1 — a)’. The single exponential smoothing forecast includes all past

observations, but since o; < «; for ¢ > j, the weights are decreasing as we move
backward in time, as illustrated in Figure 2.1. Moreover,

iai:ial—a =1
i=0 i=0

by (C.50) in Appendix C. These weights can be approximated with an exponential function
f(i) = ae~“%, This is why this method is called exponential smoothing.

0 EXAMPLE 2.2

Suppose that the book store manager from Example 2.1 wishes to use exponential
smoothing to forecast next month’s demand for An Inventory Story. Using o = 0.2,
we first initialize y; = D1, and then obtain

y2 = 0.2D; 4+ 0.8y; = 10.61
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Figure 2.1 Weight distribution for single exponential smoothing.

ya = 0.2D3 + 0.8y3 = 10.67

Continuing in this manner, we eventually get
Y13 = 0.2D19 4+ 0.8y12 = 9.98.

O

2.2.2.2 Double Exponential Smoothing Double exponential smoothing can be
used to forecast demands with a linear trend. Such demands can be modeled as follows:

Dt =1+ tS + €, (25)

where [ is the base demand, S is the slope of the trend in the demand, and ¢; is an error
term. The forecast for the demand in period ¢ is the sum of two separate estimates from
period t — 1: one of the base signal (the value of the demand process) and one of the slope.
That is,

Yo = Le—1 + Se—1, (2.6)

where I;_; is the estimate of the base signal and S;_; is the estimate of the slope, both
made in period t — 1. I,_; represents our estimate of where the demand process fell in
period ¢ — 1; in period ¢, the process will be S;_1 units greater. The estimates of the base
signal and slope are calculated as follows:

It :aDt + (]. - Oé)([tfl + Stfl) (27)
St =B(I; — I;—1) + (1 = B)S;—1, (2.8)

where « is the smoothing constant and j is the trend constant. Equation (2.7) is similar to
(2.4) for single exponential smoothing in the sense that « is the weight placed on the most
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recent actual demand D, and 1 — « is the weight on the previous forecast. Equation (2.8)
can be explained similarly: It places a weight of 3 on the most recent estimate of the slope
(obtained by taking the difference between the two most recent base signals) and a weight
of 1 — /3 on the previous estimate. Note that, if the trend is downward-sloping, then .S; will
(usually) be negative.

As with single exponential smoothing, we need a way to initialize the process. This time,
we need two historical demand observations to initialize the forecasts, and we typically set
I = Dy and S; = Dy — Dy (then yo = I; + S1 = D). The first “real” forecast (using
(2.7)-(2.8) to get values for (2.6)) is ys.

This particular version of double exponential smoothing is also known as Holt’s method
(Holt 1957).

0 EXAMPLE 2.3

Suppose that the bookstore manager from Example 2.1 now turns her attention to
another book (The TSP Mystery), with a different set of historical demand data, as
presented in Table 2.1. In contrast to the stable demand of An Inventory Story, The
TSP Mystery’s monthly demand data exhibits an increasing trend. Therefore, moving
averages and single exponential smoothing may not accurately predict the demand of
The TSP Mystery in the next month. For example, if we use a simple moving average
of order N = 5, we get y13 = 29.80, which is much smaller than the demands in
months 11 and 12. This may not be a good forecast, as we expect the demand in
month 13 to continue to increase over time.

Instead, we will use double exponential smoothing for The TSP Mystery, with
a = = 0.2. We initialize I; = D1 = 12.61 and S; = Dy — D1 = 3.40. Then we
have

yo = I, + 5, = 16.01

I, = 0.2Dy + 0.8(I; + ;) = 16.01
Sy =0.2(I, — I) + 0.85; = 3.40
ys = I + Sy = 19.41

Is = 0.2D3 + 0.8(I5 + S2) = 18.68
S5 =0.2(I3 — Iy) + 0.855 = 3.25.

We continue this process and finally obtain

Ly = 0.2D15 + 0.8(I1; + S11) = 35.65
S1a = 0.2(I13 — I11) + 0.851; = 1.94.

So the forecast from double exponential smoothing is y13 = 12 + S12 = 37.59,
which coincides with the increasing trend. (|

2.2.2.3 Triple Exponential Smoothing Triple exponential smoothing can be used
to forecast demands that exhibit both trend and seasonality. Seasonality means that the
demand series has a pattern that repeats every IV periods for some fixed N. N consecutive
periods are called a season. (If the demand pattern repeats every year, for example, then a
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Figure 2.2 Random demands with trend and seasonality.

season is one year. This is different from the common usage of the word “season,” which
would refer to a portion of the year.)

To model the seasonality, we use a parameter ¢;, 1 < ¢ < N, to represent the ratio
between the average demand in period ¢ and the overall average. (Thus, Y ¢; = N.) For
example, if cg = 0.88, then on average, the demand in period 6 is 12% below the overall
average demand. The c; are called seasonal factors. We assume that the seasonal factors
are unknown but that they are the same every season. The demand process can be modeled
as follows:

Dt = (I + tS)Ct + €t, (29)

where [ is the value of base signal at time 0, S is the true slope, and ¢; is a random error
term. (See Figure 2.2.)
The forecast for period ¢ is given by

yr = (Iy—1 + Si—1)ci—n, (2.10)

where I;_1 and S;_ are the estimates of the base signal and slope in period t — 1 and ¢;_
is the estimate of the seasonal factor one season ago.

The idea behind smoothing with trend and seasonality is basically to “de-trend” and “de-
seasonalize” the time series by separating the base signal from the trend and seasonality
effects. The method uses three smoothing parameters, «, 3, and ~, in estimating the base
signal, the trend, and the seasonality, respectively:

I =a D: +(1—a)(L—1 + Si_1) (2.11)
Ct—N

St =B(I; — I;—1) + (1 = B)Si—1 (2.12)
D

o =y— 4 (1 = y)ci—n. (2.13)

I
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Equations (2.11) and (2.12) are very similar to (2.7) and (2.8) for double exponential
smoothing, except that (2.11) uses the deseasonalized demand observation, D;/c;—_y,
instead of Dy, to average it with the current forecast. In (2.13), I; is our estimate of the base
signal, so D;/I; is our estimate of ¢; based on the most recent demand. This is averaged
with our previous estimate of ¢, (made N periods ago) using weighting factor .

Initializing triple exponential smoothing is a bit trickier than for single or double expo-
nential smoothing. To do so, we usually need at least two entire seasons’ worth of data
(2N periods), which will be used for the initialization phase. One common method is to
initialize the slope as

1 (DN+1 D Dyi2—Ds D2N—DN>
N N N N '
In other words, we take the per-period increase in demand between periods 1 and N + 1,
and the per-period increase between periods 2 and N + 2, and so on; and then we take the
average over those NV values. To initialize the seasonal factors c;, we estimate the seasonal
factor for each period in the first two seasons, and then average them over those two seasons

to obtain the initial seasonal factors:

(2.14)

San =

1 D D
cNH:Q( et = ) (2.15)
Zj:l Dj/N Zj:lDNJrj/N
fort =1,..., N. Each denominator is the average demand in one season of the available

data, so the fractions in the parentheses estimate the seasonal factor for the ¢th period in
each season. The right-hand side as a whole averages these estimates over the two seasons.
Finally, we estimate the base signal as [oy = Doy /con. The first “real” forecast is yon 1 1.

This method is also sometimes known as Winters’s method or the Holt—Winters method
(Winters 1960).

0 EXAMPLE 24

The book store described in Example 2.1 also sells CDs. The total monthly demand
of all CDs in the last year is given in Table 2.1. Note that in addition to the increasing
trend, the monthly demand has a seasonal pattern with seasons of one quarter: the
demand in the first and third months of a quarter is about half of that in the second
month of the same quarter. This observation motivates us to use triple exponential
smoothing for demand forecasting.

Since the observed pattern repeats quarterly, i.e., every 3 months, we choose
N = 3. To initialize the seasonal factors, we extract the average over the first two
quarters:

e L < Dy + D > —0.71
T 2\(D1+ D2+ D3)/3 " (Da+Ds+Dg)/3)
1 Do Ds
— + =1.51
“=3 ((D1+D2+D3)/3 (D4+D5+D6)/3>
1 D5 Dg
I + =0.79.
=3 ((D1+D2+D3)/3 (D4+D5+D6)/3>

The base signal and slope are initialized with the first two quarters as

-[6 = DG/CG = 21.36
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1 /Dy—D Ds —D Dg— D
56:< 4 L 2 Do 3)21.85.

3 3 3 3

Then, we forecast D~ and update the signals and seasonality with oo = § = v = 0.2
as follows:

Yr = (16 + 56)04 =16.39
D
I = 0.20—7 +0.8(I¢ + Sg) = 23.91
4
Sy =0.2 x (I — Is) + 0.855 = 1.99

D~

c7 =0.2x — +0.8¢c4 = 0.72.
Iz

Repeating this procedure for the subsequent periods, we ultimately obtain the final

results:

119 = 33.09

S1o = 1.86

c12 =075 ¢11 =151 ¢10=0.74
Y13 = (L12 + Si2)c10 = 25.90.

So, our forecast for the demand in month 13 is 25.90. Il

2.2.3 Linear Regression

Historical data can also be used to forecast demands by determining a cause—effect rela-
tionship between some independent variables and the demand. For instance, the demand
for sales of a brand of laptop computer may heavily depend on the sales price and the
features. A regression model can be developed which describes this relationship. The
model can then be used to forecast the demand for laptops with a given price and a given
set of features.

In linear regression, the model specification assumes that the dependent variable, Y, is a
linear combination of the independent variables. For example, in simple linear regression,
there is one independent variable, X, and two parameters, 3y and f3;:

Y =By + B X. (2.16)

Here, X and Y are random variables. For any given pair of observed variables x and y, we
have

y=Bo+ Bz +¢, (2.17)

where € is a random error term. The objective of regression analysis is to estimate the
parameters 3y and [31.

To build a regression model, we need historical data points—observations of both the
independent variable(s) and the dependent variable. Let (z1,y1), (22, y2), - -, (Tn, Yn) be
n paired data observations for a simple linear regression model. The goal is to find values
of By and (1 so that the line defined by (2.16) gives the best fit of the data. In particular,
Bo and B; are chosen to minimize the sum of the squared residuals, where the residual for
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data point ¢ is defined as the difference between the observed value of y; and the predicted
value of y; obtained by substituting X = z; in (2.16). That is, we want to solve

mmlmlze Z é; = mlmmlze Z — (Bo + 51%)) , (2.18)

where ¢é; is the residual for data point i. The optimal values of 53y and 3; are given by

B =1y L % (2.19)
S

xT

Bo =7 — A, (2.20)

where T and 3 are the sample means of the x; and y;, respectively; 7, is the sample
correlation coefficient between x and y; and s, and s, are the sample standard deviations
of x and y, respectively (see, e.g., Tamhane and Dunlop (1999)).

If the demands exhibit a linear trend over time, then we can use regression analysis to
forecast the demand using the time period itself (rather than, say, price or features) as the
independent variable. In this case, it can be shown (see, e.g., Nahmias (2005, Appendix
2-B)) that the optimal values of 3y and (3 are given by:

b :j—z 2:21)
Z p, A + Ao+ 1) (2.22)
where D1, ..., D, are the observed demands and
Apy =n Z ip, - ™" + nn 1) >_D; (2.23)
A" (n +1)@2n+1) ;l(n + 1)2' (224)

6 4

According to the comparison by Carbonneau et al. (2008), linear regression often
achieves better performance than moving average and trend methods.

0 EXAMPLE 2.5

Return to the sales data for The TSP Mystery in Table 2.1. Rather than using double
exponential smoothing to forecast the demand for period 13, as we did in Example 2.3,
we can instead use linear regression. Using either (2.19)—(2.20) or (2.21)-(2.22), we
get BO = 10.88 and Bl = 1.89. Therefore, the forecast for the demand in period 13
is

10.88 4+ 13 - 1.89 = 35.46.

The observed data and the best-fit line are plotted in Figure 2.3.
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Figure 2.3 Observed demands for The TSP Mystery and best-fit line for Example 2.5.

2.3 FORECAST ACCURACY

2.3.1 MAD, MSE, and MAPE

At some point after a forecast is computed, the actual demand is observed, providing us
with an opportunity to evaluate the quality of the forecast. The most basic measure of
the forecast accuracy is the forecast error, denoted e;, which is defined as the difference
between the forecast for period ¢ and the actual demand for that period:

et = yr — Dy, (2.25)

where y; is a forecast obtained using any method and D, is the actual observed demand.

Since the forecast and the demand are random variables, so is the forecast error; let
and 03 denote its mean and variance, respectively. If the mean of the forecast error, fi.,
equals 0, we say the forecasting method is unbiased: It does not produce forecasts that are
systematically either too low or too high. However, even an unbiased forecasting method
can still be very inaccurate. One way to measure the accuracy is using the variance of
the forecast error, Ug. To compute u, or UZ, however, we need to know the probabilistic
process that underlies both the demands and the forecasts. Typically, therefore, we use
performance measures based on sample quantities rather than population quantities.

Two of the most common such measures are the mean absolute deviation (MAD) and
the mean squared error (MSE), defined as follows:

1 n
MAD = — Z led| (2.26)
t=1

1 n
MSE = — Z 2, (2.27)
t=1
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MSE is identical to the sample variance of the random forecast error e, except for the
denominator of the coefficient. MAD is sometimes preferred to MSE in real applications
because it avoids the calculation of squaring, though modern spreadsheet and statistics
packages can compute either performance measure easily. When the forecast errors are
normally distributed, their standard deviation is often estimated as

0o &~ 1.25MAD. (2.28)

This is useful when o, is required (e.g., for inventory optimization models—see Sec-
tion 4.3.2.7), since, as previously noted, we do not typically know o, directly.

Note that both MAD and MSE are dependent on the magnitude of the values of demand;
if we express the demands in different units (e.g., tons vs. pounds), the performance
measures will change. By comparison, the mean absolute percentage error (MAPE) is
independent of the magnitude of the demand values:

n

MAPE = © Z

n
t=1

€t

x 100. (2.29)

t

0 EXAMPLE 2.6

Table 2.2 gives the hypothetical actual demands for periods 13-24 for An Inventory
Story from Example 2.1. It also gives the moving average forecasts for these periods
(using N = 5), the single exponential smoothing forecasts for these periods (using
a = 0.2), and the corresponding forecast errors. Finally, at the end of the table are the
performance measures (MAD, MSE, and MAPE) for each of the forecasting methods.
In this case, the moving average has slightly smaller values of the performance
measures and is therefore slightly more accurate. U

2.3.2 Forecast Errors for Moving Average and Exponential Smoothing
Assume that the demand is generated by the process
Dt =K + €¢, (230)

where €, ~ N(0,0?). Since the demand process is stationary, either moving average or
exponential smoothing is an appropriate forecasting method.
In a moving average of order IV, the forecast y; is given by (2.2). It follows that

1 t—1

1
tte = E[y: — Dy = ~ i;NE[Di] —E[Dy] = NN —p=0.

Therefore, moving-average forecasts are unbiased when the demand is stationary.
We can also derive the variance of the forecast error, which can be expressed as

o = \/Varly, — D;] =\/Var[y,] + Var[D,]

1
=\| 72 | Z Var[D;] + Var[D;]
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Table 2.2 Demands (D), forecasts (y:), and forecast errors (e;) for An Inventory Story, periods
13-24, for Example 2.6.

Moving Exponential
Average Smoothing
t D, Yt et Yt e

13 1098 980 -—1.18 998 —1.00
14 12.07 1001 -2.06 10.18 —1.89
15 1145 10.63 —-0.82 10.56 —0.89
16 939 10.88 1.49 10.74 1.35
17 1059 1057 -0.02 1047 -0.12
18 843 10.90 247 10.49 2.06
19 1178 1039 -139 10.08 —1.70
20 771 10.33 2,62 10.42 271
21 786  9.58 .72 9.88 2.02
22 838 9.27 0.89 947 1.09
23 4.11 8.83 472  9.26 5.15
24 1288 797 —491 823 —4.65

MAD 2.02 2.05
MSE 6.13 6.26
MAPE 25.97 26.85

/1
= WNO'Q‘FO'Q
[1+ N
=0\ ——.
N

Note that the second equality uses the fact that the forecast and demand in period ¢ are
statistically independent.

If forecasts are instead performed using exponential smoothing, one can show (see
Problem 2.12) that

fre =0 (2.31)

(2.32)

2.4 MACHINE LEARNING IN DEMAND FORECASTING

2.4.1 Introduction

We are in the age of big data. The huge volume of data generated every day, the high velocity
of data creation, and the large variety of sources all make today’s business information
environment different than it was only a decade ago. Using data intelligently is key to
business decision-making. A 2012 Harvard Business Review article notes: “Data-driven
decisions are better decisions—it’s as simple as that. Using big data enables managers to
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decide on the basis of evidence rather than intuition. For that reason it has the potential to
revolutionize management” (McAfee and Brynjolfsson 2012).

Fortunately, many businesses have access to large volumes of historical demand data that
can help when forecasting future demands. In this section, we introduce some of the main
machine learning techniques for demand forecasting. Compared with classical forecasting
methods such as the time series methods discussed in Section 2.2, machine learning models
often significantly increase prediction accuracy.

2.4.2 Machine Learning

In general, machine learning (ML) refers to a set of algorithms that can learn from and
make predictions about data. These algorithms take data as inputs and generate predictions
or decisions as outputs. Machine learning is closely related to statistical learning, which
refers to a set of tools for modeling and understanding complex data sets (James et al.
2013). Machine learning and statistical learning have developed rapidly in recent years.
Both techniques fall into the overall field of data science, which covers a wider range of
topics, including database design and data visualization techniques.

One category of ML algorithms is called supervised learning, in which the historical data
contain both inputs and outputs, and the learning algorithm learns to predict an output for
a given set of inputs. For example, we might have historical data that contains the outdoor
temperature and the number of glasses of lemonade that were sold on each day. The learning
algorithm tries to infer the relationship between the two, so that for a given temperature,
it can predict the number of glasses of lemonade that will be sold. Regression is a simple
example. In contrast, unsupervised learning explores relationships and structures within
the data without any known “ground truth” labels or outputs. For example, if we wish to
partition consumers into market segments, we might use a clustering algorithm, which is a
type of unsupervised learning. (See Friedman et al. (2001) or James et al. (2013) for further
discussion of this dichotomy.) Demand forecasting falls into the category of supervised
learning since we need to predict future demands (outputs) using historical demand data
and other market information (inputs).

Common supervised learning methods include linear regression (and its nonlinear ex-
tensions), kernel methods, tree-based models, support vector machines (SVMs), and neural
networks. Graphical models involving hidden Markov models (or, in their simplest form,
mixture models) and Markov random fields also receive considerable attention. In the
following subsections, we discuss the learning methods that are most commonly applied to
demand forecasting.

2.4.2.1 Linear Regression Linear regression is a very simple supervised learning

method. It assumes that the output Y is linear in the inputs X, X5, ..., X, where p is the
number of distinct input variables (also called predictors or features):
Y =00+ 51 X1+ B2 Xo+ -+ + Bp Xy (2.33)

For particular values of the inputs and outputs, we have
y = Bo+ Bix1 + Paza + - + Bprp + €, (2.34)

where € is a random error term. The [3;s are coefficients that need to be estimated from
data. If p = 1, then we have simple linear regression, which we discuss in Section 2.2.3.
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Table 2.3  Snippet of historical data on demand for baseball jerseys for Examples 2.7-2.9.
Batting Avg. Games Won  Years in Majors | Demand (Cases)

0.274 68 1 14.3
0.332 150 11 28.7
0.262 79 12 17.6
0.396 127 8 26.0
0.262 156 4 27.1
0.280 142 7 26.0
0.112 75 10 14.7
0.429 82 0 19.2
0.259 88 7 18.1
0.302 95 6 19.4

(In Section 2.2.3, we focused on the use of time as the independent variable in order to
predict demands as a function of time. Here, our independent variables can be any feature.)

The most common way to obtain the 3;s is least squares, which seeks to find the
minimizer of the sum of the squares of the residuals. (Recall from Section 2.2.3 that the
residual for data point ¢ is the difference between the observed and predicted values of y;.)
The derived estimated coefficients are denoted Bj. Then we can make predictions on new
inputs by using

§ = Bo+ Brxr + Poza + -+ + Byay, (2.35)

where g is our predicted value for the output, given the observed values {z1,z2,...,2p}
of the inputs.

1 EXAMPLE 2.7

A sports apparel retailer sells jerseys (T-shirts) with the names of major league
baseball players stitched onto the back. The retailer believes that the demand for a
given player’s jersey depends on his batting average last year, the number of games
his team won last year, and the number of years the player has been playing in the
major leagues. Therefore, the retailer keeps careful records of these statistics, as
well as the demand for jerseys, for each player. Last year’s records for 300 players
can be found in the file jerseys.x1sx, the first few rows of which are reproduced
in Table 2.3. Demands are expressed in cases sold last year. (In baseball, batting
averages are expressed as decimals between 0 and 1.)

The retailer wishes to predict the demand for this year’s jerseys using the historical
data. Let X, represent batting average, X» represent games won, and X3 represent
years in majors. Using regression, we find that

By = —0.0651
By = 18.0430
By = 0.1403

B3 = 0.1831.
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For example, if Roy Hobbs had a 0.292 average last year, his team won 95 games,
and he has been in the major leagues for 4 years, the demand for his jersey this year
can be predicted as

7 = —0.0651 + 18.0430 x 0.292 + 0.1403 x 95 + 0.1831 x 4 = 19.2644.

O

Although the linear regression model assumes a linear relationship between the output
and the inputs, we can model nonlinear relationships by introducing basis functions and
splines. When the number of predictors is large, we can utilize shrinkage methods such as
least absolute shrinkage and selection operator (LASSO) and ridge regression. In general,
linear regression is a simple but strong learning method.

2.4.2.2 Tree-based models Tree-based models use decision trees to make predic-
tions for a given set of inputs. They can be applied both to regression problems (in which
the outputs are continuous) and to classification problems (in which the outputs are cate-
gorical). The trees used for these two types of problems are referred to as regression trees
and classification trees, respectively. In demand forecasting, regression trees have received
more attention because of their simplicity and interpretability.

A regression tree divides the space of input variables, i.e., the set of possible values
of X1, X»,...,X,, into distinct and nonoverlapping regions and assigns a single output,
ck, to each region k. If a given input z1, 2, ..., x, falls into region k, then the demand
forecast y for that input is equal to c¢j. The ¢y values are determined simply by averaging
the observations in the historical data that fall into that region.

The goal is to choose the partition strategy that minimizes the sum of squares of the resid-
uals, similar to linear regression. However, in practice, the number of possible partitions
may be too large to enumerate. Therefore, it is common to use a binary splitting method
called recursive partitioning, which generates two regions from the original region at each
iteration. For the purposes of prediction, the size of the tree is limited by a pruning process.
A single tree may not perform well due to high variance of the forecast, so researchers
have developed methods that combine several trees to enhance the prediction performance.
These include random forests, bagging, and boosting.

Tree-based models are used widely in demand forecasting for many industries. For
example, Ferreira et al. (2015) apply regression trees with bagging to predict the demand
of new styles for an online retailer. They show that tree-based models outperform linear
regression and some nonlinear regression models consistently. Ali et al. (2009) develop
regression trees to predict stock-keeping unit (SKU) sales for a European grocery retailer.
They incorporate information about current promotions when constructing regression trees
and show that regression trees provide better accuracy than linear regression and SVMs.

0 EXAMPLE 2.8

Return to the baseball-jersey data set from Example 2.7. Figure 2.4 shows one
possible regression tree for this data set. For example, we would predict a demand
of 23.5 cases for Roy Hobbs (who has a 0.292 batting average, has been in the major
leagues for 4 years, and is on a team that has won 95 games).
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Figure 2.4 Regression tree for baseball jerseys for Example 2.8.

Of course, there are many possible regression trees for this data set, and the figure
gives only one example. Better ones can be found using the recursive partitioning
method.

O

2.4.2.3 Support vector machines SVMs are designed to partition the space of
input variables into two regions, i.e., to make a binary prediction about a given output
based on which region a given input vector falls into. The partition is accomplished by
finding a separating hyperplane. In particular, assuming that the training data set is linearly
separable, the optimal separating hyperplane is found by solving the following optimization
problem:

.. 2
minimize 2.36
nimize 3] 2.36)

05

subjectto  y'(x"- B4+ Bo) >1 Vi=1,2,...,N, (2.37)

where N is the number of observations, 3 is the binary output (3 € {0, 1}) for observation
i,x* € RP is the vector of input variables for observation ¢, and - denotes dot product. Thisis
also called a maximum margin classifier, where the margin is defined as m The optimal
values of the vector 3 € RP? and the scalar 8y characterize the separating hyperplane. For
a given input vector z1, . . ., ¥,, we predict an output value of 1if x* - 3+ 8y > 0 and a
value of 0 otherwise.

For example, suppose we wish to predict which customers will purchase a product based
on their age, income, and money spent at the store in the past year. We code each customer
in the historical data with a 1 or 0 depending on whether they purchased the product, then
solve (2.36)—(2.37) to find the hyperplane that does the best job of separating the 1s from
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the 0s. For each new customer, we simply calculate x* - 3 + 3y and make a prediction
accordingly.

SVMs can be generalized to allow nonlinearities by mapping the input space into a
high-dimensional space using kernel functions. In essence, this allows the region to be
partitioned using a surface that is not linear, i.e., is not a hyperplane. Popular choices of
kernel functions include polynomials and radial basis functions (RBFs).

Since SVMs can be used to make binary predictions, they can be used to predict whether
a given customer will purchase a product. They can also be used to forecast the demand
as a quantity using support vector regression (SVR), an adaptation of the SVM approach
to regression problems using kernel functions. SVR is among the best machine learning
methods for supply chain demand forecasting (Carbonneau et al. 2008).

0 EXAMPLE 2.9

For the baseball-jersey data set from Example 2.7, let us first use SVM to predict
whether the demand for a given player’s jerseys will be greater than or equal to 25
cases this year. We can label the historical data by assigning y° = 1 to players
whose jerseys had a demand greater than or equal to 25 and y* = 0 for those
who did not. Solving the SVM optimization problem' results in the solution 3 =
(4.5879,0.0745,0.1154) and Sy = —12.1620. In other words, if

—12.1620 + (4.5879,0.0745,0.1154) - (a1, 22, x3) > 0,

then we predict that the demand will be greater than or equal to 25. For Roy Hobbs,
who has an input vector of x* = (0.292,95,4), we have

—12.1620 + (4.5879,0.0745,0.1154) - (0.292,95,4) = —3.2832,

so we predict that Roy will not sell more than 25 cases of jerseys this year.

Next, we can use an SVR model to predict the demand for Roy Hobbs jerseys
explicitly. Using MATLAB’s fitrsvm function, we obtain SVR coefficients of
B = (13.8451,0.1387,0.1932) and Sy = 1.1436. Therefore, we can predict the
demand for Roy Hobbs jerseys as

1.1436 + (13.8451,0.1387,0.1932) - (0.292,95,4) = 19.1357 cases.

(Note that the SVM and SVR optimization problems are nonconvex and typically
have multiple optima. Your results might differ if you use a different implementation
to solve the same problem.) O

2.4.2.4 Neural Networks A neural network consists of several nodes, also called
neurons, arranged into layers. The first layer of nodes represents the inputs (the X;
values); the last layer represents the outputs (the Y value); and one or more layers in
between, called hidden layers, process the information from the input layer and perform
the actual computation of the network. (See Figure 2.5.) Neural networks have been used
extensively for classification problems such as image and speech processing, where the

'We did not use (2.36)—(2.37), but rather a modified formulation, since the training data set in this example is not
linearly separable. We used MATLAB’s fitcsvm function to do the optimization.
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goal is to determine what sort of physical or linguistic object the inputs represent. But
neural networks can and have been successfully applied to regression-type problems such
as demand forecasting.

The central idea behind neural networks is that in each layer (except the first), we
extract linear combinations of the inputs from the previous layer as derived features, and
then model the output as a nonlinear function of these features. For example, in a typical
network with a single hidden layer with M nodes, each hidden-layer node m = 1,..., M
calculates the derived feature

Zpm = o(aom + al X), (2.38)

where X is the vector of inputs, g, is a scalar, o, is a vector with p elements (one per
input feature), and o (-) is a nonlinear function called the activation function. Note that the
term inside the o (-) is a linear combination of the inputs plus a constant. Typical activation
functions include the sigmoid function and the ReL.U function. The Z,, are also called
hidden units since they are not directly observed. Once the hidden units are calculated by
the hidden-layer nodes, the output Y is modeled as a function of the hidden units:

Y =g(Z4,..., Zum), (2.39)

where g(+) is a (possibly nonlinear) function.

The key challenge in fitting a neural network model is the determination of the weights
Qom and au,,. This is usually done using some sort of algorithm that modifies the weights
as the network “learns” right and wrong answers. The most common such algorithm is
known as backpropagation, which calculates gradients with respect to the weights; another
method (such as gradient descent) is then used to update the weights. Determining these
weights—sometimes referred to as training the network—can be computationally intensive.
However, once the network is trained, generating an output value for a new set of inputs is
extremely efficient. (For further details, see, e.g., Friedman et al. (2001).)

Some neural networks contain multiple hidden layers, not just one; this can improve
the accuracy of the network’s predictions but makes the network harder to train. Such
deep neural networks have led to huge advances in machine learning, with great successes
not only in classification and prediction problems such as image processing and demand
forecasting, but also, when coupled with reinforcement learning (RL), in solving decision
problems such as those in board games; one famous example is Google DeepMind’s
AlphaGo program, which beat the world-champion (human) Go player in 2016.

Carbonneau et al. (2008) test two different types of neural networks on demand forecast-
ing and conclude that neural networks perform better than traditional methods. Venkatesh
et al. (2014) combine neural networks with clustering to predict demand for cash at auto-
matic teller machines (ATMs). They find that their model increases the prediction accuracy
substantially.

2.5 DEMAND MODELING TECHNIQUES

As the pace of technology accelerates, companies are introducing new products faster and
faster to stay competitive. There is a diffusion process associated with the demand for any
new product, so companies need to plan the timing and quantity of new product releases
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Figure 2.5 A simple neural network.

carefully to match supply and demand as closely as possible. To do so, they need to
understand the life cycles and demand dynamics of their products.

One of the authors has worked with a high-tech company in China. The company was
complaining about their very inaccurate demand forecasts, which led to excess inventory
valued at approximately $25 million. The author was invited to give lectures on demand
forecasting and inventory management. The first day’s lecture focused on the classical
time-series demand forecasting techniques discussed earlier in this chapter. The reaction
from the company’s forecasting team was lukewarm. They were already quite familiar
with these techniques and had tried hard to make them work, unsuccessfully. It turns out
that classical forecasting techniques did not work well with the company’s highly variable,
short-life-cycle products, so the firm introduced products at the wrong times in the wrong
quantities. The forecasting team’s reaction was quite different when the author discussed
the Bass diffusion model, the leading-indicator method, and choice models, which are
designed to account for short life cycles and other important factors. We discuss each of
these methods in detail in the following sections. (As a postscript, the company reported
more than a 50% increase in sales about one and a half years after they improved their
forecasting techniques, partially due to the fact that money was being invested in a better
mix of products.)

2.6 BASS DIFFUSION MODEL

The sales patterns of new products typically go through three phases: rapid growth, maturity,
and decline. The Bass diffusion model (Bass 1969) is a well-known parametric approach
for estimating the demand trajectory of a single new product over time. Bass’s basic
three-parameter model has proved to be very effective in delivering accurate forecasts
and insights for a huge variety of new product introductions, regardless of pricing and
advertising decisions. The model forecasts well even when limited or no historical data
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Figure 2.6  Color TVs in the 1960s: Forecasts from Bass model and actual demands. Reprinted
by permission, Bass, Empirical generalizations and marketing science: A personal view, Marketing
Science, 14(3), 1995, G6-G19. @1995, the Institute for Operations Research and the Management
Sciences INFORMS), 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA.

are available. For example, Figure 2.6 depicts demand data (forecast and actual) for the
introduction of color television sets in the 1960s.

The premise of the Bass model is that customers can be classified into innovators
and imitators. Innovators (or early adopters) purchase a new product without regard to
the decisions made by other individuals. Imitators, on the other hand, are influenced in
the timing of their purchases by previous buyers through word-of-mouth communication.
Refer to Figure 2.7 for an illustration. The number of innovators decreases over time, while
the number of imitators purchasing the product first increases, and then decreases. The
goal of the Bass model is to characterize this behavior in an effort to forecast the demand.
It mathematically characterizes the word-of-mouth interaction between those who have
adopted the innovation and those who have not yet adopted it. Moreover, it attempts to
predict two important dimensions of a forecast: how many customers will eventually adopt
the new product, and when they will adopt. Knowing the timing of adoptions is important
as it can guide the firm to smartly utilize resources in marketing the new product. Our
analysis of this model is based on that of Bass (1969).

2.6.1 The Model

The Bass model assumes that P(t), the probability that a given buyer makes an initial
purchase at time ¢ given that she has not yet made a purchase, is a linear function of the
number of previous buyers; that is,

Pt)=p+ %D(t), (2.40)
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Figure 2.7 Bass diffusion curve.

where D(t) is the cumulative demand by time ¢. Equation (2.40) suggests that two factors
will influence the probability that a customer makes a purchase at time ¢. The first factor is
the coefficient of innovation, denoted p, which is a constant, independent of how many other
customers have adopted the innovation before time ¢. The second factor, %D(t), measures
the “contagion” effect between the innovators and the imitators and is proportional to
the number of customers who have already adopted by time ¢. The parameters ¢ and m
represent the coefficient of imitation and the market size, respectively. We require p < q.
In fact, usually p < g; for example, p = 0.03 and ¢ = 0.38 have been reported as average
values (Sultan et al. 1990).

We assume that the time index, ¢, is measured in years. Of course, any time unit is
possible, but the values we report for p and g implicitly assume that ¢ is measured in years.

Let d(t) be the derivative of D(t), i.e., the demand rate at time ¢. Using Bayes’ rule,
one can show that

d(t)
m — D(t)

(See Section 2.6.2 for a derivation of the analogous equation in the discrete-time model.)
Combining (2.40) and (2.41), we have

P(t) = (2.41)

d(t) = (p n %D(t)) (m — D(t)). 2.42)

Our goal is to characterize D(t) so that we can understand how the demand evolves over
time. To a certain extent, (2.42) does this, but (2.42) is a differential equation; it expresses
D(t) in terms of its derivative. Our preference would be to have a closed-form expression
for D(t). Fortunately, this is possible:

Theorem 2.1

1 — e~ (Pt

D(t) :m_l n %6_(p+q)t

(2.43)
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_mp(p +gq)’e” P!

d(t
O+ qe-eay?

(2.44)

Proof. Omitted. u

As a corollary, one can determine the time at which the demand rate peaks, and the
demand rate and cumulative demand at that point:

Corollary 2.2 The peak demand occurs at time

1
= In (q> . (2.45)
p+q p

The demand rate and cumulative demand at time t* are given by

2
d(t*) = 7”1(1’4:; %) (2.46)
D(t) = Léq_ P (2.47)
Proof. Omitted; see Problem 2.17. n

If p is very small, then the demand growth occurs slowly, whereas if p and ¢ are large,
sales take off rapidly and fall off quickly after reaching their maximum. Note that the
formulas in Corollary 2.2 are only well defined if ¢ > p, which we previously assumed to
be true. If, instead, g < p, then the innovation effects will dominate the imitation effects,
and the peak demand will occur immediately upon the introduction of the product and will
decline thereafter. In summary, by varying the values of p and ¢, we can represent many
different patterns of demand diffusion.

] EXAMPLE 2.10

The bookstore manager from Example 2.3 now wishes to model the demand for a
third book, The Case of the Violated Constraint, which is expected to be a best-seller
but whose sales will taper off after their peak. The bookstore’s marketing department
has estimated that the sales of the book will follow a Bass diffusion process with
parameters p = 0.05, ¢ = 0.3, and m = 2700, which are calculated assuming that
the time index is measured in weeks (not years).

At what time will the sales of The Case of the Violated Constraint reach their
peak, and what will the demand rate be at that time? How many copies of the book
will have been sold by that point? What will the demand rate be at week 20, and how
many copies will have been sold by that point?

From Corollary 2.2, we have

o (23 Z5q0
0.05+0.3  \0.05

so the peak occurs during week 5. Moreover,

~2700(0.05 + 0.3)?

= 27.
4-0.3 7.63

d(t”)
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_2700(0.3 — 0.05)

D(t*) 503 = 1125.00
and, from (2.43)—(2.44),
1 — ¢—(0.0540.3)-20
D(20) = 270015550730 = 2082:86

0.05
2700 - 0.05(0.05 + 0.3)2~(0:05+0:3)-20

d(20) = 5
(0.05 + 0.3¢(0:05+0.3)-20)

= 5.97.

Therefore, at the time of peak demand, the demand rate will be 27.63 books per week,
and 1125 books will have been sold. At week 20, the demand rate will be 5.97 books
per week, and 2682.86 (or 2683) books will have been sold. [l

Seasonal influence factors can be incorporated into the Bass framework. Kurawarwala
and Matsuo (1996) present a growth model to forecast demand for short-life-cycle products
that is motivated by the Bass diffusion model. They use o to denote the seasonal influence
parameter at time ¢, given as a function with a periodicity of 12 months. Their proposed
seasonal growth model is characterized by the following differential equation:

d(t) = (p T %D(t)) (m — D(t))aw, (2.48)

where D(t) is the cumulative demand by time ¢ (D(0) = 0), d(t) is its derivative, and m,
p, and q are the scale and shape parameters, which are analogous to the parameters in the
Bass diffusion model. This is identical to (2.42) except for the multiplier c;.

Integrating (2.48), we get the cumulative demand D(¢) as follows:

1 — e~ (p+a) [y ardr 1

1+ %e*(zﬂrq) Jo ardr

D(t) =m (2.49)

When oy = 1 for all ¢, (2.49) reduces to (2.43) from Bass’s original model.

2.6.2 Discrete-Time Version

A discrete-time version of the Bass model is available. In this case, d; represents the
demand in period ¢, and D, represents the cumulative demand up to period ¢t. Let P; be
the probability that a customer buys the product in period ¢ given that she did not buy it in
periods 1,...,¢ — 1. Bayes’ rule says that

P(B|A)P(A)
P(B)

Here, let A represent “customer buys in ¢” and B represent “customer didn’t buy in
1,...,t =17 Then

P(A|B) =

u

-2 d

1-— % B m — Dt '

(Note the similarity to (2.41), which is for continuous time.) Then the discrete-time
analogue of (2.42) is

P(A|B) =

dy = (p + %Dt—1> (m — Dy_1), (2.50)
where Dy = 0.
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2.6.3 Parameter Estimation

The Bass model is heavily driven by the parameters m, p, and ¢. In this section, we briefly
discuss how these parameters may be estimated.

If historical data are available, we can estimate the parameters p, ¢, and m by first finding
the least-squares estimates of the parameters a, b, and c in the following linear regression
model:

di =a+bDy_1 +cDi t=2,3,....

Note that this model uses the discrete-time version of the Bass model (in which we observe
demands d; and calculate cumulative demands D;) since, in practice, we observe discrete
demand quantities rather than a continuous demand function. After finding a, b, and c
using standard regression analysis, the parameters of the Bass model can be determined as
follows:

—b—Vb% — dac

= 2.51
m 90 2.51)
p=2 (2.52)

m
q=— mec. (2.53)

However, because the Bass model is typically used for new products, in most cases
historical data are not available to estimate the parameters. Instead, m is typically esti-
mated qualitatively, using judgment or intuition from management about the size of the
market, market research, or the Delphi method. In some markets these estimates can be
rather precise. For instance, the pharmaceutical industry is known for their accurate de-
mand estimates, which derive from abundant data regarding the incidence of diseases and
ailments (Lilien et al. 2007). The parameters p and ¢ tend to be relatively consistent within
a given industry, so these can often be estimated from the diffusion patterns of similar
products. Lilien and Rangaswamy (1998) provide industry-specific data for a wide range
of industries. (See Table 2.4 for some examples.)

2.6.4 Extensions

After more than half a century, the Bass model is still actively used in demand forecasting
and production planning. Sultan et al. (1990), Mahajan et al. (1995), and Bass (2004)
provide broad overviews of these applications. The original model has also been extended
in a number of ways. Ho et al. (2002) provide a joint analysis of demand and sales dynamics
when the supply is constrained, and thus the usual word-of-mouth effects are mitigated.
Their analysis generalizes the Bass model to include backorders and lost sales and describes
the diffusion dynamics when the firm actively makes supply-related decisions to influence
the diffusion process. Savin and Terwiesch (2005) describe the demand dynamics of
two new products competing for a limited target market, generalizing the innovation and
imitation effects in Bass’s original model to account for this competition. Schmidt and
Druehl (2005) explore the influence of product improvements and cost reductions on the
new-product diffusion process. Ke et al. (2013) consider the problem of extending a
product line while accounting for both inventory (supply) and diffusion (demand). The
model determines whether and when to introduce the line extension and the corresponding
production quantities. Islam (2014) uses the Bass model (as well as experimental discrete
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Table 2.4 Bass model parameters. Adapted with permission from Lilien and Rangaswamy,
Marketing Engineering: Computer-Assisted Marketing Analysis and Planning, Addison-Wesley,
with permission obtained from Pearson, 1998, p. 201.

Product p q

Cable TV 0.100 0.060
Camcorder 0.044 0.304
Cellular phone 0.008 0.421

CD player 0.157 0.000
Radio 0.027 0.435
Home PC 0.121 0.281
Hybrid corn 0.000 0.797
Tractor 0.000 0.234

Ultrasound 0.000 0.534
Dishwasher 0.000 0.179
Microwave 0.002 0.357
VCR 0.025 0.603

choice data—see Section 2.8) to predict household adoption of photovoltaic (PV) solar
cells.

2.7 LEADING INDICATOR APPROACH

Product life cycles are becoming shorter and shorter, so it is difficult to obtain enough
historical data to forecast demands accurately. One idea that has proven to work well in
such situations is the use of leading indicators—products that can be used to predict the
demands of other, later products because the two products share a similar demand pattern.
This approach was introduced by Aytac and Wu (2013) and by Wu et al. (2006), who
describe an application of the method at the semiconductor company Agere Systems.

The approach is applied in situations in which a company introduces many related
products, such as multiple varieties of semiconductors, cellular phones, or grocery items.
The idea is first to group the products into clusters so that all of the products within a cluster
share similar attributes. There are several ways to perform this clustering. If one can
identify a few demand patterns that all products follow, then it is natural simply to group
products sharing the same pattern into the same cluster. For instance, after examining
demand data for about 3500 products, Meixell and Wu (2001) find that the products follow
six basic demand patterns (i.e., diffusion curves from the Bass model in Section 2.6) and
can be grouped into these patterns using statistical cluster analysis. Wu et al. (2006), on
the other hand, focus on exogenously defined product characteristics, such as resources,
technology group, or sales region, and group the products that have similar characteristics
into the same cluster.

The goal is then to identify some potential leading-indicator products within each cluster.
A product is a leading indicator if the demand pattern of this product will likely be
approximately repeated later by other products in the same cluster. For example, Figure 2.8
depicts the demand for a leading indicator product (solid line) and the total demand for all
of the products in the cluster (dashed line). If the leading indicator curve is shifted to the
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Figure 2.8 An example of a leading-indicator product.

right by three periods (the “lag”), the two curves share a similar structure. Therefore, the
leading indicator product provides some basis for predicting the demand of the rest of the
products in the cluster. Even though all of the products are on the market simultaneously,
the lag provides enough time so that supply chain planning for the products in the cluster
can take place based on the forecasts provided by the leading indicator. Of course, correctly
identifying the leading indicator is critical.

Wu et al. (2006) suggest the following procedure to identify a leading indicator within
a given cluster. Let C be the set of products, i.e., the cluster. Each product : € C' will be
treated as a potential leading indicator. Suppose we have historical demand data through
period T'. Let D;; be the observed demand for product 7 in period ¢, and let D; be the
total demand for the entire cluster in period ¢, ¢t = 1,...,T. Then leading indicators can
be identified using Algorithm 2.1. In line 4 of the algorithm, the correlation p;; measures
how well the demand of item ¢ over the time interval [1,T — k| predicts the demand of the
cluster over [k + 1, T].

Once a leading indicator ¢ with time lag & is identified as having a satisfactory correlation
coefficient p;;, we can forecast the demand for the rest of the product cluster using the
demand history from the leading indicator as follows:

1. Regress the demand time-series of product cluster C' (excluding @) over [k + 1,T]
against the time series of the leading indicator over [1, T — k] using the model

D;" = Bo+BiDis—k (2.54)

and determine the optimal regression parameters 5y and (3.

Quantity (cluster)
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Algorithm 2.1 Leading-indicator identification

1:

choose Kmins Kmaxs> Pmin > Initialization

2: foralli € C,k € {kmin, - - -, kmax } do > Correlation calculation
3:
4

shift product-i demands by k periods
calculate p;, (correlation between i lag k” and C'\ {i}) as

T _ P
Yoimpi1Digr — Di)(Dy " — D7)
T - T —
\/Zt:kH(Di,t—k — D)2y, (Dt — D)2

Pik <

)

where D, is the observe_d demand for product 7 in period ¢, D, is its mean over the time
interval [k + 1,7, D, * is the total demand for all products in the cluster excluding i
in period ¢, and D~ is its mean over the time interval [k + 1,7

: end for
: foralli € C)k € {kmin,- -, kmax } dO > Identification of leading indicators
if Pik = Pmin then
label ¢ as leading indicator with lag k&
end if
. end for

. if any leading indicators were found then

return leading indicators and corresponding clusters

: else

for all C do > Reclustering
using statistical cluster analysis, subdivide C' into clusters based on statistical
demand patterns; attributes can include demand mean or SD, shipment frequency, etc.
end for
go to 2

. end if
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2. For a given month ¢ > T (that is, a month for which we do not have historical data
but whose demand we wish to forecast), generate the forecast for the cluster, D, *,
using the time series of the leading indicator ¢ from & periods earlier:

Dy = Bo+ B1iDit—r- (2.55)

2.8 DISCRETE CHOICE MODELS

2.8.1 Introduction to Discrete Choice

In economics, discrete choice models involve choices between two or more discrete alterna-
tives. For example, a customer chooses which of several competing products to buy; a firm
decides which technology to use in production; or a passenger chooses which transportation
mode to travel by. The set of choices is assumed to be discrete, and the corresponding mod-
els are therefore called discrete choice models. (A related set of models, called continuous
choice models, assume that the range of choices is continuous. Although these models are
not the focus of our discussion, many of the concepts that we describe below are easily
transferable to continuous choice models. In fact, discrete choices generally reveal less
information about the choice process than continuous ones, so the econometrics of discrete
choice is usually more challenging.)

The idea behind discrete choice models is to build a statistical model that predicts
the choice made by an individual based on the individual’s own attributes as well as the
attributes of the available choices. For example, a student’s choice of which college to attend
is determined by factors relating to the student, including his or her career goals, scholarly
interests, and financial situation, as well as factors relating to the colleges, including their
reputations and locations. Choice models attempt to quantify this relationship statistically.
Rather than modeling the attributes (career goals, scholarly interests, etc.) as independent
variables and then predicting the choice as the dependent variable, choice models are at
the aggregate (population) level and assume that each decision-maker’s preferences are
captured implicitly by that model.

At first, it may seem that discrete choice models mainly deal with “which”-type rather
than “how many”-type decisions, unlike the other forecasting and demand-modeling tech-
niques described in this chapter. However, discrete choice models can be and have been
used to forecast quantities, such as the number and duration of phone calls that households
make (Train et al. 1987); the demand for electric cars (Beggs et al. 1981) and mobile
telephones (Ida and Kuroda 2009); the demand for planned transportation systems, such
as highways, rapid transit systems, and airline routes (Train 1978, Ramming 2001, Garrow
2010)); and the number of vehicles a household chooses to own (McFadden 1984). Choice
models estimate the probability that a person selects a particular alternative. Thus, aggre-
gating the “which” decision across the population will give answers to the “how many”
questions and can be very useful for forecasting demand.

Discrete choice models take many forms, including binary and multinomial logit, binary
and multinomial probit, and conditional logit. However, there are several features that are
common to all of these models. These include the way they characterize the choice set,
consumer utility, and the choice probabilities. We briefly describe each of these features
next. (See Train (2009) for more details about these features.)
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The Choice Set: The choice set is the set of options that are available to the decision-maker.
The alternatives might represent competing products or services, or any other options or
items among which the decision-maker must choose. For a discrete choice model, the set
of alternatives in the choice set must be mutually exclusive, exhaustive, and finite. The
first two requirements mean that the set must include all possible alternatives (so that the
decision-maker necessarily does make a choice from within the set) and that choosing
one alternative means not choosing any others (so one alternative from the set dominates
all other options for the decision-maker). The third requirement distinguishes discrete
choice analysis from, say, linear regression analysis in which the dependent variable can
(theoretically) take an infinite number of values.

Consumer Utility: Suppose there are /N decision-makers, each of whom must select an
alternative from the choice set I. A given decision-maker n would obtain a certain level
of utility from alternative ¢ € I; this utility is denoted U,,;. Discrete choice models usually
assume that the decision-maker is a utility maximizer. That is, he will choose alternative ¢
if and only if U,,; > Uy, forall j € I, j # 1.

If we know the utility values U,,; for all n € N and all ¢« € I, then it will be very
easy for us to calculate which alternative decision-maker n will choose (and therefore to
predict the demand for each alternative). However, since in most cases we do not know
the utility values perfectly, we must estimate them. Let V,,; be our estimate of alternative
¢’s utility for decision-maker n. (The V,,; values are called representative utilities. We
omit a discussion about how these might be calculated; see, for example, Train (2009).)
Normally, V,,; # U,;, and we use €,,; to denote the random estimation error; that is,

Choice Probabilities: Once we have determined the V,,; values, we can calculate P,,;, the
probability that decision-maker n chooses alternative ¢, as follows:

= P(‘/ni + €ni > ‘/nj + €nj v.] 7& Z) (2.57)

The V,,; values are constants. To estimate the probability, then, we need to know the
probability distributions of the random variables €,,;.

Different choice models arise from different distributions of ¢,,; and different methods
for calculating V,,;. For instance, the logit model assumes that €,; are drawn iid from a
member of the family of generalized extreme value distributions, and this gives rise to a
closed-form expression for P,,;. (Logit is therefore the most widely used discrete choice
model.) The probit model, on the other hand, assumes that €,; come from a multivariate
normal distribution (and are therefore correlated, not iid), but the resulting P,; values
cannot be found in closed form and must instead be estimated using simulation.

2.8.2 The Multinomial Logit Model

Next we derive the multinomial logit model. (Refer to McFadden (1974) or Train (2009)
for further details of the derivation.) “Multinomial” means that there are multiple options
from which the decision-maker chooses. (In contrast, binomial models assume there are
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only two options.) The logit model is obtained by assuming each ¢, is independently and
identically distributed from the standard Gumbel distribution, a type of generalized extreme
value distribution (also known as type I extreme value). The pdf and cdf of the standard
Gumbel distribution are given by

f(z) =e " %e ¢ (2.58)
F(z) =e=¢ . (2.59)

We can rewrite the probability that decision-maker n chooses alternative ¢ (2.57) as
Pui = P(enj < Vii + eni = Voj Vi #1). (2.60)

Since ¢,,; has a Gumbel distribution, by (2.59) the probability in the right-hand side of
(2.60) can be written as
_6_(€ni+vni_vnj)
e
if €,,; is given. Since the € are independent, the cumulative distribution over all j # i is the
product of the individual cumulative distributions:

7(€n,i+vnifvn')
I | —e J
Pni|6ni - € .
J#i

Therefore, we can calculate P,,; by conditioning on ¢,,; as follows:
Py = /(Pni‘eni)f(eni)deni

= nil€ni)e” e o den;
P € e

_ / [Te s ™) ) eeme ™ dey. 2.61)
JFi

After some further manipulation (see Problem 2.24), we get

evni

et

(The sum in the denominator is over all j, including 7 = i.) Note that the probability that
individual n chooses alternative ¢ is between 0 and 1 (as is necessary for a well defined
probability). As V,,;, the estimate of ¢’s utility for n, increases, so does the probability
that n chooses ¢; this probability approaches 1 as V,,; approaches co. Similarly, as V,;
decreases, so does the probability that n chooses ¢, approaching O in the limit.

The expected number of individuals who will choose product i, N (i), is simply given
by

P, = 2.62)

N(i) = Pu. (2.63)

Of course, we usually don’t know P,; for every individual n, so instead we resort to
methods to estimate N (¢) without relying on too much data. See Koppelman (1975) for a
discussion of several useful techniques for this purpose.
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Table 2.5 Estimated utilities V,,; for uPhone models for Example 2.11.
Model | Tech-Heads Mainstream Casual

10B 0.1 0.6 0.4
10W —0.2 0.7 0.5
10+B 1.3 0.5 —0.1
10+W 1.1 04 0.1

Table 2.6 exp(Vy;) values for Example 2.11.
Model ‘ Tech-Heads Mainstream Casual

10B 1.11 1.82 1.49
10W 0.82 2.01 1.65
10+B 3.67 1.65 0.90
10+W 3.00 1.49 1.11

Table 2.7 Choice probabilities P,; and segment sizes for Example 2.11.

Model Tech-Heads Mainstream Casual
10B 0.13 0.26 0.29
10W 0.10 0.29 0.32
10+B 0.43 0.24 0.18
10+W 0.35 0.21 0.21
Segment size 03M 1.7M 04 M

0 EXAMPLE 2.11

Pear Computer is about to launch model 10 of its popular smart phone, the uPhone.
The company is planning four new versions of the uPhone: the uPhone 10 white
and black (abbreviated as models 10W and 10B, respectively) and the uPhone 10+
white and black (models 10+W and 10+B). The company has segmented the market
into three categories, which they call Tech Heads, Mainstream Users, and Casual
Users. Based on market research, Pear Computer has estimated the utilities V,,; of
each category for each phone model as given in Table 2.5.

The company wishes to know the probability that a user of each market segment
will choose each model. We will assume the estimation errors have a Gumbel
distribution.

Table 2.6 lists the values of exp(V,,;) for all n and ¢. From these, we can estimate
the probabilities P,; as shown in Table 2.7. Note that for a given market segment,
the probabilities for the four models sum to 1 (except for rounding error) since we
are assuming each consumer will choose exactly one of the models. If we wanted to
model the situation in which a consumer may choose not to purchase any uPhone,
then we could add a fifth option representing no purchase.

Table 2.7 also lists the total size of each market segment. From the information in
the table, we can estimate the total number of each model sold. For example, Pear
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Computer can expect to sell
0.13 x 0.3 +0.26 x 1.7+ 0.29 x 0.4 = 0.60

million units of the model 10B. Similarly, the demand forecast is 0.65 M for 10W,
0.60 M for 10+B, and 0.55 M for 10+W. O

We refer the readers to other texts (Ben-Akiva and Lerman 1985, Train 2009) for
details about this and other choice models. We next give an example of how discrete choice
modeling techniques can be used to estimate demand in a supply chain management setting.

2.8.3 Example Application to Supply Chain Management

Suppose there is a retailer who sells a set I of products. The retailer wishes to estimate the
probability that a given customer would be interested in purchasing product ¢, for ¢ € I, so
that he can decide which products to offer. Suppose that the customer follows a multinomial
logit choice model, as in Section 2.8.2. The retailer’s estimate V; of the customer’s utility
U, for product 7 € I is given by

(Equation (2.64) is identical to (2.56) except that we have dropped the index n since we
are considering only a single customer.) If ¢ = 0, then U; and V; denote the actual and
estimated utility of making no purchase.

For any subset S C I, let P;(.S) denote the probability that the customer will purchase
product ¢, assuming that her only choices are in the set S, and let P;(S) = 0ifi ¢ S. Let
Py(S) denote the probability that the customer will not purchase any product. Then, from
(2.62), we have

v,

—¢ - ifie Su{0},

Py(S) = { €02, e {0y (2.65)
0, otherwise.

The retailer’s objective is to choose which products to offer in order to maximize his
expected profit. Suppose that the retailer earns a profit of m; for each unit of product ¢ sold.
Suppose also that the retailer cannot offer more than C' products. (C' might represent shelf
space.) Then the retailer needs to solve the following assortment problem:

maximize Z 7 P;(S) (2.66)
€S

subjectto  |S| < C (2.67)
SCI (2.68)

(If there are multiple customers, we can just multiply the objective function by the number
of customers, assuming they have identical utilities. For a discussion of handling non-
homogenous customers, see Koppelman (1975).) This is a combinatorial optimization
problem; the goal is to choose the subset S. This problem is not trivial to solve (though
it can be solved efficiently). However, the bigger problem is that the utilities U;, and
hence the probabilities P;(.S), are unknown to the retailer. One option is for the retailer
to offer different assortments of products over time, estimate the utilities based on the
observed demands for each assortment, and refine his assortment as his estimates improve.
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Rusmevichientong et al. (2010) propose such an approach. They introduce a policy that the
retailer can follow to generate a sequence of assortments in order to maximize the expected
profit over time. The assortment offered in a given period depends on the demands observed
in the previous periods. Rusmevichientong et al. (2010) also propose a polynomial-time
algorithm to solve the assortment problem itself.

CASE STUDY 2.1 Semiconductor Demand Forecasting at Intel

Wu et al. (2010) describe a collaboration between Intel Corporation and Lehigh
University researchers to apply the leading-indicator approach (Section 2.7) to forecast
demands for new products in the semiconductor industry.? At the time of the collabora-
tion, Intel was the largest semiconductor manufacturer in the world and produced chips
for several vertical markets, such as mobile, desktop, and server devices. Forecasting
demands for semiconductors is difficult due to their short life cycles, long lead times,
and high demand volatility. (For another application of the leading-indicator approach
in the semiconductor industry, see Wu et al. (2006).)

The approach developed by the researchers involved two key ideas. The first is
that by combining forecasts from multiple diffusion models (including, possibly, the
Bass model of Section 2.6), we may get better forecasts than if we simply choose a
single diffusion model. The second is that leading indicators can be used to update the
forecast obtained from the diffusion models using a Bayesian approach.

In particular, Wu et al. (2010) propose fitting, say, 10 different diffusion models to
historical data. The Bass model is one good choice, but there are other similar models
such as the Weibull, Skiadas, and simple logistic diffusion models. In particular, if we
have already observed T periods of demand data for the new product, we can best-fit
the parameters of each diffusion model (see Section 2.6.3) to the historical data and
evaluate the accuracy of each model. The poorly performing models can be eliminated
(for the Intel study, the list was narrowed down to five), and the remaining models
can each be used to produce a forecast for the demands in period T+ 1 through
T + 7, for some desired 7. An error term can be added to the forecast to produce a
probability distribution rather than just a point forecast. This distribution is called the
prior distribution.

Next, leading indicators are identified from older generation products or other avail-
able time series. For each leading indicator, we generate a forecast for periods 7' +
1,...,T + k, where k is the lag for that leading indicator. (See Section 2.7.) Then,
we fit each diffusion model to this extended time series in which periods 1,...,7T come
from observed data and T'+1,...,T + k come from the leading indicator forecast. We
then use the diffusion model, with the parameters determined in the previous step, to
produce a forecast distribution for periods T+ k + 1,...,T7 + 7. This distribution is
called the sampling distribution.

Finally, we perform a Bayesian update using the prior and sampling distributions
to produce a posterior distribution for each diffusion model. These distributions are
then combined by taking, for each future time period, a weighted sum of the forecasts

2In this and subsequent case studies, we have adapted the original notation to be consistent with the rest of the
book. In some cases we have also simplified or made other minor modifications to the models, while striving to
maintain the main ideas of the original models.
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generated by the various diffusion models. Wu et al. (2010) show both analytically
and empirically that this results in a smaller variance of forecast error than any of the
individual forecasts.

The team implemented the method for 60 Intel products from the mobile, desktop,
and server markets. Wu et al. (2010) report that over 10 monthly forecasting cycles,
the new method reduced the 12-month forecast error, as measured by MAPE (see
Section 2.3), by 9.7%. Moreover, the accuracy of the 4-month forecast, which is
the most important given the products’ production cycles, improved by 33%. Intel
estimated that this would translate to at least $1.3 million in increased revenue per
product over 4 months due to the improved forecasts leading to fewer stockouts. In
addition, the decision-support system built by the team to implement this approach
executes quickly, reducing the time required to generate forecasts from approximately 3
days under Intel's old aproach to 2 hours using the new system. The work described by
Wau et al. (2010) was a finalist for INFORMS's prestigious Wagner Prize for Excellence
in Operations Research Practice; see Butler and Camm (2010).

PROBLEMS

2.1 (Forecasting without Trend) A hospital receives regular shipments of liquefied
oxygen, which it converts to oxygen gas that is used for life support. The company that
sells the oxygen to the hospital wishes to forecast the amount of liquefied oxygen the
hospital will use tomorrow. The number of liters of liquefied oxygen used by the hospital
in each of the past 30 days is reported in the file oxygen.x1sx.

a) Using a moving average with N = 7, forecast tomorrow’s demand.

b) Using single exponential smoothing with av = 0.1, forecast tomorrow’s demand.

2.2 (Forecasting with Trend) The demand for a new brand of dog food has been steadily
rising at the local PetMart pet store. The previous 26 weeks’ worth of demand (number of
bags) are given in the file dog-food.x1sx.
a) Using double exponential smoothing with a = 0.2 and 8 = 0.1, forecast next
week’s demand. Initialize your forecast by setting I; = D, for t = 1,2 and
Sg = 12 — I1.
b) Using linear regression, forecast next week’s demand.

2.3 (Forecasting Cupcake Sales) Karl’s Cupcakes recently launched a new variety of
cupcake. The weekly demands, measured in dozens, during the first two weeks of sales
were D1 = 47.2 and Dy, = 52.3.
a) Use double exponential smoothing with o = 0.1 and 8 = 0.2 to calculate y3, the
forecast made in week 2 for the demand in week 3.
b) Suppose the actual demand in week 3 is 59.4. What is y4, the forecast made in
week 3 for the demand in week 47

2.4 (Forecasting with Seasonality) A hardware store sells potting soil, the demand for
which is highly seasonal and has also exhibited a slight upward trend. The number of bags
of soil sold each month for the past 40 months is reported in the file potting-soil.x1sx.
Using triple exponential smoothing with & = 0.2, # = 0.1, and v = 0.3, forecast the
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demand for May. Initialize your forecast by setting

It == Dt
Sp=1I — I
12Dy
= =12
Zi:l D;
for periods t = 1,...,12. (There are better ways to initialize this method, but this method

is simpler.)

2.5 (Forecasting Melon Slicers) Matt’s Melon Slicers sells specialized knives for water-
melons, the demand for which is highly seasonal, with the majority of the demand occurring
during the summer. The company has been selling melon slicers for three years and has
calculated the following estimates of the seasonal factors, with each period representing
one quarter:

Quarter t Ct

Winter 9 04
Spring 10 0.8
Summer 11 1.9
Fall 12 0.9

At the end of period 12, the company calculated the following estimates of the base
signal and slope: I15 = 642, S1o = 84.
a) Calculate y,3, the forecast made in period 12 for the demand in period 13.
b) Suppose the demand in period 13 turns out to be 341. Calculate I3, S13, and
C13.

2.6 (Forecasting Using Regression) The demand for bottled water at football (aka
soccer) matches is correlated to the outside temperature at the start of the match. The file
bottled-water.xlsx reports the temperature (°C) and number of bottles of water sold
for each home match played at a certain stadium for the past two seasons (19 home matches
per season).
a) Using these data, build a linear regression model to relate the demand for bottled
water to the match-time temperature. What are BO and Bl?
b) The temperatures for the next three matches are predicted to be 21.6°, 27.3°,
and 26.6°, respectively. Forecast the demand for bottled water at each of these
matches.

2.7 (Multiple-Period-Ahead Forecasts) In this chapter, we discussed time-series meth-
ods for forecasting the demand one period ahead, i.e., in period £ — 1, we generate a forecast
vy, for the demand in period ¢. Suppose instead that we wish to forecast multiple periods
ahead, i.e., in period ¢t — 1, we generate a forecast y;—; ;1 for the demand in period ¢ + &,
for £ > 0. Explain how to adapt each of the following methods to handle this case:

a) Moving average

b) Double exponential smoothing

¢) Linear regression
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2.8 (Forecasting using Machine Learning Methods) Using the data set provided in
Problem 2.6, choose a learning-based forecasting method—a tree-based model, SVR, or
neural networks—for forecasting bottled water given temperatures. Use your selected
method to forecast the demand during matches when the temperatures are 21.6°, 27.3°,
and 26.6°. Compare your results with those you obtained using linear regression in
Problem 2.6(b).

2.9 (Ridge Regression) Ridge regression introduces an ¢s-norm penalty to the objective
function of linear regression. Consider a simple version in which we have only a single
input (p = 1); then we are minimizing

(y' — (Bo + Bra'))” + N(B2 + B2),

1

n

K2

where A > 0 is the penalty parameter. Derive closed-form expressions for 5y and 8;. You
may use a matrix representation if you wish.

2.10 (Forecasting Fires) The file nyc-fires.csv contains the number of fires re-
sponded to by the New York City Fire Department on each day from January 1, 2013
through June 30, 2016 (NYC OpenData 2017). It also contains the high temperature
(in °F) and the total precipitation (in inches) on the same days (National Oceanic and
Atmospheric Administration (NOAA) 2017).

Load the data into MATLAB, Excel, or another software package of your choice. Add a
variable called IsWeekend that indicates whether each day is a weekend day (Saturday or
Sunday). Split the data into two parts, one for 2013-2015 (this will be your training data)
and one for 2016 (this will be your testing data).

In this problem, you will build models to predict the number of fires on a given day
using the three features (high temperature, precipitation, and weekend (Y/N)). Use only
the training data when building your models.

a) Build a linear regression model. Report the coefficients Bl

b) Build a regression tree model with at most 10 branching nodes. (A branching
node is a node that has child nodes.) Include a diagram of your tree.

¢) Build an SVR model. Report the coefficients 3 and Sy.

d) For each method in parts (a)—(c), predict the number of fires on each day in the
testing data. Report the predicted and actual values and the forecast error for the
first 10 records in the testing data. Also report the MSE for each method for the
entire testing set.

2.11 (Exponential Smoothing for Retail Sales) The file retail-sales-data.csv
contains weekly sales data for 99 departments within 45 retail stores over approximately 3
years. This is actual data from a real company but has been anonymized (see Kaggle.com
(2017)).

a) Extract the sales data for store 2, department 93. Determine the most appropriate
form of exponential smoothing (single, double, or triple) and apply that method
to forecast the sales. Use 0.15 for all of the smoothing constants («, /3, and/or
7). Begin forecasting at the earliest period you can. (For example, in double
exponential smoothing the forecasts begin in period 3.) Report the MSE, MAD,
and MAPE for your forecasts. Plot the actual and forecast sales on a single plot.

b) Repeat part (a) for store 3, department 60.
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¢) Repeat part (a) for store 1, department 16.

2.12 (Mean and Variance of Exponential Smoothing Forecast Error) Prove equations
(2.31) and (2.32).

2.13 (Forecasting Simulation) Consider a product whose daily demand follows (2.30)
with yt = 40 and o = 6.

a) Build a spreadsheet simulation of the demand process, as well as a moving average
forecast of order 5. Simulate the system for at least 500 periods. Report the MSE
and MAD of the forecast. Also calculate the standard deviation of the forecast
error. How accurate is the approximation given in (2.28) for your simulated
values?

b) Repeat part (a) for an exponential smoothing forecast with constant o = 0.1.

¢) Based on the results of parts (a) and (b), does one forecasting method appear to
work better than the other?

2.14 (Bass Diffusion for LPhone) HCT, an Asian manufacturer of a new 4G cell phone,
the LPhone 35, is planing to enter the U.S. market, and they are in the process of signing a
contract with a third-party logistics (3PL) provider in which they must specify the size of
the warehouse they want to rent from the 3PL. HCT wants to forecast the total sales of the
LPhone 5, as well as the time at which the LPhone 5 reaches its peak sales. After some
thorough market research, HCT has estimated that p = 0.008, ¢ = 0.421, and m = 5.8
million. Calculate when the peak sales will occur and how many LPhone 5 the company
will have sold by that point.

2.15 (Bass Diffusion for iPeel) Banana Computer Co. plans to launch its latest consumer
electronic device, the iPeel, early next year. Based on market research, it estimates that the
market potential for the iPeel is 170,000 units, with coefficients of innovation and imitation
of 0.07 and 0.31, respectively.

a) If the iPeel is introduced on January 1, on what date will the sales peak? What

will be the demand rate on that date, and how many units will have been sold?
b) On what date will 90% of the sales have occurred?
¢) Plot the demand rate and cumulative demand as a function of time.

2.16 (Bass Diffusion for Books) A new novel was published recently, and the demand
for it is expected to follow a Bass diffusion process. The publisher decided to print only a
limited number of copies, observe the demand for the book for 20 weeks, estimate the Bass
parameters, and then undertake a second printing for the remainder of the life cycle of the
book using these parameters. The demand for the book during these 20 weeks is reported
in the file novel . x1sx. Using these data, estimate m, p, and q using the method described
in Section 2.6.3.

2.17  (Proof of Corollary 2.2) Prove Corollary 2.2.

2.18 (Influentials and Imitators) Suppose that potential adopters of a given product fall
into two distinct segments: influentials and imitators. Each segment has its own within-
segment innovation and imitation parameters and experiences its own Bass-type contagion
process. In addition, the influentials can exert a cross-segment influence on the imitators,
but not vice-versa. Let 6 denote the proportion of influentials in the population of eventual
adopters (0 < 6 < 1), and 6 = 1 — @ denote the proportion of imitators. Let p; and g;
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denote the within-segment innovation and imitation parameters, respectively, for ¢ = 1, 2,
where ¢ = 1 represents influentials and 7 = 2 represents imitators. Let ¢. denote the
cross-segment imitation parameter.
a) Write a formula expressing each segment’s instantaneous adoption behavior,
analogous to (2.42).
b) What is special about the case in which = 0 or § = 1?
¢) If there are no pre-release purchases (i.e., D1(0) = D5(0) = 0), write a formula
expressing the cumulative adoption at time ¢, analogous to (2.43).

2.19 (Demand Diffusion across Multiple Markets) A company plans to introduce a
variety of new products to multiple vertical markets. The demands from these verticals
are likely to follow different diffusion patterns. The company is interested in combining
diffusion models derived from different vertical markets to help characterize the overall
market demand. However, they are not sure about whether doing so would introduce
additional variances and biases into the forecast. Show that combining forecasts of different
diffusion models using weights that are inversely proportional to their forecast variances
yields a combined forecast variance that is smaller than the forecast variance of each
individual diffusion model.

2.20 (Leading Indicators) A battery manufacturer produces a large number of models
of lithium-ion batteries for use in computers and other electronic devices. The products are
introduced at different times and follow different demand processes. The company wishes
to determine whether some of the products can serve as leading indicators for the rest of
the products. The file batteries.x1lsx contains historical demand data for 25 products
for the past 26 weeks.
a) Using Algorithm 2.1 with parameters kyin, = 3, kmax = 9, and ppin, = 0.85,
determine all pairs (7, k) such that product i is a leading indicator with lag k.
(Note: You should not need to recluster the products.)
b) Using one of the (i, k) you found in part (a), forecast the demand for the rest of
the cluster in periods 27 and 28.

2.21 (Discrete Choice with Uniform Errors) Suppose that, in the discrete choice model,
the estimation error €,,; has a U[—1, 1] distribution for all n and 7. Write an expression for
P,;, analogous to (2.61). Your expression may include €,;, Vy,;, and V5, but not €,,;.

2.22 (Discrete Choices for Day Care) A university is in the process of choosing a
location for a new day care center for its faculty’s children. The two options for the
location are city A, where the university is located, or city B, a neighboring city known
for larger houses but a longer commute. The university wants to estimate the number of
faculty with kids who are living or will live in city A during the next 10 years. To that end,
the university wishes to estimate the choice probability between the two cities for a typical
family. Suppose that the utility a family obtains from living in each city depends only on
the average house purchase price, the distance between the city and the campus, and the
family’s opinion of the convenience and quality of life of each city. The first two of these
factors can be observed by the researcher, but the researcher cannot observe the third. The
researcher believes that the observed part of the utility is a linear function of the observed
factors; in particular, the utility of living in each city can be written as

Up=—045PP4 —0.23D 4 + €4
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Ugp=—-—045PPg — 0.23Dp + €p,

where the subscripts A and B denote city A and city B, and PP and D are the purchase price
and distance. The unobserved component of the utility for each alternative, € 4 and €5, vary
across households depending on how each household views the quality and convenience
of living in each city. If these unobserved components are distributed iid with a standard
Gumbel distribution, calculate the probability that a household will choose to live in city
A.

2.23 (Using Discrete Choice to Forecast Movie Sales) Three new movies will be shown
at a movie theater this weekend. The theater wishes to estimate the expected number of
people who will come to see each movie so they can decide how many screenings to offer,
how large a theater each movie should be shown in, and so on. The movie studios that
produced the three movies held “sneak peak™ screenings of the films and conducted post-
movie interviews of the attendees. Based on these interviews, they estimated the utility of
each movie based on a viewer’s age range. They also estimated the utility of not seeing
any movie. These estimated utilities are denoted V,,;, although here n refers not to an
individual but to a fype of individual (based on age range). The following table lists the V,,;
values, as well as the number of people who are considering seeing a movie at that theater
this weekend.

Age Range
Movie 16-25 26-35 36+

Prognosis Negative  0.22 054 0.62
Rochelle, Rochelle 0.49 0.57 051

Sack Lunch 0.53 0.31 0.38
No movie 0.10 0.27 0.41
Population 700 1900 1150

a) Assume that the actual utilities U,,; differ from the estimated utilities V,,; by
an additive iid error term that has a standard Gumbel distribution. Using the
multinomial logit model of Section 2.8.2, calculate the expected demand for each
movie.

b) Now suppose the movie theater doesn’t know about the multinomial logit model
and assumes that P,,; is simply calculated using a weighted sum of the V,,; values;

that is,
Vni

Z J Vi '
What are the expected demands for each movie using this method?

2.24 (Proof of (2.62)) Prove equation (2.62).

Pni:




CHAPTER 3

DETERMINISTIC INVENTORY MODELS

3.1

3.11

INTRODUCTION TO INVENTORY MODELING

Why Hold Inventory?

Think about some of the products you bought the last time you went to the grocery store.
How much of each did you buy? Why did you choose these quantities?
Here are some possible reasons:

1.

You bought a gallon of milk but only a pint of cream because you drink much more
milk than cream in a week.

. You bought a six-pack of soda, rather than a single bottle, because you don’t want to

have to go to the store every time you want to drink a bottle of soda.

You bought a “family size” box of cereal, rather than a small box, because larger
boxes are more cost-effective (cheaper per ounce) than smaller ones.

Although you usually eat one bag of potato chips per week, you bought three bags
in case your hungry friends show up unexpectedly one night this week.

You asked the store to special-order your favorite brand of gourmet mustard (which
it doesn’t normally stock), even though you already have a half jar at home, because
you know it will take a few weeks before the mustard is delivered.

Fundamentals of Supply Chain Theory, Second Edition. Lawrence V. Snyder and Zuo-Jun Max Shen. 45
(© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/Snyder/SupplyChainTheory
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6. Although it would be more cost-effective and convenient to buy 12 rolls of paper
towels, you only bought 3, because you don’t have enough space to store 12 rolls at
home.

7. You bought four boxes of pasta, even though you only eat one box per week, because
they were on sale for a greatly reduced price.

8. Even though grapes were on sale, you bought one pound instead of two because you
knew the second pound would spoil before you had a chance to eat them.

9. You bought a pound of butter (four sticks), even though you probably won’t use
more than one stick before your next trip to the store, because butter only comes in
1-pound packages.

All of these decisions affected the amount of inventory of groceries that you have in your
home. Aside from the cost you paid to purchase these items, you are also paying a cost
simply to hold the inventory (as opposed to buying a single item each time you need it and
using it immediately). For example, if you used your credit card to make your purchase,
then you are paying a little more interest by buying a six-pack of soda today rather than
buying individual bottles throughout the week. If you paid cash, then you are tying up your
cash in groceries rather than using it for some other purpose, such as going to the movies,
or putting your money in an interest-earning savings account. You are also paying for
the physical space required to store your groceries (as part of your rent or mortgage), the
energy required to keep refrigerated items cold, and the insurance to protect your grocery
investment if your house is burglarized or damaged in a fire.

Companies, too, would prefer not to hold any inventory, since inventory is expensive
(even more than it is for you). However, most companies hold some inventory, for the same
reasons that you hold inventory of your groceries:

1. Different products are purchased at different rates—the demand rate—and therefore
require different levels of inventory.

2. There is an inconvenience, and often an expense, associated with placing an order
with a supplier (analogous to your trip to the grocery store). For example, there may
be an administrative cost to process the order and transmit it to the supplier, or there
may be a cost to rent a truck to deliver the products. These are fixed costs since they
are (roughly) independent of the size of the order, and they make it impractical to
place an order each time a single item is needed.

3. Firms often receive volume discounts for placing large orders with their suppliers.
Volume discounts and fixed costs are both types of economies of scale, which make
it more cost-effective to order in bulk; that is, to place fewer, larger orders.

4. Demand for most products is random, and often so are lead times and other supply
factors, and this uncertainty requires firms to hold inventory to ensure that they can
satisfy the demand (at least most of the time).

5. After a firm places an order, the products do not arrive until after a (typically nonzero)
lead time. Since the firm’s own customers usually don’t want to wait for this lead
time, especially in retail settings, the firm must place a replenishment order even
when it is still holding some inventory.
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6. Warehouses have only a finite amount of storage capacity, and this may constrain
the size of the firm’s order. A related type of capacity (which is less relevant for
the grocery example) is production capacity: If demand is highly seasonal (e.g., for
snowblowers) but production capacity is limited, then the firm may need to produce
more in off-peak times (summer) in order to meet the demand during peak times
(winter).

7. Suppliers often offer sales and temporary discounts, just like retail stores do, and
prices for many products (especially commodities) vary constantly. In response to
both types of price fluctuations, firms buy large quantities when prices are low and
hold goods in inventory until they’re needed.

8. Some inventory is perishable, so firms must limit the quantity they buy to avoid being
saddled with unusable inventory.

9. Many products are available only in fixed batch sizes such as cases or pallets, and
the firm is forced to order in increments of those units.

These are all reasons that firms plan to hold inventory. In addition, firms may hold
unplanned inventory—for example, inventory of products that have become obsolete sooner
than expected.

Firms may hold inventory of goods at all stages of production—raw materials, compo-
nents, work-in-process, and finished goods. The latter types of inventory are usually made
by the firm, rather than ordered from a supplier, but similar issues still arise—for example,
there may be a fixed cost to initiate a production run, it may be cheaper per unit to produce
large batches, the processing time may be uncertain, and so on. In fact, although we tend to
discuss inventory models as though the firm is buying a product from an outside supplier,
most inventory models apply equally well to production systems, in which case we are
deciding how much to produce, rather than how much to order, and the “ordering” costs
are really production costs.

3.1.2 Classifying Inventory Models

Mathematical inventory models can be classified along a number of different dimensions:

e Demand. Is demand deterministic or stochastic? Does the rate stay the same all the
time or does it vary over time—say, from season to season?

e Lead time. Is production or delivery instantaneous, or is there a positive lead time?
Is the lead time deterministic or stochastic?

e Review type. Is inventory assessed continuously or periodically? In continuous-
review models, the inventory is constantly monitored, and an order is placed whenever
a certain condition is met (for example, the inventory level falls below a given value).
In periodic-review models, the inventory is only checked every time period (say,
every week), and an order is placed if the reorder condition is met. In periodic-
review models, we usually assume that demands occur at a single instant during the
period, even though they may really occur continuously throughout it.

e Planning horizon. Finite-horizon models consider a finite number of periods or time
units, while infinite-horizon models assume the planning horizon extends forever.
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Although it is unrealistic to assume that the firm will continue operating the same
system, under the same conditions, forever, infinite-horizon models are often more
tractable than finite-horizon ones and are therefore quite common.

e Stockout type. If demand exceeds supply, how is the excess demand handled? Most
models consider either backorders, in which case excess demand stays on the books
until it can be satisfied from a future shipment, or lost sales, in which case excess
demands are simply lost—the customer takes her business elsewhere. In retail
settings, it is usually more accurate to assume lost sales, whereas backorders are
more common in business-to-business settings.

e Ensuring good service. Some models ensure that not too many stockouts occur
by including a penalty in the cost function for each stockout. Others include a
constraint on the allowable percentage of demands that may be stocked out. The
former approach often leads to more tractable models, but it can be very difficult to
quantify the cost of a stockout; therefore, service-level constraints are common in
practice.

e Fixed cost. Some inventory models include a fixed cost to place an order, while
others do not. The presence and magnitude of a fixed cost determines whether the
firm places many small orders or few large orders. Moreover, inventory models with
fixed costs are often more difficult to analyze and solve than those without, so we
often ignore the fixed cost in modeling an inventory system even if one is present in
the real system.

e Perishability. Can inventory be held across multiple time periods, or is it perishable?
Perishable items include not just foods, but also fresh flowers and medicine (which
will spoil), high-tech products (which will become obsolete), and newspapers and
airline tickets (which have a deadline after which they can’t be sold).

Like all mathematical models, inventory models must balance two competing factors—
realism and tractability. In many cases, it is more accurate to assume one thing but easier to
assume the opposite. For example, many inventory models are much more mathematically
tractable if we assume backorders, so we might do so even if we are modeling inventory
at a retail store, for which the lost-sales assumption is more accurate. Similarly, it is often
convenient to assume lead times are zero even though they rarely are in practice. If the lead
time is short compared to the order cycle—for example, if the firm places monthly orders
and the lead time is 2 days—this assumption may not hurt the model’s accuracy too much.
Modeling is as much an art as a science, and part of modeling process involves determining
both the cost (in terms of realism) and the benefit (in terms of tractability) of “assuming
away” a given real-life factor.

3.1.3 Costs

The goal of most inventory models is to minimize the cost (or maximize the profit) of the
inventory system. Four types of costs are most common:

e Holding cost. This represents the cost of actually keeping the inventory on hand.
Like the costs associated with storing your groceries, the holding cost includes the
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Inventory level

Figure 3.1 Inventory level curve.

cost of storage space, taxes, insurance, breakage, theft, and, most significantly,
opportunity cost—the money the firm could be earning if it didn’t have its capital
tied up in inventory. The holding cost is often expressed as a percentage of the
value of the product per year. For example, the holding cost might be 25% per
year. If the item costs $100, then it costs $1562.50 to hold 250 items for 3 months
(1562.50 = 0.25-100 - 250 - (3/12)). We will usually use h to represent the holding
cost per item per unit time.

In reality, the inventory level is not constant but fluctuates over time, as pictured in
Figure 3.1. Here, the holding cost is the area under the curve times h, so we would
use integration to compute it. In some of the inventory models discussed in this book,
the inventory “curve” is made up of straight lines, so computing the area is easy.

Fixed cost. This is the cost to place an order, independent of the size of the order.
It is sometimes called the setup cost, and we will usually denote it by K. The fixed
cost accounts for the administrative cost of placing an order, the cost of using a truck
to deliver the product, and so on.

Purchase cost. This is the cost per unit to buy and ship the product, generally denoted
by c. (It is also sometimes known as the variable cost or per-unit cost.) Therefore,
the total order cost (fixed + purchase) to order x units is given by

0, ifr=0

K+czx, ifz>0.
One picky but worthwhile note: If there is a nonzero lead time, then we typically
assume that the firm pays the purchase cost ¢ when the order arrives, not when it
is placed. This assumption doesn’t affect the total purchase cost per year (unless
we’re modeling the time value of money), but it does affect the holding cost if & is
a function of c: If the firm was to pay the purchase cost when the order is placed,

its capital would be tied up during the lead time, but this would not be accurately
reflected in the holding cost.
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e Stockout cost. This is the cost of not having sufficient inventory to meet demand, also
called the penalty cost or stockout penalty, and is denoted by p. If excess demand
is backordered, the penalty cost includes bookkeeping costs, delay costs, fines for
missing promised delivery dates, and—most significantly—loss of goodwill (the
potential loss of future business since the customer is unhappy). If excess demand is
lost, the penalty cost also includes the lost profit from the missed sale. The penalty
is generally charged per unit of unmet demand. If excess demand is backordered,
the penalty may be proportional to the amount of time the backorder is on the books
before it is filled, or (less commonly) it may be a one-time penalty charged when the
demand is backordered.

3.1.4 Inventory Level and Inventory Position

There are several measures that we use to assess the amount of inventory in the system at
any given time. On-hand inventory (O H) refers to the number of units that are actually
available at the stocking location. Backorders (BO) represent demands that have occurred
but have not been satisfied. Generally, it’s not possible for the on-hand inventory and the
backorders to be positive at the same time.

The inventory level (I L) is equal to the on-hand inventory minus backorders:

1L =0H - BO.

If IL > 0, we have on-hand inventory, and if I L. < 0, we have no units on hand but we do
have backorders. Therefore, we can write

OH =1IL*
BO =1L,
where 27 = max{z,0} and = = | min{z,0}|. (Be warned: Some authors use = =

min{z,0}.)

It seems reasonable to think of IL as the relevant measure to consider when making
ordering decisions—we look at the shelves, see how much inventory we have, and place an
order if there’s not enough. But I L by itself does not give us enough information to make
good ordering decisions. For instance, suppose the inventory level is 5, you’re expecting
a demand of 50 next week, and there’s a lead time of 4 weeks. How much should you
order? The answer depends on how much you’ve already ordered—i.e., how much is “in
the pipeline,” ordered but not received. Such items are called on order (OO). Therefore,
we usually make ordering decisions based on the inventory position (I P), which equals the
inventory level plus items on order:

IP=0H — BO+ 00.

The distinction between inventory level and inventory position is subtle but important.
Typically, we use inventory position to make ordering decisions, but holding and backorder
costs are assessed based on inventory level. If the lead time is zero, then OO = 0 and
IL=1P.

3.1.5 Roadmap

In this chapter and the next three, we will explore some classical inventory models and
a few of their variants. This chapter discusses deterministic models—first a continuous-
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review model, the economic order quantity (EOQ) model, perhaps the oldest and best-
known mathematical inventory model (Section 3.2), and some of its extensions; and then
a periodic-review model, the Wagner—Whitin model (Section 3.7). Then, Chapters 4 and
5 discuss stochastic models. The models in all three of these chapters make inventory
decisions for a single stage (location). Multistage models are considered in Chapter 6.

The models discussed in this chapter are sometimes known as economic lot size problems.
In fact, there is some inconsistency about how this term is used in the literature. Some
authors refer to the EOQ model (Section 3.2) as the economic lot size model. Other authors
refer to the Wagner—Whitin model (Section 3.7) as the economic lot size model. More
generally, the term can be used to refer to any model in which an optimal lot size must be
determined, typically under deterministic demand. To avoid confusion, we will avoid this
term and instead use the names of the individual models discussed.

3.2 CONTINUOUS REVIEW: THE ECONOMIC ORDER QUANTITY PROBLEM

3.2.1 Problem Statement

The economic order quantity (EOQ) problem is one of the oldest and most fundamental
inventory models; it was first introduced by Harris (1913). The goal is to determine the
optimal amount to order each time an order is placed to minimize the average cost per year.
(We’ll express everything per year, but the model could just as easily be per month or any
other time period.)

We assume that demand is deterministic and constant with a rate of \ units per year.
Stockouts are not allowed—we must always order enough so that demand can be met.
Since demand is deterministic, this is a plausible assumption. The lead time is O—orders
are received instantaneously. There is a fixed cost K per order, a purchase cost ¢ per unit
ordered, and an inventory holding cost h per unit per year. There is no stockout penalty
since stockouts are not allowed.

The inventory level' evolves as follows. Assume that the on-hand inventory is 0 at time
0; we place an order at time 0, and it arrives instantaneously. The inventory level then
decreases at a constant rate A until the next order is placed, and the process repeats.

Any optimal solution for the EOQ model has two important properties:

e Zero-inventory ordering (ZI10) property. Since the lead time is 0, it never makes
sense to place an order when there is a positive amount of inventory on hand—we
only place an order when the inventory level is 0.

e Constant order sizes. If () is the optimal order size at time 0, it will also be the
optimal order size every other time we place an order since the system looks the
same every time the inventory level hits 0. Therefore, the order size is the same every
time an order is placed.

(You should convince yourself that these properties are indeed optimal.) The inventory
level is pictured as a function of time in Figure 3.2. T is called the cycle length—the amount

I'Since the lead time is 0, the inventory position is equal to the inventory level at all times.
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1L

Figure 3.2 EOQ inventory level curve.

of time between orders—and it relates to the order quantity () and A by the equation

3.2.2 Cost Function

We want to find the optimal ) to minimize the average annual cost. (We say “average”
annual cost since the actual cost in any given year may fluctuate a bit as the sawtooth pattern
falls slightly differently across the start of each year.) Note that minimizing the annual cost
is not the same as minimizing the cost per cycle; minimizing the cost per cycle would mean
choosing very tiny order quantities. The key trade-off is between fixed cost and holding
cost: If we use a large (), we’ll place fewer orders and hold more inventory (small fixed
cost but large holding cost), whereas if we use a small (), we’ll place more orders and hold
less inventory (large fixed cost but small holding cost).

The strategy for solving the EOQ is to express the average annual cost as a function of
@, then minimize it to find the optimal Q).

Order Cost: Each order incurs a fixed cost of K. It also incurs a purchase cost of ¢ per
unit ordered, but this cost is irrelevant for the optimization problem at hand—that is, the
optimal value of @) does not depend on c. (Why?) Therefore, we’ll ignore the per-unit cost
c in our analysis. Since the time between orders is T years, the order cost per year is

K _ K\

7= 3.1)

Holding Cost: The average inventory level in a cycle is Q/2, so the average amount of
inventory per yearis Q/2- 1 year = /2. (Another way to think about this is that the area of
a triangle in the inventory curve in Figure 3.2 is QT'/2, and there are 1/T cycles per year,
so the total area under the inventory curve for 1 year is QT/2 - 1/T = @)/2.) Therefore,
the average annual holding cost is

hQ

> (3.2)
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Cost

Figure 3.3 Fixed, holding, and total costs as a function of Q).

Total Cost: Combining (3.1) and (3.2), we get the total average annual cost, denoted g(Q):

K\  hQ
=—+ —. 3.3
9(Q) 0o 3.3)
The fixed, holding, and total cost curves are plotted as a function of @) in Figure 3.3.
3.2.3 Optimal Solution
The optimal () can be obtained by taking the derivative of ¢(Q) and setting it to 0:
d K\ h
9(Q) _ KA RLCR
dqQ Q? 2
2K\
2
—t = —
@ h
2K
= Q" = . (3.4)

h

Q* is known as the economic order quantity. (“Economic” is just another word for
“optimal.”) We should also take a second derivative to verify that g(()) is convex (and thus
the first-order condition yields a minimum, not a maximum):

g(Q) 2K\
aQ*  Q°

>0,

as desired.

Note that in Figure 3.3, we drew the optimal order quantity Q* at the intersection of the
fixed and holding cost curves. This was not an accident. Of course, in general, it is not true
that the minimum of the sum of two functions occurs where the two functions intersect, but
it happens to be true for the EOQ. Why? The curves intersect when

KX_hQ _ K\ b

Q 2 @ 2
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This is exactly the condition obtained by setting the first derivative to 0. Thus, the fixed and
holding costs should always be balanced. If the fixed cost K'\/(Q is greater than the holding
cost h(Q/2, then @ is not optimal; we should be ordering less frequently and holding more
inventory. (And vice versa.)

Another way to see that the fixed and holding costs are equal in the optimal solution is
to note that the product of the two terms in (3.3) is

K\ hQ _ KM
Q 2 27

a constant. In general, when two quantities multiply to a constant, their sum is minimized
when the quantities are equal. Another non-calculus-based proof is given in Problem 3.21.
It should also be noted that, although we ignored the per-unit cost ¢ in this analysis, ¢
does influence @* indirectly if A is a function of c.
The optimal cost can be expressed as a function of the parameters by plugging the

optimal Q* into ¢(Q):

. KX h [2K\
9(Q") = 7Y + S\
h
KMh KMh
Ve TV
= V2K \h. (3.5)

It’s nice that the optimal cost has such a convenient form. This is not true for many other
problems. The ability to express g(Q™*) in closed form allows us to learn about structural
properties of the EOQ and related models, such as the power-of-two policies discussed in
Section 3.3, as well as to embed the EOQ into other, richer models, such as the location
model with risk pooling (LMRP) in Section 12.2.

The optimal EOQ solution and its cost are summarized in the next theorem, whose proof
follows from arguments already made above.

Theorem 3.1 The optimal order quantity in the EOQ model is given by

. [
Q"= 5 (3.6)

9(Q") = V2K \h. (3.7)

and its cost is given by

Using Theorem 3.1, we can make some statements about how the solution changes as
the parameters change:

e As hincreases, (Q* decreases, since larger holding cost = it’s more expensive to
hold inventory = order smaller quantities more frequently

e As K increases, Q* increases, since it’s more expensive to place orders — we
place fewer of them, with larger quantities

e As cincreases, @™ decreases if h is proportional to ¢ (and stays the same if they are
independent)
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e As ) increases, Q™ increases

Obviously, if any of the costs increase, then g(Q*) will increase. If X increases, g(Q*)
will increase, as well. This does not mean that the firm prefers small demand, however.
Remember that the EOQ only reflects costs, not revenues; the increased cost of large A
would be outweighed by the increased revenue.

0 EXAMPLE 3.1

Joe’s Corner Store sells 1300 candy bars per year. It costs $8 to place an order to the
candy bar supplier. Each candy bar costs the store $0.75. Holding costs are estimated
to be 30% per year. What is the optimal order quantity?

We have h = 0.3 - 0.75 = 0.225, so

2K\ 2-8-1300
* = = = 304.1.
@ \/ h \/ 0.225 30

The optimal cycle time is
_ Q3041
A 1300

So the store should order 304.1 candy bars every 0.23 years, or approximately four
times per year. The optimal cost is

T 0.23.

V2KMh =+/2-8-1300 - 0.225 = 68.41.

If we must order in integer quantities, then we need to round @Q* down and up and
check the cost of each:

8-1300 0.225- 304

g(304) = 304 + 5 = 68.4105
81300 0.225- 305
frnd = ‘41
9(305) 305 + 5 68.4108,
so we should order 304. O

3.2.4 Sensitivity Analysis

Suppose the firm did not want to order Q* exactly. For example, it might need to order in
multiples of 10 (Q = 10n), or it might want to order every month (7' = 1/12). How much
more expensive is a suboptimal solution? It turns out that the answer is “not much,” and
that we can determine the exact percentage increase in cost using a very simple formula.

Theorem 3.2 Suppose Q* is the optimal order quantity in the EOQ model. Then for any

wen @) 1(@* Q)
g = = .

(@ 2\ "o

(3.8)

Proof.
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K\ hQ
= +
QV2KNh  2V2K\h
1 [KEx Q [ h

QV 2h 2K\
1 2Kx Q [ h
=20V n T2 Vaka
N—— ~——
=Q =1/Q*
(@ Q
_2<Q+Q*)

The right-hand side of (3.8) grows slowly as ) deviates more from Q*, meaning that
the EOQ is not very sensitive to errors in Q. For example, if we order twice as much as we
should (Q = 2Q™), the error is 1.25 (25% more expensive than optimal). If we order half
as much (Q = Q*/2), the error is also 1.25.

Theorem 3.2 ignores the per-unit cost c. If we include the annual cost ¢ in the numerator
and denominator of (3.8), then the percentage increase in cost would be even smaller (and
the expressions would not simplify as nicely).

U0 EXAMPLE 3.2

Suppose Joe’s Corner Store (Example 3.1) ordered 250 candy bars per order instead
of the optimal 304.1. How much would the cost increase as a result of this suboptimal

solution?
1 /304.1 250
9(@) _ 13041 250 ) g
g(@Q*) 2\ 250 304.1
So this solution would cost 1.9% more than the optimal solution. (You can also
confirm this by calculating g(250) explicitly and comparing it to g(Q*).) O

3.2.5 Order Lead Times

We assumed the lead time is 0. What if the lead time was positive—say, L years? The
optimal solution doesn’t change—we just place our order L years before it’s needed. For
example, if L = 1 month = 1/12 years, then the order should be placed 1/12 years before
the inventory level reaches 0. It’s generally more convenient to express this in terms of
the reorder point (r). When the inventory level reaches r, an order is placed. How do we
compute 7?7 Well, r should be equal to the amount of product demanded during the lead
time, or

r=AL. (3.9)

0 EXAMPLE 3.3

In Example 3.1, if L = 1/12, the store should place an order whenever the inventory
level reaches r = 1300 - (1/12) = 108.3. O
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3.3 POWER-OF-TWO POLICIES

From Section 3.2.3, we know that the optimal solution to the EOQ model is Q* =
V2K M\/h. We also know that the order interval T is given by T = Q/\, so the op-
timal order interval is 7% = /2K /Ah. But what if T* is some inconvenient number?
How can we place an order, for example, every v/10 weeks? In this section, we discuss
power-of-two policies, in which the order interval is required to be a power-of-two multiple
of some base period. The base period may be any time period—week, day, work shift, etc.
If the base period is a day (say), then the power-of-two restriction says that orders can be
placed every 1 day, or every 2 days, or every 4 days, or every 8 days, and so on, or every 1/2
day, or every 1/4 day, and so on. Policies based on a convenient base period such as days or
months are more convenient to implement than those involving base periods like v/10. We
already know that the EOQ model is relatively insensitive to deviations from the optimal
solution from Theorem 3.2. Our goal is to determine exactly how much more expensive a
power-of-two policy is than the optimal policy.

Power-of-two policies have another advantage over the optimal EOQ policy: They make
coordination easier at a central warehouse. If retailers each order according to their own
EOQ policies, the warehouse will see a chaotic mess of order times. If, instead, each retailer
follows a power-of-two policy with the same base period, the warehouse will see orders
line up nicely, making its own inventory planning easier. The problem of finding optimal
order intervals in this setting is one version of a problem known as the one warehouse,
multiretailer (OWMR) problem. The optimal policy for the OWMR problem is not known,
but it has been shown that power-of-two policies are very close to optimal (Roundy 1985,
Muckstadt and Roundy 1993).

3.3.1 Analysis

The problem statement is exactly as in the EOQ model (see Section 3.2.1). In addition, we
assume there is some base planning period T'z. The actual reorder interval chosen must be
of the form

T = Tg2"* (3.10)

forsome k € {...,—2,—1,0,1,2,...}. We need to determine (1) the best power-of-two
policy, i.e., the best value of k, and (2) how far from optimal this policy is.
From the EOQ model, we know that the optimal order interval is

2K
T =4/ —. A1
Vo (3.11)

Let f(T) be the EOQ cost if an order interval of 7" is chosen, ignoring the per-unit cost;
that is,
K  hA\T

f(T):?+ 5

(This follows from substituting ) = T'\ in the EOQ cost function (3.3).) One can easily
verify that f is convex, so the optimal k in (3.10) is the smallest integer k satisfying

(3.12)

F(Tp2%) < f(Tp2F), (3.13)
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that is,
K hA K hA
I iy o) LIS S iy ) L
Tpok ~ g 1BY S T B
K h\
TRk
T2kl = 2 B
K
— - < (Tg2%)?
5\ (Tp2%)
1 K
— ET* =\ < Tg2". (3.14)

Therefore, the optimal power-of-two order interval is T = T2%, where k is the smallest
integer satisfying (3.14).
3.3.2 Error Bound

Theorem 3.3 If T is the optimal power-of-two order interval and T* is the optimal (not
necessarily power-of-two) order interval, then

F(D)
fT%) =3

E

=~ 1.06.

S

In other words, the cost of the optimal power-of-two policy is no more than 6% greater
than the cost of the optimal (non-power-of-two) policy. This holds for any choice of the
base period T'5.

Proof. Since k is the smallest integer satisfying (3.13), we have

f(Te257Y) > f(Tp2F)
K hA

— > TRkl
Tg2k = 2B

4K
= /- > Tp2*
h)\ >1p )

T < V2r*. (3.15)

or

Together, (3.14) and (3.15) imply that the optimal power-of-two order interval T must be
in the interval [%T*7 \@T*) Note that this is true for any base period Tz. Now, using
(3.11) and (3.12),

A, o
™ "2

V2K kA1 2K

e 22V ow
Ah

f<1 )ZﬂK hA 1
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3 2Kk

2v2
3 .
= mf(T )-

Similarly,

o K hA o
fF(V2T) fT+ V2T

1 f
f V2K

ELEANGT SV
2V2

3
= 55T

Since f is convex and the optimal T lies somewhere between \%T* and /2T,

F(T)
FT7) =3

E

=~ 1.06.

S

Since we don’t know precisely where T falls in the range [%T*, V/2T*), this is only

a worst-case bound that occurs on the endpoints of the range. If T falls somewhere in the
middle of the range, the power-of-two policy may be even better than 6% above optimal.
In fact, if we assume that 7" is uniformly distributed in the range, we get an expected bound
of only 2%:

Theorem 3.4 Assuming that the optimal power-of-two order interval T is uniformly dis-
tributed in the range [%T*7 V2T™),

EF(D] o 1 (194 3) &
ok 2(1 2+ >~1.02. (3.16)

Proof. Omitted. -

[l EXAMPLE 3.4

Suppose Joe (owner of Joe’s Corner Store, from Example 3.1) must order candy

bars in power-of-two multiples of 1 month. What is the optimal power-of-two order

interval, and what is the cost ratio versus the optimal (non-power-of-two) solution?
We have T = 1/12 years. You can confirm that

£ (T2°) = £(0.0833) = 108.19

f(Tp2") = f(0.1667) = 72.38
f(Tp2%) = £(0.3333) = 72.75
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By the convexity arguments above, the optimal power-of-two order interval is T =
0.1667 years, or every 2 months. The cost ratio is 72.38/68.41 = 1.0580, within the
bound of 1.06. U

3.4 THE EOQ WITH QUANTITY DISCOUNTS

It is common for suppliers to offer discounts based on the quantity ordered. The larger the
order, the lower the purchase cost per item. (You may have observed something similar
when you shop for groceries. When you buy in bulk, you pay less per unit.) The specific
structure for the discounts can take many forms, but two types are most common: all-units
discounts and incremental discounts. Both discount structures use breakpoints to determine
the purchase price. For example, the supplier may charge $1 per unit if the firm orders
0-100 units, $0.90 per unit if the firm orders 100-250 units, and $0.85 per unit if the firm
orders more than 250 units. The two discount structures differ based on how the total
purchase cost is determined.

We assume there are n breakpoints, denoted by, . . . , b,,. For convenience, we also define
bp = 0 and b,41 = oo. The interval [b;,b;41) is called the region for breakpoint j, or
simply region j for short. Each region j, j =0, ..., n, is associated with a purchase price

c;j. The costs are decreasing in j: ¢y > ¢; > - -+ > ¢,. The total purchase cost, denoted
¢(Q), is calculated in each of the discount structures as follows:

o All-units discounts. All units in the order incur the price determined by the breakpoint.
That is, if @ € [bj, bj+1), then the total purchase cost is ¢(Q) = ¢; Q.

o [ncremental discounts. The units in each region incur the purchase price for that
region. That is, if ) € [bj, bj41), then the total purchase cost is

c(Q) =) ci(big1 — bi) + ¢;(Q — by). (3.17)

(Note that ¢(Q) does not include the fixed ordering cost.) Figure 3.4 plots ¢(Q) as a
function of @ for both all-units and incremental discounts.

[J EXAMPLE 3.5

Suppose that Joe’s candy supplier (from Example 3.1) charges $0.75 per candy bar
if Joe orders 0400 candy bars, $0.72 each for 401-800, and $0.68 each for 800
or more. That is, by = 400, by = 800, ¢g = 0.75, ¢; = 0.72, and c; = 0.68.
Figures 3.5(a) and 3.5(b) depict the total purchase cost, ¢(Q), for the all-units and
incremental discount structures, respectively. U

We will formulate models to determine the optimal order quantity under both discount
structures. In both cases, the approach will amount to solving multiple EOQ problems, one
for each region, and using their solutions to determine the solution to the original problem.
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c1ba C2

c2ba

Cob1

c1by

bo b1 ba

(a) All-units discounts.

C2
cob1 +

c1(ba —b1)

C1

C()b1

Co

bo b1 b2

(b) Incremental discounts.

Figure 3.4 Total purchase cost ¢(Q) under quantity discounts.

61
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Q)
0.68
576
544 4
0.72 /- 2
300 /
288 /7
0.75| /4~ i
Q
400 800
(a) All-units discounts.
Q)
0.68
588
0.72
300
0.75
Q
400 800

(b) Incremental discounts.

Figure 3.5 Total purchase cost ¢(Q) for Example 3.5.

3.4.1 All-Units Discounts

We can no longer ignore the purchase cost as we did in (3.3). In fact, not only do we need
to include the purchase cost itself, but we must also account for the fact that the holding
cost typically depends on the purchase cost, as discussed in Section 3.1.3. Let 7 be the
annual holding cost rate expressed as a percentage of the purchase cost. Thatis, if 7 = 0.25
and ¢ = 100, then h = 25 per year.
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91(Q)

92(Q)

Qy Q1 @
Figure 3.6 Total cost curves for all-units quantity discount structure.

Suppose we knew that the optimal order quantity lies in region j. Then we would simply

need to find the ) that minimizes the EOQ cost function for region j:
K )\ iCj Q
gj(Q) = Cj)\ + 6 + T

As j increases, ¢; decreases, g; (Q) shifts down and becomes flatter, and its minimum point
moves to the right; see Figure 3.6. The heavy segments of the cost curves identify the
“active” cost function in each region. Our objective is to minimize g(@), the discontinuous
function defined by the heavy segments.

The function g,(Q) has the same structure as g(() in (3.3) except for the additional
constant. Therefore, its minimizer is given by

Q;:,/?KA. (3.19)
1Cy

Of course, if Q7 falls outside of region j, then if the firm orders @7, it will incur a cost
other than gj(Q;f). Q7 is meaningless in this case. We say that Q] is realizable if it lies in
region j. In Figure 3.6, only (Jj is realizable. Does this mean that ()f is necessarily the
optimal solution? No: The breakpoints to the right of Q) are also candidates. The optimal
order quantity always equals either the largest realizable )} or one of the breakpoints to
its right. (Why?)

Therefore, we can determine Q* as follows. First, we calculate Q) for each j. Let
Q; be the largest realizable Q*, and ¢;(Q;) its cost. We then evaluate g;(b;) for each b;
greater than Q7. Finally, we set Q* to the quantity with the lowest cost (Q7F if g;(Q}) is
the lowest cost, and b; if g;(b;) is the lowest cost for some j).

Since @} increases as j increases, if we start in region n when we calculate )7 and
work backward, we can stop as soon as we find one realizable Q7; this is necessarily the
largest realizable Q.

(3.18)
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0 EXAMPLE 3.6

Recall from Example 3.1 that A = 1300, K = 8, and ¢ = 0.3. If candy purchases
follow the quantity discount structure in Example 3.5, what is Joe’s optimal order
quantity?

We first determine the largest realizable )7 by working backward from segment

2:
[2-8-1300
o[22 310,
@2 0.3-0.68 319.3
[2-8-1300
o[22 2 310,
@1 0.3-0.72 3103
[2-8-1300
[T T 30401
@ 0.3-0.75 30

Only @) is realizable, and it has cost

0.75 - 1300 + v/2 - 8 - 1300 - 0.3 - 0.75 = 1043.4.

Next, we calculate the cost of the breakpoints to the right of Qf:

8-1300 0.3-0.72-400

400) = 0.72 - 1 =1005.2

91(400) = 0.72 - 1300 + ~— = + 5 005
8-1300  0.3-0.68- 800

92(800) = 0.68 - 1300 + ~— = + 5 =978.6

Therefore, the optimal order quantity is ¢) = 800, which incurs a purchase cost of
$0.68 and a total annual cost of $978.60. O

3.4.2 Incremental Discounts

We now turn our attention to incremental discounts. The total cost function for region j is
given by

KA, g

Q)
9;(Q) = 0 A+ 0 P

where ¢(Q) is given by (3.17). Note that the purchase cost term is no longer a constant
with respect to @), even within a given segment: As () increases, so does the number of
“cheap” units, and the average cost per unit decreases.

We can rewrite g,(Q) as

K\
A+ A+ —
T

9;(Q) Zé [Z ci(bix1 — bi) — c;b;

iCjQ

T

Ci(bi-i-l — bl) — Cjbj

e (K + ¢ i
i< (K +¢5)A n ic;Q (3.20)
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9(Q)
b by 90(Q)
< 91(Q)
92(Q)
Qo Ql Q2
Figure 3.7 Total cost curves for incremental quantity discount structure.
where
j—1
Ej = Zci(bi+1 — bl) — Cjbj.
i=0

The right-hand side of (3.20) is structurally identical to the EOQ cost function; therefore,
its minimizer is given by
2(K +¢;)A

¢y

;(Q1) = e;A + % + /2K + &) Nic;. (3.22)

Figure 3.7 plots g;(Q) for a two-breakpoint problem. As arule, g;(Q) is always the lowest
curve in region j because the functions are convex and are equal at the breakpoints. On the
other hand, Q7 is not always realizable. (In the figure, Q7 is not realizable.) Our objective
is to minimize g(Q), the continuous, piecewise function defined by the heavy segments.

If Q] is not realizable, then clearly it cannot be optimal for 9(Q), and moreover, its
breakpoints cannot be optimal either. (Why?) Therefore, the optimal order quantity is
equal to the realizable Q7 that has the lowest cost.

Q= (3.21)

with cost

U0 EXAMPLE 3.7

Return to Example 3.6 and suppose now that Joe faces an incremental quantity
discount structure with the same breakpoints and purchase costs. What is Joe’s
optimal order quantity?

We first determine ¢; for each j:

co =0
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¢1 =0.75-400 — 0.72 - 400 = 12
c2 =0.75-400 +0.72 - 400 — 0.68 - 800 = 44

Next, we calculate Q; for each j:

2(8 + 0)1300
o2 30401
@ 0.3-0.75
2(8 +12)1300
o[0T 490.7
@ 0.3-0.72
2(8 + 44)1300
o2 T 8140
@ 0.3-0.68 8

All three solutions are realizable. Using (3.22), these solutions have the following
costs:

0.3-0
90(Q5) = 0.75 - 1300 + =7 + V/2(8+0)1300- 0.3 - 0.75 = 1043.4

0.3-12
21(Q1) = 0.72- 1300 + == — + V2(8 +12)1300 - 0.3- 0.72 = 1043.8
0.3-44

92(Q3) = 0.68 - 1300 + +/2(8+44)1300 - 0.3 - 0.68 = 1056.7

Therefore, the optimal order quantity is ) = 304.1, which incurs a total annual cost
of $1043.40. O

3.4.3 Modified All-Units Discounts

All-units discounts are somewhat problematic because, for order quantities () just to the
left of breakpoint j, it is cheaper to order b; than to order (), even though @) < b;. For
example, under the cost structure in Example 3.5, it costs $292.50 to purchase 390 units
but $288.00 to purchase 400 units. (See Figure 3.5(a).)

In practice, suppliers usually allow the buying firm to pay the lower price—$288.00 in
the example above—for order quantities that fall into this awkward zone. This is especially
true for transportation costs, since all-units discounts are common in shipping, with the cost
determined based on the weight shipped. If a shipment totals, say, 390 kg but it is cheaper
to ship 400 kg, the firm could add 10 kg worth of bricks to the shipment, but a solution that
is preferable for both the shipper and the transportation company is for the firm to “ship x,
declare yy”—for example, ship 390 kg, declare 400 kg.

This structure is sometimes known as the modified all-units discount structure. Its ¢(Q)
curve is displayed in Figure 3.8(a). The flat portions of the curve represent the regions in
which the firm orders or ships one quantity but declares a greater quantity.

Sometimes, there is also a minimum charge for each order or shipment, in which case
there is an additional horizontal segment at the start of the ¢(Q) curve; see Figure 3.8(b).

A special case of the modified all-units discount structure is the carload discount struc-
ture, in which the b; are equally spaced and c; is the same for all j. This structure arises
from rail or truck carload shipments, in which the transportation company charges a per-unit
cost ¢ for each unit shipped, up to some maximum cost for each car. Once the capacity of
a car is exceeded, a new car begins, at a cost of ¢ per unit, and so on.
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Figure 3.8 Total purchase cost ¢(Q) for modified all-units discounts structure.

Unfortunately, modified all-units discount structures are much more difficult to analyze

than the discount structure

s discussed above. (See, for example, Chan et al. (2002).) We

omit further discussion here.

3.5 THEEOQWITHP

LANNED BACKORDERS

We assumed in Section 3.2.1 that backorders are not allowed. In this section, we discuss a
variant of the EOQ problem in which backorders are allowed. Since demand is determin-
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Figure 3.9 EOQB inventory curve.

istic, we have the same number of backorders in every order cycle—they are “planned”
backorders. (See Figure 3.9.) We’ll call this model the EOQ with backorders (EOQB).

Let p be the backorder penalty per item per year, and let = be the fraction of demand that
is backordered. Both @) and x are decision variables. The holding cost is charged based on
on-hand inventory; the average on-hand inventory is given by

Q(l—=)°
-

Similarly, the backorder cost is charged based on the number of backorders; the average
backorder level is given by
Qa?
2
(Compute the area under the triangle, then divide by the length of an order cycle.) Finally,
the number of orders per year is given by A/Q, just like in the EOQ model.
Therefore, the total average cost per year in the EOQB is given by
hQ(1 —z)?  pQz? KA
9(Q,x) = 5 + 5 + o (3.23)
Note that g is a function of both () and x. Therefore, to minimize it, we need to take partial
derivatives with respect to both variables and set them equal to 0.

dg

%:—hQ(l—x)—&-pr:O (3.24)
g _h(l—gz)®  po? KX _
6= 5ty =0 (3.25)

Let’s first look at (3.24):

—hQ(l —z)+pQx =0
<~ h(l—2z)=px
h

= = ——
h+p

(3.26)

Interestingly, * does not depend on (); even if we choose a suboptimal (), the optimal x
to choose is still A/(h + p). At this point, we could substitute h/(h + p) for = in (3.25)
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and solve for @, but instead we’ll plug z* into g(Q, x):

g@,x*):f@(wlm(h)ﬁw

2 \h+p 2 \h+p Q
_Q p*h + h2p KX
_2<(h+p)2> Q
_ hp Q@ KA
Ch+p2 Q)

This is exactly the same form as the EOQ cost function (3.3) with the holding cost & replaced
by hp/(h + p). In other words, the EOQB cost function (assuming z is set optimally) is
equivalent to the EOQ cost function with the holding cost & scaled by p/(h + p). Therefore
we can use (3.6) and (3.7) to obtain the optimal @) and the optimal cost for the EOQB, as
stated in the next theorem.

Theorem 3.5 In the EOQ model with backorders, the optimal solution and cost are given

by
0 = 2KA(h +p) (3.27)
\ hp

h
e — 3.28
. h+p ( )

9K AR
9(Q".a") =5 +pp (3.29)

How do the optimal solution and cost in Theorem 3.5 compare to the analogous quantities
from the EOQ model? First, comparing (3.29) and (3.7), we can see that the optimal cost
is smaller in the EOQB than in the EOQ. This makes sense, since the EOQ is a special case
of the EOQB in which the constraint z = 0 has been added. From (3.27), we can see that
the optimal order quantity is greater in the EOQB than in the EOQ. This is because placing
larger orders in the EOQB does not require us to carry quite as much inventory as it does
in the EOQ), and therefore, the extra flexibility offered by the backorder option allows us to
place larger orders.

As p — 0o, Q" approaches the optimal EOQ order quantity, x* approaches 0, and the
optimal cost approaches the EOQ optimal cost.

Note also that x is strictly greater than 0, provided that h is. Therefore, it is always
optimal to allow some backorders. To see why, suppose we set x = O—then the EOQB
inventory curve in Figure 3.9 collapses to the EOQ curve in Figure 3.2. Now, if we increase
x slightly, we create a tiny negative triangle at the end of each cycle in Figure 3.9, incurring
a tiny backorder cost. (See Figure 3.10.) But we also reduce the height of the positive part
of the inventory curve throughout the rest of the cycle, resulting in a substantial savings in
holding cost. As we continue to increase the number of backorders, the marginal savings
in holding cost decreases and the marginal increase in backorder cost increases. At some
point, the marginal cost of adding a backorder will outweigh the marginal savings in holding
cost, so we will have an * somewhere between 0 and 1.

What if we consider the same model but assume that unmet demands are lost, rather
than backordered? It turns out that in this case, it is optimal either to meet every demand
(x = 0) or to meet no demands (x = 1)—see Problem 3.16.
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1L

Figure 3.10 Inventory—backorder trade-off in EOQB.

0 EXAMPLE 3.8

Recall Example 3.1. Suppose Joe is willing to stock out occasionally and estimates
that each backorder costs the store $5 in lost profit and loss of good will. What is the
optimal order quantity, the optimal fill rate (fraction of demand met from stock), and

the optimal cost?
2K 2-8-1
)\h—i—p \/ 8130000225 +5) _, oo
0.225-5
—— =0.0431

2K)\hp \/2~8~1300~0.225-5  66.92
h+p 0.225 45

The fill rate is 1 — z* = 0.9569. The cost has decreased by 2.2% versus the cost
without backorders. U

3.6 THE ECONOMIC PRODUCTION QUANTITY MODEL

In a manufacturing environment, the amount of time required to produce a batch of items
usually depends on how large the batch is—producing more items requires more time. The
EOQ model cannot handle this feature, since it assumes that orders are received after a
deterministic (possibly zero) lead time, regardless of the order quantity. In other words,
the EOQ assumes that the production rate is infinite—an arbitrary number of items can be
produced in a fixed amount of time. This assumption may be reasonable in settings in which
the firm is placing orders to an outside supplier that holds finished goods in inventory, or
whose capacity is much larger than the firm’s order quantity, so that the production time is
negligible. In this section, we discuss a variant of the EOQ model that allows the production
rate to be finite and is therefore more applicable to manufacturing settings. It is known as
the economic production quantity (EPQ) model. The EPQ was introduced by Taft (1918, as
cited by Erlenkotter (1990)). It is sometimes known as the economic production lot (EPL)
problem.

Let p be the production rate, i.e., the firm can produce p items per year. We assume
i > X (otherwise the manufacturing process cannot keep up with the demand). The
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manufacturing process is active during a portion of the time (called active intervals) and is
idle otherwise, and during active intervals, the process adds finished goods to inventory at
arate of ;1. Meanwhile, the demand process is ongoing, reducing the inventory at a rate of
A. Let p = A/ be the utilization ratio, which indicates the portion of time the system is
active. () is now interpreted as a production batch size rather than an order quantity.

The process is depicted in Figure 3.11. Note that during active intervals, the inventory
increases at a rate u — A since items are being added to inventory by the manufacturing
process and withdrawn from it by the demand process simultaneously. Since we still initiate
the replenishment process after exactly () items have been demanded, the order interval T’
still equals @)/ years. Moreover, since we produce exactly () units in an active interval,
the active interval must last QQ/u = pT years. This means that the maximum inventory
level, which occurs pT" years into each cycle, is pT' (. — A) = (1 — p)Q.

The fixed cost per year is still KA/Q, as in the EOQ model, since T = Q/\. The
average inventory level is (1 — p)Q/2, so the average annual holding cost is k(1 — p)Q/2.
Therefore, the total annual cost is

Q=22+ ML_P)E,

Q 2

We could find the ) that minimizes this cost function by differentiating, as we did for the
EOQ, but it is simpler to recognize that (3.30) differs from (3.3) only by the constant (1 — p)
in the second term. In other words, the EPQ is equivalent to the EOQ with the holding cost
parameter h scaled by 1 — p. Therefore, the optimal solution to the EPQ, and its cost, are
as given in the next theorem.

(3.30)

Theorem 3.6 In the EPQ model, the optimal solution and cost are given by

2K\

Q=2 (3.31)
h(1 - p)
9(Q") = \/2KAh(1 — p). (3.32)
Proof. Follows from replacing i with h(1 — p) in Theorem 3.1. (]

Since p < 1, the optimal EPQ solution is larger than that of the EOQ, while the optimal
EOQ cost is smaller. Both results are justified by the fact that items arrive later after the
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replenishment order in the EPQ than they do in the EOQ, and therefore, the holding cost
for a given @ is smaller. Note also that as ;1 — oo, the EPQ reduces to the EOQ.

3.7 PERIODIC REVIEW: THE WAGNER-WHITIN MODEL

3.7.1 Problem Statement

We now shift our attention to a periodic-review model known as the Wagner—Whitin
model (Wagner and Whitin 1958). Similar to the EOQ model, the Wagner—Whitin model
assumes that the demand is deterministic, there is a fixed cost to place an order, and stock-
outs are not allowed. The objective is to choose order quantities to minimize the total cost.
However, unlike the EOQ model, the Wagner—Whitin model allows the demand to change
over time—to be different in each period. This model is sometimes referred to as the
dynamic economic lot-sizing (DEL) model or the uncapacitated lot-sizing (ULS) model.

Because of the fixed cost, it may not be optimal to place an order in every time period.
However, we will show that, as in the EOQ, optimal solutions have the zero-inventory
ordering (ZIO) property. Therefore, the problem boils down to deciding how many whole
periods’ worth of demand to order at once.

Unlike the infinite-horizon EOQ model, the Wagner—Whitin model considers a finite
horizon, consisting of T' periods. In each period, we must decide whether to place a
replenishment order, and if so, how large an order to place. The demand in period ¢ is given
by d;, and stockouts are not allowed. The lead time is 0. As in the EOQ model, there is
a fixed cost K per order and an inventory holding cost A per unit per period. (Note that
h represents the holding cost per year in the EOQ model but per period here.) One could
also include a purchase cost c, but since the total number of units ordered throughout the
horizon is constant (independent of the ordering pattern), it is safe to ignore this cost.

Assume that the on-hand inventory is O at time 0. In each time period, the following
events occur, in the following order:

1. The replenishment order, if any, is placed and is received instantly.
2. Demand occurs and is satisfied from inventory.
3. Holding costs are assessed based on the on-hand inventory.

(This type of timeline is known as a sequence of events. It is important to specify the
sequence of events clearly in periodic-review models. For example, the holding costs
would be very different if events 2 and 3 were reversed.)

We first formulate this model as a mixed-integer optimization problem (MIP). We will
then discuss a dynamic programming (DP) algorithm for solving it.

3.7.2 MIP Formulation

Our formulation will use the following decision variables:

q: = the number of units ordered in period ¢
y¢ = 1 if we order in period ¢, 0 otherwise
x; = the inventory level at the end of period ¢
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We also define xg = 0. Then the Wagner—Whitin model can be formulated as follows:

T

minimize > (Ky; + hay) (3.33)
t=1

subject to Ty =X 1+ q — dy vi=1,...,T (3.34)
q < My, vi=1,...,T (3.35)
e >0 vti=1,...,T (3.36)
q >0 vt=1,...,T (3.37)
y: € {0,1} vt=1,...,T (3.38)

The objective function (3.33) calculates the fixed cost (for each period in which we place
an order) plus the cost of holding inventory at the end of each period. Constraints (3.34)
are the inventory-balance constraints: They say that the ending inventory in period ¢ is
equal to the starting inventory, plus the new units ordered, minus the demand. Constraints
(3.35) prohibit ¢, from being positive unless y, is 1. Here, M is a large number; it could be
set to Zit ds, for example. Constraints (3.36)—(3.37) are nonnegativity constraints. In
particular, (3.36) also prohibits stockouts by requiring every period to end with nonnegative
inventory. Finally, constraints (3.38) are integrality constraints on the y variables.

This problem can be interpreted as a simple supply chain network design problem (to be
more precise, an arc design problem; see Section 8.7.2). It can be solved as an MIP, but it is
more common to solve it using DP or as a shortest path problem, as we discuss in the next
section. See Pochet and Wolsey (1995, 2006) for thorough discussions of mathematical
programming formulations for this and other lot-sizing models. See also Case Study 3.1
for an alternate formulation approach for a similar problem.

3.7.3 Dynamic Programming Algorithm

The DP algorithm depends on the following result:

Theorem 3.7 Every optimal solution to the Wagner—Whitin model has the ZIO property;
that is, it is optimal to place orders only in time periods in which the initial inventory is
zero.

Proof. Suppose (for a contradiction) there is an optimal solution in which an order is
placed in period ¢ even though the inventory level at the beginning of period ¢ is positive;
i.e., x;—1 > 0. The x;_; units in inventory were ordered in a period before ¢ and incurred
a holding cost to be held from period £ — 1 to ¢. If these items had instead been ordered in
period ¢, then (1) the holding cost would decrease since fewer units are held in inventory,
and (2) the fixed cost would stay the same since the number of orders would not change,
only the size of each order. This contradicts the assumption that the original policy is
optimal; hence, every optimal solution must have the ZIO property. ]

Theorem 3.7 and its proof assume that h > 0; if A may equal 0, then the theorem would
read “There exists an optimal solution...”

As a corollary to Theorem 3.7, each order is of a size equal to the total demand in an
integer number of subsequent periods; that is, in period ¢ we either order d;, or d; + d;1,
or d; + diy1 + di+2, and so on. The problem then boils down to deciding in which periods
to order. We formulate this problem as a DP.
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Let 0, be the optimal cost in periods ¢,¢ + 1, ..., T if we place an order in period ¢ (and
act optimally thereafter). We can define 6; recursively in terms of 6, for later periods s.
First define 8741 = 0. Then

s—1
0, = min {K—khZ(i—t)di—k&S}. (3.39)

t<s<T+1 -
1=t

The minimization determines the next period s in which we will place an order, assuming
that we order in period ¢. (Setting s = T+ 1 means we never order again; the order in
period ¢ is the last order.) A given choice of s is evaluated using the expression inside the
braces. The first two terms calculate the cost incurred in periods ¢ through s — 1: the order
cost of K, plus the holding cost for the items that will be held until future periods. (The d;
units demanded in period ¢ will be held for O periods; d;41 units will be held for 1 period;
...;and dg_1 units will be held for s — 1 — ¢ periods.) A new order will be placed in period
s, and @, includes the cost in period s and all future periods.

The DP algorithm for the Wagner—Whitin problem is summarized in Algorithm 3.1. At
the conclusion of the algorithm, 6, equals the cost of the optimal solution. The optimal
solution itself is obtained by “backtracking”—we place orders in period 1, period s(1),
period s(s(1)), and so on.

Algorithm 3.1 Wagner—Whitin algorithm

1: Opyq <0 > Initialization
2: fort="T,...,1do > Main loop
3 0, < right-hand side of (3.39) > Minimization over s
4: s(t) < argmin in right-hand side of (3.39)

5: end for

6: return 6;, s(t) forallt =1,...,T

The complexity of the algorithm is O(T?) since step 2 requires O(T) operations and
must be performed O(T) times. Faster algorithms, which run in O(T) time, have been
developed for this problem but will not be discussed here (Federgruen and Tzur 1991,
Wagelmans et al. 1992). Despite the efficiency of this algorithm, a number of heuristics
have been introduced and are still popular in practice. These include Silver—Meal, part
period balancing, least unit cost, and other heuristics (Silver et al. 1998). One explanation
for the persistent use of these approximate methods is that they tend to be less sensitive to
changes in the data, so that as demand forecasts change for several periods into the future,
the current production plan doesn’t change much.

The Wagner—Whitin model can equivalently be represented by a network with 7"+ 1
nodes in which each node represents a time period and an arc from period ¢ to period s
represents ordering in period ¢ to satisfy the demands of periods t,¢ + 1,...,s — 1. The
cost of this arc is

s—1
K+h>» (i—t)d:. (3.40)
i=t

Solving the Wagner—Whitin problem is equivalent to finding a shortest path through this
network (which is, in turn, equivalent to solving the DP given above). Figure 3.12 depicts
the network for a 4-period problem. Note that there is one extra node, node 5, called the
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Figure 3.12 Wagner—Whitin network.

“dummy node,” that serves as a sink for arcs representing ordering from the current time
period until the end of the horizon.

U EXAMPLE 3.9

A garden center sells bags of organic compost for vegetable gardens. Compost is
heavy, and special trucks must be used to transport it, so shipping is expensive; each
order therefore incurs a fixed cost of $500. The holding cost for each cubic meter of
compost is $2 per period. We consider a 4-period planning horizon. The demand for
compost in periods 1-4 is 90, 120, 80, and 70 cubic meters, respectively. Find the
optimal order quantity in each period and the total cost.

From (3.39), we have the following:

05 =0
04 =K + h(0 - dy) + 0
=500 [s(4) =5

03 =min{K + h(0-d3) + 04, K +h(0-d3 +1-dy) + 05}
=min{1000, 640}
=640 [s(3) = 5]

0y =min{K + h(0 - dy) + 03, K + h(0-dy + 1 - d3) + 64,

K+h0-dy+1-ds+2-dy)+05}
=min{1140, 1160, 940}
=940 [s(2) = 5]

01 =min{K + h(0-dy) + 02, K + h(0-dy + 1-dy) + 63,
K+4+h(0-di+1-dy+2-ds)+ 64,
K+h(0-di+1-dy+2-ds+3-dy)+05}

= min{1440, 1380, 1560, 1480}
=1380 [s(1) = 3]
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Therefore, we order in periods 1 and s(1) = 3; the optimal order quantities are
Q1 = di +do = 210 and Q3 = d3 + dy = 150 cubic meters; and the total cost is
1380. d

3.7.4 Extensions

Many of the assumptions made in Section 3.7.1 can be relaxed without making the problem
substantially harder. For example, period-specific costs (h;, K¢, c;) can easily be accom-
modated. Similarly, nonzero lead times can be handled, provided the lead time is still fixed
and constant. Positive initial inventories can be handled with appropriate modifications to
the cost function in period 1.

Other extensions are considerably more difficult. For example, we assumed implicitly
that there were no capacity constraints—an order can be placed of any size, and any amount
of inventory can be carried over. Capacitated versions of the Wagner—Whitin model turn
out to be NP-hard (Florian et al. 1980). Backlogging and concave order costs (instead of
linear) are considered by Zangwill (1966); the model is still polynomially solvable, but the
solution approach is less tractable than the DP presented here.

CASE STUDY 3.1 Ice Cream Production and Inventory at Scotsburn Dairy Group

Scotsburn Dairy Group is one of Canada's largest producers of ice cream and other
dairy products. Its factory in Truro, Nova Scotia produces nearly 30 million liters of
ice cream per year. Scotsburn collaborated with the industrial engineering department
at Dalhousie University to optimize the production and inventory of ice cream at the
Truro facility. The collaboration first began as an undergraduate design project, then
a Master's project. The approach is described by Gunn et al. (2014).

The team developed a hierarchical planning process that includes a monthly model
for setting inventory targets and staffing levels over a 1-year horizon; a weekly model
to determine how much of each stock-keeping unit (SKU) to produce per week; and a
daily model to optimize the production schedule. All three were formulated as integer
programming (IP) models. We focus on the weekly model, which is an extension of the
Wagner-Whitin model discussed in Section 3.7.

The Truro facility produces over 300 SKUs of ice cream, which the researchers
aggregated into just over 100 product families. The weekly model determines how
much of each family to produce in each week over a 13-week horizon. The model is
used on a rolling-horizon basis, meaning that the company only implements next week's
plan; it then solves the model again for another 13-week horizon.

Let F be the set of product families. Let a;” and a; be the maximum and minimum
number of production hours that may be used in week ¢, respectively. (These are
outputs from the monthly planning model.) Let us, 4, be the number of production
hours required to produce family f € F in week t; to cover the demand in weeks
t1,...,t2, and let ¢s ¢, 4, be the cost (including both fixed and holding costs) to do so.
Similar to (3.40),

ta

Crine = Kp+hg Y (t—t)dy,

t=ty
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where the parameters are as in Section 3.7 but are now also indexed by the product
family, f. The decision variable xf;, ;, equals 1 if family f is produced in week t;
in order to cover the demand in weeks t1,...,t5, and 0 otherwise. Note that this
is a different type of formulation than that used in Section 3.7.2 since the decision
variables determine how many periods’ of demand to produce rather than modeling the
production and inventory levels explicitly.

The Scotsburn weekly model can be formulated as follows?:

T T
minimize S i, (3.41)

fer t1=11ta=t;

t T
subject to SN wpa =1 VfeFNt=1,...,T (3.42)
t1=1ta=t
a; <Y UprnTrs, < af Vt=1,...,T (3.43)
FEF ta>t

Tri 4, € 10,1} VfeFVt,ta=1,...,T (3.44)

The objective function (3.41) calculates the total production and inventory costs. Con-
straints (3.42) ensure that the demand for each product family f in each week ¢ is
produced in some production run that includes period ¢t. Constraints (3.43) require the
total number of production hours used in period ¢ to be within the allowable range.
Constraints (3.44) are integrality constraints.

Scotsburn solves this model using CPLEX, which can solve a typical instance—
roughly 10,000 variables and 2,000 constraints—to 2% optimality within a few minutes.
The company reports that the full project—including the monthly, weekly, and daily
planning models—helped to improve the fill rate (fraction of demand met from stock)
from 90.2% to 96.2%; it also improved the production rate (units produced per hour)
by 3% as a result of having fewer time-consuming production setups.

PROBLEMS

3.1 (EOQ for Steel) An auto manufacturer uses 500 tons of steel per day. The company
pays $1100 per ton of steel purchased, and each order incurs a fixed cost of $2250. The
holding cost is $275 per ton of steel per year. Using the EOQ model, calculate the optimal
order quantity, cycle length, and average cost per year.

3.2 (EOQ for MP3s) Suppose that your favorite electronics store maintains an inventory
of a certain brand and model of MP3 player. The store pays the manufacturer $165 for each
MP3 player ordered. Each order incurs a fixed cost of $40 in order processing, shipping,
etc. and requires a 2-week lead time. The store estimates that its cost of capital is 17% per
year, and it estimates its other holding costs (warehouse space, insurance, etc.) at $1 per
MP3 player per month. The demand for MP3 players is steady at 40 per week.

2The real model includes multiple production lines and allows for overtime, but we omit these aspects for the
sake of simplicity and instead assume that the factory has a single production line with hard constraints on the
production hours available.
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a) Using the EOQ model, calculate the optimal order quantity, reorder point (1), and
average cost per year.

b) Now suppose that backorders are allowed, and that each backorder incurs a
stockout penalty of $60 per stockout per year. Using the EOQ model with
planned backorders, calculate the optimal order quantity, stockout percentage
(z), reorder point (), and average cost per year. How much money would the
store save per year by allowing stockouts, expressed as a percentage?

3.3  (EOQ for Cat Toys) Mason’s Meows is a company that makes cat toys. The company
sells 1200 toys per year. The firm incurs a fixed cost of $150 in labor each time it starts up
the manufacturing process to begin a new batch of toys. Each toy costs Mason’s Meows
$9 to produce. The company’s accountant recommends using a holding cost equal to 20%
of the cost of the toy, per year.

a) What is the optimal batch size, Q*? If the company uses batches of size Q*, how
many times per year, on average, will it start up the manufacturing process?

b) After careful analysis, the inventory team at Mason’s Meows realized that the
per-unit production cost is smaller if the batch size is larger. In particular, the
production cost is $9 per unit for batches of fewer than 400 units and $7.50 per
unit for batches of 400 or more units. Now what is the optimal batch size?

34 (EOQ for Vaccines) A medical clinic dispenses vaccines at a steady rate of 520
doses per month. Each order placed to the vaccine manufacturer incurs a fixed cost of
$140. Each vaccine dose held in inventory incurs a holding cost of $3 per year.
a) Using the EOQ model, calculate the optimal order quantity, *, and the optimal
average cost per year, g(Q*).
b) Suppose that the fixed cost K increases. Will Q* increase, decrease, or stay the
same? Briefly explain your answer.

3.5 (EOQ for Automobile Components) An automobile manufacturing plant uses ex-
actly 8 power-lock mechanisms per hour. Each replenishment order to the supplier of the
power-lock mechanisms incurs a fixed cost of $85. Each mechanism stored in inventory
incurs a holding cost of $1.50 per week.
a) Using the EOQ model, calculate the optimal order quantity, ¥, and the optimal
average cost per year, g(Q*).
b) Suppose that the plant must order in power-of-two multiples of 1 week. (That
is, the plant can place an order every week, or every 2 weeks, or every 4 weeks,

..., OF every % week, or every % week, ....) What is the optimal power-of-two
order interval, and what is the cost ratio versus the optimal (non-power-of-two)
solution?

3.6 (Snack Bar Inventory Management, Part 1) A snack bar at a certain theme park sees
a (constant, deterministic, continuous) demand of 150 cases per day. (We are aggregating
the various products sold by the snack bar into a single product and expressing its demand
in terms of number of cases.) Replenishment orders are placed to a central warehouse
located within the theme park, with negligible lead time, and it costs $10 in labor costs to
deliver an order to the snack bar from the warehouse. It costs $1.20 per case per day in
refrigeration costs and other holding costs to hold cases of food in inventory at the snack
bar.
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Figure 3.13 Shortest path network for Problem 3.7.

a) Calculate the optimal order quantity, Q*, for the snack bar.

b) If the snack bar uses Q* as its order quantity, how often will it order?

¢) Suppose the snack bar must order in multiples of 20 cases. (That is, it must order
20 cases, or 40 cases, or 60 cases, or . . ..) Do you think the snack bar’s costs will
increase significantly due to this restriction? Briefly explain your answer.

3.7 (Snmack Bar Inventory Management, Part 2) For the snack bar in Problem 3.6,
suppose now that the demand is different on different days of the week, as given in the
following table. Replenishment orders can only be placed at the start of each day. The
fixed and holding costs are as given in Problem 3.6.

Day (#) Day (Name) Demand

1 Sunday 220
2 Monday 155
3 Tuesday 105
4 Wednesday 90

5 Thursday 170
6 Friday 210
7 Saturday 290

a) Assume that the snack bar uses a 7-day planning horizon, beginning on Sunday.
Let c;s be the cost to place an order on day ¢ that will last through the end of day
s — 1, including both the fixed ordering cost and the holding cost. Calculate ¢,
Cq7, and Ce8.-

b) Suppose instead that the snack bar uses a 3-day planning horizon and that the
shortest path network representing fixed and holding costs is as given in Fig-
ure 3.13. (The numbers in this figure come from different data than those in part
(a).) On which day(s) should the snack bar place orders?

3.8 (EOQ with Nonzero Lead Time) Consider the EOQ model with fixed lead time
L > 0 (Section 3.2.5). Prove that the average amount of inventory on order is equal to the
lead-time demand.

3.9 (Change in Optimal EOQ Cost) Suppose we have two instances of the EOQ
problem, ki, K1, A\ and ha, Ka, Ao, such that /2K A1 h; < v/2K3X2hs. True, false, or
indeterminate: The holding cost component (i.e., the h(Q)/2 part) of the optimal objective
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function value is greater under instance 2 than under instance 1. Briefly explain your
answer.

3.10 (EOQ with Fixed Batch Sizes) Suppose that in the EOQ model we can only order
batches that are an integer multiple of some number () 5; that is, we can order a batch of
size Q g, 2Q B, 3Q B, etc.

a) Prove that, for the optimal order quantity Q =mQp,

fm—1 < QAE < /m—|—17
m Q m

where Qi = /2K \/h is the optimal (non-integer-multiple) EOQ quantity.
b) Suppose that m > 2 for Q. Using the result in part (a), prove that g(@) <
1.329(QE), where g(-) is the EOQ cost function.

¢) Bonus: Prove that g(Q) < 1.06g(Qg) (still assuming m > 2).

3.11 (Tightness of Power-of-2 Bound) Prove that the bound given in Theorem 3.3 is
tight by developing an instance of the problem such that

) 3

f(T=) 2v2
Hint: You should be able to come up with a suitable value of Tz in terms of the problem
parameters. That is, you should not need to pick values for A, h, and K; instead, you should
be able to leave the values of these parameters unspecified and to express 15 in terms of
the parameters to achieve the desired result.

3.12 (Quantity Discounts for Steel) Return to Problem 3.1 and suppose that the steel
supplier offers the auto manufacturer a price of $1490 per ton of steel if @ < 1200 tons;
$1220 per ton if 1200 < @Q < 2400, and $1100 per ton if ) > 2400. The annual holding
cost rate, 7, is 0.25.

a) Calculate Q* and g(@*) for the all-units discount structure.

b) Calculate Q* and g(Q*) for the incremental discount structure.

3.13  (Sequence of )}) In the EOQ model with incremental quantity discounts, prove
that Q7 _; < @ forallj=1,...,n.

3.14 (Sensitivity Analysis for EOQB: Q) Prove that a result analogous to Theorem 3.2
also describes the sensitivity of the EOQB model with respect to @; that is, prove that, for

any Q:

Q) 1 (Q* . Q)

9(@Q*2*) 2\ Q Q)
3.15 (Sensitivity Analysis for EOQB: x) In this problem, you will explore the EOQB
model’s sensitivity to z, the fraction of demand that is backordered.

a) Let Q(x) be the optimal ) for a given x. Derive an expression for g(Q(z), x),
the cost that results from choosing an arbitrary value of x and then setting @
optimally.

b) Prove that forany 0 < x <1,

9(Q(x), x) (1—2)2h+22p

g9(Q*, %) T*p
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¢) Prove thatif h < p, then for all x,

9(Q().x) _ 1
9@ ) = Ve

(EOQ with Planned Lost Sales) Suppose that we are allowed to stock out in the

EOQ model, but instead of excess demands being backordered (as in Section 3.5), they are
lost. Let z be the fraction of demand that is lost, and let p be the cost per lost sale. Let c be
the cost to order each unit. In the standard EOQ and the EOQ with backorders, we could
ignore ¢ because each year we order exactly ) items per year on average, regardless of the
order quantity ). But if some demands are lost, we will not order items to replenish those
demands; therefore, the total per-unit ordering cost per year does depend on the solution
we choose.

317

a) Formulate the total cost per year as a function of ) and .
b) Prove that

0, ifA(p — ) > VBE ML
=<1, if A\(p —¢) < V2KM\h

anything in [0, 1], if A(p — ¢) = V2K Ah

¢) Give an interpretation of the condition A(p — ¢) > V2K Ah and explain in words
why the optimal value of =* follows the rule given in part (b).

d) Part (b) implies that either we meet every demand or we stock out on every
demand—z* is never strictly between 0 and 1 (except in the special case in which
A(p — ¢) = V2K Ah). This is not the case in the EOQ with backorders. Explain
in words why the two models give different results.

(EOQ with Nonlinear Holding Costs) We assumed that the holding cost for one

item in the EOQ model equals ht, where ¢ is the amount of time the item is in inventory.
Suppose instead the holding cost for one item is given by he?, for b > 0.

a) Write the average annual cost as a function of @, g(Q). (Your answer should not
include integrals.)

b) Write the first-order condition (i.e., dg/dQ = 0) for the function you derived in
part (a).

¢) The first-order condition cannot be solved explicitly for )—we can’t write an
expression like @Q* = [something or other]. Instead, g(Q)) must be optimized
numerically. Using a nonlinear programming solver, find the () that minimizes
g(Q) using the following parameter values: A = 500, K = 100, h = 1, b = 0.5.
Report both Q* and g(Q*).

Note: As part (e) establishes, g(Q) is quasiconvex everywhere; therefore, you
may use a nonlinear solver that relies on this property.

d) Prove that g(Q) is convex at Q = Q™.

Hint: We know the first-order condition says dg/d@Q = 0 at Q = Q*. Write
the second-order condition in such a way that you can make use of the first-order
condition.

e) A function f is said to be unimodal if there exists some point x* such that f is
increasing on the range x < z* and decreasing on the range = > z*. A function



82 DETERMINISTIC INVENTORY MODELS

f is said to be quasiconvex if —f is unimodal. Prove that g(Q) is quasiconvex
for all () > 0.
f) Bonus: Prove that g(Q) is convex for all Q) > 0.

3.18 (EOQ with Batch Demands) Consider an inventory system in which each order
is for @ units. Instead of the demand occurring continuously over time (as in the EOQ
model), the customer purchases exactly half of the inventory exactly halfway through the
order cycle and the remaining half exactly at the end of the order cycle. At that point, a new
order is placed, and it arrives instantly. (Therefore, there is no time at which the inventory
level equals 0.) The total demand per year is A, just as in the EOQ model, which means
that each order cycle has the same length as in the EOQ model.

a) Write an expression for the average annual total cost.

b) What is the optimal order quantity, QQ*?

3.19 (EOQ vs. EOQB Costs)
a) Prove that the optimal annual holding plus backorder costs in the EOQB model
is strictly less than the optimal annual holding cost in the EOQ model.
b) Use part (a) to prove that the total cost (including fixed costs) decreases when we
allow backorders.

3.20 (EOQ Generalization) Consider an EOQ-like inventory model whose cost function
is given by
a@?+b
9(Q) = m
for constants a, b, ¢, and d with a,c > 0 and b,d > 0.
Note that the classical EOQ problem is a special case, since the EOQ cost function (3.3)
can be obtained by setting

(3.45)

a=nh
b=2K\
(3.46)
c=2
d=0.

In this problem you will prove some properties of the cost function (3.45).
a) Prove that

. Va?d?+ abc? — ad
Q= ~
ac
Then show that the classical EOQ model is a special case, i.e., that for the
appropriate values of the constants, we get the classical EOQ order quantity.
b) Prove that
_ be—2adQ*
N ac '

(@)

¢) Use part (b) to prove that
*\ 2a *
9(Q%) = ?Q .

Then show that the classical EOQ model is a special case, i.e., that for the
appropriate values of the constants, we have g(Q*) = hQ* (Theorem 3.1).
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Figure 3.14 Inventory level curve for Problem 3.23.

d) Calculate Q* and g(Q*) assuming @ = 20, b = 125, c = 1.2, d = 2.7.

e) Bonus: Prove that

9(@Q) _ 1 ( Q Q*> .
= - | = + —= | — |a nonnegative constant

w@) 2\t ) |

(analogous to Theorem 3.2), and indicate what the nonnegative constant is. Then

show that the classical EOQ model is a special case.

3.21 (Alternate EOQ Proof) Prove that the EOQ cost function can be rewritten as

2
h 2K\ 2Kh
g(Q)_2)\Q<Q h) Vo

Use this to prove (3.4) without using calculus. (Thus, this method provides a proof of the
EOQ formula using algebra only.)

3.22 (EPQ for Laundry) A restaurant uses 80 cloth napkins per hour. The napkins are
washed by hand at a rate of 110 per hour. Each time the laundry process is started, the
restaurant incurs a fixed cost of $4.00. Napkins in inventory incur a holding cost of $0.08
per napkin per hour. Stockouts are not allowed. How many napkins should the restaurant
have in circulation?

3.23 (EOQ with Zero-Demand Sub-Cycles) Consider the following modification to the
EOQ problem. Suppose that, each time an order is placed, the demand is initially O for a
fraction (3 of the cycle, and then the demand occurs at a rate of A/(1 — ) for the duration
of the cycle. One can show (you need not) that the total cycle length is still @/, just like
in the original EOQ model, and the cycle is divided as shown in Figure 3.14. Calculate the
optimal order quantity, Q*.

3.24 (EOQ with Cycle-Length Costs) Suppose that the inventory ordered in the EOQ
problem must be stored in a special piece of storage equipment, and the cost of the
equipment depends on the amount of time the inventory will be stored, i.e., the amount of
time between replenishment orders. (For example, the product might be perishable; the
longer it will be stored in inventory, the more insulation is required in the container.) The
storage equipment is leased from a material-handling company. The lease cost per year is
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Figure 3.15 Inventory level curve for Problem 3.26.

given by w In T, where w is a constant, 7' is the time between consecutive orders, and In is
the natural log function. Holding and fixed costs are still incurred, as in the original EOQ
problem. (You can continue to ignore the per-unit purchase cost.)

a) Write the total cost function, g(Q).

b) Write an expression for the optimal order quantity, Q*.

¢) Suppose h = 2, A = 150, K = 700, and w = 100. What is Q*?

d) If w > 0, is the optimal order quantity for this model less than, greater than, or

equal to that for the original EOQ model?

3.25 (EOQ with Random Half-Orders) Suppose that, in the EOQ model, some orders
randomly arrive at only half the requested size. That is, if the order quantity is (), then
the quantity delivered is ) with probability o and %Q with probability 1 — «, for some
constant & (0 < o < 1). The remaining parameters and assumptions are as in the standard
EOQ model.
a) Determine a closed-form expression for the optimal order quantity, Q*, as a
function of the problem parameters.
b) Will the optimal order quantity in this model be greater than, less than, or equal
to that of the classical EOQ? Briefly explain why. (Provide a logical explanation
based on the problem, not a mathematical answer based on part (a).)

3.26 (EOQ with Two Deliveries) Consider a variant of the EOQ model in which each
order arrives in two separate deliveries. In particular, if we place an order of size (), then
a quantity Q) arrives instantly, and the remaining quantity, (1 — «)@Q, arrives a@ /) years
later, for a fixed constant 0 < o < 1. Thus, the inventory curve looks like the curve
pictured in Figure 3.15.

The fixed cost K is incurred once per order cycle, even though there are two deliveries.
As in the standard EOQ, the holding cost is given by h per item per year.

Calculate the optimal order quantity, (Q*.

3.27 (Wagner—Whitin for Aircraft Engines) The Pratt & Whitin Company, which
manufactures aircraft engines, needs to decide how many units of a particular bolt to order
in order to build engines over the next 4 months. Orders for engines are placed over a year
in advance, so the company knows its near-term demand exactly; in particular, the number
of engines to produce in the next 4 months will be 150, 100, 80, and 200 in months 1
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through 4, respectively. Each engine requires a single bolt. Orders for bolts incur a fixed
cost of $120, and bolts held in inventory incur a holding cost of $0.80 per bolt per month.
Find the optimal order quantities in each period and the optimal total cost.

3.28 (Wagner—Whitin for Sunglasses) The file sunglasses.x1sx contains forecast
demand (measured in cases) for sunglasses at a major retailer for each of the next 52 weeks.
Each order placed to the supplier incurs a fixed cost of $1100. One case of sunglasses held
in inventory for one period incurs a holding cost of $2.40. Find the optimal order quantities
in each period and the optimal total cost.

3.29 (Wagner—Whitin for Glass) A small maker of art glass has orders to make paper-
weights, vases, and so on over the course of the coming 5 weeks. Based on these orders,
it has projected its requirements for its primary raw material—glass rods—over these 5
weeks to be 730, 580, 445, 650, and 880 kg, respectively. Each order to the glass rod
supplier incurs a fixed cost of $100, and each kg of glass rods held in inventory incurs a
holding cost of $0.10 per week.

a) Determine the optimal order quantity in each week, as well as the optimal total
cost.

b) Let ¢ be the first period in which there is no order in your optimal solution from
part (a). Suppose the raw material inventory is destroyed at the beginning of
period # so that the workshop must order in period . How much should it order
in each remaining period of the horizon, and what will be the resulting cost for
the entire horizon?

3.30 (Wagner—Whitin Solution from DP #1) Consider the Wagner—Whitin problem
with h = 2, K = 50, T = 4, and (dy,...,d4) = (20,12,17,23). Suppose you have
performed the calculations for ¢ > 2 and found the following values for 6; and s(t):

| t
2 3 4 5
0, | 134 96 50 0
sty | 4 5 5 —

Determine which periods to order in, how much to order in each of those periods, and
the corresponding optimal cost.

3.31 (Wagner—Whitin Solution from DP #2) Follow the instructions for Problem 3.30
for an instance with h = 1, K = 20, T = 4, and (dy, ..., d4) = (25,15, 15, 30), using the
following values for 6; and s(t):

3.32 (Wagner—Whitin with Randomly Perishable Goods) Suppose that in the Wagner—
Whitin model, all of the items currently held in inventory will perish (be destroyed) with
some probability q at the end of each time period. For example, if we order 4 periods’ worth
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of demand in period 1, the demand for period 1 will be satisfied for sure, but the inventory
consisting of the demand for periods 2—4 will perish with probability g; if it survives (with
probability 1 — g), the inventory for periods 3—4 will perish at the end of period 2 with
probability ¢; and so on. Once the initial ordering schedule is set, no additional orders may
be placed.

Obviously, we can no longer require that all demand be satisfied. We will assume that
unmet demand is lost (not backordered), and that lost demands incur a penalty cost of p
per unit. As in the standard Wagner—Whitin model, we will assume a holding cost of h per
unit per time period and a setup cost of K per order.

The sequence of events in each period is as follows:

1. The replenishment order, if any, is placed and is received immediately.

2. Demand occurs and is satisfied from inventory if possible.

3. Remaining inventory either perishes or does not.

4. Holding and stockout costs are incurred based on remaining inventory and lost sales.

a) Show how the arc costs can be computed to capture the new cost function so
that the Wagner—Whitin DP algorithm can still be used. Simplify your answer as
much as possible.

Hint: The formulas in Section C.5 may come in handy.

b) Illustrate your method by finding the optimal solution for the following 4-period
instance: h = 0.2, K = 200, p = 3, ¢ = 0.25, and the demands in periods 1-4
are 200, 125, 250, 175. Indicate the optimal solution (order schedule) and the
cost of that solution.

¢) Do you think the optimal solution to the problem with perishability will involve
more orders, fewer orders, or the same number of orders than the optimal solution
to the normal Wagner—Whitin problem (without perishability)? Explain your
answer.

3.33 (Wagner-Whitin — EOQ?) Does the Wagner—Whitin model approach the EOQ
model as the length of a time period gets shorter (keeping the total time horizon fixed)?
Conduct a small numerical experiment to confirm your answer.



CHAPTER 4

STOCHASTIC INVENTORY MODELS:
PERIODIC REVIEW

4.1 INVENTORY POLICIES

In this chapter and the next, we will consider inventory models in which the demand is
stochastic. A key concept in these chapters will be that of a policy. A policy is a simple rule
that provides a solution to the inventory problem. For example, consider a periodic-review
model with fixed costs (such as the Wagner—Whitin model) but with stochastic demands.
(We will examine such a model more closely in Section 4.4.) One could imagine several
possible policies for this system. Here are a few:

1. Every R periods, place an order for () units.
2. Whenever the inventory position falls to s, order ) units.

3. Whenever the inventory position falls to s, place an order of sufficient size to bring
the inventory position to S.

4. Place an order whose size is equal to the first two digits of last night’s lottery number.
Then, wait a number of periods equal to the last two digits of the lottery number
before placing another order.

Now, you probably suspect that some of these policies will perform better (in the sense
of keeping costs small) than others. For example, policy 4 is probably a bad one. You

Fundamentals of Supply Chain Theory, Second Edition. Lawrence V. Snyder and Zuo-Jun Max Shen. 87
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' For

probably also suspect that the performance of a policy depends on its parameters.
example, policy 1 sounds reasonable, but only if we choose good values for R and Q.

It is often possible (and always desirable) to prove that a certain policy is optimal for
a given problem—that no other policy (even policies that no one has thought of yet) can
outperform the optimal policy, provided that we set the parameters of that policy optimally.
For example, policy 3 turns out to be optimal for the model in Section 4.4: If we choose
the right s and .S, then we are guaranteed to incur the smallest possible expected cost.

When using policies, then, inventory optimization really has two parts: Choosing the
form of the optimal policy and choosing the optimal parameters for that policy. Sometimes
we can’t solve one of these parts optimally, so we use approximate methods. For example,
although it’s possible to find the optimal s and S for the model in Section 4.4, heuristics
are commonly used to find approximately optimal values. Similarly, for some problems,
no one even knows the form of the optimal policy, so we simply choose a policy that seems
plausible.

We’ll consider periodic-review models in this chapter. We’ll first consider problems with
no fixed costs (in Section 4.3) and then problems with nonzero fixed costs (in Section 4.4).
In both of these sections, we’ll simply choose a policy to use and focus on optimizing
the policy parameters (or, in the case of finite-horizon models, not restrict ourselves to a
policy at all). This is the approach taken in the seminal paper by Arrow et al. (1951).
Then, in Section 4.5, we’ll prove that the policies we chose for the periodic-review models
in Sections 4.3 and 4.4 are, in fact, optimal. (We won’t prove policy optimality for the
continuous-review models in Chapter 5, but those policies, too, are optimal.)

We will continue to use the same notation introduced in Chapter 3. All of the costs we
discussed in Section 3.1.3 are in play, including fixed cost K, purchase cost ¢, holding cost
h, and stockout cost p. We’ll assume that K and c are nonnegative, that h and p are strictly
positive, and that p > c (otherwise it costs more to buy the product from the supplier than
it does to stock out, so we should never place an order). Now, however, we’ll represent the
demand as a random variable D with mean i, variance o2, pdf f(d), and cdf F(d). (D
will represent demands over different time intervals in different models, but we’ll make
this clear in each section.) We’ll usually assume that D is a continuous random variable,
with a few exceptions.

Throughout most of this chapter, we will assume that unmet demands are backordered.
In Section 4.6, we briefly discuss the lost-sales assumption.

Before continuing, we introduce two important concepts in stochastic inventory theory:
cycle stock and safety stock. Cycle stock (or working inventory) is the inventory that is
intended to meet the expected demand. Safety stock is extra inventory that’s kept on hand
to buffer against uncertainty. The target inventory level or order quantity set by most
stochastic inventory problems can be decomposed into cycle and safety stock components.
We’ll see later that the cycle stock depends on the mean of the demand distribution, while
the safety stock depends on the standard deviation.

'We don’t mean the inputs to the problem, such as costs or demand parameters. Rather, we mean decision
variables for the inventory optimization problem, which are often referred to as “parameters.”
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4.2 DEMAND PROCESSES

Inreal life, customers tend to arrive at a retailer at random, discrete points in time. Similarly,
(some) retailers place orders to wholesalers at random, discrete times, and so on up the
supply chain. One way to model these demands is using a Poisson process, which describes
random arrivals to a system over time. If each customer may demand more than one unit,
we might use a compound Poisson process, in which arrivals are Poisson and the number
of units demanded by each customer is governed by some other probability distribution.

It will often be convenient for us to work with continuous demand distributions (rather
than discrete distributions such as Poisson), most commonly the normal distribution with
mean g and variance o2. Sometimes, the normal distribution is used as an approximation
for the Poisson distribution, in which case @ = o2 since the Poisson variance equals its
mean. (This approximation is especially accurate when the mean is large.)

In the continuous-review case, normally distributed demands mean that the demand over
any t time units is normally distributed, with a mean and standard deviation that depend
on t. Although it’s unusual to think of demands occurring “continuously” in this way, it’s
a useful way to model demands over time. In the periodic-review case, we simply assume
that the demand in each time period is normally distributed.

One drawback to using the normal distribution is that any normal random variable will
sometimes have negative realizations, even though the demands that we aim to model are
nonnegative. If the demand mean is much greater than its standard deviation, then the
probability of negative demands is so small that we can simply ignore it. This suggests
that the normal distribution is appropriate as a model for the demand only if ;1 > oc—say,
if 4 > 4o. If this condition fails to hold, then it is more appropriate to use a distribution
whose support does not contain negative values, such as the lognormal distribution. (If
the true demands are Poisson and we are using the normal distribution to approximate it,
then another justification for the condition ;4 > o is that the normal approximation for the
Poisson distribution is most effective when the Poisson mean, A, is large, in which case
A > v/, which is the standard deviation.)

4.3 PERIODIC REVIEW WITH ZERO FIXED COSTS: BASE-STOCK
POLICIES

For the remainder of this chapter, we focus on periodic-review models. The time horizon
consists of 1" time periods; 7' can be finite or infinite. We will usually assume the lead
time is zero, but in Sections 4.3.4.1 and 4.6.2, we’ll discuss the implications of assuming a
nonzero lead time in the case of backorders (which is easy) and lost sales (which is hard).

We’ll first consider the important special case in which K = 0 (in this section), and then
the more general case of K > 0 (in Section 4.4). We’ll also assume that the costs h, p, c,
and K are constant throughout the time horizon.

We will model the time value of money by discounting future periods using a discount
factor v € (0,1]. That is, $1 spent (or received) in period ¢ + 1 is equivalent to $v in
period t. If v = 1, then there is no discounting. For the single-period and finite-horizon
problems, our objective will be to minimize the total expected discounted cost over the
horizon. However, the total cost over an infinite horizon will be infinite if v = 1 and may
still be infinite if v < 1. Therefore, in the infinite-horizon case, we will minimize the
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expected cost per period if v = 1 and the total expected discounted cost over the horizon
if v < 1. (The solutions to the two problems turn out to be closely related.)
The sequence of events in each period ¢ is as follows:

1. The inventory level is observed.
2. A replenishment order of size @; is placed and is received instantly.

3. Demand d; occurs; as much as possible is satisfied from inventory, and the rest is
backordered.

4. Holding and stockout costs are assessed based on the ending inventory level.

The ending inventory level in period ¢ (step 4) is denoted I L;. It is equal to the starting
inventory level in period ¢ 4+ 1 (step 1) and is given by I L; = IL;_1 + Q; — d;.

4.3.1 Base-Stock Policies

Throughout Section 4.3, we’ll assume that the firm follows a base-stock policy.> A base-
stock policy works as follows: In each time period, we observe the current inventory
position and then place an order whose size is sufficient to bring the inventory position up
to S. (We sometimes say we “order up to S.”) S is a constant—it does not depend on the
current state of the system—and is known as the base-stock level. Base-stock policies are
optimal when K = 0; we will prove this in Section 4.5.1. One of the earliest analyses of
this type of policy is by Arrow et al. (1951).

In multiple-period models, the base-stock level may be different in different periods. If
the base-stock level is the same throughout the horizon, then in every period, we simply
order d;_ items. (Why?)

We will divide this problem into three cases—with 7' =1,1 < T < 0o, and T' = co—
and find the optimal base-stock levels in each case.

4.3.2 Single Period: The Newsvendor Problem

4.3.2.1 Problem Statement Consider a firm selling a single product during a single
time period. Single-period models are most often applied to perishable products, which
include (as you might expect) products such as eggs and flowers that may spoil, but also
products that lose their value after a certain date, such as newspapers, high-tech devices,
and fashion goods. The key element of the model is that the firm only has one opportunity
to place an order—before the random demand is observed.

Even if the firm actually sells its products over multiple periods (as is typical), the
operations in subsequent periods are not linked: Excess inventory cannot be held over until
the next period, nor can excess demands (that is, unmet demands are lost, not backordered).
Therefore, the firm’s multiperiod model can be reduced to multiple independent copies of
the single-period model presented here.

This model is one of the most fundamental stochastic inventory models, and many of
the models discussed subsequently in this book use it as a starting point. It is often referred
to as the newsvendor (or newsboy) model. The story goes like this: Imagine a newsvendor

2Base-stock policies are also sometimes known as order-up-to policies, S-policies, or (S — 1, S)-policies.
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who buys newspapers each day from the publisher for $0.30 each and sells them for $1.00.
The daily demand for newspapers at his newsstand is normally distributed with a mean of
50 and a standard deviation of 8. If the newsvendor has unsold newspapers left at the end
of the day, he cannot sell them the next day, but he can sell them back to the publisher
for $0.12 (called the salvage value). The question is: How many newspapers should he
buy from the publisher each day? If he buys exactly 50, he has an equal probability of
being understocked and overstocked. But it costs more to stock out than to have excess
(since stocking out costs him 70 cents in lost profit while excess newspapers cost him
30 — 12 = 18 cents each). So he should order more than 50 newspapers each day—but
how many more?

The inventory carried by the newsvendor can be decomposed into two components:
cycle stock and safety stock. As noted in Section 4.1, cycle stock is the inventory that is
intended to meet the expected demand—in our example, S0—whereas safety stock is extra
inventory that’s kept on hand to buffer against demand uncertainty—the amount over 50
ordered by the newsvendor. We will see later that the newsvendor’s cycle stock depends
on the mean of the demand distribution, while the safety stock depends on the standard
deviation.

It is possible for the safety stock to be negative: If stocking out is less expensive than
holding extra inventory, the newsvendor would want to order fewer than 50 papers. This can
actually occur in practice—for example, for expensive and highly perishable products—but
it is the exception rather than the rule.

The mathematical analysis of the newsvendor problem originated with Arrow et al.
(1951), though some of the ideas are much older: Edgeworth (1888) uses newsvendor-type
logic to determine the amount of cash to keep on hand at a bank to satisfy random with-
drawals by patrons. Morse and Kimball (1951) introduced the name “newsboy problem,”
and Porteus (2008) cites Matt Sobel as proposing the gender-neutral term “newsvendor
problem.”

As previously noted, the newsvendor model applies to perishable goods. In particular,
it applies to goods that perish before the next ordering opportunity. Many perishable goods
have a shelf life that exceeds the order interval: For example, a supermarket might place
replenishment orders every few days for milk, which has a shelf life of a few weeks.
Cases like this are much more difficult to optimize; for a more detailed discussion, see
Section 16.3.2.

4.3.2.2 Formulation As usual, we will use h to represent the holding cost: the cost
per unit of having too much inventory on hand. In the newsvendor problem, this typically
consists of the purchase cost of the unit, minus any salvage value, but may include other
costs, such as processing costs. (Since inventory cannot be carried to the next period,
this cost is not technically a holding cost, though we will refer to it that way anyway.)
Similarly, p represents the stockout cost: the cost per unit of having too little inventory,
consisting of lost profit and loss-of-goodwill costs. The holding cost is the cost per unit
of positive ending inventory, while the stockout cost is the cost per unit of negative ending
inventory. The costs h and p are sometimes referred to as overage and underage costs,
respectively (and some authors denote them c, and ¢,,). We can assume that the purchase
cost is included in h and that its negative is included in p, and therefore, we assume that
¢ = 0. We’ll also assume the firm starts the period with 1L = 0, but this, too, is easy to
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relax (see Section 4.3.2.6). Since there is only a single period, the discount factor v won’t
play a role in the analysis.

We will refer to the model discussed here as the implicit formulation of the newsvendor
problem since the costs and revenues are not modeled explicitly but instead are accounted
for in the holding and stockout costs & and p. (In contrast, see the explicit formulation in
Section 4.3.2.4.)

Recall that D is a random variable that represents the demand per period. We’ll assume,
for now, that D has a continuous distribution. In Section 4.3.2.8, we’ll modify the analysis
to handle discrete demand distributions.

Our goal is to determine the base-stock level S to minimize the expected cost in the
single period. The strategy for solving this problem is first to develop an expression for the
cost as a function of d (the observed demand) and S (call it g(.S, d)); then to determine the
expected cost Ep[g(S, D)] (call it g(.5)); and then (in Section 4.3.2.3) to determine S to
minimize g(5).

Let 1(S,d) = (S — d)" and B(S,d) = (d — S)" be the on-hand inventory and
backorders, respectively, at the end of the period if the firm orders up to S and sees a
demand of d units. The cost for an observed demand of d is

g(S,d) = hI(S,d) + pB(S,d)
=hS—d)" +pd-95)T". 4.1)

Since the demand is stochastic, however, we must take an expectation over D. Let
I(S) = E[I(S,D)] and B(S) = E[B(S, D)] be the expected on-hand inventory and
backorders if the firm orders up to S. Then,
9(S) = hI(S) + pB(S) (42)
— hE[(S — D)*] + pE[(D — S)"]

:hA @—dﬁﬂ@m+pA (d— S)* f(d)dd
S

- h/o (S — d)f(d)dd er/s (d - 8)f(d)dd 4.3)

Let
n(e) = E(X )] = | Ty — o) f(y)dy (44)
A(z) = E[(X —2)7] = / “(@ — y) fy)dy. 45)

These functions are known as the loss function and the complementary loss function,’?
respectively. They can be defined for any probability distribution; here, we define them
in terms of the demand distribution. (See Section C.3.1 for more information about these
functions.) Then we can rewrite (4.3) as

9(S) = hir(S) + pn(9). (4.6)

3The term “complementary loss function” is our own; to the best of our knowledge, this function does not have a
name in common usage.
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This gives us three ways to write the expected cost function: using I(S) and B(S) (4.2),
using integrals (4.3), and using loss functions (4.6). It is also common to use the following
identities:

I(S) =5 —p+ B(5) 4.7
S oo
/)@fdﬁMMd:Sfp+/ (d— 8)f(d)dd 4.8)
0 s
n(S) =85 — p+n(9), 4.9)

all of which follow from the fact that 27 = 2 + 2~ for all z. These let us rewrite (4.2),
(4.3), and (4.6) as

9(8) = h(S — ) + (h+p) B(S) (4.10)
— (S =)+ (h +p)/s (d— S)f(d)dd @.11)
= h(S — p) + (h + p)n(S). 4.12)

4.3.2.3 Optimal Solution The derivatives of the loss function and its complement
are given by

!
n

(
”

z)

(z) -1 (4.13)
(z). (4.14)
(See Problem 4.23.) Moreover, n'/(z) = @ (z) = f(z) > 0, so n(-) and 7(-) are both

convex, and therefore so is g(.5). To minimize g(.S), therefore, we set its first derivative to
0. Using (4.6),

F
F

x)

3

%;) = hF(S) +p(F(S) — 1) = (h+p)F(S) — p. (4.15)

Setting this equal to 0 gives
(h+p)F(S)—p=0

p
F(S)=—— 4.16
— F($)= 2 @.16)
— 5§ =F! p). 4.17
<h +p @17
Alternately, we can differentiate (4.12) to get
dg(S
W bt (et p)(F($) 1) = (h+ ) E(S)

which is identical to (4.15) and so gives the same optimal solution as (4.17).
The expression for S* in (4.17) is an important one, so we’ll state it as a theorem (which
we’ve now proven).

Theorem 4.1 The optimal base-stock level for a single-period model with no fixed costs
(the newsvendor model) is given by

S*—F’ll)>.
(h+p
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f(d)

P ()

Figure 4.1 Optimal solution to newsvendor problem plotted on demand distribution.

p/(h + p) is known as the critical ratio (or critical fractile). 1t is implicit in a result by
Arrow et al. (1951) but was first formulated explicitly by Whitin (1953). Since p and h are
both positive,

p

0< —— <1,
h+p

so F~1(p/(h + p)) always exists. F'(S) = P(D < S), or the probability of no stockouts.
This is known as the rype-1 service level (see Section 4.3.4.2). Equation (4.17) then says
that under the optimal solution, the type-1 service level should be equal to the critical ratio.
It is optimal to stock outin 1 —p/(h+p) = h/(h+ p) fraction of periods. To put it another
way, the probability of not having a stockout is equal to the shaded area in Figure 4.1,
and Theorem 4.1 says that this area should equal p/(h + p) and that the non-shaded area
should equal 2/(h + p). As p increases, the critical ratio increases, so S* and the type-1
service level both increase—it is more costly to stock out, so we should do it less frequently.
As h increases, the critical ratio decreases, as does S*—it is more costly to have excess
inventory, so we will order less. The type-1 service level necessarily decreases as well.

Theorem 4.1—or one very much like it—holds for a wide range of models, not just
the single-period newsvendor model formulated here. Perhaps most importantly, a variant
of the theorem still holds for the mutliperiod, infinite-horizon version of the model; see
Section 4.3.4.

0 EXAMPLE 4.1

Cora’s Newsstand faces the costs and demand process described in Section 4.3.2.1:
a holding cost of h = 0.18, a stockout cost of p = 0.70, and demand distributed as
N (50, 82). What is the optimal number of newspapers for Cora to order?
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Applying Theorem 4.1, we have

0.70
S*=F~! (W) = F71(0.795) = 56.6.

If Cora can only order an integer number of newspapers, we use (4.6) to calculate
g(.S) for the neighboring integer values of S. One of the neighboring integer values
is guaranteed to be optimal by the convexity of g(-).

9(56) = 0.187(56) + 0.70n(56) = 2.0034
¢(57) = 0.187(57) + 0.70n(57) = 2.0000

Therefore, the optimal integer number of newspapers is 57.

If the demand distribution is discrete, it is always optimal to order the larger
neighboring S—see Section 4.3.2.8. But in this example, the demand distribution is
continuous even though the order quantity must be discrete, so we must check both
g(S) values. O

4.3.2.4 Explicit Formulation The formulation given in Sections 4.3.2.2-4.3.2.3 in-
terprets h and p as the overage and underage costs, respectively—the cost per unit of having
too much or too little inventory. The actual cost and revenue parameters are included im-
plicitly through the overage and underage costs. For instance, in the example described in
Section 4.3.2.1, there is a revenue of $1.00, a purchase cost of $0.30, and a salvage value
of $0.12, but these don’t appear explicitly in the expected cost function (4.2); rather, they
are factored into A and p.

Instead, one can write the expected cost function explicitly using these cost parameters,
and the resulting formulation is sometimes more intuitive. In particular, let r be the revenue
earned per unit sold, let ¢ be the cost per unit purchased, and let v be the salvage value
earned for each unit of excess inventory. We assume r > v, otherwise we earn more by
salvaging a unit than by selling it, so we would never sell any items.

Let h and p be the holding and stockout costs, but reinterpret them to exclude the costs
and revenues related to selling, buying, and salvaging the inventory. For example, h might
represent a storage cost or a cost to dispose of the inventory; p might represent loss of
goodwill or bookkeeping costs related to unmet demands.

As before, the objective is to minimize g(.S), which should now include revenues as
negative costs. We have:

oo

S
9(8) =cS + h/o (S — d)f(d)dd +p/5 (d— S)f(d)dd

-Tr
0

(1-F(S))S + /S df(d)dd] — /OS(S — d)f(d)dd (4.18)

oo

s
z(c—r)S+(h+r—v)/0 (S—d)f(d)dd+p/s (d—S)f(d)dd
=(c—=7r)S+ (h+r—0v)a(S)+ pn(S). (4.19)

Sometimes, this is instead formulated as a profit maximization problem in which we maxi-
mize 7(S5) = —g(9).
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Since 7i(-) and n(-) are both convex, and since r» > v, g(-) is convex (and (-) is
concave), so it suffices to set the first derivative of (4.19) to O:

d
%:c—r+(h+r—v)F(S)+p(F(S)_1):0
p+r—c
FS)=———
= IO =
e gt (P”C) (4.20)
h+p+r—w

We can translate this to the implicit version of the problem by determining the overage
and underage costs (which we’ll denote by h’ and p’, respectively, since they have a
slightly different meaning than h and p in the explicit formulation). For each unit of excess
inventory, we incur a holding cost of h, and we paid c for the extra unit but earn v as a
salvage value; therefore, i’ = h + ¢ — v. Similarly, for each stockout, we incur a penalty
of p in addition to the lost profit  — ¢, so p’ = p + r — ¢. Therefore, applying (4.17), we

get
! +r—c
SR Al [t YA (i o sl 421
(h’er’) h+p+r—v)’ (4.21)

which matches (4.20). The expected cost functions (4.12) and (4.19) are not equal, but they
differ only by an additive constant (see Problem 4.15).

It is perfectly acceptable to set any of the cost or revenue parameters to O if they are
negligible or should not be included in the model.

One word of caution: Avoid mixing the implicit and explicit approaches, since doing
so can lead to incorrect accounting of the various costs and revenues. For example, it is a
common mistake to use something like the objective function from the implicit formulation
(4.3), but to add ¢S or subtract

S
(1- F(S))S+/O df(d)dd]

to reflect a purchase cost or sales revenue. If the holding and stockout costs in (4.3) are
interpreted as overage and underage costs, then the purchase cost and sales revenue are
already implicitly included in h and p (as they are in Example 4.1). To include them
explicitly in the objective function would be to double-count them.

0 EXAMPLE 4.2

Let us analyze the example in Section 4.3.2.1 using the explicit formulation. We
have r = 1, ¢ = 0.3, and v = 0.12. There are no other overage or underage costs
(e.g., no disposal costs or loss of goodwill), so h = p = 0. Therefore, from (4.20),

0+1-0.3 0.70
S*=F1' —— ) =F =
<0+0+10.12> (0.88>’
which is the same optimality condition as in Example 4.1 and yields the same solution:
S* = 56.6. d

For the remainder of this chapter and for most of the rest of this book, we will use the
implicit formulation. An exception is Chapter 14, which uses something more like the
explicit approach.
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4.3.2.5 Normally Distributed Demands In this section, we discuss results for the
special case in which demands are normally distributed: D ~ N (1, 0?), with pdf f and
cdf F'. We use ¢(-) and ®(+) to denote the pdf and cdf, respectively, of the standard normal
distribution:

— 1 —22/2
#(z) \/ﬂe (4.22)
D(2) = o(z)dx (4.23)

We also use z, to denote the ath fractile of the standard normal distribution; that is,
26 = ().

As discussed in Section 4.2, we will assume that ;¢ > o so that the probability of
negative demands is negligible.

From (4.16), we have

F(5%) = h%p
— (S* u) _.p
o h+p
—= S =p+od! (fzip> .
If we let & = p/(h + p), we have
S* = u+ z40. (4.24)

The first term of (4.24) represents the cycle stock—it depends only on p. The second term
represents the safety stock—it depends on o. The newsvendor problem can be thought of
as a problem of setting safety stock. The firm already knows that it will need p units to
satisfy the expected demand; the question is how much more to order to satisfy any demand
in excess of the mean. This extra inventory is the safety stock. (See Figure 4.2.)

Note that, as discussed in Section 4.3.2.1, the safety stock is negative if p < h since, in
that case, o < 0.5 and 2z, < 0.

We next derive an expression for the expected cost under the optimal solution, as we
did with the economic order quantity (EOQ) problem in Section 3.2.3. If X is a normally
distributed random variable, then its loss and complementary loss functions are given by

n(z) = £(z)o (4.25)
n(z) = [z + Z(2)]o, (4.26)

where z = (v — ) /o and
26) = [ =20 @27)

(See Problem 4.22.) (4.25) and (4.26) assume F'(0) = 0; this is true for actual demands, but
it is only approximately true for the normal distribution we use to model demand. .Z(z) is
called the standard normal loss function; it is equivalent to n(z) in (4.4) if X has a standard
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f(d)
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Figure 4.2  Optimal solution to newsvendor problem plotted on normal demand distribution.

normal distribution. .#(z) is tabulated in many textbooks, or it can be computed explicitly
as
Z(z) =¢(z) — 2 (1 = P(2)). (4.28)
Equation (4.28) is convenient for calculating -#(z) in, say, Excel, MATLAB, or Python,
since these and many other environments have built-in functions for ¢(-) and ®(-) but not
for £(z).
Then, for our problem with normally distributed demands, the cost function (4.6) be-
comes
g(S)=hlz+ L) c+pZL(2)o =[hz+ (h+p)ZL(2)]o (4.29)
for any S > 0, where z = (S — p)/o. From (4.24), z* = (8* — u)/o = z4. Then from
(4.29),

9(5%) = [hza + (h+p)Z(2a)] 0

[

= [hza + (h+p)d(2a) = (M +P)za(l — P(24))] o (from (4.28))

= [hza + (R +p)d(2a) — (M +p)za(l — )] o
=[(h+p)¢(2a) = (h+Dp)za + (h+P)zal 0 (since (h + p)a = p)
= (h+p)p(za)o (4.30)

It seems surprising at first that (4.30) depends only on o, not on y. But with a little
reflection, this makes sense: Since the problem comes down to setting safety stock levels,
only o should figure into the objective function. Remember that the objective function
includes only holding and stockout costs—costs that result from the randomness in demand,
not its magnitude.

Again, let’s summarize the optimal order quantity and its cost in a theorem:

Theorem 4.2 The optimal base-stock level for a single-period model with no fixed costs
(the newsvendor model) under demands that are distributed as N (u, 0?) is given by

S* = p+ z40,
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where 2, = ®~1(a) and o = p/(h + p). The optimal cost is given by

9(8™) = (h + p)p(za)0.

0 EXAMPLE 4.3

As in Example 4.1, suppose D ~ N(50,82), h = 0.18, and p = 0.70. Then
2o = ®71(0.70/(0.18 + 0.70)) = 0.8255. We already know that S* = 56.6 for this
problem. We could calculate the optimal cost by plugging S* into (4.3), or just use
(4.30):

g(S™) = (0.18 + 0.70) - ¢(0.8255) - 8 = 1.9976.

O

4.3.2.6 Nonzero Starting Inventory Level We assumed that the firm starts the
period with I = 0. In fact, this assumption is easy to relax (and it will be important to
do so in the multiperiod versions of this model). If IL < S*, then the firm should order
up to S*, as usual. But suppose /L > S*. The firm can’t order up to S* since it already
has too much inventory. But should the firm order any units? By the convexity of g(.5),
the answer is no: It would be better to leave the inventory level where it is. Therefore, the
optimal order quantity at the start of the period is

S*—1IL, ifIL<S*

— 431
Q {07 if IL > S*. @30

4.3.2.7 Forecasting and Standard Deviations In most real-world settings, we
do not know the demand process exactly. Instead, we generate a forecast or estimate of
the demand parameters required to make inventory decisions. We’ll assume the demand
is normally distributed. If we knew p and o, we would simply use them in (4.24) to
determine the optimal order quantity. But suppose we don’t know them; instead, suppose
we have observed the demand for a long time, and let d; be the observed demand in period
t. In each period, we can generate an estimate of p and o from the historical data. There
are many ways to do this (see Chapter 2); one of the simplest is to use a moving average
(Section 2.2.1) to estimate  and what we might call a moving standard deviation to estimate
o in period t:

t—1 t—1

~ 1 . 1 .
=g 2 A o=y 2 ()
i=t—N i=t—N

To choose an order quantity in period ¢, we replace p with fi; in (4.24). However, it turns
out that &, is not the right standard deviation to use in place of o. Instead, the correct
quantity to use is the standard deviation of the forecast error.

Returning to our historical data, fi; serves as a forecast for the demand in period ¢. The
forecast error (the forecast minus the observed demand in a given period) is a random
variable, and it has a mean, denoted 1., and a standard deviation, denoted o.. The correct
quantity to replace o with in (4.24) is o.. We’ll omit a rigorous explanation of why this is
the case (see, e.g., Nahmias (2005, Section 2.12)), but here is the intuition. The forecasting
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process introduces sampling error in addition to the randomness in demand, and it is this
error that the firm really needs to protect itself against using safety stock. Suppose that the
demand is very variable (o is large), but we are extremely good at predicting it (¢ and o,
are both small). We would need very little safety stock, because we can accurately predict
how much inventory we will need. Now suppose that the demand is extremely steady (o is
small) but that, for some reason, our forecast is always 100 units too large (1. is large, o, is
small). Here, too, we need very little safety stock, because (knowing our forecast is always
too large), we can simply revise our forecast downward. Finally, suppose that the demand
is steady (o is small) but our forecasts are all over the place—sometimes high, sometimes
low (pe is small, o, is large). In this case, we need a lot of safety stock to protect against
the uncertainty arising from our inability to predict the demand. In all of these cases, it is
the standard deviation of the forecast error that drives the inventory requirement.

Unfortunately, we don’t know o, any more than we know o. Instead, we can observe
the forecast error in period ¢,

€t = ﬂt —dy,

and estimate the standard deviation of the forecast error as

t—1

&e,t: 71 Z ,uet y

i=t—N

where

=
He,t = N . Z €t
i=t—N

is the estimate of the mean of the forecast error made in period ¢. (If we know for sure
that our forecasts are unbiased, we can replace fi.  with 0.) We then replace o with 6, ; in
(4.24) and in the analysis that follows. Of course, if the firm uses a forecasting technique
other than moving average, we can simply replace the formulas above with the appropriate
ones.

Now, in nearly all of the models in this book (one exception is Section 13.2.2), we
assume that the demand parameters are known and stationary. In that case, the forecast ji;
is always equal to the true demand mean p, and the forecast error is . — d; with mean 0
and standard deviation

t—1 t—1

Oyt = N_1 Z ,uet = ﬁ Z (M—dt)27

i=t—N i=t—N

which converges to o in the long run. Therefore, ;1 and o are the appropriate parameters to
use.

In general, one can show that o = col for some constant ¢ (at least for moving average
and exponential smoothing forecasts; see, e.g., Hax and Candea (1984, p. 174), or Nahmias
(2005, Appendix 2-A)), so in some sense the distinction between the standard deviation of
the demand and that of the forecast error is academic, but it’s still worth drawing.

This analysis assumes that y, = 0, i.e., the forecast is unbiased. If it is not, we should
also use fi; — pe in place of p in (4.24): If our forecasts tend to be too high (¢, > 0), then
we should reduce the estimate of the mean demand to account for this; and if our forecasts
are low (i < 0), we should increase it.
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g(5)

S S+1
Figure 4.3 ¢(S) and Ag(S).

4.3.2.8 Discrete Demand Distributions Suppose now that D is discrete. In this
case, (4.3) becomes

S [e%S)
9(S) =hY (S—d)f(d)+p)_(d—5)f(d). (4.32)
= d=S

d=0

The expected cost can still be expressed in terms of loss functions, keeping (4.6) as is but
replacing the definitions of n(-) and 7(+) in (4.4) and (4.5) with

n(x) =E[(X —2)"] =D (y—2)f(y) (4.33)
ax) =E[(X —2)7] =) (@ —9)f(y). (4.34)
y=0

(See Section C.3.4 for more on loss functions for discrete distributions.)

The expected cost function g(.S) is still convex but no longer differentiable; it is
piecewise-linear, with breakpoints at each positive integer. (Why?) Therefore, we cannot
use derivatives to minimize it. Instead, we can use finite differences. A finite difference is
very similar to a derivative except that, instead of measuring the change in the function as
the variable changes infinitesimally, it measures the change as the variable changes by one
unit. Let

Ag(S) =g(S+1) —g(5).

Imagine starting at S = 0 and increasing .S one unit at a time. If g(S + 1) < ¢(95), i.e.,
Ag(S) < 0, then we would want to increase S to S + 1 to bring the cost down. Since g(.5)
is convex, S* is the smallest S such that Ag(S) > 0. (See Figure 4.3.) Well,

S+1

Ag(S) =hY_((S+1)=d) f(d)+p Y (d—(S+1)) f(d)

d=0 d=S+1
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S oo
- [h D S—d)fd)+pd (d- S)f(d)]
d==S

d=0

S S oo oo
=h> f(d)+h> (S—d) fd)—-p Y fd)+p > (d—S)f(d)

d=0 d=0 d=S+1 d=S+1

S oo
- [h D (S—dfd)+p Y (d— S)f(d)]

d=0 d=S+1
—hF(S) - p(1 - F(S)).

Therefore, S* is the smallest S such that hF'(S) — p(1 — F(S)) > 0; that is:

Theorem 4.3 The optimal base-stock level for a single-period model with no fixed costs
(the newsvendor model) under demands that have a discrete distribution with cdf F(-) is
the smallest S such that

F(S) > L

—. 4.35
Z iy (4.35)

Unless we get lucky, there is no .S such that F'(S) equals the critical ratio, as it does
for continuous demands, so instead we “round up” to the next greater integer. That is, if
F(S—1) < p/(h+p) < F(S), there is no need to evaluate both g(S — 1) and ¢(S);
g(S) will always be smaller. Note, however, that this does not hold when the demands are
continuous but the order quantities must be discrete; see Problem 4.16.

4.3.3 Finite Horizon

Now consider a multiple-period problem consisting of a finite number of periods, T
Suppose we are at the beginning of period ¢. Do we need to know the history of the system
(e.g., order quantities and demands through period ¢ — 1) in order to make an optimal
inventory decision in period ¢t? The answer is no: All of the information we need to
make the inventory decision is contained in a single quantity—the starting inventory level,
which equals the ending inventory level in the previous period, IL;_;. Moreover, once
we decide how much to order, we can easily calculate the probability distribution of the
ending inventory level in period ¢ (as we’ll see below). This suggests that the periods
can be optimized recursively—in particular, using dynamic programming (DP). Just as in
the DP algorithm we used for the Wagner—Whitin problem (Section 3.7.3), this DP will
make inventory decisions for period ¢, assuming that optimal decisions have already been
made for periods ¢t + 1,...,7T and using the cost of those optimal decisions to calculate
the cost of the decisions in period ¢t. However, in this DP, the optimal decisions in period ¢
will depend on a random state variable (in particular, I L;_1), whereas the decisions in the
Wagner—Whitin DP depended only on the period, ¢.

First consider what happens at the end of the time horizon. Presumably, on-hand
units and backorders must be treated differently now that the horizon has ended than they
would be during the horizon. The terminal cost function, denoted 071 (x), represents the
additional cost incurred at the end of the horizon if we end the horizon with inventory level
x. For example, we may incur a terminal holding cost hr1 for on-hand units that must
be disposed of, and a terminal stockout cost pr41 for backorders that must be satisfied
through overtime or other expensive measures. Then 07,1 (z) = hpy 12T + proz™. Or,
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maybe we can salvage excess units at the end of the horizon for a revenue of v per unit,
in which case O741(z) = —vrp12T + pro1z.

Let 6;(z) be the optimal expected cost in periods ¢,¢ + 1,...,T if we begin period ¢
with an inventory level of z (and act optimally thereafter). We can define 6; () recursively
in terms of 0,(x) for later periods s. In each period ¢, we need to decide how much to
order, but we will express this optimization problem not in terms of the order quantity @),
but the order-up-to level y, defined as y = = + Q.* In particular:

0:(z) = min{c(y — ) + g(y) + YEp[0i+1(y — D)]}, (4.36)

y>x

where
o(y) = h / "y — d)f(d)dd + p / T(d— ) f(d)dd = hay) + pu(y)  @37)
0 Yy

is the single-period expected cost function (see (4.3) and (4.6)). The minimization considers
all possible order-up-to levels y > « (since () must be nonnegative) and, for each, calculates
the sum of the cost to order y — z units, the expected cost in period ¢, and the expected
discounted future cost. Note that if we order up to y in period ¢, then the starting inventory
level in period ¢ + 1 will be y — D, where D is the (random) demand in period ¢; therefore,
the (random) cost in periods t + 1, ..., T equals 6;11(y — D).

The DP algorithm for the finite-horizon problem is given in Algorithm 4.1. The optimal
expected cost for the entire horizon is given by 61 (x1 ), where x is the inventory level that
the system starts with at the beginning of period 1.

Algorithm 4.1 DP for finite-horizon inventory problem

1: for all x do > Calculate terminal costs
2 compute 741 (x)

3: end for

4: fort=1T,...,1do > Main loop
5 for all = do

6: compute 6, (x) using (4.36) > DP recursion
7 yi(x) < argmin in right-hand side of (4.36)

8 end for

9: end for

10: return 0;(x), y:(x) Vi, x

One way to think about this DP is as follows. Imagine a spreadsheet whose columns
correspond to the periods 1, ..., T, T+ 1 and whose rows correspond to the possible values
of . The value in cell (x,t) equals 0;(z). We start by filling in the 671 (z) values in the
last column, one for each value of x. Then, we calculate the cells in column 7": For each
x, we calculate O (x) using (4.36)—which requires us to look in column 7 + 1 for the
011 (x) values—and write the result in cell (x, T). Then we calculate the cells in column
T — 1, using the values in column 7', and so on, until we solve period 1. Also imagine a
second spreadsheet with identical structure but whose cells contain y, () rather than 6, (z).

4The order-up-to level y is related to, but not the same as, the base-stock level .S. The order-up-to level depends
onz: If x < S, theny = S and if x > S then y = z. In contrast, S is a fixed number, independent of x.
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The completed spreadsheets tell the firm everything it needs to know about optimally
managing the inventory system. If it finds itself with an inventory level of x at the start
of period ¢, it simply looks in the second spreadsheet and orders up to the y;(x) value that
is found in cell (x,t). (The corresponding cell in the first spreadsheet tells the expected
current and future cost of this action.)

Two problems with this approach bear mentioning. First, the DP calculates 6;(x) “for
all z.” But x can potentially become arbitrarily large or small, depending on the values we
choose for y and on the random demands. For example, if y, = 100 and D ~ N (100, 102),
it is possible (although extremely unlikely) that I L, will equal —100,000,000, so our
spreadsheet should extend at least this far. Of course, this is neither practical nor essential
(since the probability is so low), so we typically truncate the state space to consider only
“reasonable” x values. (The definition of “reasonable” depends on the specific problem at
hand.)

Second, even if we consider only a reasonably narrow range of x values, if D has
a continuous distribution, there are still an infinite number of possible inventory levels
to consider. This problem is typically addressed by discretizing the demand distribution
so we consider only a finite number of possible demand values. The granularity of the
discretization (e.g., do we round demands to the nearest integer? to the nearest 0.001? the
nearest 0.000001?) again depends on the specific problem. In general, larger ranges of x
values and smaller granularity result in more accurate solutions but longer run times.

Even after we resolve these two problems, this approach is still somewhat unsatisfying,
at least from a managerial point of view. The spreadsheets described above will work, but
they are fairly cumbersome. It would be nice if we could boil the information contained
in the spreadsheets down into a simple policy. To that end, let’s look more closely at the
results of the DP.

Figure 4.4 plots y;(x) for three different periods ¢ and for a range of z values for
a particular instance of the problem.> Essentially, each curve contains the data from a
column in the second spreadsheet. Notice that all three curves are flat for a while and then
climb linearly along the line y = x. That is, for each ¢, there exists some value .S; such
that, for z < S;, we have y;(z) = Sy, and for x > S, we have y:(z) = z. (In particular,
S1 =15, 55 = 21, Sg = 17.) In other words, these curves each depict a base-stock policy!
In fact, we will prove in Section 4.5.1.2 that a base-stock policy is optimal in every period
of the finite-horizon model presented here—the pattern suggested by Figure 4.4 always
holds.

Recognizing the optimality of a base-stock policy has simplified the results: We don’t
need the entire y;(z) spreadsheet to tell us how to act in each period, we just need a
list of Sy values—the optimal base-stock level for each period ¢. In general, these can
be different for different periods, as suggested by Figure 4.4, although in some special
cases, the same base-stock level is optimal in every period (see Section 4.5.1.2). However,
base-stock optimality has not simplified the computation required to determine the optimal
policy—we still need to solve the DP to find the optimal base-stock levels in each period.
In particular, S; is equal to y;(—00), or, assuming we have truncated the range of possible
x values, S; equals y;(z) for the smallest z value considered.

3 Actually, for a somewhat more general version of the problem in which the parameters may change (determin-
istically) over time. The same general results hold for both models.
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Figure 4.4 DP results, K = 0: y:(x).

4.3.4 Infinite Horizon

Our third and final variety of periodic-review models with no fixed costs is the case in
which T' = oco. This problem is sometimes referred to as the infinite-horizon newsvendor
model. If the number of periods is infinite, then the total expected cost across the horizon
may be infinite, too. (It certainly will be if v = 1.) An alternate objective is to minimize
the expected cost per period. The former case is known as the discounted-cost criterion,
while the latter is known as the average-cost criterion. We’ll consider the average-cost
criterion first, then the discounted-cost criterion.

Under the average-cost criterion, we assume v = 1. The expected cost in a given period
if we use base-stock level S is given by

o0

S
9(S) = h/o (S —d)f(d)dd —|—p/S (d— S)f(d)dd = hin(S) +pn(S).  (4.38)

This is exactly the same expected cost function as in the single-period model of Sec-
tion 4.3.2. Therefore, the same base-stock level—given in Theorem 4.1—is optimal, in
every period!

In formulating (4.38), we glossed over two potentially problematic issues. First, why
didn’t we account for the purchase cost ¢, and second, why didn’t we account for the cost in
future periods? Well, in the long run, the expected number of units ordered is the same—
#—no matter what S we choose. And since v = 1, the timing of our orders does not affect
the purchase cost. Therefore, the expected purchase cost per period is independent of S.

What about future periods? In (4.38), we didn’t account for the impact of our choice of
S on future periods. Is this approach sound, or do we need to account for the future cost,
as in the finite-horizon DP model of Section 4.3.3? For example, if we start period ¢ with
IL;—q > S, then the expected cost in period ¢ is g(I L;_1 ) rather than g(S;). In this case,
(4.38) would give an incomplete picture of the expected cost in period ¢ since it assumes we
can always order up to S. This suggests that we cannot optimize the periods independently.
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However, as long as S; < S;11, we can be sure that the system starts period ¢ + 1 with
IL; < Siy1. (Why?) Therefore, no matter what value we choose for .S;, we know that we
can always order up to Sy in period £ + 1. And, as we will see in Section 4.5.1.3, the
same base-stock level is optimal in every period. Therefore, S; = S;41, s0 Sy < S¢y1 and
we can optimize (4.38) to find the optimal base-stock level.

Now suppose v < 1, i.e., consider the discounted-cost criterion. Since the timing of
orders now affects the cost, (4.38) is no longer valid. However, the solution turns out to be
nearly as simple: The optimal base-stock level is the same in every period, and it is given

by
g — 1 (m) . (4.39)

(We omit the proof.)
We summarize these conclusions in the following theorem:

Theorem 4.4 The optimal base-stock level in every period of an infinite-horizon model
with no fixed costs is given by

ot — p-1 (p _151;;97)6) .

Note that this theorem holds for both v = 1 and v < 1, i.e., for both the average- and
discounted-cost criteria.

If demand is normally distributed, then the results from Section 4.3.2.5 still hold, after
modifying to account for . In particular,

p—(1—9)c

S*=p+od!
pro ( h+p

) = U+ 2q0, (440)
where & = (p — (1 — v)¢)/(h + p). The comments on forecasting in Section 4.3.2.7 also
apply here.

4.3.4.1 Lead Times and Reorder Intervals So far, we have assumed that the lead
time is 0 and that the reorder interval—the number of periods that elapse between orders—
is 1. (The reorder interval is sometimes called the review period.) In this section, we relax
those assumptions to allow the lead time to be nonzero and the reorder interval to be greater
than 1. In general, we define the lead-time demand as the cumulative demand in L + R
consecutive periods. In the newsvendor problem in Section 4.3.2, L = 0 and R = 1, so
the lead-time demand is just the demand in a single period.

The sequence of events is the same as that on page 90. In the discussion that follows,
we will use the following notation:

1L, = ending inventory level (after step 4 of sequence of events) in period ¢
1P, = inventory position after order is placed but before demand is observed
(after step 2 of sequence of events) in period ¢
Dy = demand in period ¢
DiJt,s) =cumulative demand in periods t,t +1,...,s — 1
=0ift>s
D" = cumulative demand in 7 consecutive periods

f7, F™ = pdf/pmf and cdf of D"
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Figure 4.5 Inventory dynamics. All items on order or on hand in period ¢ have arrived by period
t + L. Items ordered before ¢ — L arrive before ¢, and items ordered after ¢ arrive after ¢ + L. In the
figure, L = 3.
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For the moment, assume that the reorder interval R equals 1, but allow an L-period
lead time, L > 0. That is, an order placed in period ¢ (in step 2 of the sequence of
events) is received in step 2 of period ¢ + L. From step 4 of the sequence of events, the
holding and stockout costs are incurred based on the ending inventory level, I L, a random
variable; therefore, to calculate the expected holding and stockout costs, we need to know
the distribution of /L, which in turn depends on the inventory policy parameters (e.g., .S).
The distribution of IL is not obvious, because I L depends on both the random demand
and the inventory actions governed by .S. Worse still, there is a delayed reaction: Inventory
decisions made in period ¢ do not have an effect on I L until period £+ L. In the intervening
periods, other orders may have arrived (increasing the inventory level) and demands will
have occurred (decreasing the inventory level).

The solution to this problem is to relate the inventory level at time ¢ + L to the inventory
position at time ¢ (which we know, in the case of a base-stock policy) and to the demand
during periods t,...,t + L (whose probability distribution we know). In particular, the
ending inventory level in period ¢ + L is given by

ILiyp =IP, —D[t,t+ L +1). (4.41)

Why is (4.41) true? Well, all of the items included in I P,—including items on hand and
on order—will have arrived by period ¢ 4+ L. Moreover, no items ordered after period ¢ will
have arrived by period ¢t 4+ L. Therefore, all items that are on hand or on order in period ¢
will be included in the ending inventory level in period ¢t 4 L, except for the D[¢,t + L+ 1)
items that have since been demanded. (See Figure 4.5.) Another way to think of this is that
if the inventory position in period ¢ is I P; and there is no demand during [¢, ¢ + L], then the
inventory level in period ¢ + L will be I P;; and if some demand does occur, then I L, ,
will be I P, minus that demand.

Equation (4.41) is a very important equation. It applies to the periodic-review models in
this chapter and—in modified form—to the continuous-review models in Chapter 5. The
idea dates back to Scarf (1960); Zipkin (2000) refers to it as a conservation of flow equation.

Note that (4.41) only holds for the lead time L; that is, in general,

ILi 1 # 1P — D[t,t + L' +1). (4.42)
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This is because some of the units included in I P, may not be delivered by period ¢ + L’ (if
L' < L), or some units ordered after period ¢ may have been delivered by period ¢ + L’ (if
L' > L).

In steady state, we can drop the time indices from (4.41) and write

IL=IP — D1, (4.43)

where DZ*1 is a random variable representing the lead-time demand. (We’re omitting
some of the probabilistic arguments necessary to justify the move from (4.41) to (4.43).
See, for example, Galliher et al. (1959) and Zipkin (1986b).) If L = 0, then (4.41) simply
says that the ending inventory in period ¢ equals the inventory position after the order minus
the demand in the period.

Let us apply this insight to the infinite-horizon base-stock problem under the average-
cost criterion in Section 4.3.4. (Continue to assume that v = 1.) Since this is a base-stock
policy, I P; = S in every period ¢. Therefore,

ILii, =S —D[t,t+L+1), (4.44)

or in steady state,
IL =S — D* (4.45)

In other words, the pdf of IL is
f[L(QL') = fLJrl (S - .’E)

The expected cost is still given by (4.38), and Theorem 4.4 still gives the optimal base-stock

level, with £(-), F'(+), n(-), and n(-) replaced by fL1(-), FETL(.), ntH1(), and nLH1(.).

In essence, we have shifted the accounting so that actions taken in period ¢ do not incur

costs until period t 4+ L, though all of that logic is buried in the expectations in (4.38).
For normally distributed demands, Theorem 4.4 says that

S*=(L+1u+ VL +1z40, (4.46)

where p and o refer to the demand per period (and so (L + 1)u is the mean and /'L + 1o
is the standard deviation of lead-time demand). In (4.46), (L + 1)u is the cycle stock and
zaV L + 10 is the safety stock. The safety stock is held to protect against fluctuations in
lead time demand, which is why the safety stock component uses the standard deviation
of lead time demand. The reason the cycle stock level depends on the lead time, too, is
that the base-stock level refers to the inventory position—so if the lead time is 4 weeks, we
always want 4 weeks’” worth of cycle stock in the pipeline plus 1 week’s worth on hand.

Now let’s generalize this logic to allow a reorder interval of R > 1, so that orders are
placed every R periods. Continue to assume that the lead time is L > 0. The conservation-
of-flow argument now goes as follows: Assume that period ¢ is an order period and that
r € {0,1,...,R —1}. All items included in I P; will have arrived by period ¢ + L, and
therefore by period ¢t + L + r. No items ordered after period ¢ will have arrived by period
t 4+ L + R — 1 (because any such items would have been ordered in period ¢ 4+ R at the
earliest), or therefore by period ¢t + L + r. Therefore, the ending inventory level in period
t + L + r equals I P; minus the demand in periods ¢, ...,t + L + 7:

ILt+L+T:IPt*D[t,t+L+T'+1). (447)
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For a base-stock policy, I P, = S, so we have
ILt+L+7‘ = S_D[t,t+L+7"+ ].) (448)

if ¢ is an order period. Therefore, the expected cost is

1 R—-1

9(8) = > g""), (4.49)

Il
=)

where g(9) is the newsvendor cost function (4.3) with f(-) replaced by fL*"+1(.). In
general, this cost function must be optimized numerically to find the optimal base-stock
level, S*.

Note that if R = 1, then (4.47) and (4.48) reduce to (4.41) and (4.44), respectively, and
(4.49) reduces to (4.3).

[l EXAMPLE 4.4

Suppose that Cora’s Newsstand also sells city maps, which, coincidentally, incur
the same cost and demand structure as in Example 4.1: h = 0.18, p = 0.70,
D ~ N(50,82). The maps are not perishable, so it makes sense for Cora to plan
her inventory using an infinite-horizon model. Unmet demands are backordered.
Assume that v = 1. If L = 0, what is the optimal order quantity? What if L = 47
What if, in addition, R = 3?

If L = 0, then the analysis in Example 4.1 remains intact, and we have S* = 56.6.
Now suppose L = 4. From (4.46),

S* =5-50+5-0.8255 - 8 = 264.8,
with cost
g(S*) = (0.18 4 0.70)¢(0.8255)V/5 - 8 = 4.47.
If, in addition, R = 3, then from (4.49) the cost function is

2

9(8) = 234 (S).

r=0

Optimizing numerically, we get S* = 344.5, with cost g(5*) = 11.40. O

4.3.4.2 Service Levels The service level measures how successful an inventory pol-
icy is at satisfying the demand. There are many definitions of service level. The two most
common are as follows:

o Type-1 service level: the percentage of order cycles during which no stockout occurs,
sometimes called the cycle service level, denoted A.

o Type-2 service level: the percentage of demand that is met from stock, sometimes
called the fill rate, denoted B.

(An order cycle is the interval between two consecutive orders, or order arrivals. For
base-stock policies, the duration of each order cycle is equal to the reorder interval, R. For
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Table 4.1 Sample demands and stockouts.

Period Demand Stockouts

1 150 0
2 100 0
3 250 50

(s,.5) policies, and for the continuous-review models in Chapter 5, the length of an order
cycle is stochastic.)

For example, suppose there are 3 periods with the demands and stockouts given in
Table 4.1. Then the type-1 service level A is 67% (because we stocked out in 1 of
3 periods), while the type-2 service level B is 90% (because we filled 450 out of 500
demands). In theory, the type-1 service level can be greater than the type-2 service level,
but this rarely happens since the type-1 service level is a more stringent measure—any
cycle during which a stockout occurs is counted as a “failure,” rather than just counting the
individual stockouts as failures. (The type-1 service level would be greater than the type-2
service level if, for example, stockouts occur very rarely, but when they do, the number of
stockouts is very large.)

Focusing now on base-stock policies, assume that the lead time is L > 0 periods. If the
review period is R = 1 (see Section 4.3.4.1), the type-1 service level is easy to calculate:
By (4.45), no stockout will occur in a given period if and only if the lead-time demand for
the interval ending at that period is less than or equal to S, i.e., A = FLH1(S). If R > 1,
the type-1 service level is the probability that there are no stockouts in an order cycle, i.e.,
over the R periods between two order arrivals. No stockout occurs in a cycle if and only
if the inventory level at the end of the cycle (just before the next order arrival) is positive.
By (4.48), this inventory level is positive if and only if S — D[t,¢ + L + R) > 0, which
occurs with probability FLT2(S). To summarize:

Theorem 4.5 The type-1 service level under a periodic-review base-stock policy with lead
time L > 0 and reorder interval R > 1 is given by

A= FIHR(S),
where FLHE(.) is the cdf of the cumulative demand over L + R consecutive periods.
The type-2 service level is a bit trickier. The type-2 service level is

B_E # of demands met from stock in a period

4.50
# of demands in a period ( )

We will start by making two simplifying assumptions to derive an approximate expression
for the type-2 service level, then relax one and then finally both assumptions to obtain
another approximation and an exact expression.

o Simplifying Assumption 1 (SAl): Backorders never last for more than one order
cycle. That is, each arriving order is large enough to clear all existing backorders.

o Simplifying Assumption 2 (SA2):

# of demands met from stock in a period

E
# of demands in a period
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E[# of demands met from stock in a period]

E[# of demands in a period]

SALl is reasonable when S is sufficiently high, as it usually is in practice. SA2 is not true,
of course, since E[X /Y] # E[X]/E[Y] in general for random variables X and Y'; we will
explore the loss of accuracy caused by this assumption later in this section. We will use B
to denote the type-2 service level under SA1 and SA2, B, to denote that under SA2 only,
and B to denote the exact type-2 service level that assumes neither.

Under SA1 and SA2, we have

. _ E[# of demands met from stock in a period]
E[# of demands in a period]

1=

E[# of demands met from stock in a cycle]

E[# of demands in a cycle]

4 E[# stockouts .in a cycle] 7 @51)
E[# demands in a cycle]

where the second equality follows from the fact that each cycle lasts exactly R periods.
Assume that an order is placed in period ¢ and consider the cycle that begins in period t 4+ L
and ends in period t + L + R — 1. After the order arrives in period ¢ + L, the inventory level
is positive (by SA1), so the number of stockouts in the cycle equals IL,, ; , »_,, using the
notation in Section 4.3.4.1. Therefore,

E[# stockouts in a cycle] = E[/ L, ;  p 4]
=E[(S - D[t,t + L+ R))"] = n""7(9),
where the second equality follows from (4.48). Therefore,
nEHE(S)
Ry

Johnson et al. (1995) and subsequent authors refer to this as the “traditional approach.”

Now relax SA1. We can no longer calculate the expected number of stockouts in a cycle
using the inventory level at the end of the cycle because not all of the “negative” items in
IL;, 1+ Rr—1 are stockouts from the current cycle; some may be left over from the previous
cycle. Therefore, we must account for these items more carefully.

Suppose period t is an order period. Let’s focus on the cycle that begins in period ¢ + L
and ends in period t + L + R — 1. After the order arrives in ¢t 4+ L, no additional orders
arrive in this cycle. Therefore, the number of demands met from stock during this cycle
equals the difference between the on-hand inventory immediately after the order arrival in
period t 4 L (call this O H7) and the on-hand inventory at the end of periodt + L + R — 1
(call this O Hs). Moreover, the expected demand during the cycle is Ryu. Therefore,

B =1- (4.52)

~ _ E[# of demands met from stock in a cycle]
T E[# of demands in a cycle]
_ E[OH,] — E[OH,)
= i )
It remains to evaluate E[OH;] and E[OHa]. First, OH; = X, where X is the inventory
level immediately after the order arrival in period ¢t + L. Then

X =1Ly +Dyyp =S — D[t t+1L) (4.53)
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since [ Ly, =S — D[t,t + L + 1) by (4.48). Therefore,
E[OH,] =E [(S — D[t,t + L))*] = a"(9). (4.54)

If L = 0, then the right-hand side of (4.53) is S (since D[t,t + L) = 0), and in (4.54),
nk(9) = E[(S — D¥)T] = S since (D¥ = 0).
Similarly,
E[OH,] =E[(S — D[t,t + L+ R))"| = a" TR (9).
Therefore,
T_LL(S) _ ﬁLJrR(S)
Ru ’
where 7% (S) = S if L = 0. This approach is due to Hadley and Whitin (1963); see
also Johnson et al. (1995), Zhang and Zhang (2007), and Teunter (2009). For another,
equivalent, formula for the type-2 service level under SA2, see Problem 4.17.
Since S is chosen to cover L + R periods of demand, we would expect the number of
stockouts over L periods to be negligible; put another way,

By =

(4.55)

nk(S) =E[ (D - 5)| ~E[~ (D" - 5)] = 5 - uL.
Therefore, from (4.55),
S —pL—alth(S)

S —pL — (S —(L+ R)u+nttE(S
S (SRS
i
_ L+R N
_Ru—n (S):Bl,
Ry

which provides another justification of (4.52).

Finally, let us relax both SA1 and SA2 to derive the exact fill rate. As above, assume
that ¢ is an order period, and let X be the inventory level after the order arrives at the start
of period t + L. First assume that L > 1. Then from (4.53), X = 5 — DL ie., the pdf of
X is fx(z) = fL(S — x). We will evaluate (4.50) by conditioning on X: By the law of
total expectation,

B_E [# of demands met from stock in a period]

# of demands in a period

S # of demands met from stock in a period
X # of demands in a period

|

:/j [ - min{ﬁ’d}fR(d)dd} FE(S — 2)da

d=0 d

:/i [FR(x) +/C: ZfR(d)dd} FH(S = w)da. (4.56)

In the last equality, the change in the lower limit of the first integral comes from the fact
that min{z™,d} = 0 for z < 0. If L = 0, then X = S, and (4.56) becomes

B =FR(S)+ / oS fE(d)dd. (4.57)
d=S d
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If the demands are discrete, the integrals in (4.56) and (4.57) are replaced by sums; see
Babiloni et al. (2012).
We summarize the expressions for the type-2 service level in the following theorem.

Theorem 4.6 For a periodic-review base-stock policy with lead time L > 0 and reorder

interval R > 1: The approximate type-2 service level under simplifying assumptions SAI

and SA2 (see page 110) is

nL+R ( S)
Rp

the approximate type-2 service level under simplifying assumption SA2 is

Bi=1- : (4.58)

“L(o\ _ =L+R
By = ) RZ (5 (4.59)

where n*(S) = S if L = 0; and the exact type-2 service level is
B=F"R(9)+ / 5

EfR(d)dd (4.60)
d=S
if L=0and
S o
B= FE dedd] L(S —2)d 461
/M[ @+ [ Zrtaa) 14 - 2y “61)
ifL> 1.

Theorem 4.6 holds for both continuous and discrete demands, with the integrals in (4.61)
replaced by sums.

[l EXAMPLE 4.5

Suppose that we use a base-stock level of S = 360 in the problem with L = 4 and
R = 3 in Example 4.4. What are the type-1 and type-2 service levels?
From Theorem 4.5, the type-1 service level is

A = F"(360) = 0.6817.
From Theorem 4.6, the type-2 service level under SA1 and SA2 is

n’(360)

350 = 0.9709.

Blr’?ﬁl*

The type-2 service level under SA2 is

. 7%(360) — a7(360)  160.0 — 14.3693

B, = =0. )
2 3-50 150 0-9709

Since n*(360) ~ 10721, By and B, agree to at least 20 decimal places. On the other
hand, these both differ a bit from the exact service level, which is

360 o
- ’ r E ’ 4 —x)ar = V. .
b= /zzo {F ( H/d:x ! (d>dd] F4(360 — z)dz = 0.9732
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Service levels are an important performance measure once the system has been opti-
mized, but they also often play a key role in the optimization itself. The main reason for
this is that the stockout penalty p is difficult to estimate, and so it is often preferable to
ignore stockouts in the objective function and instead limit them in a constraint, via the
service level. That is, we solve a problem of the form

minimize hI(S) (4.62)
subject to  type-1 service level > « (4.63)
or subjectto type-2 service level > . (4.64)

The objective function comes from (4.2), ignoring the stockout cost. Since (.S) and
the service levels are all increasing functions of .S, this optimization problem amounts to
finding .S such that the constraint holds as an equality.

To optimize the base-stock level subject to the type-1 service-level constraint (4.63), we
simply have

S* = (FEFY=1(a). (4.65)

Since the expressions for the type-2 service level above are more complex than those for
type-1, optimizing subject to (4.64) usually requires an iterative search to find the S that
satisfies B = [ in one of the (approximate or exact) expressions for B Theorem 4.6.

0 EXAMPLE 4.6

For the problem setting in Example 4.4 with L = 4 and R = 3, suppose Cora wishes
to require a type-1 service level of 0.9 or a type-2 service level of 0.95. What values
of S should she use?

To attain a type-1 service level of 0.9, we use (4.65) to get

S* = (F")7*0.9) = 377.13.
For the type-2 service level, let’s first use the approximate service level By:

n'(S)
~ 5-50
— n’(S)=175
= S =351.96.

1 =0.95

Now, since
n*(351.96) — n7(351.96
L )~ | ) _ 0.5,
3-50
this value of .S also satisfies the constraint using B,. On the other hand, setting
S = 350.83 makes the exact type-2 service level, B, equal 0.95. (|

4.4 PERIODIC REVIEW WITH NONZERO FIXED COSTS: (s, S) POLICIES

4.4.1 (s, S) Policies

We now consider the more general case in which the fixed cost K may be nonzero. If
K # 0, it may no longer make sense to order in every period, since each order incurs a cost.
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Instead, the firm should order only when the inventory position becomes sufficiently low.
In particular, we will assume in this section that the firm follows an (s, S)-policy—and
in Section 4.5.2, we will prove that such policies are optimal for this system. An (s, S)
policy works as follows: In each time period, we observe the current inventory position;
if the inventory position is less than or equal to s, then we place an order whose size is
sufficient to bring the inventory position up to S. Both s and S are constants, and s < S.
The quantity s is known as the reorder point and S as the order-up-to level. The reorder
point and order-up-to level may change from period to period.

In the special case in which s = S, we place an order in every period, and the (s, S)
policy is equivalent to a base-stock policy. (In the discrete-demand case, we would use
s =S — 1; this is why base-stock policies are sometimes known as (S — 1, .9) policies.)

Arrow et al. (1951) were the first to formulate the expected cost function for a given
choice of the parameters s and .S, and to begin the discussion of how to find the optimal
s and S. Their analysis simply assumed that the firm followed an (s, S) policy, as we do
in this section; the optimality of (s, .S) policies for multiperiod problems was not proven
until Scarf’s (1960) paper.

(s,.5) polices are closely related to (r, Q) policies, which we will cover in greater depth
in Chapter 5. In an (r, Q) policy, when the inventory position reaches the reorder point,
denoted r, we place an order of size . The difference is that in an (r, Q) policy, we always
order the same quantity (), while in an (s, S) policy, we instead order up to a fixed level
(S). The two types of policies are equivalent if, in every order cycle, there exists a time
at which the inventory position exactly equals the reorder point (s or r), and if we always
observe the inventory at that moment. Examples include continuous-review systems with
continuously distributed demand (as in Section 5.1) and periodic-review systems in which
the demand in each period can only be O or 1.

We will discuss how to determine the optimal s and S for the single-period, finite-
horizon, and infinite-horizon cases separately, just as we did in Section 4.3 for the zero-
fixed-cost case. Actually, the single-period case is not nearly as useful for the K > 0 case
as it is for the K = 0 case. This is because single-period models are most commonly used
for perishable products that must be ordered every period; a multiple-period model thus
reduces to multiple copies of a single-period one. Even if K > 0, we still need to order
the perishable product in every period, so the fixed cost becomes a constant and can be
ignored. Fixed-cost models are therefore most useful in their multiple-period incarnations.
Nevertheless, we will discuss the single-period model to introduce the basic concepts.

4.4.2 Single Period

Suppose the inventory position at the start of the (single) period is . For given s and S, the
ordering rule is: If x < s, order S — x; otherwise, order 0. Once we order (or don’t), we
incur holding and stockout costs just as in the zero-fixed-cost model, except the base-stock
level is replaced by S (if we order) and x (if we don’t). Therefore, the total expected cost
in the period—as a function of s and S—is given by

K+g(5), ife<s
9(8,5):{ 9(9) .
g(x), if z > s,
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where g(.9) is the expected cost function for the single-period problem with no fixed costs
as expressed in (4.3) or (4.6). (As in the single-period model without fixed costs, we are
assuming ¢ = 0.)

Optimizing g(s, S) over s and S is actually quite easy (Karlin 1958b): We already know
from Theorem 4.1 that F~!(p/(h + p)) minimizes g(S), so our aim should be to order up
to this level unless the fixed cost makes doing so prohibitively expensive. In other words,
we should set S* = F~1(p/(h+p)) and set s* such that s* < S* and g(s*) = g(S*) + K.
(Such an s* is guaranteed to exist for continuous demand distributions.) Because of the
convexity of ¢(5), if z < s, it is cheaper to order up to S than to leave the inventory
position at z, and the reverse is true if x > s.

4.4.3 Finite Horizon

The finite-horizon model with nonzero fixed costs can be solved using a straightforward
modification of the DP model for the zero-fixed-cost case from Section 4.3.3. Just as before,
0;(x) represents the optimal expected cost in periods t, . .., T if we begin period ¢ with an
inventory level of  (and act optimally thereafter). Now 6;(x) must account for the fixed
cost in period ¢ (if any), as well as the purchase cost and expected holding and stockout
costs in period ¢, and the expected future costs, as in the ' = 0 model. In particular,

0¢(z) = min{Ko(y — z) + c(y — =) + g(y) + vEp[Or+1(y — D)]}, (4.66)

y>z

where

1, ifz>0
o) =9 0 T
0, otherwise

and g(-) is as expressed in (4.3) or (4.6).

The DP can be solved exactly as described in Section 4.3.3. Just as in that section,
the results of the DP tell us exactly what to order up to in each period ¢ for each starting
inventory level . However, just as before, we would rather have a simple policy to follow,
rather than having to specify y;(z) for every ¢ and x. And, just as before, this is always
possible, because a simple policy is always optimal—in this case, an (s, .S) policy.

To illustrate this, Figure 4.6 plots y;(z) for a particular instance of the problem.’
Just as in Figure 4.4, each curve is flat for a while and then climbs along the line y = .
However, whereas in Figure 4.4 the two portions are continuous, here there is a discontinuity
representing the point at which we stop ordering. In particular, for period ¢, there are values
Sy and s; such that for x < s;, we have y;(z) = Sy, and for = > s;, we have y,(x) = z. In
other words, these curves each depict an (s, S) policy. We will prove in Section 4.5.2.2 that
an (s, .S) policy is optimal in every period of a finite-horizon model with fixed costs—the
pattern suggested by Figure 4.6 always holds.

Once we solve the DP for a given instance, we still need to determine s; and S; from
the results. This is not difficult: s; is equal to the largest « such that y;(x) = St, and, just
as in Section 4.3.3, S; = y;(—0o0) (or y:(x) for the smallest 2 value considered).

6 Again, for a variant with time-varying parameters.
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Figure 4.6 DP results, K > 0: y;(z).

4.4.4 Infinite Horizon

Recall that the infinite-horizon model with no fixed costs (Section 4.3.4) is as simple as
the single-period model (Section 4.3.2). Unfortunately, this is not true in the fixed-cost
case. The infinite-horizon model is more difficult than its single-period or finite-horizon
counterparts. To analyze it, we will need a bit of renewal theory.

A renewal process is a random variable N (t) that counts the number of “renewals”
that have occurred by time ¢, where the amount of time between the (n — 1)st renewal
and the nth renewals is a random variable X,,. The X,, are independent and identically
distributed. (For example, if X,, has an exponential distribution, then the renewals may
represent arrivals and NV, is a Poisson arrival process.) Let R,, be a sequence of random
variables representing the reward that we “earn” at the time of the nth renewal. (R,, may
be negative, in which case it is a cost that we pay.) Then

N(t)
R(t)= > Ry

n=1

is the cumulative reward earned by time ¢, for ¢ > 0. We call R(t) a renewal-reward
process.

The renewal-reward theorem gives us an easy way to calculate the long-run expected
reward per unit time. Let E[X] = E[X,,] and E[R] = E[R,,]; we will assume that both are
finite.

Theorem 4.7 (Renewal-Reward Theorem)

ti EEOL_ ELR 4.67)

t—o0 t ﬁ

Proof. Omitted; see, e.g., Ross (1996). [

=
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Returning now to our infinite-horizon inventory model, we may consider a renewal to
occur each time an order is placed. Then the time between renewals, X,,, is the length of
an order cycle. It has a discrete probability distribution since this is a discrete-time model.
The reward at a given renewal is the negative of the cost incurred during the preceding
cycle. We are interested in calculating g(s, S), the expected cost per period for given s and
S. By the renewal-reward theorem,

E|[cost per cycle]

9(s,8) = Elcycle length] ’

(4.68)
where both the numerator and denominator of the right-hand side are functions of (s, .S).

Unfortunately, this still leaves us with two problems: (1) The expected cost per cycle
and the expected cycle length are not trivial to calculate, and (2) the resulting expected cost
function, ¢(s,.S), is not convex. Problem (1) was resolved early on (see, e.g., Veinott and
Wagner (1965)), but for decades (2) could not be overcome, and all of the exact algorithms
for this problem relied on nearly complete enumeration, with some minor improvements
over the years (Veinott and Wagner 1965, Bell 1970, Archibald and Silver 1978). This all
changed when Zheng and Federgruen (1991, 1992) introduced a simple, efficient algorithm
that finds the exact optimal s and S. It can be viewed as a generalization of the algorithm
for (r, @) policies discussed in Section 5.5.

We’ll assume that the per-period demands are drawn iid from a discrete (integer) dis-
tribution and that the lead time is zero. (Nonzero lead times can be handled using a
similar accounting trick as described in Section 4.3.4.1.) We’ll further assume that v = 1
and consider the average-cost criterion (though Zheng and Federgruen (1991) show how
to modify the algorithm for the discounted-cost criterion). We will first derive the cost
function g(s, S), then state a few properties of it, and finally describe the algorithm.

Let M () be the expected number of periods until the next order is placed, assuming
the inventory level” equals s + j (j > 1) after placing the order in step 2 of the sequence
of events on page 90. If the inventory level after ordering is s 4 7, then we place an order
in the next period if the demand d in the current period is at least j, and otherwise we wait
one period and then have a remaining expected wait of M (j — d) periods. Therefore, we
can express M (j) recursively as

MG) =S @)+ S f @0 MG —d) =1+ F MG —d). (469
d—j d=0 d=0

Similarly, let (s, y) be the total expected cost in the current period through the next order,
assuming the inventory level equals y > s. k(s,y) includes the fixed cost but not the
inventory costs in the next order period, and includes the inventory costs but not the fixed
cost (if any) in the current period. Using similar logic, we can write k(s, y) recursively as

y—s—1

ks, y) =g)+ K > fld)+ Y f(dk(s,y—d), (4.70)
d=0

d=y—s

where ¢(y) is as given in (4.32), since we incur inventory costs of g(y) in the current period
and then either place an order in the next period (if d > y — s) or incur an additional
k(s,y — d) in costs (otherwise).

7Since the lead time is zero, the inventory level and inventory position are the same.
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One can show that the recursive equations (4.69) and (4.70) have the unique solution
given by

M(0) =0 @.71)
M(j) =M@ —1)+m(j—1) (4.72)
k(s,y) = K + y_zsfl m(d)g(y — d), (4.73)
where a
m(0) = 1_;“0) (4.74)
m(j) = dzjjof(d)m(j —d). 4.75)

The expected cost per cycle is k(s, S), and the expected cycle length is M (S — s), so from
(4.68),

K+ i md)g(S —d)
M(S —s) '
Let y* be the minimizer of g(y). We will assume there is only one such minimizer,
and only one optimal reorder point and order-up-to level, but the analysis below is easily
extended if there are multiple minimizers; see Zheng and Federgruen (1991). The optimal
reorder point s* and order-up-to level S* lie on either side of y*:

9(s,8) = (4.76)

Lemma 4.8 s* < y* < 5™,

Proof. Omitted; see Veinott and Wagner (1965) and Zheng and Federgruen (1991). ]

The following lemma provides three additional properties of the optimal solution that
will be important in the algorithm. First, it gives a condition that lets us identify the optimal
reorder point for a given order-up-to level .S, denoted s(S). Second, it establishes an
efficient way to determine whether one order-up-to level is better than another. Third, it
gives an upper bound on S*.

Lemma 4.9

(a) For a given order-up-to level S, let

s = max{y <y"[g(y, 5) < g(y)}-
Then s is the optimal reorder point for S, i.e., s = s(5).

(b) Let S and S be two order-up-to levels. Then 9(s(9),95) < g(s(g), S) if and only if

9(s(5), 5) < g(5(5), 5).

(c) If (s*,S*) are optimal parameters and g* = g(s*,S*) is the corresponding cost,
then
S* <max{y > y"|g(y) < g"}.

Proof. Omitted; see Zheng and Federgruen (1991). ]
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Part (a) says that, for fixed S, we can find the optimal reorder point by increasing y until
g(y,S) > g(y). Part (b) says that if we have an incumbent order-up-to level S and we
are considering switching to a new one S, we can tell whether S is better by evaluating .S
in conjunction with the original reorder point s(ﬁ)—we do not have to search for the best
reorder point for S. Part (c) says that S* is no larger than the largest y for which g(y) < g*.

We are now ready to describe Zheng and Federgruen’s algorithm. Pseudocode for the
algorithm is given in Algorithm 4.2. In the algorithm, Sy and s( are the initial order-up-to
level and reorder point, § and S represent the incumbent solution, and S and s represent a

solution under consideration.

Algorithm 4.2 Exact algorithm for periodic-review (s, S) policies with discrete demand
distribution (Zheng and Federgruen 1991)

1: Sp + y* > Set initial S
20 s y* > Initialize search for s(Sp)
3: repeat > Search for s(Sp)
4: §4—s—1

s: until g(s, So) < g(s)

6: Sg < S > Set initial s
7. S« Sp: 8 < so; g+ g(8, A) > Initialize incumbent and cost
8 S+ S+1 > Choose next order-up-to level to consider
9: while ¢(S) < g do > Check for termination via Lemma 4.9(c)
10: if g(5,5) < g then > Check for improvement via Lemma 4.9(b)
11: S S > Update incumbent order-up-to level
12: while g(s, S) < g(s + 1) do > Search for s(5)
13: s+—s+1

14: end while

15: 845G g(59) > Update incumbent reorder point and cost
16: end if

17: S+ S+1
18: end while
19: return (§,.5)

> Try next order-up-to level

> (8, 5) is optimal

Lines 1-6 identify the initial solution: Sy is set to y*, and sg is set to the largest s < .Sy
such that g(s, Sp) < g(s), which, by Lemma 4.9(a), is optimal for Sy. We set the incumbent
solution S equal to the initial solution in line 7, and then, in line 8, we choose S = S+1
as the next order-up-to level to consider.

Next, in lines 9-18, we progressively increment S in search of better order-up-to lev-
els. Line 10 checks whether a given candidate S is better than the incumbent S; by
Lemma 4.9(b), it suffices to compare g(3, S) to § = g(3, ). If S improves the cost, we
replace the incumbent with it and search for the corresponding optimal s by incrementing
s until we have g(s) > g(s,5) > g(s + 1) (lines 12—14), at which point we have found
the optimal s for S by Lemma 4.9(a). Regardless of whether the new S passed the test
in line 10, we move on to the next S (line 17). The while loop terminates when g(.S) is
greater than the incumbent cost, which follows from Lemma 4.9(c): If g(S) > g, then
g(S) > g*, which means S is greater than the maximizer in Lemma 4.9(c) and cannot be
optimal. Moreover, all larger S values will also be greater than this maximizer and can be
ruled out.
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Table 4.2 ¢(y) for Example 4.7.
v 9 |y gy

0 2400 | 8 3.57
1 2001 ] 9 381
2 16.10 | 10 4.39
3 1241 | 11 5.17
4 917 | 12 6.07
5
6
7

6.59 | 13 7.03
482 | 14 8.01
3.85 | 15 9.00

U0 EXAMPLE 4.7

The daily demand for fruit juice at Cora’s Newsstand has a Poisson distribution with
mean 6 bottles. Each bottle held in inventory incurs a holding cost of h = 1 per day.
Unmet demands are backordered and incur a stockout cost of p = 4 per bottle per
day. To replenish her inventory of fruit juice, Cora must send an employee to pick
up the inventory at the supplier, at a labor cost of K = 5. Using Algorithm 4.2, find
s* and S*.

Table 4.2 gives g(y) fory = 0,1, ..., 15. From the table, we can see that y* = 8,
so we initialize Sy and s to 8. We have:

9(7,8) = 8.56 > g(7) = 3.85
9(6,8) = 8.49 > g(6) = 4.82
9(5,8) = 8.33 > g(5) = 6.59
9(4,8) =8.20 < g(4) =9.17

Therefore, we terminate the repeat loop with s = 4 and set sy to the same. We
set S =8, 8=4,and j = g(4,8) = 820. Weset S =S +1 =9 and, since
g(9) = 3.81 < g, we enter the while loop at line 9.

We have ¢g(4,9) = 8.05 < g, so we update the incumbent S to 9 and search for
the corresponding optimal s. Since

9(4,9) = 8.05 > g(5) = 6.59

in line 12, we leave s at 4 and set § = 4 and ¢ = 8.05. We then increment S to 10
and return to line 9. Since ¢g(10) = 4.39 < g = 8.05, we continue the loop. Again
the new S is better than the old one since g(4, 10) = 8.04 < g, so we update S =10
and search for the corresponding optimal s. Again, we leave s as it is since

9(4,10) = 8.04 > g(5) = 6.59,

andweset$ =4, =8.04,and S = 11. Inline 9, g(11) = 5.17 < g, so we continue
the loop, but the if in the next line fails, because g(4,11) = 8.08 > §. The while
condition holds but the if condition fails for S = 12,13, 14, but g(15) = 9.00 > g,
so the loop terminates with S = 15. The algorithm terminates with the optimal
parameters equal to (3, .5) = (4,10) and optimal cost 8.04. O
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There are several heuristics to find near-optimal s and S values. One common approach
makes use of the relationship between (s,S) and (r, Q) policies that we discussed in
Section 4.4.1: We find the optimal r and (@), either exactly or heuristically—for example,
using one of the methods in Section 5.1—and then set

s=r

S=r+0Q.

When optimizing the (r, Q) policy, the lead time should be set to L + 1 (where L is
the lead-time for the (s,.S) policy) to account for the difference between continuous and
periodic review.

Another approximation involves expressing s and .S as explicit functions of the param-
eters, as follows. Assume that the demand is normally distributed. Let p and o2 be the
mean and variance of the single-period demand, and let pz, = L and 0% = oL be those
of the lead-time demand. Let

K 0.506 0_2 0.116
Q = 1.30p°49 () (1 + g) 4.77)
h 7
. ‘/Q%_ (4.78)
oL
Then set
0.183
s=0.973u; + o1, (z +1.063 — 2.192z> (4.79)
S=s+Q. (4.80)

This approximation is known as the power approximation and is due to Ehrhardt and Mosier
(1984). It was developed by solving a lot of (s, S) models and fitting regression models
for a particular functional form to determine the coefficients. It seems complicated, but it
makes some intuitive sense. First, roughly speaking, the parameter () represents an order
quantity. For a moment, suppose o = 0 (the demand is deterministic). Then we have

K 0.506 K 0.5 2K,u
-1 0.494 ( B ~ /2,05 2 _
Q= 130u ; V2u ; =

in other words, the EOQ quantity! Even if o > 0, @ is close to the EOQ quantity since
the coefficient of the last term in (4.77) has a small exponent. Note also that, since the
coefficient in (4.79) is close to 1 and z does not depend on 1, s moves in roughly one-to-one
correspondence with .

The power approximation performs quite well in practice and has the additional benefit
of providing insights into the structure of the optimal solution (such as those in the previous
paragraph) that are not obvious when the solution is found using an algorithm. The
performance is not as good when @)/ < 1.5, but a simple modification is available for this
case (Ehrhardt 1979).

[ EXAMPLE 4.8
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Return to Example 4.4, using L = 0, and suppose that K = 2.5. Use the (r, Q)
approximation and the power approximation to find near-optimal s and S values.

First, the (r, Q) approximation. We can use Algorithm 5.2 to find the optimal
parameters; the demand per unit time is N (50, 82), and we set the lead time to L = 1
to convert to a periodic-review model, so the lead-time demand is also N (50, 82). This
gives (1, Q) = (41.29,45.31). Then, we set s = r = 41.29 and S = r + @ = 86.60.

Alternately, we can use one of the approximate methods to find » and ). For
example, the EOQ+SS approximation (Section 5.3.3) gives (r, Q) = (56.60, 37.27)
and (s,5) = (56.60,93.87).

Now consider the power approximation. We have y = pp = 41.29 and 0 =
or, = 45.31, so

2.5 0.506 82 0.116
=1. 0-494) (= 1+ — =34.1
Q = 1.30 (50°4%%) 018 + 5 34.10

3110 0.18
— /22 220 0469
N 8 0.70

0.183
=0. . 1. —2.192-1.04 =40.2
5 =10.973 50+8<1.0469+ 063 9 0 69> 0.20

S =40.20 + 34.10 = 74.30.

We have not discussed an exact algorithm for problems in which the demand has
a continuous distribution, as it does in this example. However, we can discretize the
demand distribution and then use Algorithm 4.2 to find exact optimal (s, S) values
for the discretized problem. Doing so gives (s, S) = (45, 57).

How can we compare the performance of these solutions? We have also not
discussed an expected cost function like (4.76) for continuous demand distributions,
but again we can discretize the distribution, round the solution, and then apply (4.76)
to approximate the cost of a given solution. Doing so on the four solutions above
gives the following:

g(41,87) = 8.08 ((r, Q) approximation with exact (r, Q))
g(57,94) = 10.07 ((r, Q) approximation with approximate (7, Q))
9(40,74) = 6.80 (power approximation)

9(45,57) = 4.50 (optimal)

4.5 POLICY OPTIMALITY

Now that we know how to find the optimal .S for a base-stock policy (Section 4.3) and the
optimal s and S for an (s, .S) policy (Section 4.4), we prove that those policy types are in
fact optimal for their respective problems. In a way this is a lot to ask—we are trying to
show that no other policy, of any type, using any parameters, can outperform our chosen
policy type (provided we choose the optimal parameters) in the long run. Fortunately, we
do not need to prove this explicitly for every possible competing policy type. Rather, we
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will use the structure of the cost functions to prove that the optimal policy has the desired
form.

We will first consider the zero-fixed-cost case, then the fixed-cost case, in both cases
considering single-period, finite-horizon, and infinite-horizon cases separately. We will
use the same assumptions and notation as in Section 4.4, as well. We continue to assume
that the cost and demand parameters are stationary, but the results below still hold if these
vary from period to period (deterministically).

Let’s focus for a minute on finite-horizon problems with fixed costs. Recall from
Section 4.4.3 that 6;(x), the optimal cost in periods ¢, ..., T if we begin period ¢ with an
inventory level of x, can be calculated recursively as

b1(2) = min{Kd(y — 2) + c(y —2) + 9(y) + 1Ep[fr41(y — D)}, (4.81)
where g(y) is given by (4.3) or (4.6). The zero-fixed-cost problem is a special case, obtained
by setting K = 0, and the single-period problem is also a special case, obtained by setting
T = 1. Note that (4.81) does not assume that any particular policy is being followed. It
simply determines the optimal action (order-up-to level) for each starting inventory level
in each period ¢. Our goal throughout this section will be to use the structure of (4.81) to
show that the optimal actions follow the policies we have conjectured are optimal.

4.5.1 Zero Fixed Costs: Base-Stock Policies

We first consider the case in which K = 0 and prove that—regardless of the horizon
length—a base-stock policy is always optimal. These results date back to Karlin (1958a,
1960) and Veinott (1965), among others.

4.5.1.1 Single Period 1In this section, we’ll consider the special case in which T’ = 1
and K = 0. We’ll also assume that the terminal cost function (see Section 4.3.3) is equal
to 0. This assumption is not necessary—we could instead assume only that the terminal
cost function is convex—but it simplifies the analysis.
Under these assumptions, (4.81) reduces to
0(x) = min{c(y — z) + g(v)}. (4.82)
y>z
Of course, we already know how to solve this problem: Theorem 4.1 gives the optimal
solution. But our goal here is not to find the optimal solution for a given instance, but rather
to prove that the optimal solution always has a certain structure—a base-stock policy.
It will be useful to keep the parts of (4.82) that depend on z separate from those that
don’t. To that end, we can rewrite 6(z) as

0(x) = min{H (y) — czx}, (4.83)
y>x

where
H(y) = cy +g(y). (4.84)

Since we are calculating 6(z) for fixed x, from (4.83), we see that the optimal decision can
be found by minimizing H (y) over y > x—that is, starting at y = x, we want to minimize
H (y) looking only “to the right” of x. The question is, does this strategy give rise to a
base-stock policy?
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Suppose H (y) has a shape similar to that pictured in Figure 4.7(a). In this example,
H(y) is minimized at y = S. If < S, then the optimal strategy is to set y = S, while
if z > S, the optimal strategy is to do nothing—to set y = x. In other words, the optimal
policy is a base-stock policy. This argument works for any convex function H (y)—if H (y)
is convex, then a base-stock policy is optimal. And H (y) is convex because ¢(y) is convex,
so we have now sketched the proof of the following theorem.

H(y) H(y)

y y
s S s s’

(a) H(y) convex; base-stock policy is optimal. (b) H (y) nonconvex; base-stock policy is not op-
timal.

H(y)

+ Y
S

(c) H(y) nonconvex; base-stock policy is still op-
timal.

Figure 4.7 Hypothetical shapes of the function H (y).

Theorem 4.10 A base-stock policy is optimal for the single-period problem with no fixed
costs.

What if H(y) is nonconvex? (This would happen if we chose some other single-period
expected cost function ¢g(y).) For example, suppose H(y) has a shape similar to that
in Figure 4.7(b). Then a base-stock policy is not optimal since for z < .S, we would set
y =S, while forz € (s', S'], we would set y = S”. On the other hand, there are nonconvex
functions for which a base-stock policy is still optimal—the function in Figure 4.7(c) is an
example. Even though the function has several local minima, it is still optimal to order up
to S if x < S and to do nothing otherwise.
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4.5.1.2 Finite Horizon Tt was simple to prove that H (y) is convex, and therefore that
a base-stock policy is optimal, for the single-period problem. Our main goal in this section
will be to prove that the analogous functions (one per period) are also convex. This is a bit
trickier than in the single-period case.

The finite-horizon, zero-fixed-cost version of (4.81) is

Ou(x) = ggg{C(y — )+ g(y) +vEp[0i+1(y — D)]}. (4.85)
Here, we allow the terminal cost function 6 () to be nonzero, and we’ll add the require-
ment that it is convex.

Again we rewrite 0;(z) to separate the parts that depend on x from those that don’t:

Ou(x) = I;gg{Ht(y) — cx}, (4.86)
where
Hi(y) = cy +g(y) +YEp[i11(y — D)]. (4.87)

It is simple to argue that, if H;(y) is convex, then a base-stock policy is optimal in period
t. The tricky part is showing that H;(y) is convex for every t. We’ll prove this recursively
in the next lemma, showing that if 6,1 (x) is convex, then so are H(y) and 6;(z). Then,
in Theorem 4.12, we’ll get the recursion started, implying that all the H;(y) functions are
convex and that a base-stock policy is optimal in every period.

Lemma 4.11 If 0;,1(x) is convex, then:
(a) Hy(y) is convex.

(b) A base-stock policy is optimal in period t, and any minimizer of Hy(y) is an optimal
base-stock level.

(¢) 6:(x) is convex.
Proof.

(a) Clearly cy is convex since it is linear, and we know from Section 4.3.2.3 that g(y)
is convex. The third term is convex because ;.1 (x) is convex (by assumption)
and expectation preserves convexity.® Therefore, H;(y) is convex, since the sum of
convex functions is convex.

(b) From (a), we know that H,(y) is convex. Let S; be a minimizer of Hy(y). If x < Sy,
then the optimal y > x is aty = S;; if « > S}, then H, is nondecreasing to the right
of x (by convexity), so the optimal y > x is y = x. This is exactly the definition of
a base-stock policy.

(c) From (4.86), 6;(x) is the minimum over y of H;(y) (minus a constant). Since
minimization preserves convexity,’ the convexity of H;(y) from (a) implies that of
0 (). [

8This is a well-known property of convex functions. It says that, if f(x) is a convex function and Y is a random
variable, then Ey [f(z — Y')] is convex.

9 Another well-known property of convex functions: If f(z, y) is convex and g(z) = miny {f(z,y)}, then g(z)
is convex (Boyd and Vandenberghe 2009, Section 3.2.5).
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We have done most of the heavy lifting, but we’re not done yet. All we have shown
is that a base-stock policy is optimal in period ¢ if 0,11 (x) is convex. The next theorem
establishes our main result—that a base-stock policy is optimal in every period—and the
convexity of 071 (+) gets the recursion started.

Theorem 4.12 [f the terminal cost function 011 (x) is convex, then a base-stock policy is
optimal in each period of the finite-horizon problem with no fixed costs.

Proof. By assumption, 071 (z) is convex. Therefore, by Lemma 4.11(b), a base-stock
policy is optimal in period 7. Moreover, 07 (z) is convex by Lemma 4.11(c). This implies
that a base-stock policy is optimal in period 7' — 1 and that 87 _4 (z) is convex. Continuing
this logic, a base-stock policy is optimal in every period. ]

This proof assumed that the single-period cost function, g(y), is convex. In fact, it is
sufficient to assume the slightly weaker condition that g(y) is quasiconvex, i.e., that —g(y)
is unimodal—in other words, that g(y) has a unique local (and therefore global) minimum.
For a proof, see Veinott (1966).

Of course, this analysis says nothing about how to find the optimal base-stock levels.
In general, we need to use the DP from Section 4.3.3 to find those. In most cases, the
base-stock levels will change over time, and the pattern depends on what happens at the
end of the horizon, i.e., the terminal cost function. For example, suppose backorders that
are outstanding at the end of the horizon must be cleared by, say, air-freighting inventory
from overseas at a very high cost. Then the base-stock levels will increase at the end of the
horizon to prevent these costly backorders. Conversely, suppose the product in question
is a hazardous material that must be disposed of at a very high cost if any remains at the
end of the horizon. Then the base-stock levels will decrease at the end of the horizon to
ensure that the inventory is sold. But if the terminal cost function is just right, the same
base-stock level will be optimal in every period. Moreover, in this special case, the optimal
base-stock levels can be found explicitly, without requiring an algorithm. This policy is
called a myopic policy because it optimizes only a single period at a time, ignoring the rest
of the horizon. In this special case, then, the myopic policy is optimal in every period.

The special case is defined by setting the terminal cost function to

Ori1(x) = —cx.

This terminal cost function would be applicable if, for instance, at the end of the horizon,
any excess inventory can be returned to the supplier for a full reimbursement of the order
cost ¢ and any backorders must be cleared by purchasing a new item, again at a cost of c.

First consider period 7', for which it is straightforward to find the optimal base-stock
level:

Hr(y) = cy +9(y) + vEp[0r41(y — D)]
=cy+9(y) +1Ep[—c(y — D)]
= c(L=7)y+9(y) +yep,
where = E[D]. The optimal base-stock level is a minimizer of Hr(y), so we set

Hi(y) = 0:
Hy(y)=c(l—7)+ (h+p)F(y) —p=0
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(from (4.15)), or
_p—(1—7)c
F(y) = P

The optimal base-stock level in period 7" is therefore

Sp=F! (W) . (4.88)

This is the same solution as the infinite-horizon newsvendor model in Theorem 4.4.

Now we know that (4.88) gives the optimal base-stock level in period 7'; it remains to
show that the same base-stock level is optimal in the other periods. In period 7', the solution
to the minimization in (4.86) is to set y = S} if x < S% and y = x otherwise. Therefore,

O () = {HT(ST) cr, ifx <S% 4.89)

Hp(x) —cx,  otherwise.

Now let’s compute Hr_1(y) in order to derive the optimal base-stock level for period
T — 1. From (4.87),

Hr_1(y) = cy + g(y) +vEp[0r(y — D)]

cy +9(y) +7Ep[Hr(57) —cly = D)], ify < Sp
[something else], ify > S;.

(4.90)

The first case holds because if y < S7., then surely y — D < S7., and therefore, the first
case in (4.89) holds. But the second case is harder because if y > 57, then the first case
in (4.89) will hold for some D, and the second case will hold for others. Fortunately, it
will turn out that we won’t need to write out an expression for the second case of (4.90): If
we can show that the derivative of Hp_1(y) is O for some y < S%, then by the convexity
of Hr_1(y) (Lemma 4.11(a)), that y minimizes Hr_; (y) and we can ignore the case in
which y > S7. So assume that y < S7.. Then

Hr_1(y) = cy + g(y) + ¥Ep[Hr(ST7) — c(y — D)]
=c(1 =)y +g(y) +yep +vHr(S7),

which differs from Hr(y) only by an additive constant. Therefore, its derivative equals O
for the same value of y, and we have the same optimal base-stock level. Continuing this
logic backwards, we get the following theorem:

Theorem 4.13 If 071 (x) = —cx, then the myopic base-stock level, given by

ot — p-1 (p—(l—v)C)
h+p ’

is optimal in every period.

The optimal base-stock level in Theorem 4.13 is identical to the infinite-horizon base-stock
level from Theorem 4.4.
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4.5.1.3 Infinite Horizon Now suppose that T' = co. The main result is the following:

Theorem 4.14 A base-stock policy is optimal in each period of the infinite-horizon problem
with no fixed costs.

And we already know the optimal base-stock level, from Theorem 4.4. We will omit the
proof of Theorem 4.14. It uses many of the ideas from the earlier proofs and is not very
difficult (see, e.g., Zipkin 2000).

4.5.2 Nonzero Fixed Costs: (s, .S) Policies

We now allow K # 0 and prove that an (s, .S) policy is optimal. We will present formal
proofs for the single-period and finite-horizon cases but only state the result without proof
for the infinite-horizon case. In the single-period case, we will argue that an (s, S) policy
is optimal using the convexity of H(y), just as we used the convexity of this function to
prove that a base-stock policy is optimal for the zero-fixed-cost case. However, in the finite-
horizon problem, H;(y) is no longer convex (except for ¢ = T'). Fortunately, however, it
is close enough to convex (in a specific way to be made more precise later) to establish the
result.

4.5.2.1 Single Period Assume thatT = 1 and (asin Section 4.5.1.1) that the terminal
cost function equals 0. Then (4.81) reduces to

0(x) = 21212{1(5(7; —z)+e(y—z)+9(y)} (4.91)
= IyIlzlil{K(S(y —x)+ H(y) — cz}, (4.92)

where H (y) is the same as before, as defined in (4.84).

Let S* be the minimizer of H (y). Since H(y) is convex, we should definitely not order
if z > S*. What if x < 5*? We may not even wish to order in this case—it depends on
how much we save by ordering versus how much it costs to order. That is, we should order
up to S* if

H(x)—H(S") > K (4.93)

and do nothing otherwise. Which values of x satisfy (4.93)? By the convexity of H(y),
there exists an s* such that all x < s* satisfy (4.93). In particular, s* is the  such that
H(z) — H(S*) = K. (There may be multiple such z if H(y) is not strictly convex.
However, if the demand cdf F(-) is strictly increasing, then g(y) and hence H(y) are
strictly convex.)

We have now proved the following result, initially due to Karlin (1958b):

Theorem 4.15 An (s, S) policy is optimal for the single-period problem with fixed costs.

And, as we argued in Section 4.4.2, S* is the minimizer of H(y) and s* < S* satisfies
H(s*)—H(S*)=K.

4.5.2.2 Finite Horizon Recall the logic for proving that a base-stock policy is optimal
for the finite-horizon model with no fixed costs (Lemma 4.11 and Theorem 4.12): Since
O1+1(x) is convex, so is Hr(y); therefore, a base-stock policy is optimal in period T" and
O (x) is convex; therefore, Hr_1 (y) is convex; therefore, a base-stock policy is optimal in
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--- —cz

— H(y)
Hy(SP) + K, ifz <s
Hy(z), ifz > s}

Ht(St*) + K

Hi(57) |

Figure 4.8 Nonconvexity of 6;(z).

period T — 1, and 67 _1 () is convex; and so on. Unfortunately, the convexity implications
break down when fixed costs are present. Let’s see why.
From (4.81),

0i(x) = gg{m(y —z)+c(y—z)+9(y) +vEp[Oi+1(y — D)}

= min{Hy(y) + Ko(y —z) — ez},
y>x

where H,(y) is as defined in (4.87). Let’s assume that H;(y) is convex. Is 6;(x)? Since
H,(y) is convex, an (s, S) policy is optimal in period ¢. This implies that

Gt(a:) =

H,(S}) + K, ifz<st
—cx—|—{ ((Si)+ K, ifws s (4.94)

Hy(x), ifx > s;.

Figure 4.8 sketches 0;(z) and its constituent parts. The piecewise nature of 6;(x) makes
it nonconvex, even if Hy(y) is convex. Figure 4.9 plots §,(z) for ¢t = 8,...,11 for an
instance with 7' = 10andc =1, K =100, h = hr =1,p=pr =5,v =1, u = 100,
and o = 10.

Fortunately, although we used convexity to prove optimality of an (s, .S) policy in the
single-period case, convexity is not required—an (s,.S) policy is still optimal under a
weaker condition.

Let f(z) be a real-valued function and let K > 0. Then, f is K-convex if, for all x and

alla, b > 0,
f(@) = f(z =)

f@)+a- B2

< flz+a)+ K (4.95)
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Figure 4.9 0.(x) fort = 8,...,11; ¢ =1, K =100, h = hy = 1,p = pr = 5, v = 1,
pu =100, =10, T = 10.

IA
=

flx)—f(z—b
f(ﬂU)—FCl()b( ) | }

flx+a) |

r—b =z T +a

Figure 4.10 K -convexity.

(Scarf 1960). This definition is identical to (one) definition of convexity, except for the
+K on the right-hand side. The term [f(z) — f(z — b)]/b is similar to a derivative at x
(think about b approaching 0). Then the left-hand side of (4.95) approximates f(z + a) by
linearizing it using the “slope” of f between x — b and x. (See Figure 4.10.) Therefore, K-
convexity implies that this approximation doesn’t overestimate f(z + a) by more than K.
(It may also underestimate it.) If f is convex, then the approximation on the left-hand side
of (4.95) always underestimates f(z + a). That is, (4.95) holds with K = 0. Therefore,
0-convexity is equivalent to convexity.

It is worth noting that, whereas some other convexity-like properties that you may be
familiar with—quasiconvexity, pseudoconvexity, and so on—are used outside of inventory
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f(57) 4

S‘* 5“’*
Figure 4.11 Properties of K -convex functions from Lemma 4.16.

theory, K -convexity was developed specifically for proving the optimality of (s, .S) policies
and (as far as we know) is not used outside of inventory theory.
Here is another important property of K -convexity:

Lemma 4.16 Let f be a continuous, K-convex function. Let S* be its smallest global
minimizer and let s* be the largest x < S* such that f(x) = f(S*) + K. Then:

(a) f is nonincreasing on (—oo, s*|.
(b) If s* < x < S* then f(x) < f(s*).
(¢) Suppose S* < x1 < xo. Then f(x1) — f(xs) < K.

Lemma 4.16 says that a K -convex function first decreases for a while, up to a point s*; then,
after a different point S*, if it ever decreases, it never decreases by more than K; and, in
between these two points, the function never rises above its value at s*. (See Figure 4.11.)
This property will lead to the optimality of an (s,.S) policy (as you may have suspected
from our choice of notation in the lemma).

Proof.
(a) Suppose (for a contradiction) that f is not nonincreasing on (—oo, s*|. Then there
exists 1 < x3 < s* such that f(z1) < f(z2). We consider two cases.
Case 1: f(xz2) > f(s*). (See Figure 4.12(a).)

Letb =29 — 27 and a = S* — x5. Then,

fan) o L =S 2t)

( fx2) = flz1)
b

(z2) (since f(x2) — f(z1) > 0)

(s*) (by case 1 assumption)

(S*)+ K

|
~

x2) + (8™ — x2)

(AVARRYS

f
f
f
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1 X2 s* S T1 To s* S*
(a) Lemma 4.16(a), case 1. (b) Lemma 4.16(a), case 2.
s* z y S* 1 —b S* 1 To
(¢) Lemma 4.16(b). (d) Lemma 4.16(c).

Figure 4.12 Proof of Lemma 4.16.

= f(za+a)+ K.

This contradicts the K -convexity of f.
Case 2: f(x2) < f(s*). (See Figure 4.12(b).)

Letb=s*"—12z9anda = S* — s*. Then

f(s") = f(s* = b)

Fs7) +a- HELZRE 20 ey 4 :
> f(s*) (since f(s*) — f(z2) > 0)
— I + K
=f(s"+a)+ K

This contradicts the K -convexity of f.
Since both cases lead to a contradiction, f must be nonincreasing on (—oo, s*].

(b) Let s* < x < S*. Suppose (for a contradiction) that f(x) > f(s*). (See Fig-
ure 4.12(c).) Then, by the continuity of f(-), there is some y, x < y < S*, such
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that f(y) = f(s*) = f(S*) + K, which violates the definition of s* as the largest
x < S* such that f(z) = f(S*) + K. Therefore, f(x) < f(s*).

(c) Suppose (for a contradiction) that there exists some x1 and x5 such that $* < z1 < x4
but f(z1) — f(z2) > K. (See Figure 4.12(d).)

Let b be defined such that f(zq — b) = f(x1). (We’ll assume such a b exists. It
does if lim,_, _, f(x) = oo, which is true of the K -convex functions we’ll consider
below.) Let a = x2 — x1. Then

f(x1) — flz1 =)

fla) +a- S = (1) (since f(z = b) = f(a1)
> f(x2) + K (by assumption)
= f(x1+a)+ K.

This contradicts the K -convexity of f. ]

The following properties of K-convex functions will be important in the results that
follow. Parts (a)—(c) are generalizations of well-known results for convexity.

Lemma 4.17
(a) If f(x) is K-convex, then f(x + €) is K-convex for all constants e.

(b) If f1(x) is K1-convex and fa(x) is Ka-convex, then oy f1(x) + aa fa(x) is (an K1 +
as Ks)-convex, for any oy, ag > 0.

(c) If f(x) is K-convex and Y is a random variable, then Ey [f(x — Y')] is K-convex.
(d) If f(x) is Ki-convex and Ko > K, then f(x) is Ko-convex.
Proof. Omitted; see Problem 4.42. [

Now we’re finally ready to prove the optimality of (s, .S) policies for the finite-horizon
problem. The logic will be similar to the base-stock case: The K-convexity of 0;11(x)
implies the K'-convexity of H;(y), which implies the optimality of an (s, .S) policy in
period ¢ and the K-convexity of 6;(z); and so on. The result was first proven by Scarf
(1960); we follow the basic outline of his proof but use different arguments for some of the
details.

Lemma 4.18 If 0,1 (x) is continuous and K -convex, then:
(a) Hy(y) is continuous and K -convex.

(b) An (s,S) policy is optimal in period t, with S} equal to the smallest minimizer of
Hy(y) and s§ equal to the largest x < S} such that Hy(x) — Hy(S}) = K.

(c) 0.(x) is continuous and K -convex.
Proof.

(a) We know that
Hi(y) = cy + g(y) +1Ep[0i41(y — D)].



(b)

(©)
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The first two terms are each convex (i.e., O-convex). Since 6;11(x) is K-convex
(by assumption), Ep[6:+1(y — D)] by Lemma 4.17(c), and YEp[0;1(y — D)] is
K-convex by Lemma 4.17(b) and (d) since v < 1. Therefore, H:(y) is (040 + K)-
convex, or K(-convex, by Lemma 4.17(b). Continuity follows from the continuity of
each of the three terms.

First note that Lemma 4.16 applies to H:(y) since it is K-convex and that the
definitions of S} and s} are identical to those of S* and s* in the lemma. We’ll
determine the optimal ordering action for each starting inventory level z. If z < s},
then by Lemma 4.16(a), H(x) > H(sy) = Hy(Sy)+ K, soitis cheaper to order up
to S} than not to order (and there is no better order-up-to level since S} minimizes
Hi(y). If s; < o < Sf, then Hy(x) < Hy(s;) by Lemma 4.16(b). Therefore,
Hi(z) < Hi(S]) + K, soitis better to order nothing than to place an order. Finally,
if z > S}, then by Lemma 4.16(c), for any y > z, f(z) < f(y) + K, so it is better
to order nothing than to place an order. This is exactly the definition of an (s, S)
policy with parameters s; and S;.

From (4.94), we know that
Oi(x) = —cx + P (x),

where
H(Sy)+ K, ifx<s;]
Yi(z) = : .
H(z), ifz > sf.
Clearly, each of the pieces of 1);(x) is continuous, and at the breakpoint z = s}, we

have H;(S;) + K = H:(x) by the definition of s} from part (b). Therefore, 1):(x)
is continuous, and so is 0;(z).

To prove K-convexity, let x be any real number and let a,b > 0. Since —cz is
convex, it suffices to prove that ¢, (x) is K -convex. (Refer to Figure 4.8.)

If x — b > s7, then ¢:(y) = H¢(y) fory € [x — b,z + a], so the K-convexity of ¢
follows from that of H;.

If x + a < s}, then ¢, (y) = H¢(S]) + K, a constant, for y € [z — b,z + al, so the
K -convexity of 1 is trivial.

Suppose z —b < s} < x+a. We consider two cases. First, if ¢:(x) < H(S}) + K,
then

Yi(x) — Pi(x — b)

Ye(z) +a- b
<ty(x) (since Pi(x) < Hy(S)) + K = t(z — b))
<H(S;) + K
<Hi(x +a)+ K (since S; minimizes H;)

=Y(r+a)+ K (sincex+a > sj).
If, instead, ¢, (z) > Hy(S}) + K, then « > S} and so ¢4 (x) = Hy(z). Then

Yi(x) — Pi(x — b)
b

Ye(z) +a-
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Hi(x) — (Hy(S7) + K)

=Hi(x)+a- 5
H — H(SF
gHt(:c)—&—a-%Sﬁt) (since K >0andz — b < s} < S})
t

<Hi(x+a)+ K (by K-convexity of Hy, letting b’ = z — S})
=(x+a)+ K (sincex+a > s;).

Therefore, 1; () is K-convex, and so is ; (). [

Theorem 4.19 If the terminal cost function 0111 (x) is continuous and convex, then an
(s,5) policy is optimal in each period of the finite-horizon problem with fixed costs.

Proof. By assumption, 71 (z) is continuous and convex. Therefore, by Lemma 4.18(b),
an (s, .S) policy is optimal in period T'. Moreover, 7 (z) is continuous and K -convex by
Lemma 4.18(c). This implies that an (s, S) policy is optimal in period 7" — 1 and that
O1_1(x) is continuous and K -convex. Continuing this logic, an (s, S) policy is optimal in
every period. |

4.5.2.3 Infinite Horizon TIf T = oo, it is still true that an (s, .S) policy is optimal in
every period. And, echoing the infinite-horizon model with no fixed costs, the optimal s
and S are the same in every period. However, the proof of these facts is quite a bit more
difficult than the analogous proof in Section 4.5.1.3, and we omit it here. (See Zheng
(1991).)

4.6 LOST SALES

Throughout this chapter, we have assumed that unmet demands are backordered. In this
section, we assume instead that they are lost. The distinction is only important whenT" > 1.
(When T' = 1, unmet demands can only be lost.)

4.6.1 Zero Lead Time

In this section, we assume that the lead time L = 0. First consider the case in which
K = 0. In the finite-horizon model, the DP recursion (4.36) changes only slightly:

6:(x) = min{c(y - 2) +9(y) +7Eplbrr1 ((y — D)")I}- (4.96)

The only change is in the last term, where we take the positive part of y — D to reflect the
fact that the inventory level cannot become negative. A base-stock policy is still optimal
(Problem 4.44), provided that the terminal cost function 871 () is convex and nondecreas-
ing. (Under backorders, we required convexity but not monotonicity, but monotonicity is
usually not a restrictive assumption under lost sales. For example, one common terminal
cost function under backorders, 071 (z) = hT+1x+ + pr+127, is not nondecreasing, but
under lost sales, 2~ = 0, and the resulting function, 671 (z) = hy12" is nondecreasing.)
The DP algorithm, Algorithm 4.1, applies without modification.
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A base-stock policy is still optimal for the infinite-horizon model. Under the average-
cost criterion (y = 1) with lost sales, it is no longer true that we order p items per period, on
average, independent of the base-stock level; therefore, we must modify the expected cost
function (4.38) to account for the purchase cost. In particular, with probability 1 — F'(.S),
we end the previous period with /L = 0 and must order S units at the start of the current
period; and otherwise, we must order the demand from the previous period. Therefore,

S
9(S) =¢ ((1—F(S))S+/O df(d)dd)

S 0o
+ h/o (S — d)f(d)dd —l—p/s (d— S)f(d)dd

o0

S
—eS+ (h—c) /0 (S — d)f(d)dd + p/S (d—S)f(d)dd 497
=cS + (h — o)i(S) + pn(S). (4.98)

The first-order condition yields

*:F—l p—cC .
5 <h+p—0>

The solution changes only slightly under the discounted-cost criterion:

St — p! (hfp__cw> . (4.99)

(In fact, (4.99) holds for the average-cost criterion, too, setting v = 1.)

When K > 0, an (s,S) policy is still optimal (Veinott 1966). In the single-period
problem, we set S* and s* as described in Section 4.4.2, unless s* would be negative, in
which case we set s* = 0. The finite-horizon model (Section 4.4.3) can be modified in a
manner similar to (4.96).

4.6.2 Nonzero Lead Time

Now we allow L > 0. Recall from Section 4.3.4.1 that under backorders, the infinite-
horizon model with K = 0 extends easily to nonzero lead times. Unfortunately, the same
is not true under lost sales. The reason is that the logic behind the conservation-of-flow
equation (4.41) breaks down: We can no longer subtract the entire demand in periods
t,...,t+ L because a given demand only reduces the inventory level in period ¢ + L if the
inventory level was sufficient when the demand occurred. The problem can be formulated
as a DP, but with an L-dimensional state space. For reasonable values of L, the DP is
typically impossible to solve exactly due to the curse of dimensionality. Many heuristics
and approximations have been proposed; see, for example, Zipkin (2008a), Bijvank and
Vis (2011), or Goldberg et al. (2016) for reviews.

A base-stock policy is no longer optimal (Karlin and Scarf 1958) for the nonzero-lead-
time problem, and in fact the optimal policy form is unknown, aside from a few partial
results about its structure—for example, that the optimal order quantity is decreasing in
the on-hand inventory (Karlin and Scarf 1958) and that it is zero for certain vectors of
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on-order inventory (Morton 1969); Zipkin (2008b) proves these and other properties using
the concept of L?-convexity from discrete convex analysis.

On the other hand, Huh et al. (2009) prove that a base-stock policy is asymptotically
optimal as p/h — o0, and Goldberg et al. (2016) prove the asymptotic optimality as L. — oo
of an even simpler policy in which we order the same quantity in every period. Moreover,
Levi et al. (2008) introduce a 2-approximation algorithm (i.e., a heuristic with a fixed
worst-case error bound of 2). Their heuristic uses a dual-balancing policy, which means
that it balances the expected marginal holding cost and the expected marginal stockout cost
in each period. Order quantities in the dual-balancing policy can be computed much more
efficiently than using DP. Chen et al. (2014) present a different approximation scheme, with
an (additive) error bound that can be as small as the modeler likes (but with a corresponding
increase in computational complexity).

Not surprisingly, when K > 0, the situation is even more complicated, and optimal
policies are unknown for this case, too; see, e.g., Nahmias (1979).

Lost-sales problems with nonzero lead times are still, in many respects, an open problem
and are an active area of research.

CASE STUDY 4.1 Optimization of Warranty Inventory at Hitachi

Hitachi is a global manufacturer of computer components, power grid equipment,
construction vehicles, defense systems, and a wide range of other high-tech and heavy-
duty products. In the early 2000s, they collaborated with researchers from Stanford
University to optimize the inventory used to service warranties for disk drives. Khawam
et al. (2007) discuss in detail the project, which we summarize here.

A customer who returns a defective drive may choose to receive a replacement or a
credit for the value of the drive. The drives sent as replacements are usually remanu-
factured drives that were previously returned, and this project focused on managing the
inventory of such remanufactured drives. When the inventory is depleted, the company
must either purchase brand-new drives (which are more expensive than remanufactured
ones) from the factory or make the customer endure excessive lead times. Although the
warranty claims for hard drives follow a lifecycle curve similar to that of the product’s
demands, e.g., a Bass diffusion process (Section 2.6), the researchers chose to focus on
the steady-state portion of a given product rather than the ramp-up or -down phases.

They modeled the warranty inventory system as a single-stage, periodic-review,
infinite-horizon inventory system with backorders. Hitachi promises that warranty claims
will be served within L. periods. Their objective in this project was to determine the
minimum inventory levels required to satisfy a type-2 service level constraint that re-
quired the percentage of replacements that are completed within L. periods to be at
least 5. This ignores customers who prefer a credit instead of a replacement since
credits can be processed very quickly.

A fraction § of drives that are returned to Hitachi are tested to determine whether
they are actually fully operational (called “no defects found,” or NDF); the remaining
1 — § fraction are clearly defective and do not need testing. Of the drives sent for
NDF testing, a fraction ~y pass the NDF test and can be added to inventory, whereas
the remaining 1 — ~ of the drives are found to be defective. Defective drives (drives
that fail the NDF test as well as those that did not undergo NDF testing) are sent for
remanufacturing; a fraction 6 of those are successfully remanufactured and added to
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Returned drive

N

Remanufacturing NDF test
Scrap Inventory +————— — Factory

Figure 4.13 Process for handling returned drives at Hitachi.

inventory, while the remaining 1 — 6 must be scrapped. Finally, the inventory manager
can order new products from the manufacturing process, which incurs a lead time of
L,, periods. The process is summarized in Figure 4.13.

Let 7,, = J be the fraction of returned units that pass the NDF test, n; = (1—+)d0
be the fraction that fail NDF but are successfully remanufactured, and 7, = (1 — §)6
be the fraction that are not NDF tested but are successfully remanufactured. The total
fraction of claims that cannot be satisfied from returns-based inventory and instead
must be ordered from the factory is (1 — ) — 1, — 0y — 1, since « fraction of the
claims request a credit rather than replacement.

The inventory decisions that we must optimize are the replenishment orders placed
to the factory. A base-stock policy is not optimal for this system. However, as no
simple optimal policy is known, it is reasonable to assume the system uses a base-stock
policy for the replenishment orders.

The demand for warranty claims in a given period is assumed to be N(j,c?). The
number of replacement drives demanded in a period—the “positive” demand—is there-

fore
Dt ~ N ((1-a)u (1-a)?).

On the other hand, returned units that are successfully added to inventory in a period
can be considered as “negative” demand:

D™ ~N Z Nilh, Z 7)1-012

i€{n,f,r} i€{n,f,r}

The net demand that must be satisfied from inventory in period t is the difference
between the two: D,, ~ N (pin,02), where

Hn = 1 - Oé Z | K
i€{n,f,r}

o2=1(1-a) Z ni| o
i€{n,f,r}

(We assume the term inside the [] is positive, otherwise the supply exceeds the demand.)
The L.-period lead time that Hitachi promises its customers for replacement drives
in effect reduces the supply lead time of L,, periods. That is, the lead-time demand
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should be interpreted as the demand over L,, — L.+ 1 periods rather than over L,, +1
periods. This is a net lead time, which we discuss in detail in Section 6.3; see also
Hariharan and Zipkin (1995). The net-lead-time demand is normally distributed with
mean (L,, — L. + 1)u,, and variance (L, — L. + 1)o2.

We want to ensure a type-2 service level of 3. Using By from (4.58), we have

nlnLetl(§) = (1 - B)(1 - a)p, (4.100)

where nlm=Le+1(.) is the loss function for the net-lead-time demand. Equation (4.100)
can be solved numerically to find S.

The researchers also developed models with (1) random rather than deterministic
yields of the processes in Figure 4.13, using ideas similar to those in Section 9.3; (2)
random lead times in the remanufacturing process, using formulas similar to (5.24)
and (5.25); and (3) order batching, using a model similar to that in Section 13.2.4.
They embedded these models into a spreadsheet, into which planners could input the
weekly demand forecast (using a moving average) and other parameters. The model
outputs included the base-stock level and the resulting average inventory level, expressed
in terms of weeks of supply (inventory units divided by units demanded per week).
Interestingly, the optimal base-stock levels for different product families were very close
to each other when expressed in weeks of supply, even though the input parameters
differed considerably.

The research team rolled out the spreadsheet tool to planners, who used it as part of
the planning process for warranty servicing. The tool—and the process of developing
it—was also valuable to planners for learning more about the operation of the inventory
system.

PROBLEMS

4.1 (Inventory of Ski Jackets) A clothing company sells ski jackets every winter but
must decide in the summer how many jackets to produce. Each jacket costs $65 to produce
and ship and sells for $129 at retail stores. (For the sake of simplicity, assume the jacket
is sold in a single store.) Customers who wish to buy this jacket but find it out of stock
will buy a competitor’s jacket; in addition to the lost revenue, the company also incurs a
loss-of-goodwill cost of $15 for each lost sale. At the end of the winter, unsold jackets are
sold to a discount clothing store for $22 each.
a) First suppose that the demand for the ski jackets this winter will be distributed as
a normal random variable with mean 900 and standard deviation 60. What is the
optimal number of jackets to produce?
b) Now suppose that the demand is distributed as a Poisson random variable with
mean 900. What is the optimal number of jackets to produce?

4.2 (Dixie’s Stew) One of the specialties at Dixie’s Cafe is vegetable stew, which simmers
over alow flame all day. Since the cooking time is so long, Dixie must decide in the morning
how many servings of the stew to cook for that night’s dinner service. Moreover, the stew
cooked on a given day cannot be served the next day; it must be thrown away. Vegetable
stew is the highest-profit item on the menu at Dixie’s Cafe. It earns Dixie a profit of $8 per
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Table 4.3 Demand for in-flight meals for Problem 4.3.

Cumulative
d  Probability f(d) Probability F'(d)

40 0.01 0.01
41 0.03 0.04
42 0.04 0.08
43 0.05 0.13
44 0.08 0.21
45 0.09 0.3
46 0.12 0.42
47 0.13 0.55
48 0.17 0.72
49 0.12 0.84
50 0.08 0.92
51 0.03 0.95
52 0.02 0.97
53 0.02 0.99
54 0.01 1

serving, whereas all the other items earn a profit of $4. Customers who want stew but find
it out of stock will order one of these other items. The ingredients for one serving of stew
cost the Cafe $2.50.

a) First suppose that the demand for stew on a given evening is normally distributed
with a mean of 18 and a variance of 16. How many servings of stew should Dixie
prepare in the morning? (Fractional servings are OK.) What is the expected cost
(ingredients and lost profit) of the optimal solution?

b) Now suppose that the demand is distributed as an exponential random variable
with mean 18. How many servings should Dixie prepare?

4.3 (In-Flight Meals) Oceanic Airlines sells meals aboard their flights. Obviously, the
airline must decide how many meals to put on the airplane before the flight takes off, and it
cannot restock additional meals if it runs out during the flight. Each meal sells for $7 and
costs the airline $2.50. If there are meals left over at the end of the flight, the perishable
items must be thrown away, but nonperishable items (crackers, napkins, etc.) may be reused.
The value of the reusable items is estimated at $1.50. Assume there are no loss-of-goodwill
penalties for unmet demand, only the lost profit.

a) Suppose the demand for meals on today’s flight #815 has the distribution given
in Table 4.3. How many meals should Oceanic stock on the flight?

b) Suppose instead that the demand for meals on flight #815 has a normal distribution
with mean 50 and standard deviation 10. Now how many meals should Oceanic
stock?

¢) Calculate the optimal expected profit for meals sold on flight #8135, still assuming
demands are N (50,10?).

4.4 (Chemical Manufacturing) A chemical manufacturer produces a certain chemical
compound every Sunday, which it then sells to its customers on Monday through Saturday.
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The company earns a revenue of $80 per kg of the compound sold. Each kg manufactured
costs the company $40. If any of the compound goes unsold by Saturday night, it must
be destroyed safely, at a cost of $15 per kg. The total demand for the chemical compound
throughout the week has a normal distribution with a mean of 260 kg and a standard
deviation of 80 kg.
a) How much of the chemical compound should the company produce every Sunday?
b) What is the expected cost (including manufacturing cost, lost profit, and disposal
cost) per week?

4.5 (Cheesy Blasters) A restaurant sells a snack food called Cheesy Blasters. Cheesy
Blasters are essentially nonperishable, and since they are a specialty item, customers
who experience stockouts are willing to wait until a future day, i.e., their demands are
backordered. Daily demand for Cheesy Blasters is distributed as N(28.3,7.12). The
restaurant orders the product from its supplier each morning. Unsold Blasters held in
inventory overnight incur a holding cost of $0.75 per item, and backorders incur a penalty
of $3.50 per item.

a) Calculate the optimal base-stock level and expected cost per day.

b) Assuming the restaurant uses the base-stock level from part (a), calculate its
type-1 and type-2 service levels. For type-2, calculate its exact service level, B,
and both approximate service levels, Bj and B,.

¢) Repeat part (b) assuming that the restaurant uses a base-stock level of 30.

d) Now assume that the restaurant can only place a replenishment order once per
week (7 days), and that the supply lead time is 2 days. Calculate the optimal
base-stock level and expected cost per period.

e) Repeat part (b) for the system described in part (d), using the optimal base-stock
level.

4.6 (Electricity Generation) On day ¢, an electricity utility company must decide how
much generation capacity to prepare for the electricity it will generate on day ¢ + 1. Each
megawatt-hour (MWh) of capacity prepared costs the utility r. Let Sy;1 be the generation
capacity chosen on day ¢ for generation on day ¢ + 1.

The demand for day ¢ + 1, denoted Dy, 1, is stochastic, with pdf f(-) and cdf F(-).
Dy is not observed until day ¢ + 1, although for simplicity we will assume that the entire
day’s demand is revealed at the beginning of the day.

Once D;41 is observed, the utility generates min{D; 1, S;1+1} MWh of electricity.
Each MWh of electricity actually generated incurs a cost of ¢ per MWh (in addition to
the cost r already incurred to prepare the capacity). If D;1q > S;11, the utility must
purchase electricity on the spot market to make up the difference. (The spot market is a
marketplace in which the utility can purchase an unlimited quantity of electricity with no
advance notice required.) The price per MWh of electricity purchased on the spot market
ism,withm >r+c.

a) Write an expression for 57, 1, the optimal number of MWh of capacity to prepare.
b) Supposer = $5/MWh, ¢ = $2/MWh, m = $20/MWh, and D; 1 ~ N(150,20?)
MWh. What is 5§, ;7

4.7 (Newsvendor Applications #1) Each of the situations below can be interpreted as a
newsvendor problem. For each, indicate the holding and stockout costs, h and p, and use
the results of Section 4.3.2 to find S*.



a)

b)

c)
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Table 4.4 Probability distribution of TV show duration for Problem 4.7(b).

x  P(show lasts for x seasons)

0.25
0.05
0.10
0.20
0.15
0.10
0.10
0.05

0NN R W=

You are about to sign a 2-year contract for a mobile phone and you need to decide
how many minutes per month to commit to purchasing. You can purchase any
number S of minutes. (You are not restricted to rate plans specified by your
mobile phone company.) If you commit to purchasing S minutes per month,
you pay $0.05 for each of these S minutes (regardless of whether or not you use
them), plus $0.25 for each minute you use in excess of S.

(For example, if S = 100 and you use 120 minutes, you pay 100 x 0.05 +
20 x 0.25 = 10.)

Your monthly usage of minutes has a normal distribution with mean 1000 and

standard deviation 220.
You are the producer of a new TV show and are about to negotiate a contract with
the star of the show. You need to decide how many seasons (years) to commit
to in the contract, but you are not sure how many seasons of the show will be
produced before it is canceled. For each season you commit to in the contract,
the star’s salary will be $1.5 million. If you commit to S years but the show lasts
for longer than that, you will have to pay the star $2.5 million per season (since
she will become more popular in the future and will demand a higher salary). If
you commit to S years but the show is canceled earlier than that, you do not need
to pay the star’s salary for seasons that were not produced; instead, you must pay
her a $500,000 contract-cancellation fee for each season committed to but not
produced.

(For example, if you commit to 3 seasons and the show is produced for 4
seasons, you will pay $1.5 x 3 4+ $2.5 x 1 = $7 million. If the show is produced
for 2 seasons, you will pay $1.5 x 2 4+ $0.5 x 1 = $3.5 million.)

Table 4.4 lists your estimates that the show will last for exactly x seasons, for

various values of x.
You are purchasing tickets for a group of students to attend a minor league baseball
game. Tickets cost $8 each when purchased in advance. The number of students
who will actually show up to the game is random and has a Poisson distribution
with mean 26. Suppose you purchase S tickets. If fewer than S students show
up for the game, you can return the extra tickets to the box office for half of their
original price. If more than S students show up for the game, you will need to
buy tickets from “scalpers” (people selling tickets outside the stadium) for $30
each.
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4.8 (Newsvendor Applications #2) Follow the instructions for Problem 4.7 for each of
the following situations.

a)

b)

c)

You are the manager of an auto-repair shop at which every car requires the entire
day to repair. The shop does not accept appointments; customers arrive randomly.
All customers arrive exactly when the shop opens in the morning.

If the number of auto mechanics on duty on a given day, S, is at least as
large as the number of customers that arrive in the morning, all of the customers’
cars will be repaired. If the number of customers exceeds S, however, the extra
customers leave and get their car repaired at a competing shop across the street.

The number of customers arriving in a given day has a Poisson distribution
with a mean of 18. Each car that is repaired earns the shop a profit of $470, and
each mechanic on duty costs the shop $200 per day.

At the beginning of the academic year, you need to decide how many “dining
dollars” to put on your university ID card. Dining dollars earn you a 15%
discount on the food you buy on campus—so $100 in dining dollars buys you
100/0.85 = $117.65 in food. However, any dining dollars not spent by the end
of the academic year are lost. (Yes—you could just stock up on soda and potato
chips at the end of the year to spend your remaining dollars. But pretend that’s
not possible.) The (undiscounted) value of the food you buy in 1 year is given
by the random variable X, which has a lognormal distribution with parameters
1 = 6 and scale parameter o = 0.3. (That is, In X has a normal distribution with
mean 6 and standard deviation 0.3.)

A small cement manufacturer operates a single truck, which makes deliveries
throughout the day. The company must decide how much cement to load onto
the truck each morning, before knowing how much cement each customer will
request. It costs the company $20 per cubic yard loaded onto the truck, in
materials and labor costs. For each cubic yard of cement sold, the company earns
$65 in profit. The total demand for cement in a given day (summed over all
the firm’s customers) is normally distributed with a mean of 7 cubic yards and a
standard deviation of 3 cubic yards.

There is no opportunity to load more cement for the rest of the day. Any
unused cement at the end of the day must be discarded, with no salvage value—in
fact, it costs the company $35 per cubic yard in labor to clean out the dried-up
cement from the truck. Assume the truck’s capacity is large enough to hold any
desired amount of cement.

4.9 (Simulation of Mobile-Phone Contract) Simulate the system in Problem 4.7(a) for
1000 months in a spreadsheet program. For each month, generate a random variate from
the appropriate distribution and calculate the resulting cost. In your writeup, include the
first 10 rows of your spreadsheet and report the average total cost per month (including the
cost of the contracted minutes).

4.10 (Simulation of Dining Dollars) Simulate the system in Problem 4.8(b) for 1000
years in a spreadsheet program. For each year, generate a random variate from the appro-
priate distribution and calculate the resulting cost. In your writeup, include the first 10
rows of your spreadsheet and report the average total overage and underage cost per year.
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4.11 (Managing Blood Inventory) A hospital purchases blood from a local blood-
donation organization and uses it for patients during surgeries and emergency procedures.
The hospital pays $175 for each unit of blood purchased. Orders must be placed first thing
in the morning, and any blood not used by the end of the day must be discarded. There is
no salvage value or cost to discard a unit of blood. If the hospital needs more blood on a
given day than they purchased that morning, they must place an emergency order; blood
ordered this way costs $420 instead of $175. The number of units of blood that the hospital
uses on a given day is normally distributed, with a mean of 150 and a standard deviation of
40.
a) Interpret this problem as a newsvendor problem. What are the holding and
stockout costs, h and p?
b) What is the optimal number of units of blood for the hospital to purchase in the
morning? (Fractional answers are OK.)
¢) On what fraction of days will the hospital need to order at least one emergency
unit of blood?
d) Suppose unused inventory costs the hospital money to dispose. Will the optimal
order quantity increase, decrease, or stay the same? Will the optimal expected
cost increase, decrease, or stay the same?

4.12 (Inventory Simulation) Using a spreadsheet software package of your choice,
simulate an infinite-horizon base-stock policy (Section 4.3.4). Your spreadsheet should
include columns for the starting and ending inventory level; the order quantity; the random
demand; and the total cost (as well as any other columns you wish to include). Use
the optimal base-stock level S’ (which should be calculated within your spreadsheet) and
assume that the system begins period 1 with .S units on hand.

a) Assume that demands per period are N (100, 202) andthath =3,p = 25,7 =1,
and L = 0. Simulate the system for at least 1000 periods and include the first 10
rows of your spreadsheet in your report.

b) For each performance measure listed below, calculate the exact mean value (using
formulas contained in this chapter) and the mean value from the simulation, and
compare the two.

e Ending inventory level
Order quantity
Holding cost per period
Stockout cost per period
Total cost per period
Type-1 service level
Type-2 service level

4.13 (Inventory Simulation: Fixed Cost) Add a fixed ordering cost K to your simulation
from Problem 4.12 and implement an (s, .S) inventory policy. Calculate optimal, or near-
optimal, values of the policy parameters s and .S in the spreadsheet and use those for
the simulation. Assume K = 1000. Report the simulated mean values for each of the
performance measure listed in Problem 4.12(b). (Make sure to include the fixed cost when
you report the total cost.)

4.14 (Inventory Simulation: Lead Time) Modify your simulation from Problem 4.12
to handle a nonzero lead time L. Calculate the optimal value of S in the spreadsheet and
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use it for the simulation. Assume L = 4. Report the simulated mean values for each of the
performance measures listed in Problem 4.12(b).

4.15 (Implicit vs. Explicit Newsvendor Cost Functions) Let 4’ = h 4+ ¢ — v and
p’ = p+r — c. Prove that the (implicit) newsvendor cost function (4.12) under cost
parameters h’ and p’ is equal to the explicit newsvendor cost function (4.19) plus the
constant (r — ¢)u, which represents the expected margin earned on the units sold.

4.16 (Discrete Newsvendor with Continuous Demands) Suppose that the newsvendor’s
demand has a continuous distribution but the newsvendor must choose integer values of
S. Prove (by giving examples) that S* can equal either S — 1 or S, where S is such that
F(S—1) <p/(h+p) <F(S).

4.17 (Alternate Fill Rate Formula) Silver and Bischak (2011) prove the following
formula for the type-2 service level under an infinite-horizon base-stock policy with lead
time L > 0 and reorder interval R > 1:

VL+R VL R L+R
B=1-|Y—"—""—"¢CV ~YZ¢cv \/
R CV.YZ(2) RCDZ” \/ECV+Z I

where CV = o/ is the coefficient of variation for the demand in one period and

. 4.100)

S—(L+R)u
VL+ Ro

Prove that (4.101) is equivalent to (4.55).

4.18 (Newsvendor with Forecasting) Suppose that demands are normally distributed
and that the newsvendor does not know p and o, but he estimates them in each period, as
described in Section 4.3.2.7, using moving averages and standard deviations with N = 5.
The observed demands in periods ¢t — 10, ...,t — 1 are 99, 87, 125, 106, 100, 107, 93, 114,
87, and 85. The cost parameters are h = 2 and p = 15. What is the optimal order quantity
for the newsvendor in period t?

4.19 (Lognormal Newsvendor) Suppose the demand D has a lognormal distribution
with parameters p and o. (That is, In D ~ N(u,0?).) Prove that the optimal solution to
the newsvendor problem and its expected cost are given by

S* = 6N+zag

9(8%) = (h + p)E[D]®(0 — za) — hE[D],

where a = p/(h + p).
Hint: The loss function for the lognormal distribution for z > 0 is

2 2 J— —_
n(z) = et T (’M) —x<1—q>(h” “)) (4.102)

g g

4.20 (The Cooperative Newsvendor) Consider a newsvendor who purchases newspa-
pers from his supplier at a cost of ¢ per newspaper and sells them at a price of r per
newspaper. If he has unsold newspapers at the end of the day, he can take them to the local
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recycling center, which pays him a salvage value of v per newspaper. The daily demand
for newspapers has pdf f(x) and cdf F'(x). Assume that F'(z) is strictly increasing.

a) Write the newsvendor’s expected cost as a function of S, denoted g¢,,(S). (Your

expression may include integrals.) Show that the order quantity that minimizes

gn(S)is
S* = Fp~1 r-e
" r—uv/’

b) Suppose the newsvendor’s supplier prints newspapers on demand; that is, she
observes the newsvendor’s order of S and then prints exactly S newspapers.
The supplier therefore faces no uncertainty. It costs the supplier b to print one
newspaper. Write the supplier’s expected net cost (i.e., cost minus revenue) as a
function of .S, denoted g4(S). Then write the total supply chain expected cost as
a function of S, denoted g;(S)—that is, g:(S) = g.(S) + gs(S).

¢) Find the order quantity S; that minimizes g;(.S). (If the supplier and the newsven-
dor were both owned by a single firm that sought to minimize its total costs, this
is the order quantity it would pick.)

d) Prove that S7 = S; if and only if ¢ = b—that is, if and only if the supplier earns
zero profit on each newspaper she sells to the newsvendor.

e) Prove that g:(S}) = g:(S;) if and only if ¢ = b, and ¢:(S}) > g+(S;) otherwise.

f) In a short paragraph, discuss the implications of the results you proved in this
problem. What does it mean for two supply chain partners that are each attempting
to minimize their own costs rather than minimizing the total supply chain cost?

421 (g(S*) for Poisson Newsvendor) Suppose that in the newsvendor problem, the
demand per period, D, has a Poisson distribution with mean A. Suppose further that there
exists an S* such that F'(S) = p/(h + p). Prove that

9(57%) = (h+p)f(ST)A.

4.22 (Non-Standard-Normal Loss Function) Prove equation (4.25) (also given in
(C.3D)).

4.23 (Loss Function Derivatives) Prove equations (4.13) and (4.14) (also given in (C.15)
and (C.16)).

4.24 (Uniform Loss Functions) Derive expressions for the first- and second-order loss
and complementary loss functions for the continuous U[0, 1] distribution.

4.25 (A Simple Revenue Management Problem) An airplane has n seats in coach class.
Two types of travelers will purchase tickets for a certain flight on a certain date: leisure
travelers, who are willing to pay only the discounted fare r;, and business travelers, who
are willing to pay the full fare vy (ry > r4). The airline knows that the number of leisure
travelers requesting tickets for this flight will be greater than n for sure, while the number
of business travelers requesting tickets is a random variable X with a given cdf F'(z).
Assume that the leisure travelers always purchase their tickets before the business
travelers do. (In practice, this is roughly true, which is why airfares increase as the flight
date gets closer.) The airline wishes to sell as many seats as possible to business travelers
since they are willing to pay more. However, since the number of such travelers is random
and these customers arrive near the date of the flight, a sensible strategy is for the airline to
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allocate a certain number of seats () for full fares and the remainder, n — @, for discount
fares.

The discount fares are sold first: The first n — ) customers requesting tickets will be
charged 4, and the remaining <( customers will be offered the full price r¢. Some of the
customers being offered 7y will be leisure travelers; these travelers will decline to buy a
ticket. Similarly, it is possible that some of the seats sold to leisure travelers for r4 could
have been sold to business travelers who would have been willing to pay 7.

a) Show that the problem of finding the optimal number of full-fare seats, @, is
equivalent to a newsvendor problem. What should be used in place of the holding
and stockout costs h and p? What is the critical ratio? What is the optimality
condition (analogous to (4.16))?

b) Suppose that demand for full-fare seats is normally distributed with a mean of
40 and a standard deviation of 18. There are n = 100 seats on the flight, and
the fares are rqy = $189 and r; = $439. What is the optimal number of full-fare
seats? (Fractional solutions are OK.)

¢) For each of the following situations, will the optimal () increase, decrease, or
stay the same? Will the optimal cost increase, decrease, or stay the same? Briefly
explain your answers.

i. The full-fare tickets are fully refundable, and with some probability each
business traveler will cancel his or her ticket at the last minute, too late for
the airline to resell the newly vacant seat.

ii. A fraction of leisure travelers are willing to pay full fare if they arrive after
the discount seats are sold out.

iii. Unsold seats may be sold at the very last minute for a steeply discounted
price (for example, on a discount airfare website). These tickets are made
available after most (though not necessarily all) of the business travelers
have requested tickets.

4.26 (Allocating Parking Spots) You are the manager of a luxury apartment building
whose parking garage contains 300 parking spots. Residents may choose to purchase a
dedicated parking spot for $60,000 for 3 years. (Only 3-year contracts are available.) The
garage also has metered parking spots that require drivers to pay $4 per hour for parking.
The number of drivers wishing to park in metered spots in a given hour has a normal
distribution with a mean of 50 and a standard deviation of 10. Your goal is to choose how
to allocate the 300 spots between dedicated and metered spots.

To keep things simple, assume that (1) the demand for dedicated spots is greater than
300; (2) drivers who park in metered spots all park for exactly 1 hour, arriving and departing
on the hour (at 12:00, 1:00, etc.); and drivers who purchase dedicated spots never park in
metered spots, and vice-versa.

What is the optimal number of spots to designate as metered spots?

4.27 (Free Overage) Suppose that, in the newsvendor problem, we are allowed up to r
units of overage for free before incurring holding costs, where > 0 is a constant. That is,
the cost if we order S units and have ademand of dis g(S, d) = h((S—7r)—d)T+p(d—S)™.

a) Write the optimality condition (analogous to (4.16)).
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b) Apply this to the “dining dollars” example in Problem 4.8(b), assuming that
r = $50.

4.28 (DP Walkthrough) The demand for a given product in each period equals 2 with
probability 0.2, 1 with probability 0.5, and O with probability 0.3. Holding and stockout
costs per period are given by & = 2 and p = 5. The purchase cost is ¢ = 1, and there is
no fixed cost. The order-up-to level y in each period must be in {0, 1,2}. The planning
horizon is T' = 3 periods, and the terminal cost at the end of the horizon is given by
04(z) = 4z + 6z~. We begin period 1 with x = 2 units on hand. Using Algorithm 4.1,
determine y;(x) for t = 1,2,3 and for each feasible value of z. Also determine the
expected cost for the entire horizon (including the terminal cost), given that we begin the
horizon with z = 2. Work through the algorithm by hand and show your work.

4.29 (Implementing Base-Stock DP) Consider the finite-horizon model with no fixed
costs of Section 4.3.3.
a) Implement the DP model in any programming language you wish.
b) Suppose T' =10, c =1, h = 0.5, p = 10, and v = 0.98. Suppose the demand
per period is distributed as N (20, 5?) and the terminal cost function is given by

Or41(x) = hppra™ + prya”,

where hri1 = h and pry1 = p. Using your DP, find y;(z) and 6;(z) for
t=1,...,10 and x = —10,...,40. Report these in two separate tables. Also
report the optimal base-stock level S} for periods ¢t =1, ..., 10.

¢) Plot y;(z) fort = 5.

430 (Implementing (s,.S) DP) Consider the finite-horizon model with fixed costs of
Section 4.4.3.

a) Implement the DP model in any programming language you wish.

b) Suppose T'=10,¢c =1, K =40, h = 1, p = 25, and 7 = 0.98. Suppose the
demand per period is distributed as N (18,3%) and the terminal cost function is
given by

Or41(x) = hriaz™ +proa”,
where hr41 = h and pry1 = p. Using your DP, find y:(z) and 6;(z) for
t=1,...,10 and x = —10,...,40. Report these in two separate tables. Also
report the optimal parameters s; and .S} for periods ¢t =1, ..., 10.
¢) Ploty.(z) fort = 5.

431 ((s,S) for Refrigerators) Weekly demand for refrigerators at an appliance store
has a Poisson distribution with a mean of 4. The holding and stockout cost for refrigerators
at the store are h = $40 and p = $125 per week, respectively. Replenishment orders for
refrigerators incur a fixed cost of K = $150.
a) Suppose we set (s, S) = (4,10). What is the expected cost per week?
b) Using Algorithm 4.2, find the optimal parameters (s, .S), and the corresponding
optimal cost.

4.32 (Approximate (s, S) Policies) Consider an infinite-horizon instance in which the
demand per period is normally distributed with a mean of 190 and a standard deviation
of 48, and in which the costs are given by K = 60, h = 2, and p = 36. Determine
approximate values for s and .S:
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a) Using the (r, Q) approximation.
b) Using the power approximation.

4.33 (Ordering Capacities) Suppose that an ordering capacity of b units is imposed in
the finite-horizon model with no fixed costs of Section 4.3.3. Sketch a plot of y;(x) vs. x,
analogous to Figure 4.4. (The exact numbers are not important; what is important is the
shape of the curve.)

4.34 (DP for Ordering Capacities) Suppose that an ordering capacity of b units is
imposed in the finite-horizon model with fixed costs of Section 4.4.3.
a) Explain how to modify the DP from Section 4.4.3 to account for the ordering
capacity.
b) Implement your DP from part (a). Using your DP, find y;(x) and 6;(z) for
t=1,...,10and z = —10,. .., 40 for the instance described in Problem 4.30(b)
using a capacity of b = 10. Report y;(x) and ;(x) in two separate tables.

4.35 (Nonoptimality of (s, S) Policies for Ordering Capacities) Suppose that an or-
dering capacity of b units is imposed in the finite-horizon model with fixed costs of Sec-
tion 4.4.3. Prove, by providing a counter-example, that an (s, S) policy is not necessarily
optimal in every period of the finite-horizon version of this problem. (The (s, .S) policy
is modified in this case: If IP < s, we order min{S — I P, b}, and otherwise, we order
nothing, where I P is the current inventory position.)

4.36 (K-Convexity Is Not a Necessary Condition) In Section 4.5.2.2, we proved that if
H;(y) is continuous and K-convex, then an (s, .S) policy is optimal in period ¢. However,
K -convexity is not a necessary condition: An (s, S) policy can still be optimal in period ¢
even if H;(y) is not K{-convex. Sketch a graph of a function H;(y) that is not K -convex but
for which an (s, S) policy is optimal. Explain clearly (a) why the function is not K -convex
and (b) why an (s, S) policy is optimal.

4.37 (Other Policy Forms #1) Consider the single-period model with no fixed costs from
Section 4.5.1.1. We know that, for a given starting inventory level z, (4.83) determines the
optimal inventory position after ordering, y. We assumed a particular form for H (y) and
used the convexity of this function to prove the optimality of a base-stock policy. But in
principle H (y) can have any form, and other policies may be optimal for other functions.
a) Develop a function H (y) such that the optimal policy has three parameters, S,
s2, and Sy (S < s2 < S9), and has the following form:

If x < S1, then order up to S.
If S; < x < s9, do nothing.

If s < © < S5, order up to Ss.
If x > S5, do nothing.

For the sake of simplicity, assume that ¢ = 0. Sketch the function H(y) and
explain how to determine the optimal values of the parameters S, s, and Ss.
(For example, “S is the largest maximizer of H (y).”)

b) Now suppose that K > 0 so that the term K0 (y — x) is now added to the objective
function, as in (4.92). Develop a function H (y) such that the optimal policy has
four parameters, s1, S1, S2, and Sy (s1 < S1 < s2 < S2), and has the following
form:
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(a) K=0,b=c0. (b) K >0,b=oc0.

— b —

(©) K=0,b< 0.

Figure 4.14  H(y) functions for Problem 4.38, with fixed cost K > 0 and ordering capacity
b < 0.

e If x < s1, then order up to S;.

If 51 < z < s9, do nothing.

If s < © < S5, order up to Ss.

If x > S5, do nothing.

Sketch the function H (y) and explain how to determine the optimal values of the
parameters s, S1, S2, and Ss.

4.38 (Other Policy Forms #2) Describe the form of the optimal single-period inventory
policy for each of the functions H(y) depicted in Figure 4.14 (in a manner similar to
the descriptions in Problem 4.37). Explain how to determine the optimal values of the
parameters for your policy. Note that in part (c), there is a fixed cost of K, and in part (c),
there is an ordering capacity of b units. For all parts, assume that the per-unit cost ¢ = 0.

4.39 (Other Policy Forms #3) Suppose that, in the single-period model with fixed costs
of Section 4.5.2.1, the function H (y) has a shape similar to the curve in Figure 4.15, with
K > 0.
a) Prove that H(y) is not K -convex.
b) Describe the form of the optimal inventory policy (in a manner similar to the
descriptions in Problem 4.37). Explain how to determine the optimal values of
the parameters for your policy.
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Figure 4.15 H(y) function for Problem 4.39, with fixed cost K > 0.

¢) Write a set of conditions on H (y) that ensures that, if all of your conditions hold,
then the policy that you described in part (b) is optimal. Your conditions must be
sufficient but need not be necessary.

4.40 (Single-Period Control-Band Policies) Consider the single-period model without
fixed costs of Section 4.5.1.1, and suppose we begin the period with an inventory level of
x > 0. Suppose further that we can return excess inventory to the supplier in each period.
That is, we can choose ) < 0, or equivalently, y < z.

For each unit we return, we earn a revenue of ¢/, so the total revenue earned when @ < 0
is —¢’Q. Normally ¢’ > 0, but it’s also possible that ¢’ < 0, in which case we pay a cost to
make the return.

Consider the following policy: There are two parameters, S and U, with 0 < S < U.
Set

S, ifx<S
y=<z, ifS<zx<U
U, ifz>U.

The interval [S, U] is called a control band, and the policy is called a control-band policy.
The idea is to order up to S if « is below the control band, to “return down to” U if z is
above the control band, and to do nothing if z is in the control band.
a) Prove that a control-band policy is optimal for the single-period problem.
b) Show how to calculate the optimal S* and U* for the single-period problem, and
prove that S* < U*.
¢) Prove that, in the single-period problem, as ¢ — —h (from above), U* — oo. In
a few sentences, explain why it is logical to require ¢’ > —h.
d) Prove that, in the single-period problem, as ¢’ — ¢ (from below), U* — S* — 0.
In a few sentences, explain why it is logical to require ¢’ < c.
e) Suppose the demand per period is distributed as N (60, 122). Suppose h = 0.4,
p=4.8,c=3,and ¢’ = 1.7. Find S* and U* for the single-period problem.

4.41 (Finite-Horizon Control-Band Policies) Return to the setup in Problem 4.40, and
now consider the finite-horizon model. Prove that a control-band policy is optimal in every
period of the finite-horizon model. (The parameters of the control-band policy are now
indexed by time, S; and U;.)

442 (Properties of K-Convex Functions) Prove Lemma 4.17.
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(Alternate Terminal Cost Function) Consider the finite-horizon base-stock model

described in Section 4.5.1.2. Suppose that the terminal cost function is given by

Ori1(x) = {_(h to), fz<0 (4.103)

0, ifz > 0.

Suppose also that b > ~c.

4.44

a) Write an expression for Hr(y).
b) Derive the optimal base-stock level in period T, in the form

S% = F~*([some fraction]).
¢) Write an expression for Hr_1(y). (Note: Your expression may involve cases, as
in (4.90).)
d) Derive the optimal base-stock level in period T' — 1, in the form

Sx_, = F~!([some fraction]).

e) Prove that S}, < S7.

(Finite-Horizon Base-Stock Policies under Lost Sales) Prove that, if the terminal

cost function 671 () is convex and 67, (x) > —c, then a base-stock policy is optimal
in each period of the finite-horizon problem with no fixed costs under lost sales. (The
condition 67, (x) > —c essentially ensures that the condition p > ¢ continues to hold
even in the terminal cost function.)

4.45

(Minimum Order Quantity) Consider the single-period model without fixed costs

from Sections 4.3.2 and 4.5.1. Suppose there is a constraint requiring the order quantity to
be either 0 or at least M, where M > 0 is a constant.

4.46

a) One plausible policy for this problem is a modified base-stock policy in which we
order max{S — xz, M }, where x is the starting inventory level. Prove (by giving
a counterexample) that this policy is not optimal.

b) Another plausible policy is an (s, .S) policy in which S — 2 > M. Prove that this
policy is not optimal either.

¢) Make a conjecture as to the form of the optimal policy. (That is, describe a
decision rule, similar to how we described the policies in Section 4.1.)

d) Bonus: Specify the optimal parameters of the policy you described in part (c).

e) Double Bonus: Prove that the policy you described in parts (c) and (d) is optimal.

(Monotonic Safety Stock) Consider the infinite-horizon base-stock model with

service-level constraints given by (4.62)—(4.64).

a) Suppose we use a type-1 service-level constraint (4.63). Argue that the optimal
base-stock level and the optimal safety-stock level (given by the optimal base-
stock level minus the mean lead-time demand, S* — (L + 1)) both increase as
the reorder interval R increases.

b) Suppose we use a type-2 service-level constraint (4.64) under approximation B.
Argue that the optimal base-stock level increases as R increases, but show that
the optimal safety-stock level can decrease as R increases.
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4.47 (Derivatives of 1(S) and B(S)) Assuming the demand is distributed N (u,0?),
prove that of  on

9% 0o o(2),
where I(S) and B(.S) are as defined in Section 4.3.2.2 and z = (S — ) /0.
4.48 (DP for New and Used Items) A company manufactures and sells a laptop computer
that has a market both for new items and for used ones. In each period, the firm decides
how much to manufacture and then observes the demand for each type (new and used).
Demand is satisfied as much as possible, and then a portion of the unused new inventory
“expires” and is considered used. Unmet demand for new products is backordered but
unmet demand for used products is lost. Products cannot be substituted; that is, a customer
demanding a used item cannot be given a new item, and vice-versa.

Use subscript 1 to denote new items and subscript 2 to denote used items. Thus, the
holding and stockout costs per item per period for new items are given by h; and pq,
respectively. For used items, the holding cost per item per period is given by hs, and
the stockout cost per item is given by p,. Assume that demands of type ¢ (¢ = 1,2) are
independent and normally distributed with pdf f;(d) and that the demand for each type in
a given period is independent of the demand for the other type. There is no fixed ordering
cost, and the discount factor is +.

The sequence of events in each time period is as follows:

1. The inventory levels I L, and I Lo of new and used items (respectively) are observed.

2. A manufacturing order for new items is placed and is ready instantaneously.

3. Demands d; and d, for new and used items (respectively) are observed. As much
demand as possible is satisfied from the two inventories. Unmet demands for new
items are backordered and unmet demands for used items are lost.

4. BILY new items are transferred to the used inventory, where (3 is a constant (0 <
B < 1) and I'L} is the inventory level of new items after the manufacturing order is
received and the demand is subtracted, i.e., after step 3.

5. Holding and stockout costs are assessed based on the ending on-hand inventory
levels.

Let 0;(x1, 22) be the optimal expected cost in periods ¢, ¢+ 1, ..., T if we begin period
t with a new-item inventory level of x; and a used-item inventory level of = (and act
optimally thereafter). Formulate a recursive (DP) expression for 6;(x1,x2), analogous to
(4.36).

Your expression must use y, the order-up-to level for new items, as the decision variable
for the minimization. Do not write the expectation as E[-]. Instead, write out the expectation
using integrals. If you define any additional notation, define it clearly.



CHAPTER 5

STOCHASTIC INVENTORY MODELS:
CONTINUOUS REVIEW

51 (r,Q) POLICIES

In this chapter, we consider a setting similar to the economic order quantity (EOQ) model
(Section 3.2) but with stochastic demand. The mean demand per year is A. The inventory
position is monitored continuously, and orders may be placed at any time. There is a
deterministic lead time L (> 0). Unmet demands are backordered.

If the demand has a continuous distribution, then the inventory level decreases smoothly
but randomly over time, with rate A, as in Figure 5.1. (Think of liquid draining out of
a tank at a fluctuating rate.) This is the interpretation used in most of this chapter. Or
demands may occur at discrete points in time (as customers arrive), for example, if the
demand follows a Poisson process, as in Section 5.5.

We’ll assume the firm follows an (r, Q) policy: When the inventory position reaches a
certain point (call it r), we place an order of size (). L years later, the order arrives. In the
intervening time, the inventory on hand may have been sufficient to meet demand, or we
may have stocked out. Note that the inventory level (solid line in Figure 5.1) and inventory
position (dashed line) differ from each other during lead times but coincide otherwise. An
(r, Q) policy is known to be optimal for the setting described here, although we will not
prove this.

Whereas the EOQ model has a single decision variable @, an (r, Q) policy has two
decision variables: @ (the order quantity, sometimes called the batch size) and r (the
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r+Q | 8

’

Figure 5.1 Inventory level (solid line) and inventory position (dashed line) under (r, Q) policy.

reorder point). Our goal is to determine the optimal r and () to minimize the expected cost
per year.

In a continuous-review setting, (r, Q) policies are equivalent to (s, S) policies (Sec-
tion 4.4) as long as the inventory position equals s exactly at some point in every inventory
cycle. This is guaranteed for continuous demand distributions (as in Sections 5.2-5.4) and
for discrete demands in which each customer demands a single unit (as in Section 5.5).
Recall that in an (s, S) policy, when the inventory position reaches s, we order up to S.
Therefore, a given (r,Q) policy is equivalent to an (s, S) policy in which s = r and
S = r + Q. On the other hand, this equivalence does not hold for “lumpy” demand pro-
cesses such as compound Poisson or for periodic-review systems, since in either case the
inventory position may fall strictly below the reorder point before a replenishment order is
placed.

In this chapter, we will focus first on the case in which the demands have a continuous
distribution. We will discuss an exact model for this problem in Section 5.2, then discuss
several common approximations in Section 5.3, and finally return to the exact model in
Section 5.4 to prove some important properties of the optimal solution and its relationship
to the economic order quantity with backorders (EOQB). Then, in Section 5.5, we discuss
an exact model with discrete demands.

5.2 EXACT (r,Q) PROBLEM WITH CONTINUOUS DEMAND DISTRIBUTION

In this section, we introduce an exact model for systems with continuous demand distribu-
tions. We first formulate the expected cost function and then derive optimality conditions
for it.

We continue to consider the usual costs: fixed cost K > 0, purchase cost ¢ > 0, holding
cost h > 0, and stockout cost p > 0. We’ll use D to represent the lead-time demand; D
is a random variable with mean 4, variance o2, pdf f(d), and cdf F(d). It is important to
remember that D, u, o, etc. refer to lead-time demand, not to demand per year. Of course,
the two are closely related. If the demand per year has mean A and standard deviation 7 and
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the lead time is L years, then the lead-time demand has mean AL and standard deviation
7V L, assuming independence of demand across time.

5.2.1 Expected Cost Function

Our first step is to derive an exact expression for the expected cost as a function of r and Q).
We place orders, on average, every ()/\ years (just as in the EOQ problem). Therefore,
the expected fixed cost is given by K\/Q. As in the EOQ, the annual purchase cost is
given by c. Since it’s independent of both @) and r, we’ll ignore it in the cost calculations.
It remains to evaluate the expected holding and stockout costs, which we will refer to
collectively as the inventory cost. The inventory cost is incurred based on the inventory
level, I L, arandom variable whose distribution is difficult to determine for the same reasons
as for periodic-review models with nonzero lead times; namely, that it depends on r and @
and that inventory decisions made at time ¢ do not have an effect on /L until time ¢ + L.
The solution to this problem is to use the conservation-of-flow concept discussed in
Section 4.3.4.1, in which we relate the inventory level at time ¢t + L to the inventory
position at time ¢ (whose probability distribution, as we will see, is easy) and to the demand
in the time interval (¢,¢ + L] (whose probability distribution we know). In particular, if
the inventory position at time ¢ is given by I P(t), then the inventory level at time ¢ + L is
given by
IL(t+L)=1IP(t)— D(t, t+ L], (5.1)

where D(t,t+ L] is the cumulative demand that occurs between ¢ and ¢ + L. The reasoning
is identical to that in Section 4.3.4.1, adjusted for continuous review: All of the items
included in I P(t)—including items on hand and on order—will have arrived by time ¢t + L,
and no items ordered after time ¢ will have arrived by time ¢ + L. Therefore, all items that
are on hand or on order at time ¢ will be included in the inventory level at time ¢ 4 L, except
for the D(t,t + L] items that have since been demanded.
As in the periodic-review case, we can drop the time indices from (5.1) in steady state
and write
IL=1P - D, (5.2)

where D is the lead-time demand. Zipkin (1986b) shows that (5.2) also holds—and
therefore, so do many of the results in the rest of this section—under a range of stochastic
lead-time settings.

Once we determine the distribution of I P, the (unconditional) expected inventory cost
then follows from the law of total expectation. In particular, let g(x) be the rate at which
the inventory cost accrues when I L = z:

g(z) = ha™ +px~. (5.3)

(g(-) is a rate because the inventory level is changing continuously over time, given in units
of money per year.) Then the expected inventory cost per year is

E[inventory cost] = E;y, [§(IL)]
=E;p [Errrp [gIL)]]
=E;p[Ep[g(IP — D)]]
=E;p[g(IP)], (5.4)
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where
9(y) = hE[(y — D)*] + pE[(D — y)*] (5.5)

is the rate at which the expected inventory cost accrues at time ¢ + L when the inventory
position at time ¢ equals y. The expectation in (5.5) is over the lead-time demand. Note
that g(r, @), with two arguments, is the expected total expected cost, whereas g(y), with
one argument, is the expected inventory cost.

g(y) is simply the newsvendor expected cost function (Section 4.3.2). Let S* be its
optimizer, given by (4.17).

It remains to determine the distribution of IP. By the definition of an (r, Q) policy,
we know that I P takes values only in [r,r + @]. It turns out that I P has a very simple
distribution—it is uniform on [r,r + @], under some mild conditions on the lead-time
demand distribution (Serfozo and Stidham 1978, Browne and Zipkin 1991). Therefore,
(5.4) implies that

E[inventory cost] = % / g(y)dy. (5.6)

Combining the expected inventory cost (5.6) and the expected fixed cost K\/Q, we get the
following expression for the expected total cost per year:

KX+ [T g(y)dy
5 .

For early derivations of this equation, see, e.g., Hadley and Whitin (1963).
Zheng (1992) proves the following:

g(r,Q) =

(5.7)

Lemma 5.1 g(r, Q) is jointly convex in r and Q.

Proof. Let

r+Q
1(r,Q) = g / El(y — D)*]dy

r+Q
(nQ) = g / E[(D — y)*]dy

be the expected on-hand inventory and backorders, respectively, as functions of r and Q.
Then we can write

o(r.Q) = B2 4 hi1(r,Q) + 9B, Q).

)
Moreover,
-3 / )+ (y— D) Jdy
-3 / D] + E[(D - y)*]]dy
é ( — )\Ly —i— B(r,Q)
% — AL + B(r,Q),
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9(y)

Q) S Q) +Q

Figure 5.2 Inventory costs are equal at start and end of replenishment cycle.

o)
K\
g(r,Q) = ) +h (622 +r— /\L> + (h+p)B(r, Q). (5.8
The first and second terms are clearly convex; the joint convexity of B(r, () is proven by
Zipkin (1986a). [

In what follows, we use the expected cost expression (5.7) to derive optimality conditions
for r and @ by first fixing @ and finding the optimal corresponding 7, and then optimizing
over (). Although these conditions tell us when a given solution is optimal, they do not give
us an algorithm for finding such solutions. Before developing such an algorithm, we first
discuss several common approximations for finding the optimal parameters for an (r, Q)
policy, in Section 5.3. We then return to the exact model in Section 5.4, proving properties
of these optimal solutions that we can use to develop an algorithm.

5.2.2 Optimality Conditions

We will optimize sequentially: ming {min, g(r, @)}. Let #(Q) be the optimal r for a
given Q.

Lemma 5.2 Forany Q > 0, r = r(Q) if and only if
g(r) =g(r+Q). (5.9
Proof. Follows immediately from the first-order condition:

29(r,Q) _ gtr+Q) —g(r) _

or Q

The inventory position equals r + @ at the start of a replenishment cycle (just after an
order is placed) and equals r at the end (just before the next order is placed). Therefore,
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Lemma 5.2 says that, for a given (), the optimal r makes the inventory cost rates equal at
the start and end of the replenishment cycle. (See Figure 5.2.) In between, the inventory
costs are lower, due to the convexity of g(y).

The motivation behind this result is that, during one replenishment cycle, we need to
pass through all of the inventory positions in [r, r + @], and we spend an equal amount of
time in each. For fixed (), we minimize the total cost by choosing the r that keeps g(y)
as small as possible over those inventory positions. Since g(y) is convex, the r that keeps
g(y) as small as possible over [r, r + Q)] is the r for which g(r) = g(r + Q).

This result can be visualized as follows. Imagine a two-dimensional bowl shaped like
the function g(y). For a given (), we can find the optimal value of r by dropping a horizontal
bar of length @ into the bowl; then () equals the height of the bar when it comes to rest.

We can now characterize the optimal (r, ()) pair.

Theorem 5.3 (r, Q) minimize g(r, Q) if and only if

g(r,Q) = g(r + Q) = g(r). (5.10)

Proof. From (5.7),

oy Qulr+Q) = [Kx+ [ g(y)dy]

0Q Q?
L+ Q) —9nQ) _
Q
This proves the first equality. The second follows from Lemma 5.2. |

0 EXAMPLE 5.1

Recall Joe’s Corner Store from Example 3.1. Suppose now that the annual demand
for candy bars is normally distributed with a mean of 1300 and a standard deviation
of 150. Joe’s customers are fiercely loyal, both to Joe and to his brand of candy, so if
the store is out of stock, they are willing to wait for their candy. (That is, demands are
backordered, not lost.) However, each stockout costs $0.50 in lost profit and $7.00
in loss of goodwill per year. The lead time is L = 1/12 year. What are the optimal
rand QQ?

We have K = 8, h = 0.225, and p = 7.5. The lead-time demand has parameters
@ = 1300/12 = 108.3 and o = 150/1/12 = 43.3.

Let Q = 328.5. Then 7(Q) = 126.8 by Lemma 5.2 since

9(126.8) = g(126.8 + 328.5) = 78.1.

From (5.7),
9(126.8,328.5) = 78.1,

confirming via Theorem 5.3 that (r, Q) = (126.8, 328.5) is optimal for this instance.
O
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Theorem 5.3 says that, surprisingly, not only are the inventory costs equal at the start and
end of the replenishment cycle, but these costs are also equal to the tofal cost per year. For
some very simple demand distributions, the simultaneous equations (5.10) can be solved
analytically. More commonly, though, (5.10) must be solved using an iterative algorithm.
In order to derive such an algorithm, we will need some additional properties of the model.
Before delving into those, however, we will shift our attention to approximate models.

5.3 APPROXIMATIONS FOR (r, Q) PROBLEM WITH CONTINUOUS
DISTRIBUTION

5.3.1 Expected-Inventory-Level Approximation

The first approximation we discuss is probably the best known and most widely covered
approximation to find 7 and @. (Unfortunately, it is also one of the least accurate; see
Section 5.3.5.) It dates back to Whitin (1953) (whose book in fact contains one of the earliest
attempts to optimize r and () simultaneously) as well as to subsequent developments by
Hadley and Whitin (1963). We call this the expected-inventory-level (EIL) approximation,
for reasons that will become clear shortly.

The approach relies on the following two simplifying assumptions to make the model
tractable:

o Simplifying Assumption 1 (SA1): We incur holding costs at a rate of h - I L per year,
where I L is the inventory level, whether I L is positive or negative.

o Simplifying Assumption 2 (SA2): The stockout cost is charged once per unit of unmet
demand, not per year.

Neither assumption is particularly realistic, but we make them for mathematical conve-
nience. SAIl is obviously untrue, since it suggests we earn a holding “credit” when
IL < 0, butitis not too inaccurate if the expected number of stockouts is small. SA2 is not
as outrageous, but it is not typical, either in practice or in other inventory models. (Actually,
SA1 would not be problematic at all if we didn’t also assume SA2. If the stockout cost
were charged per year, then we could simply replace the stockout cost p with p + h, thus
canceling the artificial “credit” of h for negative inventory.)

5.3.1.1 Expected Cost Function In this section, we will derive an expression for
the approximate expected cost per year as a function of the decision variables () and 7.

Holding Cost: Figure 5.3 contains a graph of the expected inventory over time. s is the
expected on-hand inventory when the order arrives:

s=r—A\L.

In other words, s is the safety stock—the extra inventory held on hand to meet demand in
excess of the mean.

The average inventory level is
Q Q

—r AL+ <. 11
sty =t +5 (5.11)
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Figure 5.3 Expected inventory curve for (r, Q) policy.
By SAI, the expected holding cost per year is
h(r—/\L—&-g) . (5.12)

Of course, this expression is only approximate. The essence of the approximation is that
we are calculating the expected holding cost as h - E[IL] = h - E[IL]" (provided that
E[IL] > 0), whereas it actually equals h - E[IL"], and the two are not equal. That is
why we refer to this as the “expected-inventory-level” approximation. The problem is
more difficult without SA1 because of the nonlinearity introduced by the [-]™ operator. As
previously noted, the EIL approximation becomes less accurate as the expected number of
stockouts increases or, equivalently, as s decreases.

Fixed Cost: The expected fixed cost per year is given by K times the expected number of
orders per year. From Figure 5.3, we see that E[T] = @Q/\. Therefore, the expected cost
per year is

KA\
—. (5.13)
Q
Stockout Cost: The expected number of stockouts per order cycle is given by
E[(D — r)*] = / (d - ) f(d)dd = n(r), (5.14)

where n(r) is the loss function for the lead-time demand distribution. (See Section 4.3.2.2
or Section C.3.1.) The expected number of stockouts per year is n(r)/E[T] = An(r)/Q.
By SA2, the expected stockout cost per year is simply

pAn(r)
0

Note that we are assuming that » > 0, which is a reasonable assumption in practice. (The
reason we make simplifying assumption SA2 is that if the stockout cost were charged per
year, then the integrand in the expected stockout cost per year would contain (d — 7)? in
place of (d — r), and this would be significantly harder to analyze. See Problem 5.23.)

(5.15)
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Total Cost: Combining (5.12), (5.13), and (5.15), we get the total expected cost per year:

Q KX pin(r)

g(r,Q :h(r—)\L—i— + —+ .

(r, @) 5 0 0

5.3.1.2 Solution As inthe EOQ model, we will optimize by setting the first derivative

to 0. Since there are two decision variables, we must take partial derivatives with respect
to each and set them both to O:

(5.16)

or
5.17)
And:

(using (C.15)), so

DA

Now we have two equations with two unknowns, but these equations cannot be solved
in closed form. The approach given in Algorithm 5.1 first sets ) equal to the EOQ quantity,
i.e., ignoring the demand randomness. It then proceeds iteratively, solving (5.18) to find r,
solving (5.17) to find @, and so on. The algorithm terminates when one (or both) of the
parameters haven’t changed much since the last iteration. (e is the convergence tolerance.)
Hadley and Whitin (1963) prove that this algorithm converges to the optimal r and () for
(5.16)—though it’s important to keep in mind that (5.16) itself is only an approximate cost
function.

Typically, Q < X and h < p, so that the argument to F'~! in (5.18) is between 0 and
1. In rarer cases, however, Qh may be larger than p), in which case the argument to 1
is negative and there is no solution to (5.18). If this happens, we can simply set r to its
minimum allowable value (which we have assumed is 0).

r=F"1! (1Qh). (5.18)

] EXAMPLE 5.2

Let us apply the EIL approximation to Joe’s Corner Store from Example 5.1. Using
Algorithm 5.1, we first set () equal to the EOQ quantity, which we know from
Example 3.1 to be 304.1. From (5.18), we have

. 1 <1 ~304.1-0.225

= F~ (0. = 9214.7.
7.5 - 1300 ) (0.9930) 7
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Al

1
2
3
4
S:
6
7
8

gorithm 5.1 Iterative algorithm for EIL approximation for (7, Q) policy

: Q<+ \2K)\/h > Initialization: use EOQ

LT 00

: repeat > Main loop
Qprev « Q3 Tprey < T > Remember previous values
r < r that solves (5.18), or 0 if none > Solve for r using current ()
Q@ + @ that solves (5.17) > Solve for () using current

:until |Q — Qprev| < € and/or |1 — rprey| < € > Termination check

: return (7, Q)

5.3.1.3 Service Levels One major limitation of (r, Q) policies as formulated above
is that p is very hard to estimate. But there is a close relationship between p and the service
level (see Section 4.3.4.2): As p increases, it’s more costly to stock out, so the service
level should increase. In practice, many firms would rather omit the stockout cost from the
objective function and add a constraint requiring the service level to be at least a certain

Now, to calculate @), we’ll need to calculate n(r). We can calculate n(r) using £(z),
the standard normal loss function, via (C.31), where z = (r — p) /0. £(z), in turn,
can be calculated using (C.22).

If r = 214.7, then z = (r — p)/o = 2.456, £ (z) = 0.002292, and n(r) =
0.002292 - 43.3 = 0.0993. Then, from (5.17), we have

= 317.9.

\/2 -1300[8 + 7.5 - 0.0993]
0.225

Repeating this process:

317.9-0.225
=F 11 -2 220 ) = pY0.9927) = 214.
" < 7.5- 1300 ) (0.9927) 0

= n(r) =0.1042

2 - 1300[8 + 7.5 - 0.1042]
- — 318.
@ \/ 0.225 3186
318.6 - 0.225
=F'[(1-"—"——) = F71(0.9927) = 214.
" ( 7.5 1300 > (0-9927) 0

Because r did not change since the previous iteration, the process can terminate. We
set r = 214.0, @ = 318.6. The approximate annual expected cost of this solution,
using (5.16), is

1300 318.6) 81300
—0.225 (214.0 —
9(r.Q) =0 5( 0= T ) 318.6

7.5-1300 - 0.1042
318.6

=95.45.

The exact expected cost, using (5.7), is 92.29, 18.2% larger than the optimal cost of
78.1 from Example 5.1. O

value.
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First suppose that we wish to impose a type-1 service level constraint. That is, we want
to require the probability that no stockouts occur in a given cycle to be at least a. Since
stockouts occur if and only if the lead-time demand is greater than r, this probability is
simply F'(r). The expected cost function we wish to minimize is identical to (5.16) except
it no longer contains a term for the stockout cost. Therefore, we need to solve

K\

minimize g(r,Q)=h (r — AL+ g) + ) (5.19)

subject to F(r)>a (5.20)

At optimality, the constraint (5.20) will always hold as an equality. (Why?) Therefore,

the optimal reorder point is given by r = F'~!(a). If the lead-time demand is normally
distributed, then the optimal reorder point is

T = U+ 2,0. (5.21)

As we know from Section 4.3.2, this is exactly the form of the optimal solution to the
newsvendor problem. As in the newsvendor problem, the first term of (5.21) represents
the cycle stock (to meet the expected demand during the lead time), while the second term
represents the safety stock (to meet excess demand during the lead time), since the safety
stock is given by s =7 — p.

What about Q? Well, once r is fixed, we can ignore the constraint, and the term
h(r — AL) in the objective function (5.19) is a constant. What’s left in (5.19) is exactly
equal to the EOQ cost function (3.3). Therefore, we set Q to the EOQ value.

The expected cost of this solution is given by

g(r,Q) = hzqo + ? + %)\

= hzqo + V2K MAh. (5.22)

(The first equality follows from the fact that i, the mean lead-time demand, equals AL. The
second equality follows from (3.5).) This is an exact solution to the approximate model
with a type-1 service level constraint. This approach is often used as an approximation even
when p is known; see Section 5.3.3. It is important in other ways, as well; for example,
we will make use of it when we discuss the location model with risk pooling (LMRP) in
Section 12.2.

Now consider a type-2 service level constraint; we want to require the fill rate to be at
least 8. We know that the average proportion of demands that stock out in each cycle is
n(r)/Q, so we need to replace (5.20) with

1. (5.23)

The resulting problem is significantly harder to solve: Since (5.23) contains both ) and
r, we can no longer solve first for r and then solve independently for (). Nevertheless, a
reasonable approximation is simply to set ) = EOQ (as in the case of type-1) and compute
r using n(r) = Q(1 — ). There is a more accurate method that involves a more complex
formula for @ that is solved simultaneously with (5.18); see Nahmias (2005) for details.
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0 EXAMPLE 5.3

Return to Example 5.2 and suppose that Joe wishes to ensure a type-1 service level
of o = 0.98. What are the optimal r and ()? What about for a type-2 service level
of 5 =0.98?
For the type-1 service level constraint, we have z, = ®~1(0.98) = 2.0538 and
r = 108.3 + 2.0538 - 43.3 = 197.3
Q =EOQ = 304.1

Using the approximate approach for the type-2 constraint, we have ) = EOQ =
304.1. We need to solve

n(r) = 304.1(0.02) = 6.081.

You can confirm that this equation is satisfied by » = 139.1. ]

5.3.2 EOQB Approximation

There are important connections between the EOQ problem with planned backorders
(EOQB:; Section 3.5) and (r, Q) policies with continuous demand distributions. We explore
these connections further in Section 5.4. The EOQB approximation for finding near-optimal
r and ) makes use of the EOQB, setting () using (3.27) and r using Lemma 5.2. This
approach has a fixed worst-case error bound of % that we will prove in Section 5.4, and an
even tighter bound of 11.8% (which we will not prove).

0 EXAMPLE 54

If we use the EOQB approximation to solve the problem in Example 5.2, we get

= 308.6.

0= \/2 8- 1300(0.225 + 7.5)
0.225-7.5

You can confirm that r = 128.6 solves
g(r) = g(r + 308.6).

The solution (r, Q) = (128.6,308.6) has an expected annual cost of 78.2, only
0.26% larger than the optimal cost from Example 5.1 and much less than the worst-
case bound of 11.8%. It is also considerably better than the solution from the EIL
approximation in Example 5.2. (|

5.3.3 EOQ+SS Approximation

Another common approximation for r and ) is to convert the inventory-cost parameters
into a service level and then to use the approach described in Section 5.3.1.3 for type-1
service level constraints. In particular,

2K\

L=y
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T = U+ 240,

where &« = p/(p + h). The safety stock is given by s = r — u = z,0. The expected
inventory process can be thought of as being decomposed into two parts, a “top” part that
looks like an EOQ curve and a “bottom” part that is flat, with a height of s, the safety stock.
We therefore refer to this as the EOQ+SS approximation.

The EOQ+SS approximation should not be confused with the EOQB approximation dis-
cussed in Section 5.3.2. Although both approaches use the EOQ(B) model to approximate
an (r, Q) policy, they do so in different ways. Importantly, the EOQ+SS approximation
does not have a fixed worst-case error bound (see Problem 5.18), although some authors
mistakenly apply Zheng’s (1992) worst-case bound of % to it. Nevertheless, it is a reason-
able approximation that performs well if & = p/(p + h) provides an acceptable service
level.

U0 EXAMPLE 5.5

The EOQ+SS approximation yields the following solution for the problem in Exam-

ple 5.2:
/2-8-1300
Q= 0o 304.1

7 = 108.3 4+ 1.8938 - 43.3 = 190.3

since @ = 0.9709 and z, = 1.8938. The solution (r, Q) = (190.3,304.1) has an
expected annual cost of 87.1, or 11.5% worse than optimal. g

A similar approach can be used when the lead time itself is stochastic. Suppose the lead
time L has mean 7, and standard deviation o, (in years). Then the lead-time demand has
mean and variance

= M\ir (5.24)
o? = N20% + ppt?, (5.25)

where, as usual, A\ and 72 are the mean and variance of the demand per year. (See
Problem 5.16.) Equations (5.21) and (5.22) still hold under these new definitions of y and
o. This approach is used in Case Study 5.1.
5.3.4 Loss-Function Approximation
From (5.8),
KA\

s Q@ =1 1 (LaroaL) + 4 9B Q)

where

r+Q r+Q
Bm@zg/ EW%MW@:%/ n(y)dy

by (C.12). Let n(®)(z) be the second-order loss function for the lead-time demand distri-
bution (see Section C.3.1):

n®(z) = %IE {([X - x]"')ﬂ = / n(y)dy. (5.26)
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Then we can rewrite B(r, Q) as

B.Q) = 5 [1¥ 1) = +Q)].

Therefore,

Q 2

Let’s consider the n(®)(r + Q) term. We typically set r so that stockouts are unlikely
during the lead time, i.e., so that the lead-time demand is unlikely to exceed r. It is
therefore even less likely to exceed r + Q. Since n(®) (1 + Q) equals the expected value of
the square of the amount by which the lead-time demand exceeds r + @, it, too, is likely to
be small. For example, using the parameters in Example 5.2 and (r, Q) = (126.8, 328.5)
from Example 5.1, () (r + Q) is less than 10713,

Therefore, Hadley and Whitin (1963) propose assuming n(?)(r 4+ Q) ~ 0 and then

approximating g(r, () as

9@ = 22 1 (Q +r— AL) + % [n@) (r) —n®(r+ Q)} N ER))

Q 2

Taking partial derivatives, we get

9(r, Q) = Q +h (Q +7r— )\L) + %n(z)(r).

dg KX b (h+pn@(r)
2

Q- A
@)
o \/ 2 [KA+ (h h+ p)n (r)] (5.28)
and
dg . (h+pn(r)
" q
- thp (5.29)

using the fact that -Ln(®(2) = —n(z) (see (C.20)). Equations (5.28) and (5.29) can be
solved for 7 and () using an iterative method similar to that for the EIL approximation in
Algorithm 5.1.

In fact, a similar approach can be used directly on (5.27), iteratively solving two op-
timality equations analogous to (5.28) and (5.29). This approach provides an exact (not
heuristic) solution to find the optimal parameters for an (r, Q) policy (Farvid and Rosling
2014).

[0 EXAMPLE 5.6

We will use the loss-function approximation for the problem in Example 5.2. We
first set @) equal to the EOQ quantity, 304.1. Setting » = 129.1 satisfies (5.29) since

0.225 - 304.1

129.1) = 8.8557 = o0 P
n(129.1) = 8.8557 = o 75
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Then n(?)(129.1) = 204.6487. Therefore, from (5.28),

= 326.3.

0= \/ 8- 1300 + (0.225 + 7.5) - 204.6487]
0.225

Repeating this process:

0.225 - 326.3
0.225 + 7.5
— r=127.1, n®(r) = 223.0154

0= \/ 81300 + (0.225 + 7.5) - 223.0154]

n(127.1) = 9.5050 =

0 9%F = 328.3
0.225 - 328.3
126.9) = 9.5611 = —— 2
n(126.9) = 9.56 0.225 + 7.5
— r=126.9, n®(r) = 224.6196
81300 + (0.225 + 7.5) - 224.6196
Q= \/ (02254 75) | _ 3084
0.225
0.225 - 328.4
126.9) = 9.5611 = ——— "
n(126.9) = 9.56 0.225 + 7.5

= r=126.9

Because r did not change since the previous iteration, the process can terminate. We
have r = 126.9, Q = 328.4. This is the optimal solution (within rounding error), as
found in Example 5.1. g

5.3.5 Performance of Approximations

Figure 5.4(a) plots the relative error of each of the four approximations described above
on 20 randomly generated instances. The relative error is calculated as (g(r,Q) —
g(r*,Q*))/g(r*, Q*), where (r, Q) is the solution returned by the approximation, (r*, Q*)
is the optimal solution, and g(-,-) is the exact cost function, given by (5.7). The mean
and maximum relative error are given in the first set of columns in Table 5.1. Despite the
fact that they are perhaps the two most commonly taught and used approaches, the EIL
and EOQ+SS approximations perform the worst, with mean relative errors of over 30%
and 14%, respectively. The other two approximations perform much better, with mean
errors below 2%. On the other hand, they are more difficult to implement, since they re-
quire solving (5.9) (in the EOQB approximation) or computing 7(2)(-) (in the loss-function
approximation).

In Theorem 5.7, we will show that the (r, Q) cost is relatively insensitive to errors in
Q. This suggests that the poor performance of the EIL and EOQ+SS is largely driven by
their poor choices of 7, rather than of (). Indeed, if we alter each of the approximations
to discard r at the end and instead set » = r(Q), the performance is much better, with
mean errors below 2% for all four approximations; see Figure 5.4(b) and the second set of
columns in Table 5.1. (Note that the performance of the EOQB approximation is the same
in both experiments, since that approximation already sets r = r(Q).)
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(a) Original approximations. (b) Approximations with 7 set to r(Q).

Figure 5.4 Relative error of (r, ) approximations.

Table 5.1 Mean and maximum error of (r, Q) approximations.

Original With 7(Q)
Approximation | Mean Max | Mean Max

EIL 0.320 0.662 | 0.003 0.013
EOQB 0.017 0.044 | 0.017 0.044
EOQ+SS 0.147 0311 | 0.015 0.072

Loss-function | 0.003 0.024 | 0.002 0.020

5.4 EXACT (r,Q) PROBLEM WITH CONTINUOUS DISTRIBUTION:
PROPERTIES OF OPTIMAL r AND Q@

We now return to the exact model from Section 5.2. We have two main goals in this
section. First, we will analyze the properties of optimal solutions (and their costs) for
(r, Q) policies, by deriving optimality conditions for r and @) and then proving properties
of the resulting optimal solutions. Second, we will compare (7, Q) policies to the EOQB
model and prove that, if the EOQB model is used as a heuristic for optimizing r and (), as
discussed in Section 5.3.2, the resulting error has a fixed bound. We do this by treating the
EOQB as a deterministic (r, Q) policy, a reasonable interpretation since the two models
include the same costs and both allow backorders. Our analysis in this section is based
primarily on the work of Zheng (1992).

Let G(Q) equal the expected cost per year as a function of ), assuming 7 is set optimally
for that ()—that is,

G(Q) =9(r(Q),Q). (5.30)
Let H(Q) be the value of g(y) at y = r(Q) or, equivalently, at 7(Q) + Q:
H(Q) = g(r(Q)) = 9(r(Q) + Q). (5.31)

One can show (see Problem 5.8) that

r(Q)+Q Q
/ g(y)dy = / H(y)dy. (5.32)
r(Q) 0
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Q) s H(Q+Q

Figure 5.5 A(Q) and H(Q).

Therefore, from (5.7), we can write
Q
_ KX+ fo H(y)dy
Q )
which expresses the expected total cost as a function of @) only, not . One can show that
G(Q) is convex. Finally, let

G(Q) (5.33)

Q
AQ) = QH(Q) - / H(y)dy (5.34)

be the area between ¢(y) and the line at height H(Q); see Figure 5.5.

The following theorem provides a surprisingly simple condition under which ) min-
imizes G(Q) (and therefore (r(Q), Q) minimizes g(r,@)). We’ll use Q* to denote the
minimizer of G(Q).

Theorem 5.4 Q) minimizes G(Q), i.e., Q = Q*, if and only if
A(Q) = K. (5.35)

Proof. From (5.34),

AQ) = Qi@ +Q) - | * Hway
— Qu(r(Q) + Q) — [Qe(r(@), Q) — KN
by (5.30) and (5.33). At optimality, this equals
Qo(r(@) + Q) — [Q9(r(@) + Q) — KX] = KA

by Theorem 5.3. ]
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Therefore, the optimal length of the bar to drop into the g(y) “bowl” is the @ such
that the area between the bar and the bowl equals KA. Unfortunately, we can’t generally
determine Q* in closed form, since A(Q) depends on H(Q), which in turn depends on
r(Q), which also cannot be found in closed form. However, Q* can be found through a
straightforward search; see Section 5.4.1.

U0 EXAMPLE 5.7

Recall from Example 5.1 that the optimal parameters for Joe’s Corner Store are
r = 126.8, Q = 328.5. We already know that g(126.8) = ¢(126.8 4 328.5) = 78.1,
which means that H(Q) also equals 78.1. Via numerical integration, we have

Q
/ H(Q) = 15,246.2,
0

SO
A(Q) = 328.5-78.1 — 15,246.2 = 10,410,

which equals K A within rounding error. (More digits of precision in @ and 7(Q)
would result near-exact equality.) This provides an alternate confirmation, via The-
orem 5.4, that (r, Q) = (126.8, 328.5) are the optimal parameters. O

5.4.1 Optimization of r and ()

Algorithm 5.2 uses Theorem 5.4 to find the exact optimal values of  and () for a continuous-
review (r, Q) policy with continuously distributed demand. The algorithm is basically a
bisection search over (), with an inner step that finds r(Q) for each candidate value of Q.
The bounds in the initialization step come from Theorem 5.5, below. In the termination
criterion, ¢ is the desired tolerance.

Algorithm 5.2 Exact algorithm for continuous-review (r, ()) policy with continuous de-
mand distribution

I Q<+ Q% Q@ + Qg from Theorem 5.5 > Initialization
2: repeat > Main loop
3: Q<+ (Q+Q)/2 > Candidate value for Q
4: r « r(Q), where r(Q) satisfies (5.9) > Optimal r for
5: A+ AQ) > A(Q)
6: if A > KXthen Q «+ Q > Update bounds on Q
7: elseif A < K\ then Q + Q

8: end if o

9: until |[A — K\ <e > Termination check via Theorem 5.4

10: return (r, Q)

5.4.2 Noncontrollable and Controllable Costs

Recall that S* is the minimizer of g(y). Let

Ho(Q) = H(Q) — g(57). (5.36)
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Then we can rewrite the cost function as

G(Q) =9(5") + Go(Q), (5.37)
where o
Go(@) = =7 fOQHO(y)dy.

The first term in (5.37), g(S*), represents the noncontrollable cost in the (r, Q) policy.
Even if we could keep the inventory position at S* at all times, by constantly placing orders,
we could not avoid the cost g(S*)—it is a consequence of the randomness in the demand.
Of course, we cannot constantly place orders (since there is a fixed cost for each order),
so the inventory position will deviate from the ideal level S*, and the inventory costs will
increase from ¢g(S*). By varying the order quantity ), we adjust the trade-off between
fixed and inventory costs. The increase in cost over and above g(S*) is the controllable
cost, and this is captured by G (Q), the second term of (5.37).

5.4.3 Relationship to EOQB

As we know from Section 5.3.2, the EOQB (Section 3.5) provides an approximation of an
(r, Q) policy. In fact, we can view the EOQB as a special case of an (r, Q) policy obtained
by assuming the lead-time demand is deterministic, i.e., that D = AL. In this section, we’ll
use this relationship to compare the optimal (r, Q) parameters and their resulting expected
cost to those of the EOQB model, and then to prove a bound on the worst-case error that
can result from the EOQB approximation. Throughout this section, a subscript d denotes
the deterministic model, i.e., the EOQB.
Since D = AL, the inventory cost rate (5.5) simplifies to

ga(y) = h(y — AL)" + p(AL —y)™". (5.38)

ga(y) is minimized by S = AL and g4(S}) = 0. This is not surprising: If the demand
is deterministic, the inventory cost (i.e., the noncontrollable cost) equals 0 if the inventory
position is kept equal to the lead-time demand. The functions ¢,4(y) and ¢(y), and their
minimizers, are plotted in Figure 5.6.

Note that

94(y) < g9(y) (5.39)

forall y > 0 (Problem 5.9). Moreover, g(y) approaches g4(y) asymptotically as y — to00:
As y — +o0, each additional unit of inventory position (y) will almost certainly not be
demanded and will therefore result in an additional unit of on-hand inventory, at a cost of
h. Similarly, as y — —o0, each reduction of one unit in y will almost certainly lead to one
additional stockout, at a cost of p.

Let g4(r, Q), r4(Q), Ga(Q) = ga(rqa(Q),Q), and Hy(Q) be the deterministic-model
versions of g(r, @), r(Q), G(Q), and H(Q), respectively; that is, they are defined by (5.7),
(5.9), (5.30), and (5.31) but with g4(Q) substituted for g(Q). (See Figure 5.7.) We have

h
ra(Q) = AL — m@ (5.40)

Ha(Q) = ga(ra(Q)) = %Q- (5.41)
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AL 5*
Figure 5.6 ¢(Q) and gq4(Q).

Let (r%, Q%) minimize g4(r, Q); from Theorem 3.5, we know that

h
Qr 42
h+p d (5.42)

[2KA\(h
Q= ELerp). (5.43)

In fact, one can derive (5.43) and the other two equations in Theorem 3.5 using the analysis
given so far in this section, treating the EOQB explicitly as a special case of an (r, Q)
policy. (See Problem 5.14.)

Ty = AL

Theorem 5.5 Q) < Q* < Qo, where Qq is the Q that satisfies QHy(Q) = 2K \.

Proof. Let A4(Q) be the deterministic-model version of A(Q). One can show (see
Problem 5.10) that A(Q) < A4(Q) for any @ > 0. In particular, this holds for Q = @}, so

A(Qq) < Aa(Qg) = KX = A(Q7),

where the two equalities follow from Theorem 5.4. Since A(Q)) is monotonically increasing
(this can be proven rigorously but is clear from Figure 5.7), @} < Q™.
We omit the proof of the upper bound on Q*; see Problem 5.11. ]

The fact that Q); < Q™ is also evident from Figure 5.7. The upper bound of () does
not provide much intuition but does provide a useful upper bound for an iterative search
for Q*, as in Algorithm 5.2.

Let G* = G(Q*) be the optimal cost in the stochastic model, G = G (Q*) be the
optimal controllable cost in the stochastic model, and G} = G4(Q?) be the optimal cost
in the deterministic model. The following theorem sheds light on the relationships among
these costs. The last inequality of the theorem is especially impressive, since it succinctly
relates the optimal costs and solutions of the three most fundamental inventory models: the
EOQ(B), the newsvendor problem, and an (r, ()) policy!
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Figure 5.7 A(Q) and A4(Q).

Theorem 5.6 . .
:Gi < Gi< G <g(8) + ng;
Proof. First note that
9(r(@Q"), Q") = g(r(Q")) (by Theorem 5.3)
= G(Q") = H(Q") (by definitions of G(-), H(-))
= Go(Q") = Ho(Q") (by (5.37) and (5.36))
= Gj = Ho(Q") (by definition of G*) (5.44)

In addition, since Q Hy(Q) is monotonically increasing and by Theorem 5.5,

Q" Ho(Q*) < 2K . (5.45)
We prove the first inequality first:

Q™G = Q" Ho(Q) (by (5.44))
<2KA (by (5.45))
_ |2KX(h+Dp) " hp  |2KX(h + p)
B hp h+p hp
= QyHa(Qg) (by Theorem 3.5)
= QiGy (by (5.44))

== g* Gy < Gy
d

Next, we prove the remaining two inequalities:

Gy = 94(ra(Q3), Q7) (by definition of G)
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< 94(r(Q"), Q*) (since (rq(Qg), Qg) are optimal for ga(r, Q))
KX+ ”(Q d

= f Q* gd(y) Y (by definition of g4(r, Q))
K+ [M9) d

< f (QQ)* g(y) Y (by (5.39))

=G* (by definition of G*)
9(5%) + Gg (by (5.37))

<g(S*)+ g‘} G} (by first < in theorem).

The sensitivity analysis result for the EOQ model (Theorem 3.2) also applies to the
EOQB (see Problem 3.14); converted to the notation in this section, we get

Ga(@) :1(Q2+Q>
G Q ")

The cost function turns out to be even flatter (with respect to Q) for (r, Q) policies:

Theorem 5.7 For any Q > 0,

Proof. Omitted; see Zheng (1992). (]

The question now is, how accurate is the EOQB approximation? Zheng (1992) proves
a fixed worst-case bound of % = 12.5% on the error that results from using the EOQB
solution:

Theorem 5.8

Proof. Since Q}; < Q* (Theorem 5.5), and H (+) is an increasing function,

L gy < 2 [ Ha
" Hyyéf*/ H(y)dy
QdO QO

Therefore,

KX+ [ Hiy)dy KA+ [y H(y)dy

GO — G =
@) o o
1 1
)\ _
=K (Q; Q*>
1 hp 11
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On the other hand, ,
P

G"=H(Q") > Hyj(Q") = —Q~, 5.47

(@) 2 HA@) = 7-Q (547

where the first equality follows from Theorem 5.3, the inequality is proven in Problem 5.15,
and the second equality follows from (5.41). Combining (5.46) and (5.47), we have

c@) -6 _ 3@ (3 - &)

G+ - %Q*
(@)? < 11 )
Q* b @

(& (%))

Like many worst-case error bounds, the bound in Theorem 5.8 overestimates the actual
error bound obtained in practice. Zheng (1992) reports that, in computational results, the
actual gap was less than 1% for 80.0% of the instances tested and less than 2% for 96.3%,
with a maximum gap of only 2.9%. Table 5.1 reports similar results.

This raises the question of whether % is the best possible bound. The answer is no:
Axsiter (1996) proves that the error is no more than (v/5 — 2)/2, or 11.8%. This bound is
tight, in the sense that there are instances whose error comes arbitrarily close to (v/5—2)/2,
but these instances use pathological demand distributions that do not resemble real inventory

systems.

5.5 EXACT (r, Q) PROBLEM WITH DISCRETE DISTRIBUTION

Suppose now that the demand is discrete: Individual customers arrive randomly, each
demanding one unit of the product. The number of demands in 1 year has a Poisson
distribution with rate A. Consequently, the lead-time demand D has a Poisson distribution
with rate \L; the random variable D has pmf f and cdf F'.

Since an order is placed immediately when I P reachesr, IP € {r+1,r+2,... ,r+Q}
at any time. As in the model with continuous demands in Section 5.2, the inventory position
spends equal time in each of these states: [P has a discrete uniform distribution on the
integersr + 1,..., 7+ Q,soP(IP =y) =1/Qforally =7+ 1,...,7 + Q. (See, e.g.,
Zipkin (2000) for a proof.) A discrete version of the conservation-of-flow equations (4.41)
and (4.43) hold, so when I P(t) = y, inventory (holding and stockout) costs accumulate at
arate of g(y), given by (5.5) using the discrete distribution for D. Therefore, the expected
total cost per year is given by

K\ r+Q
9(r, Q) = * ZZQ_TH g(y)7 (5.48)

which is the discrete analogue of (5.7). As before, the function g(r, Q) is jointly convex in
@ and r.
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Figure 5.8 Determining which @ + 1 y-values are optimal given 7(Q).

Suppose we fix ) and we want to find r(Q), the best r for that ). To do this,
we need to choose 7 so that g(r + 1),...,¢g(r + Q) are as small as possible. In other
words, we want to find the @) best inventory positions {r + 1,...,r + Q} to minimize the
sum in (5.48). Since g(y) is convex, these @ best inventory positions are nested, in the
sense that, if {r + 1,...,7 + Q} is optimal for @, then either {r,r + 1,...,r + Q} or
{r+1,...,7+Q,r +Q + 1} is optimal for Q + 1.

Figure 5.8 depicts these nested inventory positions. The solid vertical lines represent
the inventory positions 7 4+ 1,...,7 4+ @ that are optimal for (), while the dashed lines
represent possible inventory positions to add for () 4+ 1. The question is, which is the better
inventory position to add, 7(Q) (as in Figure 5.8(a)) or r(Q) + Q + 1 (Figure 5.8(b))? If
g(r) < g(r+Q +1), then we set r(Q + 1) = r(Q) — 1; otherwise, (Q + 1) = r(Q).

Note that if @) = 1, then (5.48) simplifies to

g(r,1) = KX+ g(r+1). (5.49)

The first term is a constant, so g(r, 1) is optimized by optimizing g(r + 1). From Theo-
rem 4.3, S*, the minimizer of g(-), is the smallest .S such that

F(S) > 2 (5.50)

and the optimal 7 is given by
r=5"—1.

In other words, whenever the inventory position falls to S* — 1 or smaller, we order up
to S*. This is exactly a base-stock policy under discrete demand. Thus, under discrete
demand and continuous review, a base-stock policy is a special case of an (r, Q) policy.
We can find the optimal @) and r recursively, as follows. We start with () = 1 and set
r(Q) = S* — 1, where S* optimizes g(S — 1,1) = KX + g(S) from (5.49), i.e., where
S* is the smallest S satisfying (5.50). We then iterate through consecutive integer values
of @, determining r(Q + 1) using r(Q) as described above. Since g(r, Q) is convex in @Q,
we can stop as soon as we find that g(r(Q + 1), Q@ + 1) > g(r(Q), Q). This algorithm was
introduced by Federgruen and Zheng (1992). Pseudocode is given in Algorithm 5.3.
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Algorithm 5.3 Exact algorithm for continuous-review (r, Q) policy with discrete demand

distribution (Federgruen and Zheng 1992)

1

0 Q «+ 1;r(Q) «+ S* — 1, where S* minimizes g(y)

2: Calculate ¢(r(Q), Q) from (5.48)
3: done < FALSE
4: while not done do > Main loop
5 if g(r(Q)) < g(r(Q) + @ + 1) then > Choose r(Q + 1)
6 r(@Q+1)«r(@Q) -1
7: else
: M@+ 1)« r(Q)
9: end if
10: Calculate g(r(Q + 1), Q + 1) from (5.48)
11 ifg(r(Q+1),Q+1) > g(r(Q),Q) then > Termination check
12: done <— TRUE
13: else
14: Q+—Q+1 > Increment Q
15: end if
16: end while
17: return (r(Q), Q) > @ is optimal
[0 EXAMPLE 5.8

Horton’s Horns sells trumpets and other brass instruments. Customers arrive accord-
ing to a Poisson process with a mean of 1.5 per week. Each customer demands exactly
one trumpet. Horton’s accountants estimate that each trumpet held in inventory costs
the store $20 per week in holding costs, and each stockout costs $150 in penalty costs.
Each order placed to the supplier incurs a fixed cost of $100, and shipments arrive
exactly 2 weeks after they are ordered. Find the optimal parameters for Horton’s
(r, Q) policy.

First, we have h = 20, p = 150, K = 100, A = 1.5, and L = 2. The lead-time
demand has a Poisson distribution with mean 1.5 -2 = 3. Therefore, g(y) is given by

g(y) = 20n(y) + 150n(y),

where n(-) and 7i(-) are the Poisson loss function and complementary loss function,
respectively, with mean 3. (See (4.33)—(4.34).) Table 5.2 lists F'(y) and g(y) for a
range of values of y, using (C.41)—(C.42).

From (5.50), the S* that minimizes g(.S) (and therefore g(S — 1, 1)) is the smallest

S such that
150

>
— 150420
Since F'(4) = 0.8153 and F'(5) = 0.9161, S* = 5. (You can also confirm that this
S is optimal from Table 5.2.) Therefore, we set (1) = S* — 1 = 4. From (5.48),
g(4,1) =1-1.5+ g(5) = 212.89.

Now, g(r(Q)) = 74.29and g(r(Q)+Q+1) = 68.62,sowe set r(2) = (1) = 4.
From (5.48), g(4,2) = (1-1.54+¢(5) +¢(6))/2 = 140.75. The cost has gone down,
so we set () = 2 and continue.

F(S) = 0.8824.

> Initialization
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Table 5.2 F(y) and g(y) for Poisson(3) demand with h = 0.2, p = 1.5.
y  Fly)  9)
0 0.0498 450.00
1 0.1991 308.46
2 04232 192.32
3 0.6472 114.26
4 08153 74.29
5 09161 62.89
6 09665 68.62
7 09881 82.92
8 0.9962 100.90
9 09989 120.25
10 0.9997 140.07

Next, g(r(Q)) = 74.29and g(r(Q)+Q+1) = 82.92,sowesetr(3) = r(2)—1 =
3. From (5.48), ¢(3,3) = (1- 1.5 + g(4) + g(5) + ¢(6))/3 = 118.60. The cost
has gone down again, so we set () = 3. Continuing in this manner, we find that
r(4) = r(3) = 3 with a cost of ¢g(3,4) = 109.68, r(5) = r(4) = 3 with a cost of
9(3,5) = 107.92, and (6) = r(5) — 1 = 2 with a cost of g(2,6) = 108.98. Since
the cost for Q = 6 is greater than that for Q = 5, (r, Q) = (3,5) is optimal, with a
cost of $107.92. O

CASE STUDY 5.1 (r,Q) Inventory Optimization at Dell

In 2004, Dell had the largest market share of any computer-systems company and
was one of the fastest growing. Dell allowed its US customers to customize their
computer configurations online or over the phone; it then assembled the customized
machines quickly from components at a plant in Austin, Texas, aiming to ship them
to the customer within 5 days. To keep costs down, Dell held very little inventory of
the components needed to assemble the finished products—typically, only a few hours’
worth of inventory. However, the components were mostly manufactured in Asia, with
lead times of roughly 30 days. Obviously, it is impractical to receive shipments every
few hours when the shipments originate overseas. Dell’s solution to this problem was
to require its suppliers to hold inventory in warehouses located a few miles away from
the assembly plant, which could then make deliveries to the plant several times per day.
These warehouses are called revolvers, short for “revolving inventory.”

The inventory in the revolvers was owned and managed by the suppliers, and the
suppliers decided when to replenish the inventory and in what quantities. Dell was con-
cerned that the suppliers were holding too much inventory in the revolvers, even given
the frequent deliveries and high service levels required. Holding costs for component
inventory was high because of the components’ high value as well as its high obsoles-
cence rate: Some computer components lose up to 2% of their value per week. The
inventory in the revolvers was owned by the suppliers, so Dell did not have to bear this
cost directly. But excess costs anywhere in the supply chain will eventually make their
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way to the consumer, which is a direct concern for Dell. Moreover, Dell's agreements
with the suppliers allowed it to control the safety-stock levels at the revolvers.

Therefore, Dell partnered with the Tauber Manufacturing Institute (TMI) at the Uni-
versity of Michigan to study ways to reduce revolver inventory and to build a spreadsheet
to perform the inventory calculations. Their project is described by Kapuscinski et al.
(2004); we refer the reader to their paper for further details. Their pilot project focused
on one component, given the nickname XDX.

The researchers chose to model the inventory process for XDX as a continuous-
review (r, Q) policy with continuous demands. They assumed that the suppliers would
continue to use the same order size @) they had been using (since Dell did not have
direct control over Q) and focused on optimizing r. They assumed that the lead time
(from the suppliers’ manufacturing facilities in Asia to the revolvers in Texas) followed a
normal distribution, as did the forecast error of the demand. (If available, the standard
deviation of the forecast error is a better measure than the standard deviation of the
demand when setting safety stocks; see Section 4.3.2.7.)

Since @ is known, the optimal reorder point is the r that satisfies g(r) = g(r+Q), by
Lemma 5.2. Of course, the model in Section 5.2 assumes deterministic lead times, but
it can, in some circumstances, be applied to systems with stochastic lead times (Zipkin
1986b). However, solving g(r) = g(r + Q) is not straightforward in a spreadsheet,
whether the lead times are stochastic or deterministic. Therefore, the team opted
instead to use a type-1 service level constraint. From (5.21) and (5.25), the optimal

reorder point is given by
7= pr+ 20/ N202 + ppo2, (5.51)

where 1y, and o, are the mean and standard deviation of the lead time, A is the mean
forecasted demand per day during the upcoming lead time, o, is the standard deviation
of the daily forecast error during the upcoming lead time, and « is the desired type-1
service level. The first term of (5.51) is the cycle stock (most of which represents
in-transit inventory from the supplier overseas) and the second is the safety stock. The
parameters pr, oz, A, and o, can be updated daily based on new observed data and
forecasts of the near future, resulting in new calculations of 7.

The key remaining question is how to determine o. The researchers chose to set
it equal to the critical ratio: « = p/(p + h), where p and h are the the stockout
and holding costs per unit per day. These parameters, in turn, were estimated using a
combination of historical data and subjective opinions. The stockout cost p included
estimates of lost profit from a canceled order and expedited shipping costs, as well as the
probability that each unmet demand would result in either cancellation or expediting.
The holding cost A included estimates of the supplier's cost of capital, price erosion
due to obsolescence, and physical storage costs at the revolver.

The team built a user-friendly spreadsheet to manage and process the data and to
perform the inventory calculations. The spreadsheet also provided charts showing the
inventory levels, service levels, and so on, for the historical data for both the current and
recommended inventory policies. The optimal inventory levels turned out to be fairly
close to the current levels on average, but the team found that the current policies
generated widely fluctuating inventory levels. For example, during one period, the
system had nearly twice as much inventory as was required (resulting in excess costs),
while during another period, the system had only about two-thirds of the required
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amount (resulting in excess stockout risk). Overall, the team estimated that Dell could
reduce its inventory of XDX by roughly 38%, which would result in a savings of over
$40 million over the life of the component.

PROBLEMS

5.1 (Exact and Approximate r and Q: Continuous Demand) Consider an (r, Q)
policy for continuous demands. Suppose the annual demand is distributed N (800,402),
the fixed cost is K = 50, and the holding and stockout costs are h = 3.1 and p = 45,
respectively, per item per year. The lead time is 4 days. Find r and () using each of the
methods below.

a) The EIL approximation.

b) The EOQB approximation.

¢) The EOQ+SS approximation.

d) The loss-function approximation.

e) Algorithm 5.2 for exact optimal values of r and Q.
For each method, report the values of r and @) you found, as well as the corresponding
expected annual cost from (5.7).

5.2 (Exact and Approximate r and : Discrete Demand) Consider an (r, Q) policy
for discrete demands. Suppose the demand has a Poisson distribution with a mean of
A = 12 units/month, the fixed cost is K = 4, and the holding and stockout costs are h = 4
and p = 28, respectively, per item per month. The lead-time is 0.5 months.

a) Find approximate values for r and () by using the EOQB approximation described

in Section 5.3.2, replacing g(y) with (4.32) when solving (5.9).

b) Find exact optimal values for r and () using Algorithm 5.3.
For each method, report the values of r and () you found, as well as the corresponding
expected cost per week from (5.48).

53 ((r, Q) for Automobile Components) Return to the automobile manufacturing plant
from Problem 3.5. Suppose now that the rate at which the plant uses power-lock mechanisms
is stochastic and normally distributed, with a mean of 192 per day (8 per hour) and a standard
deviation of 17.4 per day. Replenishment orders for power-lock mechanisms incur a lead
time of 3 days. If the plant runs out of power locks, it must expedite them from the supplier
at a cost of $40 each. Using the EIL approximation for (r, Q) policies in Section 5.3.1,
find approximate values for r and ). Also report the expected total cost per week, using
equation (5.7).

a) The EIL approximation.

b) The EOQB approximation.

¢) The EOQ+SS approximation.

d) The loss-function approximation.

e) Algorithm 5.2 for exact optimal values of r and Q.
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5.4 (Lackluster Video) Lackluster Video needs to decide how may DVD copies of the
new hit movie The Supply Chain’s Weakest Link to stock in its stores. The company expects
demand for DVD rentals for the movie over the next 90 days to be Poisson with a mean of
A per day. The length of time each renter keeps a DVD before returning it is exponential
with a mean of 1/u days (i.e., exponential with a rate of 1).

Each copy purchased by the store costs c. Demands are backordered, in the sense that a
customer wanting to rent the movie but finding that it is out of stock will return on another
day to try again. Since this movie has been designated as a “guaranteed in stock” title, each
backordered demand incurs a stockout cost of g, the cost of providing a free rental to the
customer.

Assuming that backordered customers check back frequently to see whether the movie is
in stock and rent it quickly when it is available, this system can be modeled as an M /M /S
queue, where S is the number of copies of the DVD owned by the store. It can be shown
that the probability of a stockout in an M /M /S queue is approximately

S—p—1
P[stockout] ~ 1 — & <p2> ,
VP

where @ is the standard normal cdf and p = A\/u (in queuing terminology, the “offered
load”).

a) Determine the optimal number of copies to purchase (S) to minimize the purchase
cost and the expected stockout cost over the next 90 days using the approximation
given above. (Assume that the demand after 90 days will be negligible.) Your
answer should be in closed form; that is, S = [some expression].

b) Compute the optimal S assuming that A = 22, u = i, c=9,and g =4.5.

¢) Suppose the video store is worried about loss-of-goodwill costs as well as free
rental costs when a demand is backordered, but it is uncomfortable estimating
these costs. Instead, it would prefer to choose S so that demands are met with
probability a. Prove that the smallest such .S is given by

S~ p+za/p-

d) In two or three sentences, interpret the result from part (c) in terms of cycle and
safety stock.

5.5 (Heating Oil Replenishments) Henry’s Heating Oil company delivers oil to its
customers’ homes. If a customer signs up for Henry’s “auto-fill” plan, the company
delivers oil to the customer’s home on a regular schedule based on historical oil-usage data
for that customer. Suppose a given customer has an oil tank that holds C' liters of oil. For
each delivery to this customer, Henry’s incurs a fixed cost of K, representing the cost of
the truck, driver, and fuel required to make the delivery. Henry’s will make a delivery to
this customer every 1" days, where T is a decision variable, and at each delivery, it will
deliver enough oil to fill the tank. The number of days required for the customer to use C'
liters of oil is a random variable, denoted X, whose pdf and cdf are f and F, respectively.
If the customer uses all C' liters of oil before the next delivery, Henry’s must make an
emergency delivery to refill the tank. For these emergency deliveries, the regular fixed cost
of K does not apply, but instead Henry’s incurs a penalty cost of pT". (The penalty cost
is proportional to 7" because the more infrequent the deliveries, the more disruptive it is to
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Henry’s delivery schedule to add an emergency delivery.) After the emergency delivery,
the regular schedule resumes; that is, the next delivery will be T" days after the last regular
delivery. Assume the customer never needs more than one emergency shipment between
two regular shipments.
a) Write the expected cost per day as a function of 7.
b) Find an optimality condition for the delivery interval, 7. You may assume that
X is normally distributed and that 7' < E[X].
¢) Suppose C' = 500, K =$175, p =$25, and X ~ N(22,82%). What is T*, and
what is the corresponding expected cost per day?

5.6 (Stockout-Constrained Service Level) Consider the EIL approximation in Sec-
tion 5.3.1. Define a new type of service level as follows: SL(a) is the percentage of order
cycles during which there are at most a stockouts, for constant a > 0. Suppose that we
wish to enforce a service level constraint that says SL(a) > =, for fixed 0 < v < 1. What
are the optimal values of r and @ for the problem with this service level constraint?

5.7 (Properties of (QQ)) For the exact continuous (7, )) model in Section 5.2, prove
that, for any @) > 0:

a) r(Q) <5* <r(@Q)+Q

b) —1 < 7'(Q) < 0; r(Q) is decreasing; and r(Q) + @ is increasing

¢) limg_ oo 7(Q) = —o0 and limg_, o 7(Q) + Q = 0
5.8 (Proof of (5.32)) Prove equation (5.32).

5.9 (Deterministic vs. Stochastic Inventory Cost Rate) Prove that g4(y) < g(y) for all
y > 0, where g4(y) is defined in (5.38) and g(y) is defined in (5.5).

510 (Deterministic vs. Stochastic A(Q)) Prove that, for any Q > 0, A(Q) < A4(Q),
where A(Q) is defined in (5.34) and A4(Q) is its deterministic-model analogue.

5.11 (Proof of Upper Bound on Q*) Complete the proof of Theorem 5.5 by proving
that Q* < Qo.

5.12 (Range of Q* Bounds as K Changes) By Theorem 5.5, Q* is contained in the
interval [Q%, Qo], where Q) satisfies QHy(Q) = 2K . In this problem, you will prove
that the width of this interval is bounded by a constant for all X > 0. (On the other hand,
the constant will change as the other cost parameters change.)
a) Let Q; be the @ that satisfies Hy(Q) = Hq(Q?;). Prove that Qo < Q1.
b) Prove that H'(Q) > 0 for all Q > 0 and that limg_,o. H'(Q) = hp/(h + p).
¢) Prove that Q1 — Q7 is an increasing function of K and converges to a constant
as K — oo.
Hint: Argue that it is sufficient to prove the result with respect to increases in
@ rather than K.
d) Prove that Qg — Q}; is bounded by a constant for all K > 0.
You may use the properties in Problem 5.7 without proof.

5.13 (EOQB Error Vanishes as K — o0) Using the analysis in Section 5.4.3, prove
that (G(Q}) — G*)/G* — 0 as K — oo.
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5.14 (EOQB as Special Case of (7, ))) Prove Theorem 3.5 by treating the EOQB as a
special case of an (r, Q) policy, using the analysis in Section 5.4.3.

515 (H(Q) vs. Hg(Q)) Using the analysis in Section 5.4.3, prove that Hy(Q) < H(Q)
forall @ > 0.

5.16 (Lead-Time Demand under Stochastic Lead Times) Prove equations (5.24) and
(5.25).

5.17 (No Fixed Bound for 1) In the exact (r, )) model, suppose we set Q) = Q7 as in
Section 5.2, but we set r = r}; instead of r = r(Q%). Prove that there is no fixed worst-case
bound for this approach.

5.18 (No Fixed Bound for EOQ+SS Approximation) Prove that there is no fixed
worst-case error bound for the EOQ+SS approximation for the optimal (r, @) policy.

5.19 (Joe’s Corner Store with Poisson Demand) Suppose that Joe’s Corner Store from
Example 5.2 faces Poisson annual demand with a mean of 1300. Using Algorithm 5.3, find

r*, Q% and g(r*, Q*).

520 ((r,Q) with Minimum Order Quantity) Suppose that K = 0 but there is a
minimum order quantity constraint that requires that Q) > Qi for some constant Q iy .
Assume the demand has a discrete distribution. Explain how to modify Algorithm 5.3 to
handle this case.

5.21 (Solution in Terms of Standard Normal) In this problem, you will investigate
what happens to (r*, Q*) and g(r*, Q*) in the exact model (Section 5.2) as the lead-time
demand parameters p and o change. In particular, you will investigate the relationship
between the solution under N (1, 02) demand and that under N (0, 1) demand.

Assume that 02 = \/)\, for some constant Ao but that x can vary independently of o
and .

Let go(r, Q) be the expected cost function of the exact model under N (0, 1) lead-time
demand. Let (19, Qo) be the optimal parameters for this system and g} be the optimal cost;
that is,

90 = 90(r0, Qo) = min go(r, Q).
Similarly, let (r*, Q*) be the optimal parameters for the system with N (11, 02) lead-time
demand, and let g* = g(r*, Q*).

Prove that
r* =p+roo (5.52)
Q" = Qoo (5.53)
9" = gp0. (5.54)

5.22 (Bound on Q*) Let Q* be the optimal order quantity for the exact model with
continuous demands in Sections 5.2 and 5.4, and let Q}; be the optimal order quantity for
the EOQB. Let
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(Q. does not have a precise interpretation. Butitis, in a sense, a quantity for the newsvendor
model that is analogous to @ for the EOQB, since in the EOQB, the optimal order quantity
equals the optimal cost times (h + p)/hp.)

Prove that
Q" < Qs + Qg
Hint: First prove that
hp
H >

for all @ > 0. (You may use the result of Problem 5.15 without proof.) Then use this to
prove the result.

5.23 (Stockout Cost without SA2) Suppose we do not assume SA2. Show that the
expected stockout cost per year under the EIL approximation has (d — r)? in the integrand
instead of (d — ).

5.24 (EIL Approximation with One-Time Stockout Cost) Consider an inventory sys-
tem that functions almost exactly like the system described in Section 5.3.1 on the EIL
approximation for the (r, Q) problem. The only difference is that, when we run out of
inventory, the stockout cost p is incurred immediately, and only once, regardless of how
many demands occur before the replenishment order arrives from the supplier.
a) Formulate the objective function g(r, @), analogous to (5.16).
b) Identify optimality conditions for () and r, similar to equations (5.17) and (5.18).
Your optimality conditions do not need to be in closed form, i.e., they do not need
tolooklike Q =--- orr="---.



CHAPTER 6

MULTIECHELON INVENTORY MODELS

6.1 INTRODUCTION

In this chapter, we study inventory optimization models for multiechelon (or multistage)
systems with shipments made among the stages. There are two common ways to interpret
the stages or nodes in a multiechelon system:

1. Stages represent locations in a supply chain network, and links among the stages
represent physical shipments of goods. For example, the stages in Figure 6.1(a)
may represent the following physical locations: a supplier in China, a factory in
California, a warehouse in Chicago, and a retailer in Detroit (respectively).

2. Stages represent processes that the product must undergo during manufacturing,
assembly, and/or distribution. Links among the stages represent transitions between
steps in the process. For example, the stages in Figure 6.1(a) may represent the
following processes: manufacturing, assembly, testing, and packaging. These four
functions may take place in four different locations or all within the same building—
it is largely irrelevant from the perspective of the model. We sometimes refer to
the stages as different “products,” even if they really represent different phases of
producing a single product.

Either interpretation is acceptable for the models that we discuss, although some models
are more naturally interpreted in one way than the other. In the discussion that follows,
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Figure 6.1 Multiechelon network topologies.

we will use terms such as “shipped” or “transferred” under either interpretation to mean
“moved from one stage to the next.”

6.1.1 Multiechelon Network Topologies

Multiechelon networks can be structured in a number of ways, and the network’s topology
plays a large role in determining how the system is analyzed and optimized. The simplest
multiechelon topology is a serial system (or series system), in which each echelon contains
exactly one stage. Put another way, every stage has exactly one predecessor and exactly
one successor, except for two stages, one of which has exactly one successor and no
predecessors, and the other of which has exactly one predecessor and no successors. (A
predecessor of stage j is another stage that ships product to j, and a successor of j is
another stage that j ships to.) See Figure 6.1(a) for an example of a serial system.

In an assembly system, each stage has at most one successor; see Figure 6.1(b). Interpre-
tation (2) is most common for assembly systems: The network represents a bill-of-materials
structure that describes how a final product is assembled from raw materials and interme-
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diate products. In this case, the links in the network indicate “and” relationships: To make
one unit of the product at stage j, we need one (or more) unit of each of j’s predecessors.
Assembly systems can also be viewed under interpretation (1), with links denoting the
geographic flow of materials. If stage j has three predecessors, then there are three stages
that make the product and ship it to stage j. Here, too, links represent “and” relationships
since all three upstream stages ship product to stage j. An alternate, but less common,
way to use interpretation (1) is that the links represent “or” relationships, and stage j’s
predecessors are multiple alternate suppliers from which stage j can order. In a given order
cycle, it may order from one, more than one, or all of its predecessors, depending on their
capacities, the observed demands, and so on. Under any of these interpretations, assembly
systems are commonly used to model upstream portions of supply chains whose purpose
is to consolidate products or locations into a few stages.

A distribution system (Figure 6.1(c)) is the opposite of an assembly system: Each
stage has at most one predecessor. Interpretation (1) is most common for distribution
systems, which are often used to model downstream portions of supply chains—the portion
that moves material from a few centralized locations to a set of retailers or customers
distributed throughout a large geographical region.

Tree systems (Figure 6.1(d)) are hybrids of assembly and distribution systems—each
stage may have multiple predecessors and successors—but tree systems may contain no
undirected cycles. (A cycle, in graph theory, is a portion of the graph whose links allow one
to move from a starting node, through a sequence of other nodes, and back to the starting
node, without repeating any other nodes links. An undirected cycle is a cycle in the graph
that results from removing all of the arrows from the links so that movement can go in either
direction.) Finally, general systems allow any number of successors and predecessors and
have no restrictions on undirected cycles. Figure 6.1(e) shows an example. General systems
are the most flexible topology but are also the most difficult to analyze and optimize.

6.1.2 Stochastic vs. Guaranteed Service

The most challenging aspect of multiechelon inventory models is that a given stage j
provides stochastic lead times to its successors, even if the transportation lead time is
deterministic, due to occasional stockouts at stage j, and the optimal inventory parameters
at stage j’s successors depend on the probability distributions of these stochastic lead times.
We have discussed some results for optimizing single-stage systems with stochastic lead
times (see, e.g., Section 5.3.3), but in those models, we assume the lead-time distributions
are known and that the lead times are iid. In contrast, the probability distributions of
the lead times in multiechelon systems are very complex and difficult to characterize, the
lead times are not iid, and moreover, the distributions depend on the upstream inventory
parameters. Even for single-stage systems, the distributions of the lead times generated by
the stage are quite complex (Higa et al. 1975, Sherbrooke 1975).

Two primary types of models have been developed to handle these complexities in
multiechelon base-stock systems: stochastic-service models and guaranteed-service mod-
els (Graves and Willems 2003a). In stochastic-service models, each stage i sets a base-stock
level S; and meets demand from stock whenever possible using this base-stock level. The
actual lead time seen by downstream stages is stochastic since some demands will be back-
ordered. This is the approach taken in the seminal model of Clark and Scarf (1960) and
related works, discussed in Section 6.2.
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Figure 6.2 Interpretation of stockout penalties.

In guaranteed-service models, stage ¢ sets a “committed service time” (CST), denoted
S;, within which it is required to satisfy every demand.! For example, if S; =5 periods,
then every demand must be satisfied in no more than 5 periods. To make this guarantee,
guaranteed-service models require the demand to be bounded above. The guaranteed-
service assumption provides the strategic safety stock placement problem (SSSPP), de-
scribed in Section 6.3, its tractability. There is a close relationship between the CST and
the base-stock level, since a larger base-stock level allows the stage to quote a shorter CST.
In fact, any given set of CSTs implies a certain set of base-stock levels, and the base-stock
levels, not the CSTs, are usually the main quantities of interest.

One way to view the difference between these two approaches is that guaranteed-service
models allow a CST of .S > 0 but require a service level of & = 1 while stochastic-service
models assume a service time of S = 0 but allow a less restrictive service level of o < 1.
Another interpretation is that stockouts in stochastic-service models incur a penalty that is
proportional to the time the unit is backordered, whereas in guaranteed-service models, no
penalty is incurred until the backorder has lasted .S periods, and after that the penalty is
0. (See Figure 6.2.) In fact, in guaranteed-service models, a backorder isn’t really even
considered a backorder until it has lasted .S periods.

Itis important to remember that these are both merely mathematical models, two different
ways to describe the mechanics and the optimization problem underlying a multiechelon
inventory system. The end result of either approach is a set of base-stock levels, even
though the decision variables in the guaranteed-service model are the CSTs rather than
base-stock levels. Thus, the guaranteed-service model can be used even when stages do
not actually quote CSTs to one another. Either modeling approach can be used to model
a given system, and the choice of approach is a modeling decision with pros and cons just
like any other.

In Section 6.2, we first discuss stochastic-service models, describing an optimal and
a heuristic approach for optimizing base-stock levels in serial systems and then briefly
discussing the extent to which these methods can be extended to solve assembly and dis-

! Unfortunately, the literature on stochastic-service models and that on guaranteed-service models have both laid
claim to the notation S, but they use it to mean very different things. In stochastic-service models, S denotes
the base-stock level, whereas in guaranteed-service models, .S denotes the CST. We have opted to use S for both
purposes to remain consistent with these two bodies of literature, at the risk of confusing the reader. It is safe to
assume that .S denotes a base-stock level in Section 6.2 and a CST in Section 6.3.
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Figure 6.3 N-stage serial system in stochastic-service model.

tribution systems. Then, in Section 6.3, we discuss guaranteed-service models, beginning
with an analysis of single-stage systems and working our way up to tree systems.

See van Houtum et al. (1996) and Graves and Willems (2003a) (among others) for
further reviews of the literature on stochastic- and guaranteed-service models, respectively.

6.2 STOCHASTIC-SERVICE MODELS

6.2.1 Serial Systems

Consider an N-stage serial system, with the stages labeled as in Figure 6.3. Stage 1 is
farthest downstream. It faces stochastic external customer demand and places replenish-
ment orders to stage 2, which places replenishment orders to stage 3, and so on up the line
to stage N. Stage N, in turn, places replenishment orders to an external supplier that is
assumed to have infinite supply.

We consider a continuous-review, infinite-horizon system, though nearly all of the
results described below hold (with slight modifications) for periodic-review systems, as
well. Orders placed by stage j incur a transportation lead time of L;; that is, the order is
received L; time units later if stage j + 1 had sufficient stock to ship the order immediately,
and more than L; time units later otherwise. Stage j incurs a holding cost of hz per item per
time unit, which is charged on the on-hand inventory at stage j as well as on the inventory
in transit to stage ;7 — 1. (One can show that the expected number of units in transit is a
constant, and therefore the in-transit holding cost does not affect the optimization.) Unmet
demands are backordered at all stages, but only stage 1 incurs a stockout cost, given by p
per item per time unit. There are no fixed costs, and we will ignore any per-unit ordering
costs.

In multiechelon inventory theory, the echelon of stage j (or just “echelon ;) is defined
as the set of stages {j,7 — 1,...,1}; that is, the set that includes j and all downstream
stages. Note that this is a particular inventory-theoretic use of the term “echelon” and is
different from the way we defined it in Chapter 1. Stage j’s echelon inventory is the total
inventory in echelon j, and its local inventory is the inventory at stage j only. It turns out to
be more convenient to optimize stage j’s echelon inventory rather than its local inventory.

Stage j’s local on-hand inventory, denoted I ]’-, includes items on hand at stage j only,
whereas stage j’s echelon on-hand inventory, denoted I;, includes all of the on-hand
inventory in echelon j, plus all of the in-transit inventory among these stages:

J
Z (I' + IT;_1) (6.1)

where IT;_; is the inventory in transit from ¢ to ¢ — 1, and [Ty = 0. Stage j’s local and
echelon inventory levels, denoted I L;- and I L, respectively, are given by

I, =TI, — B (6.2)
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IL; =1, — B}, (6.3)

where B is the (local) backorders at stage 1. Note that the local inventory level at stage
7 subtracts the backorders at stage j while the echelon inventory level subtracts those at
stage 1; upstream backorders are not counted in IL;, and therefore the echelon inventory
level does not equal the sum of the local quantities.

The holding cost h; is called a local holding cost, and it is charged based on the number
of items in stage j’s local inventory plus the number of items in transit from stage j to
J— 1, IT;_;. We will mostly work with stage j’s echelon holding cost, denoted h; and
defined as

h; = h;- — ‘;'+1 (6.4)

(with by, = 0). Typically, local holding costs increase as we move downstream in the
supply chain since value is added to the product at each stage. Therefore, h; represents the
holding cost corresponding to the value added at stage j. It turns out that we can calculate
total holding costs using either echelon or local quantities:

Proposition 6.1

N N
> bl =Y W (I + 1T 1), (6.5)
j=1 j=1

where ITy = 0.

Proof. Omitted; see Problem 6.4. [

The following theorem establishes the form of the optimal inventory policy for serial
systems. It was proved for finite-horizon problems in the seminal paper of Clark and Scarf
(1960) and for infinite-horizon problems by Federgruen and Zipkin (1984).

Theorem 6.2 An echelon base-stock policy is optimal at each stage of a serial system with
no fixed costs.

In an echelon base-stock policy, each stage j has a fixed level S, called the echelon
base-stock level, and it places an order as needed to bring its echelon inventory position
(defined as stage j’s echelon inventory level, I L;, plus any items on-order from stage j +1)
equal to S;. An echelon base-stock policy is essentially the same as the base-stock policies
we are already familiar with except that it is the echelon inventory, rather than the local
inventory, that we compare to the base-stock level when making ordering decisions. We
use S = (Sj)é-vzl to denote the vector of echelon base-stock levels, one for each stage.

We will discuss approaches for finding optimal or near-optimal echelon base-stock
levels. Local base-stock levels (denoted S }) can be obtained from the echelon base-stock
levels by setting

Sl =8~ 5, (6.6)
defining Sy = 0. (This assumes that .S; > S;_;. If not, we let S; = min;>;{5;} and set
S} =5 ;= S 1 again setting S, = 0.) And echelon base-stock levels can be obtained

from local ones as follows:

J
S; =3 sl 6.7)
i=1
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Let D; be a random variable representing the lead-time demand at stage j. Since stage
j’s demands are ultimately generated by the external customer (via orders placed to stage
1, then to stage 2, and so on), stage j’s demand per time unit has the same distribution as
the customer’s demand, but the distribution of stage j’s lead-time demand D; depends on
L;. Let F}(-) be the cdf of D;.

Table 6.1 summarizes the notation for the stochastic-service model.

Table 6.1 Stochastic-service model notation summary.

Quantity Echelon Local

Holding cost hj=h; —h} b = Zf\;j hi
Stockout cost p P

Inbound lead time L, L;

On-hand inventory I I

Backorders — B

Inventory level IL; =1, - Bj 1L, =1} — B
On-order items 00; 00;

Inventory position IP;=1Lj +00; IP;=1IL}+00;
Inbound in-transit inventory  IT} 1T}
Inventory—transit position ITP; =1L; +IT; —

Base-stock level S;=37_, 8 St =85 —8Sj1
Vector of base-stock levels S = (S5;)1L, S' = (S))iL,
Lead-time demand D; D;

cdf of lead-time demand F;(4) F;(4)

fFormula for S;» assumes S; > S;_1; see page 192.

6.2.2 Exact Approach for Serial Systems

For a given set of base-stock levels, the expected cost of the system can be expressed using
either local or echelon quantities:

[~
g(8)=E|> 0 (I;+IT;_1) + pB; (6.8)
_j:1
[~
9(8) =E | > hiIL;+ (p+h))ILy | . (6.9)
_j:1

(Note that the prime in ¢’(-) indicates local quantities, not a derivative.) These two
expressions are equivalent (see Problem 6.5), but (6.9) will be more convenient for us to
work with.

We wish to choose S to minimize g(S). g¢(S) is a messy function of S because the
inventory levels on the right-hand side depend on S in messy ways. In fact, since S;
affects the inventory levels at all stages downstream from j, it would seem that we need
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to jointly optimize all of the S; simultaneously. Fortunately, a much simpler and more
elegant procedure suffices.

Let I'T P; be the echelon inventory—transit position at stage j, which equals the echelon
inventory level at j plus all items in transit from stage j + 1:

ITP; = IL; + IT; (6.10)
=IP; — (IL},,)". (6.11)

That is, I P; includes all items that have been ordered from j + 1 but not yet received,
whereas I'T"P; only includes items that have been shipped. The difference between the two
equals the number of backorders at j + 1 (i.e., ({ L; +1)7), and they are equal if there are
no backorders at j + 1.
The conservation-of-flow argument from Section 4.3.4.1 can be applied here to show
that
IL;(t+ L;) = ITP;(t) — Dj, (6.12)
since all items that were shipped from j + 1 at or before period ¢ have arrived by period
t + L;, no items that were shipped after ¢ have arrived, and the intervening demand is
D;. This equation is similar to (4.41), except that the inventory position is replaced by the
inventory—transit position.” In the single-stage models in Chapters 4 and 5, the supplier
never has stockouts, so IT'P and I P are equal.
One can show that
ITP](t) = miH{Sj,ILj+1(t)}. (613)
Intuitively, (6.13) says that the inventory at or en route to echelon j equals the echelon
base-stock level at j, unless the upstream inventory is insufficient to attain the base-stock
level, in which case it equals the upstream inventory level. For a more rigorous proof, see
Problem 6.14.
In addition, note that at stage N,

IPy(t) = ITPy(t) = Sy (6.14)

for all ¢, since the upstream supplier to stage IV never has stockouts.
In steady state, we can rewrite (6.12), (6.13), and (6.14) as

ITPy = SN (6.15)
IL; = ITP; — D, (6.16)
ITP]',1 = miH{ijl, ILJ} (617)

Equations (6.15)—(6.17) provide a recursion that expresses I7'P;_; in terms of I L;, I'L;
in terms of IT P;, and so on, until we reach IT" Py, which equals a constant.

We next introduce three auxiliary functions that condition the expected cost of the system
on the state variables in the recursion. These functions will allow us to develop a recursion
for the (unconditional) expected cost for a given vector S of base-stock levels, and then to
find the optimal base-stock vector.

J
9;(@(S) =B | > hiILi+ (p+h)ILy

=1

IL; = x] (6.18)

2The notation is slightly different. Here, we indicate the time index in parentheses rather than as subscripts, as is
common for continuous-review systems.
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g;(y|S) = th JIL;+ (p+ h)ILT|ITP; =y

=1

195

(6.19)

(6.20)

Each auxiliary function fixes one of the recursion variables—IL;, I'TP;, or IL;;—and
then calculates the expected cost in stages 1, ..., 7 using that value as the starting point.
For example, suppose we have a 4-stage system with base-stock vector S and we know that
IL3 = z. Then the expected cost for stages 1 and 2 is given by g, (2|S). Similarly, the
expected cost in stages 1 and 2 is go(y|S) if we know that IT P, = y and is §o(x|S) if we

know that I L, = x.
We can write (6.18)—(6.20) recursively. First let

9o([8) = (p+ M)z~
Then
31(2]S) = E [mILy + (p+ W)ILT 1Ly = ]
= hz + g, (2[S).
Similarly,
91(y|S) =E [hILy + (p+ R))ILT|ITP, =y

=E[g1(y — D1[S)],
where the expectation is over D;. (The second equality follows from (6.16).) And,
gl(x|S) =E [h1[L1 + (p+ R)ILT|ILy = gc]
= ¢1(min{Sy, z}|S),
where the second equality follows from (6.17). Continuing this process, we get
2($‘S) =K [hllLl + holLoy + (p + h/l)ILl_‘ILQ = x]
= hox —|—g1(az|S),
and so on.
In general, for j = 1,..., N, given g; - we have:
9;(@[S) = hjz +g, ,(z[S)
9i(WIS) = E[g;(y — D;[S)]

9,(218) = g, (min{S;, 2}[S).

(6.21)

(6.22)
(6.23)

So for any base-stock vector S and any known value of IL;, ITP;, or IL;;q, we can
calculate the expected cost in stages 1, ..., j. What’s more, we know IT P; for j = N—it
equals Sy. Therefore, the expected cost of the entire system, ¢(S), is given by gn (Sn|S).
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This gives us a way to calculate the expected cost recursively for a given S. We are only
a short leap from finding the optimal S. Since the recursion for stages 1,...,5 — 1 does
not depend on S;, we don’t need to choose .S; until we reach 9; (+) in the recursion. At that
point, we can simply set S; to the y that minimizes g;(-). This idea is made concrete in
the next theorem. Note that the functions in the theorem omit ““|S” since we are choosing
S rather than evaluating the cost for a given S.

Theorem 6.3 Let g (z) = (p+hy)x™. Forj=1,...,N, let

gj (I) :hj:v + gj_l(x) (624)
9i(y) =E [g9;(y — D;)] (6.25)

S} =argmin{g;(y)} (6.26)
g.(7) =g;(min{S},z}). (6.27)

J

Then S* = (S7)I_, is the optimal base-stock vector and gn(Sy) is the corresponding
optimal cost.

Theorem 6.3 is the result of the groundwork laid by Clark and Scarf (1960) and subsequent
refinements by Chen and Zheng (1994). It says that, rather than simultaneously optimizing
all of the base-stock levels, we can optimize them sequentially, beginning with stage 1
and working upstream, one stage at a time. Moreover, g;(y) is known to be convex, so at
each iteration we only need to minimize a single-variable, convex function. This theorem
underlies much of the theory of multiechelon stochastic-service models. (Zipkin (2000)
even goes so far as to call (6.24)—(6.27) the “fundamental equation[s] of supply-chain
theory.”)

The arguments above imply that, to evaluate the cost of a given (not necessarily optimal)
base-stock vector S, we simply skip the optimization step (6.26) and evaluate the functions
using S instead of S*.

Consider the optimization problem at stage 1. We have:

g1(x) =hiz + (p+ b))~ (6.28)
91(y) =E [g1(y — D1)]
=E [h(y — D1) + (p+ h')(y — D1)~ ]
=E [m[(y = D1)* — (y— D1) "]+ (p+ k) (y — D1)” ]
=E [hi(y — D))" + (p+h} — h1)(y — D1) 7]
=E [hi(y — D)™ + (p+ hy)(D1 — y)7] (6.29)

This function is identical in form to the newsvendor objective function (4.3), with p replaced
by p + hb. Therefore, from (4.17), g1 (y) is minimized by

N
St = Fy! <p+ hy ) g (PRl (6.30)
D \tp i ERVED Y

At upstream stages, the functions g; (y) become more complicated and cannot be minimized
in closed form. In fact, the expectation in g,(y) must be evaluated numerically for every
candidate value y. Therefore, although (6.26) is a convex minimization problem, it is
somewhat computationally expensive to execute, as well as cumbersome to implement.
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Figure 6.4 3-Stage serial system for Example 6.1.

The function g;(x) is similar to a deterministic cost function, analogous to (4.1) or
(5.3)—if we know that IL; = x at a given time, then the cost rate at that time for stages
1,...,71s §;(x). For j = 1, (6.28) shows that the form of §,(x) is exactly the same as that
of (4.1) or (5.3) since

hiz + (p+h))ax™ = hiat + (p+ hby)a™.

For j > 1, 9; (x) replaces the stockout penalty term. In fact, 9; (x) is sometimes called the
implicit penalty function. It captures the downstream implications of upstream stockouts.

0 EXAMPLE 6.1

Consider the 3-stage serial system in Figure 6.4. Demand at stage 1 is distributed
as N(5,12) per unit time. The lead times are L; = Ly = 1 and L3 = 2. Local
holding costs are given by (h}, h, h%) = (7,4, 2), so that the echelon holding costs
are (hi,ho,h3) = (3,2,2). The stockout cost at stage 1 is p = 37.12 per unit
time. We will use Theorem 6.3 to find the optimal echelon base-stock levels and the
corresponding expected cost.

First, we have g (z) = (37.12+ 7)z~, g1(z) = 3z + (37.12+ 7)z~, and

91(y) =E[g1(y — D1)] =E[3(y — D1)* + (37.12+ 4)(Dy — )]

from (6.29). We can solve this numerically, but (6.30) gives us an analytical solution:

3712 +4
r=F (S~ ) =64
Si=h (37.12+7> 649,

with g1 (ST) = 5.79. Figure 6.5(b) plots g (z), g1(y), and S7.

From ¢; (y) and S, we get 9, (z) (Figure 6.5(c)), then §o(x) (Figure 6.5(d)),
and then go(y) (Figure 6.5(e)). Optimizing numerically, we get S5 = 12.02 and
C5(S535) = 20.82.

Continuing in this way, we get g, (z) (Figure 6.5(f)), gs(z) (Figure 6.5(g)), and
93(y) (Figure 6.5(h)). This function is optimized by S35 = 22.71, with expected cost
C3(S%) = 47.65. By Theorem 6.3, the optimal echelon base-stock levels for this
system are S* = (6.49, 12.02, 22.71), with optimal expected cost 47.65.

0
6.2.3 Heuristic Approach for Serial Systems
Suppose we have found S7,...,57_;, and we now need to find S7. Theorem 6.3 tells us
that S does not depend on the base-stock levels at stages j + 1,..., N, although it does

indirectly depend on the echelon holding costs at those stages (because g, (y) includes h7).
Suppose we truncate the system at stage j (i.e., remove all stages upstream from j), leave
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Figure 6.5 Functions from Theorem 6.3 for Example 6.1.
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Figure 6.5 Functions from Theorem 6.3 for Example 6.1 (cont’d).
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the echelon holding costs at the remaining stages intact, and replace p with p + h; +1- Then
the ST that is optimal for stage j in this truncated system is also optimal for stage j in the
original system (Shang and Song 2003). In other words, the y that minimizes

9;(y) =E

> ( hk) (I;(y) + ITi1(y)) + (p + hy1) Bily) (6.31)
k=i

i=1 =

also minimizes g;(y) in (6.26). (In (6.31) we have emphasized that I L and IT are functions
of y, and we have truncated the system at j; otherwise, it is identical to (6.8).) We obtained
a similar result for stage 1 in (6.29).

Why is this true? Well, in the truncated system, each unit sold reduces the holding
cost by >7_, h;, but the true cost reduction, for the original system, is Zf\il hi = hf.
Therefore, there is an extra h} — g:l h; = h;- 1 in “perceived benefit” for each sale that
is not reflected in the holding costs of the truncated system. Similarly, each demand that
cannot be satisfied immediately increases the cost by this amount. We therefore model this
by adding the perceived benefit, h;» 41, to the original stockout cost, p.

Now, (6.31) is no easier to solve than (6.26)—except for one special case. Suppose
that by = -+ = h;- = h/, for some fixed h'. (Or, equivalently, hy = --- = hj_1 = 0
and h; = h'.) Then it is optimal to hold all of the inventory at stage 1, because upstream
inventory is not cheaper, and it requires a longer lead time to reach the customer. We can
therefore replace this j-stage system with a single-stage system with a holding cost of 7/,
a stockout cost of p + h;‘+1’ and a lead time of Zle L;.

This would make the problem easy to solve, but would the solution help us? It turns
out that, if we choose good values for 4/, the resulting cost functions provide bounds on
the actual cost function, and the resulting base-stock levels provide bounds on the optimal
base-stock levels. Moreover, these bounds can be used to compute heuristic values for S,
which turn out to be remarkably accurate. This approximation was proposed by Shang and
Song (2003).

We consider two different values for h’. Let gé- (y) be the cost function (6.31) with h/

replaced by h; for all 4, and let g% (y) be the same function with h; replaced by Zizl hi

for all 7. Let ﬁj be the lead-time demand for a single-stage system with lead time Zgzl L;,
ie.,

J
Dj=>_Di,
i=1

and let Fj(-) be its cdf.
Then the functions gj- (y) and g}/ (y) are minimized by

N N
§u = [ ( PH 2 ) — P (“Z—mh)
J

N N
hj+p+ 2 iz hi P+ 2o

and

N N
Sl = F ( EEARVETIL ) — (“Z—JML)
! ’ Zizlhkﬁ-p—i-zi]ijﬂhi J p+zi]\;1hi

respectively.
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Theorem 6.4 (Shang and Song (2003)) For any j and y:
(a) g5(y) < g;(y) < g¥(y)
(b) St < Sy <8y

The theorem suggests that we can approximate S, for each j, using a weighted average
of Sé- and S7'. In fact, Shang and Song (2003) suggest using a simple average, that is,

N N

& _1laa Pt iy i - (P i i

S = F; ——~ | T £ — || (6.32)
2 P+ Zi:j hi P+ i hi

If local base-stock levels are desired, we can compute 5; from S ; as described in Sec-
tion 6.2.1.

This approximation performs quite well: Shang and Song (2003) report an average error
of 0.24% and a maximum error of less than 1.5% on their test instances, where the errors are
computed by comparing the heuristic solutions with the exact solutions from Theorem 6.3.

This heuristic can be used for periodic-review systems as well. However, in this case,
the lead-times must each be inflated by one unit, assuming the system uses the sequence of
events on page 90. See Shang and Song (2003) for details.

0 EXAMPLE 6.2

Return to the serial system in Example 6.1. We will use the Shang—Song heuristic to
find approximate values for S*.
Recall that D; is the lead-time demand for a single-stage system with lead time

25:1 L;; then:
Dy ~N(5-1,12-1) = N(5,1)
Dy ~ N(5-2,12-2) = N(10,2)
D3~ N(5-4,12-4) = N(20,4).
We have (hy, ha, h3) = (3,2,2). Therefore:

- (371244 - (371244
v () =64 L= () =64
St =1h (37.12+7) 049 Si=h s71217) = 04
- (371242 - (371242
v il (22202 g Lyt (=) =11.71
52 = Iy (37.12+4) 3 52 = Iy (37.12+7> 7
- (371240 - (371240
Su=F; ) =23.27 Sh=Fy' [ =) =22.00.
S (37.12+2) 3708 \sr12+7

Using (6.32), we have

1(6.49 +6.49) = 6.49
Sy = $(12.35 +11.71) = 12.03
S3 = $(23.27 + 22.00) = 22.63.

These values are very close to S* given in Example 6.1, and indeed their costs are

very similar: g(S) = 47.66, compared to g(S*) = 47.65.
O
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6.2.4 Other Network Topologies

Assembly Systems: Assembly systems turn out to be easy to solve—or, at least, no harder
than serial systems. Rosling (1989) proves that every assembly system can be transformed
to an equivalent serial system. That serial system can be solved using any method available
for such systems (for example, the exact method in Section 6.2.2 or the heuristic one in
Section 6.2.3). The resulting solution can then be transformed back to a solution for the
assembly system. The equivalence between the two systems is exact, meaning that if we
solve the serial system optimally, then the transformed solution will be optimal for the
assembly system.

Distribution Systems: Unfortunately, distribution systems are much more difficult. In part,
the difficulty stems from the fact that, if a given stage has insufficient inventory to meet the
orders placed by its successors, it must decide how to allocate the inventory that it does have
among them. For example, it may assign items first-come, first-served, or randomly, or
based on some priority system. Therefore, in addition to choosing a replenishment policy
at each node, we must also choose an allocation policy. Under stochastic demands, even
the optimal form of these policies is unknown, let alone the optimal parameters for the
policies. Usually, we simply choose a plausible ordering policy (e.g., a base-stock policy)
and a plausible allocation policy (e.g., a first-come, first-served policy) and then optimize
the parameters under those assumptions.

The simplest type of distribution system is the one-warehouse, multiple-retailer (OWMR)
system, a two-echelon system with one upstream stage (the “warehouse”) and several down-
stream stages (the “retailers”). The best known exact algorithm for OWMR systems is the
projection algorithm (Graves 1985, Axsiter 1990), which involves iterating over the pos-
sible values for Sy (the warehouse base-stock level). For each possible value of Sj, we
can find the corresponding optimal .S; for the retailers by solving a single-variable, convex
optimization problem for each j. However, the total cost is not a convex function of Sy,
which means that we must perform an exhaustive search to find S;. Moreover, each eval-
uation of the objective function requires numerical convolution, a computationally costly
calculation.

Several heuristics have been proposed for OWMR and more general distribution systems.
Sherbrooke (1968) proposed the so-called “METRIC” model; his method approximates the
stochastic lead times generated by the warehouse for the retailers by replacing them with
their means. Graves (1985) proposes a two-moment approximation in which a messy
distribution necessary to evaluate the cost is replaced by a simpler distribution with the
same mean and variance. This approach can also be used to approximate serial systems.
Gallego et al. (2007) propose the “restriction—decomposition” heuristic, which involves
solving three subheuristics, each of which makes some simplifying assumption to render
the model tractable, and then taking the best of the three resulting solutions. Ozer and Xiong
(2008) propose a heuristic in which the distribution system is decomposed into multiple
serial systems, each of which is solved independently, and then the solutions from the serial
systems are summed to obtain a solution for the distribution system. A similar approach
is used in the “decomposition—aggregation” heuristic by Rong et al. (2017a), which uses a
procedure they call “backorder matching” to convert the base-stock levels from the serial
system into those for the distribution system. They also propose a more accurate, but more
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Figure 6.6 Digital camera supply chain network. Reprinted by permission, Graves and Willems,
Optimizing strategic safety stock placement in supply chains, Manufacturing and Service Operations
Management, 2(1), 2000, 68-83. (C)2000, the Institute for Operations Research and the Management
Sciences INFORMS), 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA.

computationally intensive, procedure, called the “recursive optimization” heuristic, which
is inspired by Theorem 6.3.

Tree and General Systems: Given the difficulty of solving distribution systems, these
more general systems have received little attention in the literature. See, for example,
de Kok and Visschers (1999) and de Kok and Fransoo (2003).

6.3 GUARANTEED-SERVICE MODELS

6.3.1 Introduction

Figure 6.6 depicts the supply chain for a digital camera made by Kodak. Each stage
represents an activity (as in interpretation (2) from Section 6.1): either a processing activity
such as packaging or testing, or an assembly activity such as combining a wafer and an
“imager base” to construct an “imager assembly.” These activities may occur at different
locations or together at the same location. Each stage functions as an autonomous unit that
can hold safety stock, place orders to upstream stages, and so on.

The question of interest here is, which stages should hold safety stock, and how much?
It may not be necessary for all stages to hold safety stock, but only a few. These stages
serve as buffers to absorb all of the demand uncertainty in the supply chain. This problem
is a strategic one, since the location of safety stock is a design problem that is costly to
change frequently. This problem is therefore known as the strategic safety stock placement
problem (SSSPP).

The supply chain operates in an infinite-horizon, periodic-review setting, and each stage
follows a base-stock policy. Each stage quotes a lead time, or committed service time
(CST), to its downstream stage(s) within which it promises to deliver each order. As we
will see, there is a direct relationship between the CST and the safety stock (and base-stock
level) required at each stage. The goal of the strategic safety stock placement model is to
choose the CST (and, therefore, the safety stock and base-stock level) at each stage in order
to minimize the expected holding cost in each period.
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Each stage is required to provide 100% service to its downstream stage(s). In other
words, each stage is obligated to deliver every order within the CST regardless of the size
of the order. In order to enforce this restriction, we will have to assume that the demand is
bounded. We will discuss this assumption further in Section 6.3.2.

The guaranteed-service assumption was first used by Kimball in 1955 (later reprinted as
Kimball 1988). Simpson (1958) applied it to serial systems and Graves (1988) discussed
how to solve the resulting safety stock optimization problem. Inderfurth (1991), Minner
(1997), and Inderfurth and Minner (1998) discuss dynamic programming (DP) approaches
for distribution and assembly systems. Graves and Willems (2000) extend this to tree
systems, and Magnanti et al. (2006) and Humair and Willems (2011) allow general networks
that include (undirected) cycles.

We will build gradually to tree networks similar to the one pictured in Figure 6.6,
considering first the single-stage case, then serial systems, and finally tree networks. First,
we will discuss the demand process.

Throughout Section 6.3, h; will be used to represent the local holding cost at stage <.
(In Section 6.2, it represented the echelon holding cost.)

6.3.2 Demand

We assume that the demand in any interval of time is bounded. In practice, this is not
a terribly realistic assumption (unless the bound is very large), but it is necessary in this
model to guarantee 100% service. One way to model the demand is simply to truncate the
right tail of the demand distribution. That is, if demand is normally distributed, we simply
ignore any demands greater than, say, z, standard deviations above the mean, for some
constant . This is the approach we will take throughout.

In particular, consider a stage that faces external demand (as opposed to serving other
downstream stages). Suppose the demand per period is distributed N (11, 2). Then we will
assume that the total demand in any 7 periods is bounded by

D(1) = p7 + 200VT (6.33)

for some constant . In other words, we assume that the demand in 7 consecutive periods
is no more than z,, standard deviations above its mean, since the mean demand in 7 periods
is u and the standard deviation is o+/7. This implies that the demand in a single period
is bounded by p + z,0. The reverse implication, however, is not true: Assuming the
single-period demand is bounded by u + 2,0 implies that the 7-period demand is bounded
by ut + z40T; it does not imply the stronger bound of ur + 2,0+/7.

If, in actuality, the demand in a given T-period interval exceeds D(7), the excess demands
are assumed to be handled in some other manner—say, by outsourcing, scheduling overtime
shifts, or by some other method not captured in the model. This allows us to ignore the
demands in the tail and pretend the demand never exceeds its bound.

We will use the demand bound in (6.33), but any other bound D(7) is acceptable, with
suitable changes to the derivations below.

6.3.3 Single-Stage Network

Consider a single stage that quotes a CST of S periods to an external customer. (Recall
that S denotes a CST in this section, but a base-stock level in Section 6.2.) The stage
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receives raw materials from an external supplier, which promises an inbound CST of ST
periods. Finally, the stage itself requires a processing time of 71" periods to perform its
function. Items that have been ordered from the supplier but not yet received are referred
to as on-order inventory; those that have been received from the supplier and are currently
being processed are referred to as work-in-progress (WIP) inventory; and those that have
completed their processing are referred to as finished-goods inventory. (See Figure 6.7.)
SI and T are both constants (parameters). S is the decision variable. Our goal in this
section is to determine the amount of safety stock required if the stage quotes a CST of S
periods.

The inventory position equals the finished-goods inventory, plus the on-order and WIP
inventory, minus demands that have occurred but have not yet been satisfied. These
unmet demands would be considered backorders in the stochastic-service model, but in
the guaranteed-service model, they are acceptable as long as they are satisfied within S
periods. Thus, they are subtracted from the inventory position just as backorders are, but
they are not penalized in the objective function.

The sequence of events in period ¢ in the guaranteed-service model is as follows:

1. The inventory position, I P;, is calculated.
2. The demand, d;, is observed.

3. A replenishment order of size y — (I P, — d;) is placed, where y is the base-stock
level.

4. Items that were ordered from the supplier S periods ago are added to WIP inventory.
5. Items that entered WIP inventory 7" periods ago are added to finished-goods inventory.
6. Items that were demanded S periods ago are removed from finished-goods inventory.
7. Holding costs are assessed based on the ending inventory level.

Note that this sequence of events assumes that the demand is observed before the order
is placed, whereas the stochastic-service, periodic-review models in Chapter 4 assume
the demand is observed after. Actually, the two are mathematically equivalent since we
can simply add 1 to a stochastic-service lead time and then apply the guaranteed-service
sequence of events, or subtract 1 from a guaranteed-service lead time and then apply the
stochastic-service sequence of events.?

Other differences between the sequences of events in the stochastic- and guaranteed-
service models are more cosmetic. For example, the guaranteed-service sequence includes
WIP inventory in the inventory position and subtracts items that have been demanded but
not yet satisfied. One can consider the same as happening in the stochastic-service model,
in which both of these quantities equal 0.

S is similar to a “demand lead time”—i.e., an advance warning of demands that must
be met in the future. Conversely, SI and 7" both contribute to the supply lead time, since
ST 4+ T periods elapse between when the stage places an order and when the products
are ready to be delivered to the stage’s customer. Each unit increase in demand lead time

3If L = 0 in the guaranteed-service model, this means we use a lead time of —1 in the stochastic-service model.
This doesn’t make sense for actual lead times but it is acceptable mathematically.
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Figure 6.7 Single-stage network.

is equivalent to a unit decrease in the supply lead time. (This claim should make sense
intuitively; see Hariharan and Zipkin (1995) for a rigorous proof in a somewhat different
context.) Therefore, this system is equivalent to a system with no demand lead time and
with ST 4+ T — S periods of supply lead time. The quantity ST + T — S is called the net
lead time (NLT).

The local base-stock level required at the stage is equal to the demand bound:

y=pu(SI+T —S8)+ zo0VSI+T —S. (6.34)

(If the demand bound D(7) takes a form other than that given in (6.33), we simply replace
the right-hand side with the appropriate bound.) This expression is analogous to (4.46),
with the net lead time ST + T — S replacing the lead time L. (The “+1” in (4.46) does not
appear here because of the difference in the sequence of events, discussed above.)

If the base-stock level is set according to (6.34), then the stage will always be able to
meet any demand within S periods. This is a result of the conservation of flow argument
that we made in Section 4.3.4.1: In period ¢, we place an order to bring the inventory
position up to the base-stock level, y. By period ¢ + (SI + T'), all of these units will
have arrived, been processed, and been added to inventory. In other words, if no additional
demands occur between period ¢ + 1 and ¢ + (ST + T'), the on-hand inventory at the end of
period ¢ + (ST + T) will equal y. This quantity needs to be sufficient to meet all demands
that are due before period ¢ 4+ (ST + T), in other words, demands occurring between period
t+1landt+ (SI+T —S). The demand in these ST+ T — S periods will be no more than
w(SI+T —8)+ 2,0V ST+ T — S, so we should set y equal to this value, as in (6.34).

Note that this argument ignores the units that were demanded during periods t — S + 1
through ¢. These demands also must be satisfied out of the items that are on-order at time
t. But these items are subtracted from the inventory position in period t. Therefore, the
on-order items include items to meet these demands, in addition to the y items that are
available in period t + (ST +T)).

Given the base-stock level in (6.34), the safety stock is approximately equal to

2q0VSI+T - S (6.35)

(since base stock = cycle stock + safety stock). The reason this expression is only approxi-
mate lies in the way we truncate the normal distribution. We have truncated the distribution
z,, standard deviations above the mean, and at 0. The truncation is therefore not symmetric,
and so the mean of the revised distribution no longer equals p. Therefore, the mean demand
over the NLT is not exactly equal to (ST + 7T —.5), so the safety stock is not exactly equal
to the expression given in (6.35). (The true safety stock level is greater.) As z, increases,
the approximation improves. To take an extreme example, if a < 0.5, then 2z, < 0, so
the approximate safety stock is negative, even though the true safety stock may not be.
The same situation can also cause the expected holding cost per period, given below, to be
negative. Therefore, in what follows, we will require « > 0.5 and will assume that it is
large enough that we can treat (6.35) as though it were exact.



GUARANTEED-SERVICE MODELS 207

SIn Sy SIn-a SNn-1 ST S1
— N N—-1|fF—— - 1 —

TN Tn-1 Ty

Figure 6.8 N-stage serial system in guaranteed-service model.

From (6.35), as the CST increases, the safety stock level decreases. At one extreme,
the stage can quote a CST of S = S + T, in which case every time the stage receives an
order, it can place an order to its supplier, wait for it to arrive, process it, and deliver it in
time—it has to hold 0 safety stock since /ST + T — (SI + T) = 0. At the other extreme,
the stage can quote a CST of S = 0, in which case delivery is required immediately, so
the stage must hold the maximum possible safety stock: z,o+v/ ST + T. Or the stage can
quote some CST strictly between 0 and SI + T and hold safety stock strictly between
2a0\/ ST + T and 0.

If the holding cost is A per unit per time period (charged on ending inventory, as usual),
then the expected holding cost per period is

hzqovVSI+T — S (6.36)

since the expected ending inventory is equal to the safety stock. From now on, we will
focus on the safety stock level rather than the base-stock level since optimizing one is
equivalent to optimizing the other.

6.3.4 Serial Systems

Now consider a serial supply chain network such as the one pictured in Figure 6.8. Each
stage follows the same sequence of events as in Section 6.3.3. The notation from that
section will now include subscripts 7 to refer to a given stage. Note that SIy_; = Sy
(stage N — 1’s inbound time is equal to stage /N’s outbound time), SIy_o = Sy_1, and
so on. And stage N’s inbound time is from an external supplier rather than from another
stage.

The expected holding cost per period is

N
9(8) = " hizao\/SL+T; — S, (6.37)

i=1

where S = (S1,...,Sn) and h; is the local holding cost at stage 7. Note that the same o
is used at all stages, since each stage places an order equal to the order that it received.
Obviously, with no constraints on the CST to the external customer (downstream from
stage 1), the optimal solution would be to set .S; = SI; + T; for all ¢; this solution has 0
holding cost because no safety stock is held. Therefore, we will assume that the CST to
the external customer is already set to some constant s;, and we require S7 < s;. But it
will never be to our advantage to set S; < s1, so in general, we can assume S; = s1. Only

So, ..., SN, then, are really decision variables.
Foreachi = 2,..., N, g is concave in .S; since
dg

1 1 1 1
95, = _ihizao—(sji +T;,—8;)" 2 + ghiflzao'(si + T, —Si-1)" 2
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Figure 6.9 Feasible region for two-stage system.
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Therefore, the optimal solution occurs at the extreme points—each .S; is set to its minimum
or maximum feasible value. What are the minimum and maximum? Well, S; < SI; + T;,
otherwise the quantity under the square root for ¢ in (6.37) is negative. Similarly, S; >
Si—1 — T;—1, otherwise the quantity under the square root for ¢ — 1 is negative. But we
also know that S; > 0. Therefore, the limits of .S; are max{0,.S;_1 — T;_1} and SI; + T};
the optimal solution has S} taking on one of these two values.

To illustrate this graphically, suppose N = 2. In effect, we are trying to solve the
following IP:

minimize hozao/ SIs +T5 — Sy 4+ h1zqo\/So + 11 — 51 (6.38)

subject to Slo+T5—S55,>0 (6.39)
So+T11—51>0 (6.40)
S < s1 (6.41)
S1,S2 > 0 and integer (6.42)

The feasible region for this IP is pictured in Figure 6.9; part (a) assumes that s; — 77 > 0
while part (b) assumes that s; — 77 < 0. If we assume that S; = si, then only the
right-hand edge of the feasible region is relevant; the extreme points on this edge are
S = (51,81, + Ty) and S = (s1,s1 — T1), as expected.

This logic can be used to prove the following:

Theorem 6.5 Suppose s1 = 0 (immediate service is required to the customer). Then for
alli=2,...,N, either S; =0o0r Sy =57 | +T;.

Proof. Omitted; see Problem 6.6. [

In other words, each stage follows an “all-or-nothing” inventory policy: either it holds
0 safety stock and quotes the maximum possible CST, or it holds the maximum possible
safety stock and quotes O CST. We will see shortly that this property does not hold for the
tree systems considered in Section 6.3.5.
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Figure 6.10 Example network for SSSPP DP algorithm for serial systems.

The mathematical program (6.38)—(6.42) is not usually solved directly. Instead, we can
solve this problem using DP (see Inderfurth 1991). Let 65 (SI) equal the optimal cost in
stages 1, ..., k if stage k receives an inbound CST of SI. Then 6;(SI) can be computed
recursively as follows:

91(5[) = h12q0\/ ST +T] — 81 (6.43)
0,(SI) =  min {hkzam/SI YT, S+ Gk_l(S)} (6.44)

0<S<SI+Ty,

Equation (6.43) initializes the recursion: At stage 1, for any inbound CST S1, the NLT
is ST + Ty — s; since the outbound CST is fixed at s;. Then (6.44) calculates 65 (ST)
recursively: If stage k receives an inbound CST of S and we choose an outbound CST
of S, the cost at stage k is hpz,0+/S1 + T}, — S, and the cost at stages 1,...,k — 1 is
0r—1(S) since stage k — 1 will receive an inbound CST of S. The right-hand side of (6.44)
chooses the S' that minimizes this cost, subject to the constraint that 0 < .S < ST + T}, to
ensure that S and the NLT are both nonnegative.

The recursive equations (6.43)—(6.44) must be evaluated for each stage k and for each
possible SI. We therefore need to determine which values ST can take on at stage k.
Clearly, ST > 0. Furthermore, if, at stage k, ST > SIy + Z ikt T}, then the NLT
will be negative at some stage. Therefore, at stage k, we can restrict our attention to
O<SI<SIN+ZJ po1 L

In the next section, we W111 generalize this approach to solve tree systems.

0 EXAMPLE 6.3

Consider the network pictured in Figure 6.10. The numbers below the stages are
the processing times 7;. The number on the inbound arrow to stage 3 indicates that
SI3 = 1, while the outbound number from stage 1 indicates that the fixed CST
s1 = 1. The holding costs at stages 1, 2, and 3 are 7, 4, and 2, respectively, and are
noted above each stage. Assume za = og; = 1 at all stages.

First note that STy + ZJ p1 ;= 2 atstages 1 and 2. (ST is fixed to 1 at stage
3.) These are the maximum ST Values that we must consider at each stage.

We consider stage k = 1 first. From (6.43), 8, (SI) = 7+/ST for all ST:

01(0) =0
0.(1) =7
01(2) = 7V2 = 9.90.

Next, at stage 2, we use (6.44):

02(0) = 1512118{4\/0 +0—-S+6,(9)} =
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02(1) = OI<nSiI<11{4\/1 +0—-S+6,(5)}
=min{4+0,0+7} =4

6:(2) = min (4V2 105 +61(S))

= min{4v2+4 0,4+ 7,0 + 7V2} = 4v/2 = 5.6.
Finally, at stage 3, we have only one S value to consider since S35 is fixed at 1:
03(1) = 0?532{2\/1 +1—S+06,(5)}

= min{2v2 4 0,2 + 4,0 + 5.6}
=22 =2.83.

Since S = 0 solved the minimization for #3(1), we have S5 = 0. Therefore,
ST = 0 at stage 2, and S = 0 solved the minimization for 65(0) as well. Finally,
s1 = 1. Therefore, the optimal CSTs are S* = (0,0, 1). These CSTs imply that the
NLTs at stages 1, 2, and 3 are 0, 0, and 2, respectively. Therefore, the optimal safety
stock levels are as follows:

S$S1 =+/0=0.00
S5 =0 = 0.00
SS9y =2 =141

6.3.5 Tree Systems

At this point, we will turn our attention to tree systems. The model and algorithm described
here were introduced by Graves and Willems (2000). (See also Graves and Willems (2003b)
for an erratum.) Their algorithm runs in pseudopolynomial time. Lesnaia (2004) provides
a polynomial-time implementation that runs in O(N?) time, where N is the number of
stages in the network. For general systems, which may include (undirected) cycles, the
problem is NP-hard (Chu and Shen 2003, Lesnaia 2004). See Magnanti et al. (2006) for a
solution method based on integer programming techniques and Humair and Willems (2011)
for exact and heuristic algorithms that extend the DP algorithm by Graves and Willems
(2000) to general systems. Humair et al. (2013) extend the approach to allow stochastic
lead times, and Graves and Schoenmeyr (2016) consider capacity constraints.

Let A be the set of (directed) arcs in the network; then stage 7 is a predecessor to stage j
if and only if (¢, j) € A. A demand stage is a stage that faces external demand. We assume
that a stage is a demand stage if and only if it has no successors. It is possible for a tree
network to have more than one demand stage. The CST S; for any demand stage i is set
equal to s; > 0, a constant, as in Section 6.3.4. Similarly, stages with no predecessors are
called supply stages. If ¢ is a supply stage, then ¢ receives product from an external supplier
with CST SI; > 0. It is possible that a nondemand stage could have an external customer
in addition to its successors, or that a nonsupply stage could have an external supplier in
addition to its predecessors, but we will rule out this possibility to keep things simpler.
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Each demand stage i sees periodic demand distributed as N (y;, 07). Nondemand stages
see demand that is derived from the stages they serve, and their safety stock levels must be
set using the standard deviation of that demand. The standard deviation of demand at stage

1 (a nondemand stage) is
o= | Y o (6.45)
(i,)€A

since its variance is the sum of the variances of the downstream demands (derived or actual).
The amount of safety stock required at stage ¢ is therefore

Za0i\/ SIl + E - Sz (646)

and the expected holding cost at ¢ is

h;zoqoi/SIT; +T; — S; (6.47)

whether i is a supply stage, a demand stage, or neither. (Again, h; is the local holding cost.)

If stage ¢ has more than one successor, we will assume that it quotes the same CST to
all downstream neighbors. Now, suppose stage 7 has more than one predecessor. Stage
1 cannot begin its processing until a/l of the raw materials have arrived. Therefore, if
the upstream neighbors quote different CSTs, the effective inbound time at stage i is the
maximum of the CSTs of the upstream neighbors. That is,

SI; = (ﬁ)zlécA{Sj}. (6.48)
All of this will be important in the algorithm we use to solve this problem.

Since the objective function is concave in every .S;, the optimal solution occurs at
the extreme points, as in the serial-system case. But the “all-or-nothing” result from
Theorem 6.5 does not hold, even if s; = 0 for every demand stage. That is, it is not
necessarily true that every stage either quotes O CST or holds 0 safety stock. An example is
pictured in Figure 6.11. The processing time 75 is listed below each stage, and the holding
cost h; is listed above. The inbound CST at the supply stages 3 and 4 is 0, as is the outbound
CST at the demand stages 1 and 2. Stage 4 has a very large holding cost, which means it
is optimal to hold no safety stock there; therefore, S} = 4. We will show that S5 = 4 as
well, even though this means stage 3 quotes a positive CST and holds positive safety stock.
First suppose S5 < 4. Then the safety stock level at 3 increases, but there is no decrease in
safety stock at stage 1 since stage 4 quotes an inbound time of 4 and ST; = max{Sy, S3}.
Now suppose S3 > 4. This increases the safety stock required at stage 1, which is quite
expensive; the cost more than offsets any savings in holding cost at stage 3. Therefore,
S5 =4.

6.3.6 Solution Method

We will solve the SSSPP on a tree system using DP. In principle, the approach is similar
to the DP for the serial system in Section 6.3.4, but it is more complicated for two main
reasons. First, computing the cost of a given decision is trickier than in the serial system.
Second, in the serial system, it is clear which stage follows a given stage, and hence, how
the DP recursion should be structured. In this problem, this is less clear, since each stage
may have more than one upstream and/or downstream neighbor.
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Figure 6.11 A counterexample to the “all-or-nothing” claim for tree systems.
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Figure 6.12 Relabeling the network.

6.3.6.1 Labeling the Stages We will address the second issue first. The DP algo-
rithm requires us to relabel the stages so that each stage (other than stage N) has exactly
one adjacent stage with a higher index. When we describe the algorithm, it will be clear
why this is required. The relabeling is performed using Algorithm 6.1. In the algorithm,
L represents the set of stages that have been labeled so far and U represents the set of
unlabeled stages.

Algorithm 6.1 Relabel stages
1. L« 0,U<«+{1,...,N} > Initialization
2: fork=1,...,Ndo > Labeling stages
3 choose ¢ € U such that 7 is adjacent to at most one other stage in U

4: label ¢ with index k&
5
6
7

L+ LU{i},U <« U\{i}
: end for
: return labels

[0 EXAMPLE 6.4

Consider the network pictured in Figure 6.12(a). Applying the procedure to this
network yields the renumbered network in Figure 6.12(b). Note that in this network,
every stage has exactly one neighbor (either upstream or downstream) with a higher
index, other than stage 7. O
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6.3.6.2 Functional Equations Next, we describe how to evaluate the cost of a
decision at a given stage. We had one recursive function, 6, in Section 6.3.4. In this
section, we will need two. Each stage will use one function or the other based on whether
the DP has already evaluated the stage’s successor or its predecessor.

Let M), be the maximum possible CST at stage k: M, is equal to the length of the
longest path through the network up to stage k, assuming each stage quotes the maximum
possible CST of ST + T.

For a given stage k, £k = 1,..., N — 1, let p; be the stage adjacent to k& with the
higher index in the relabeled network. Also, let N}, be the set of nodes in {1,2,...,k}
that are connected (not necessarily adjacent) to k in the undirected subgraph with node set
{1,2,...,k}. Thatis,

Ne={rtu U Mu U N (6.49)
(i,k)EA (k,j)EA
i<k i<k

For example, in Figure 6.12(b),

N3 = {1,2,3}
Ny = {4}
Ns = {5}.

In the course of the DP, decisions made at stage k affect only those stages in Ny. The
type of decision made depends on whether py, is downstream or upstream from k:

e If p; is downstream from k, then the decision to be made is the outbound CST S
from stage k. The expected holding cost in NNy, if k£ has an outbound CST of S is
denoted 67(S). (The superscript o stands for “outbound.”)

o If py is upstream from k, then the decision to be made is the inbound CST SI to
stage k. The expected holding cost in Ny, if k£ has an inbound CST of ST is denoted
0 (SI). (The superscript 4 stands for “inbound.”)

69(S) and 6 (SI) are the functional equations for the DP algorithm.
To compute 62 (S) and 0% (ST), we first compute the expected holding cost for Ny, as a
function of both the inbound and outbound CSTs at node &:

cr (S, ST) =hrzaok\/SI +Ti — S
* Z 0<:1:<SI{0( )} + Z S<u<M T{GZ( )} (6.50)

(i,k)EA (k,j)EA
i<k i<k

The first term is simply the expected holding cost at node k. The second term is the cost
at nodes in IV that are upstream from k. For a stage ¢ that is immediately upstream from
k, if k’s inbound CST is ST then 4’s outbound CST is at most SI. Why “at most” instead
of “equal to”? Remember that at node k, ST is the maximum of the S’s from all upstream
neighbors. Forcing S to equal ST for all upstream neighbors is probably not optimal.
Similarly, the third term is the cost at nodes in N, that are downstream from k. For a stage
Jj that is immediately downstream from £, if k£’s outbound CST is .S then j’s inbound CST
is at least S. It’s not necessarily equal to .S since j might have other upstream neighbors
that quote CSTs longer than S.
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At stage k in the DP, we know 67(S) for i < k and ¢’ (ST) for j < k because we have
already visited all stages with smaller indices than k. At those stages, we have computed
67 (.S) for all possible values of S and ¢’ (ST) for all possible values of ST.

To compute 67 (S) for a given S, we set

03(S) = rréiln{ck(S, SI)}. (6.51)

In other words, if we want to set k£’s outbound CST to S, we determine the cheapest possible
inbound CST given that the outbound CST is S. What should the minimum be taken over
(that is, what values of ST are legal)? If k is a supply node (no upstream neighbors), then
there is only one possible value for SI: SI, a constant. But if £ is not a supply node, then
ST could be anywhere between max{0, S — T} (to ensure the quantity under the square
root is positive) and My, — T}, where My, is as defined above.

Similarly, to compute 0% (ST) for a given ST, we set

03(SI) = min{ex(S, S1)}. (6.52)

What are the limits of S? If k is a demand stage (no downstream neighbors), then we have
to set S = si. Otherwise, S can be anywhere between 0 and ST + T.

6.3.6.3 Dynamic Programming Algorithm Algorithm 6.2 gives the pseudocode
for the DP algorithm.

Algorithm 6.2 DP algorithm for tree SSSPP
1. fork=1,...,N —1do

2: if pi is downstream from £ then

3 calculate 09(S) for S =0,1,..., My

4: else

5 calculate 0% (ST) for ST =0,1,..., M — Ty
6 end if

7: end for

8 SI™ <= argming;_o 1 ary—Tx 9§V(SI)
9: return 6%, (ST*)

The algorithm returns the optimal objective value, which is equal to the minimum value
of 0%, (STI) found in line 8. The optimal solution is found by “backtracking,” similar to the
Wagner—Whitin algorithm.

Here’s why the algorithm works. Suppose we’re at stage k < IV in step 1. We know that
k has exactly one neighbor with higher index, called py. If py is downstream from k, then
we compute the cost of setting k’s outbound CST S to each possible value. Computing the
cost for a given value, 67 (S), requires knowing c (S, ST), which in turn requires knowing
09 (x) for all stages ¢ that are immediately upstream and Gé(y) for all stages j that are
immediately downstream from k, for all appropriate values of = and y. We know that for
every upstream 7, we computed 09 (-) in step 1(a), not 6% () in step 1(b), because i’s neighbor
with a higher index is &, which is downstream from it. Similarly, for every downstream 7,
we computed 6% (-), not 67(-), because p; = k and k is upstream from j. If, instead, py, is
upstream from k, the logic is similar.
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Figure 6.13 Example network for SSSPP DP algorithm for tree systems.

0 EXAMPLE 6.5

We will illustrate the algorithm on the network pictured in Figure 6.13. The numbers
below the stages are the processing times 7;. The number on the inbound arrow to
stage 1 indicates that SI; = 1, while the outbound numbers from stages 2 and 4
indicate the fixed CSTs s;. The holding costs are noted above each stage and are
equal to 1 at the first echelon (stage 1), 2 at the second echelon (stage 3), and 3 at the
third echelon (stages 2 and 4). Assume z, = 1 at all stages and 03 = 04 = 1; then
o1 = o3 = /2. Note that the stages have already been relabeled so that each stage
has exactly one neighbor with a higher index. Examining the longest path to each
node, we get My = 3, My =5, M3 =4, My = 5.

1v2v1+ 2 =3 =0.00

Since p; = 3 is downstream from 1, we first compute §9(S) for S =0, ..., M; =
3. Since 1 is a supply stage, the minimum over ST only considers ST = 1.
61(0) = min{e1(0, 1)} = e1(0,1) = 1V2V1T+2-0=245
07(1) = min{ei (1,80} = ea(1,1) = 1V2vV1T+2—-1=2.00
07(2) = min{e1 (2, SN} = 2(2,1) = 1V2V1+2-2=141
) (3,51) 3,1)

07(3) = min{c1(3,S1)} = c1(3,1

Next, we compute 05(ST) since py = 3 is upstream from 2; we need to consider
SI =0,...,My; —T, = 4. Since 2 is a demand stage, the minimum over S only
considers S = 0.

05(0) = min{cz(S,0)} = e2(0,0) = 3v0+1-0=3.00
05(1) = min{ea(S, 1)} = e2(0, 1) = 3WVI+1-0=4.24
05(2) = min{es(8,2)} = ¢2(0,2) =3v2+1-0=5.20
03(3) = min{c (S, 3)} = 2(0,3) = 3vV3+1-0=6.00
05(4) = min{ca(8,4)} = e2(0,4) = 3Wi+1-0=6.71

Now comes the interesting case: stage 3. We need to compute 65(5) for S =
0,..., M3 = 4. The minimum over ST ranges from max{0,S — T3} to4 — 1 = 3.
Note that §¢(x) is decreasing in z and 6(y) is increasing in y for this network.
Therefore, in (6.50),

min_{65(x)} = 69(S1)

0<z<ST
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and 4 4
min _ {05(y)} = 05(5)

S<y<Mz—T>
for all ST and S, and we have:

03(0) =  min {es(0,51)) =8.28

¢3(0,0) = 2v/2v/0 4+ 1 — 04 05(0) + 05(0) = 2.83 + 2.45 + 3.00 = 8.28
c3(0,1) = 2v/2v/T+ 1 — 04 67(1) 4 65(0) = 4.00 + 2.00 + 3.00 = 9.00
3(0,2) = 2v/2v2+ 1 — 04 69(2) + 65(0) = 4.90 + 1.41 4 3.00 = 9.31
3(0,3) = 2v2v/3 +1 =04 607(3) + 05(0) = 5.66 + 0.00 + 3.00 = 8.66
03(1) = 0<min {e3(1,81)} = 6.69
c3(1,0) = 2v/2v/0 + 1 — 1 4 67(0) 4 65(1) = 0.00 + 2.45 + 4.24 = 6.69
c3(1,1) = 2v2VT + 1 =14 67(1) + 05(1) = 2.83 + 2.00 + 4.24 = 9.06
3(1,2) = 2V2v/2 + 1 — 1+ 67(2) + 05(1) = 4.00 + 1.41 + 4.24 = 9.65
3(1,3) = 2V2V/3+ 1 — 1+ 67(3) + 65(1) = 4.90 + 0.00 + 4.24 = 9.14

03(2) = 1§H3111n§3{03(2’ SI)} =17.20

c3(2,1) = 2v2V/T + 1 — 24 67(1) 4 65(2) = 0.00 + 2.00 + 5.20 = 7.20
3(2,2) = 2V2v2 + 1 — 24 67(2) 4 65(2) = 2.83 + 1.41 + 5.20 = 9.44
¢3(2,3) = 2V2V/3 + 1 — 2+ 67(3) + 65(2) = 4.00 + 0.00 + 5.20 = 9.20
03(3) = 2Srréilng){c;g(?’, SI)} =741

3(3,2) = 2v2v/2 + 1 — 34 67(2) + 65(3) = 0.00 + 1.41 + 6.00 = 7.41

¢3(3,3) = 2v2v/3+1— 3+ 67(3) + 05(3) = 2.83 + 0.00 + 6.00 = 8.83
05(4) = 3;1;111;3{03(4, SI)}=6.71

3(4,3) = 2v2V3+ 1 — 4 4 69(3) + 04(4) = 0.00 + 0.00 + 6.71 = 6.71

Finally, we compute 0% (SI) for SI = 0,..., My — Ty = 4. Again, 4 is a demand
stage, so the minimum ranges only over S = 1. However, we need to take greater
care with the minimization in (6.50) since 03 (z) is not monotonic in z.

03(0) = min{es(5,0)} = es(1,0) = 3VOF T =1+ _min {65(x))
0.00 + 63(0) = 0.00 + 8.28 = 8.28
rSn_irll{C4(S, D}=recs(1,1)=3vV1+1-1+ 0r<nir<11{9§(x)}
—3.00 + 65(1) = 3.00 + 6.69 = 9.69
04(2) = minfes(5,2)} = es(1,2) = 3VIF T =1+ _min (65(x)}

)

= 4.24 4 05(1) = 4.24 + 6.69 = 10.93
)
)

61(1)

0i(3) = min{ea(S,3)} = c4(1,3) = 3v3 + 1~ 1+ min {03()}
=5.20 + 65(1) = 5.20 + 6.69 = 11.89
05(4) = min{cs(S,4)} = ea(1,4) = 3vA+1— 1+ min {05(z)}

=6.00 + 03(1) = 6.00 + 6.69 = 12.69
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The minimum value is 05(0) = 8.28, so 8.28 is the optimal cost. The optimal
solution has an inbound time of 0 to stage 4, which means S5 = 0. Since 63(0)
is minimized when SI = 0, the inbound time to stage 3 is 0, hence ST = 0. The
optimal solution is therefore S* = (0,0, 0, 1). The safety stock at each stage is

S8 =vV2V1+2-0=245
SSy =v0+1—-0=1.00
SS3 =v2v/0+1-0=1.41
SSy=v0+1—-1=0.00

Note that the safety stock is pushed upstream as far as possible: Stage 2 needs to hold
some safety stock since its processing time is 1 and its CST is 0. Since the holding
cost at stages 2 and 4 is high, it is important for stage 3 to quote a CST of 0, so it, too,
must hold safety stock. But the bulk of the safety stock is held at stage 1 since the
holding cost is smallest there. Stage 1, then, absorbs most of the demand uncertainty
by serving as the supply chain’s main buffer. g

6.4 CLOSING THOUGHTS

As we discussed at the start of this chapter, one can view the stochastic- and guaranteed-
service models as two approaches for optimizing base-stock levels in the same system—two
algorithms for the same problem. On the other hand, the two models treat backorders in
very different ways: The stochastic-service model expects the system to provide instant
service to the end-customer and imposes a stockout cost at a rate of p per unit, starting as
soon as the customer arrives and finds the product out of stock and continuing as long as is
required to clear the backorder. The guaranteed-service model, on the other hand, allows
backorders to occur, for free, for up to S time periods and then disallows them entirely after
that. (See Figure 6.2.)

This difference causes the guaranteed-service approach to generate solutions in which
only a few stages hold inventory, absorbing the uncertainty on behalf of the entire supply
chain. The stages that hold inventory act as push (or make-to-stock) systems, while those
that hold no inventory operate as pull (or make-to-order) systems. In a push system,
inventory is produced based on a demand forecast, in anticipation of actual demands. In a
pull system, in contrast, production does not begin until a demand triggers, or “pulls,” the
production process; a pull system holds little or no inventory.

To see this play out in the SSSPP model, let’s return to the Kodak supply chain pictured
in Figure 6.6. In Figure 6.14, we have indicated hypothetical processing times, 7;, below
each stage and holding costs, h;, (in cents) above. Assume the demand standard deviation
is 0 = 10 and o = 0.95. Each time period lasts 1 week. The CST for the final stage
(Build/test/pack) is a constant, s = 2.

The optimal CSTs for this system, obtained using Algorithm 6.2, are noted on the arcs
in Figure 6.15. The buckets above each node depict the inventory level at that node. The
final stage (Build/test/pack) holds no inventory: It receives inbound CSTs of ST = 0 from
its suppliers, has a processing time of 7" = 2, and gives its customer a CST of S = 2, for
an NLT of 0. The stages immediately upstream from Build/test/pack hold inventory so that
they can provide inventory on demand to Build/test/pack. The stages farther upstream also
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hold no inventory: Each quotes an outbound lead time equal to the sum of its inbound lead
time and its processing time. The exception is the Raw material stage, which again holds
inventory so it can provide quick service.

The Camera, Ship to final assembly, Circuit board, and Other parts stages serve as the
push—pull boundary in this system. Upstream from this boundary, the system operates as a
push system, producing inventory to hold in anticipation of future demands. Downstream
from the boundary is a pull system, in which no production is undertaken until an actual
demand has been realized.

The push—pull boundary will change as the system parameters change. For example,
suppose the CST promised to the end customer is 8 instead of 2. This gives the downstream
portion of the supply chain more time to react to demands, allowing inventory to be stored
further upstream, where it is cheaper. (See Figure 6.16.) This also moves the push—pull
boundary upstream.

Figure 6.17 plots the expected holding cost as a function of the end-customer CST, s;.
The sharper jumps in the curve (for example, at s; = 2 and 8) correspond to changes
in safety stock locations, while the smoother movements along the curve correspond to
changes in safety stock levels. One can view this as a trade-off curve that allows the
decision maker to navigate the two competing objectives of service and cost. Note that
when s; > 14, the entire supply chain can operate as a pull system, holding no inventory
and incurring no costs.

The guaranteed-service model is particularly adept at deciding whether stages should
operate in push or pull mode since it tends to generate solutions in which only a subset of
the stages hold inventory. For instance, suppose we reduce the CST of the Imager assembly
stage in Figure 6.15 so that Ship to final assembly holds less inventory and Imager assembly
begins to hold some. This means increasing the NLT at Imager assembly and decreasing
it at Ship to final assembly. Since the safety stock is a concave function of the NLT,
increasing the NLT at Imager assembly has a larger impact on the objective function than
does decreasing the NLT at Ship to Final assembly from 10. This makes it unlikely to be a
cost-effective change, unless the holding cost is much cheaper at Imager assembly.

In contrast, the objective of the stochastic-service model is a convex function of the
base-stock level of each stage (see Section 6.2.2), encouraging the inventory to be more
evenly distributed throughout the system.

Although the stochastic- and guaranteed-service models describe the system in different
ways and produce different sets of base-stock levels, it is important to note that these are
modeling differences rather than operational ones. That is, once we set the base-stock
levels, the system operates the same, whether those base-stock levels were set using the
stochastic- or guaranteed-service approach. In the guaranteed-service model, there is no
need to impose an operational rule requiring orders to be shipped within S periods; the
CSTs will automatically be satisfied as a result of the base-stock levels and the demand
bound. (See Problem 6.12.) And in the stochastic-service model, there is no need to require
demands to be satisfied from stock whenever possible; that, too, will happen as a result of
the base-stock levels.

Which model we choose depends on how accurately each one models the particular
features of the real-world system and how tractable each one is. In our experience,
stochastic-service models tend to be a more natural way to describe most real-world supply
chains (since managers are more accustomed to thinking in terms of inventory levels than
in terms of CSTs). On the other hand, guaranteed-service models are typically much more
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Figure 6.17 SSSPP trade-off curve: expected cost vs. end-customer CST.

tractable and have therefore been implemented in more commercial software packages for
multiechelon inventory optimization than stochastic-service models have.

CASE STUDY 6.1 Multiechelon Inventory Optimization at Procter & Gamble

Procter & Gamble (P&G) is one of the world's largest consumer products companies,
with annual sales of nearly $80 billion. Their 200 brands include many household names
such as Tide laundry detergent, Crest toothpaste, and Gillette razors. P&G is often
ranked as one of the best-managed supply chains in the world; for example, in 2016
Gartner named P&G as one of only two companies (along with Apple) in its “Masters”
category, for companies whose supply chains are in its top-5 rankings for multiple
years (Gartner, Inc. 2016). This is all the more impressive given that the company
operates roughly 500 supply chains, consisting of several hundred locations owned both
by P&G and by third-party partners.

One of the primary tools that P&G uses to ensure supply chain efficiency is inventory
optimization, including both single-stage models, such as those in Chapters 4 and 5,
and multiechelon models, especially the SSSPP discussed in Section 6.3. Farasyn et al.
(2011) discuss the implementation of both types of models at P&G; we discuss the
latter here. (For more information on P&G's single-stage models, see also Farasyn
et al. (2008).)

The SSSPP model implemented at P&G has several additional factors that make
it more complicated than the model discussed in this chapter. Most significantly, the
presence of reorder intervals (see Section 4.3.4.1) and batch production processes de-
stroys the concavity of the safety stock level as a function of the inbound and outbound
CSTs (e.g., in (6.46)), and therefore of the objective function. In addition, the Beauty
and Grooming supply chains contain (undirected) cycles, so the algorithm for tree net-
works in Section 6.3.5 does not apply. Instead, P&G used the algorithm of Humair and
Willems (2011), which is based on the DP for trees but can solve general systems with
nonconcave objective functions to optimality.

A typical Beauty and Grooming SSSPP network (modeling one product family) has
4,000-5,000 stages (representing both locations and processing activities) and 6,000
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10,000 arcs. The 500 or so demand stages in such a network represent multiple finished
goods SKUs within the same product family—for example, multiple flavors, sizes, and
packaging types for a toothpaste brand. This proliferation of SKUs is the result of
a significant push at P&G for postponement (see Section 7.3). A product family
discussed by Farasyn et al. (2011) uses a service level («) of 99.5%, has inbound CSTs
(SI) from suppliers of 7 days to 8 weeks, and has production times (T') of 1-2 days
and transportation lead times (also modeled using T') of 1-7 days. The demand mean
and standard deviation were estimated using the previous 13 weeks of historical data
and demand forecasts for the coming 13 weeks.

The multiechelon inventory optimization process resulted in changes to both the
locations and quantities of safety stocks in P&G’s supply chains. Safety stock levels
for raw materials and finished goods decreased, while those for intermediate stages
increased. However, the increased cost of intermediate inventory was more than offset
by cost reductions for the other inventory types, for a net savings of 17% for the supply
chain discussed by Farasyn et al. (2011), and of 7% for the entire North America
cosmetics supply chain. This savings is on top of significant savings that had already
been achieved through single-stage inventory optimization. And, since it is built into
the SSSPP model, the service level to the end customer remained at its target level of
99.5%.

PROBLEMS

6.1 (Exact Algorithm for Serial Systems) Using the exact algorithm for serial systems
with stochastic service in Section 6.2.2, find optimal base-stock levels for the following
instance: N = 2, p =15, L1 = Ly = 1, hy = hy = 1, and the demand per unit time is
distributed N (100, 15%). Report both echelon and local base-stock levels (S5 and (S”)%).

6.2 (Shang-Song Heuristic) Using the Shang—Song heuristic discussed in Section 6.2.3,
find near-optimal base-stock levels for the following instance: N =5,p =24, L; =--- =
L5:0.5,h1:h2:2,andh3:h4:h5:1.
a) Assume the demand per unit time is normally distributed with a mean of 64 and
a standard deviation of 8.
b) Assume the demand per unit time has a Poisson distribution with A = 64.
Report both echelon and local base-stock levels (5‘ ; and S ;).

6.3 (Comparison of Exact and Heuristic Approaches) Find optimal and near-optimal
base-stock levels for the following serial system using both the exact approach from
Section 6.2.2 and the Shang—Song heuristic from Section 6.2.3: N = 4, p = 80,
Li=--=1Ly=1,hj =5 —jforall j, and the demand per unit time is distributed
N (20, 4?). Report the echelon base-stock levels and the expected cost of each solution.

6.4 (Proof of Proposition 6.1) Prove Proposition 6.1.

6.5 (Equivalence of Local- and Echelon-Based Total Costs) Prove that ¢'(S’) in (6.8)
equals ¢g(S) in (6.9).

6.6 (Proof of “All-or-Nothing” Theorem) Prove Theorem 6.5.
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Note: You may use the fact that there exists an optimal solution in which, for all ¢, either
S; =81+ T;orS; = max{07 Si_1 — Tifl}.

6.7 (Safety Stock for Ceramic Plates) A manufacturer of ceramic plates and other
tableware divides the manufacturing process into three major steps: forming, firing, and
glazing. In the first step, the plates are formed out of clay; in the second, the plates are
heated in a kiln, and in the third, the plates are painted. Forming and firing each take 1
day, while glazing takes 2 days. Clay is procured from an external vendor, which delivers
orders exactly 1 day after they are placed. The daily demand for plates, as measured in
cases, is distributed N (45,102). The company promises its customers that finished (i.e.,
glazed) plates will always be on-hand provided that the demand on a given day is no more
than 4 standard deviations above its mean. (That is, s; = 0 and z, = 4.) Inventory may
be held at any stage of the process. The holding cost of one case of plates (or its precursor
products) is $2 per day for plates that have been formed but not fired, $3 for plates that
have been fired but not glazed, and $4 for glazed plates. Find the optimal CST, base-stock
level, and safety-stock level at each stage, as well as the optimal expected cost per day.

6.8 (Implementing Serial SSSPP DP) The file seriall0.x1sx contains the holding
costs and processing times for a 10-stage serial system. The demand per period is distributed
N (89.0,15.8%). Use a = 0.98 in the demand bound. There is an inbound service time of 7
periods at stage 10, and stage 1 has a CST of 3 to the customer. Implement the DP algorithm
from Section 6.3.4 and use it to find the optimal CST, base-stock level, and safety-stock
level at each stage, as well as the optimal expected cost per period.

6.9 (Safety Stock for Baseball Hats) Figure 6.18 depicts the supply chain for a firm that
manufactures baseball hats for college baseball fans. There are two end products. Product
1 is a Lehigh University hat, for which the firm sees a daily demand that is normally
distributed with a mean of 22.0 cases and a standard deviation of 4.1 cases. Product 2 is
a Lafayette College hat, whose demand is also normally distributed, with a mean of 15.3
cases and a standard deviation of 6.2 cases.

Stage 3 represents assembling the hats from two subassemblies: the cap (the part that
sits on your head) and the visor (the part that sticks out in front). This generic product
is then differentiated at stages 1 and 2 by dyeing the fabric and embroidering the team
logos. Stage 4 represents the visor subassembly, while stage 5 represents sewing the cap
subassembly out of fabric; the fabric is represented by stage 6.

Figure 6.18 indicates the processing time below each stage and, above it, the value of
one case’s worth of the product. The firm is committed to providing a CST of 3 days to its
customers (such as college bookstores). It has also set CSTs for the upstream stages, which
are indicated on the links in the figure, but you suspect that these are not the optimal CSTs.

a) Calculate the base-stock level and safety-stock level required at each stage for
the solution in the figure, as well as the total expected holding cost. Assume
that demands are truncated 4 standard deviations above their means; i.e., z, = 4
in (6.33). Also assume that holding costs are calculated as 20% of the product
value, per year. (Make sure to translate into days.)

b) Develop a solution to the SSSPP that still gives CSTs of 3 days to the end
customers but is cheaper than the solution depicted in Figure 6.18. Your solution
does not need to be optimal, only better than the one in Figure 6.18. For each
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Figure 6.18 Baseball-hat supply chain for Problem 6.9.

stage, report the CST, base-stock level, and safety-stock level, as well as the total
expected holding cost per period for the whole system.

6.10 (Implementing Tree SSSPP DP) Implement Algorithm 6.2 and use it to find the
optimal solution for the instance introduced in Problem 6.9. Report the optimal CST,
base-stock level, and safety-stock level at each stage, as well as the optimal expected cost
per period.

6.11 (Two-Stage SSSPP) Consider a two-stage serial supply chain with guaranteed
service as defined in Section 6.3.4. Assume that 0 < hy < hy. The inbound CST to stage
2, S15, is a constant, as is the outbound CST from stage 1, s;. Therefore, the only decision
variable is So. For simplicity, assume that z, = ¢ = 1. Then the objective function is

given by
g(Sg) = hg\/ SIQ +T2 — SQ + hl\/ SQ + T1 — 81.

a) Prove that, in the optimal solution to the SSSPP for the two-stage supply chain
defined above:

i. Stage 1 holds safety stock if and only if s; < T7.

ii. If stage 1 holds safety stock, then stage 2 also holds safety stock if and only if

hg\/SIg+T2+h1\/T1 — 81 <h1\/SIQ+T2+T]_ — 81.

b) Now consider an N-stage serial supply chain, with STy and s; constants, as
usual. Assume that 0 < hy < --- < hy. Prove that if

k
ZTZ < 81,
i=1

then stages 1, 2, ..., k hold no safety stock.

6.12 (CSTs are Satisfied) Simulate a single-stage system under the guaranteed-service
model in a programming language or spreadsheet program of your choice. Assume ST = 4,
T = 2,and S = 3. Assume the demand per period is distributed as N (50, 10%) and use
Zo = 1.5 to truncate the demand. Use the appropriate base-stock level y for these settings
and assume the system begins period 1 with y units on hand. Assume that demands are
satisfied first-come, first-served. Simulate the system for at least 1000 periods and verify
that, as claimed in Section 6.4, the CST is always satisfied, even though your simulation
does not contain explicit logic to ensure it.
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Hint: Include columns or variables that keep track of the number of unsatisfied demands
that were placed 0, 1, 2, 3, and 4 or more periods ago.

6.13 (Limits of g; Function) In the exact algorithm for serial systems described in
Section 6.2.2, prove that, forall j =1,..., N:

im g, (x) = Z hi (x - X_:E[Dk]> —(p+hi) (17 - X_:E[Dk]) (6.53)
=1 k=1 k=1

hjz +gj-1(S7_1), ifj>1

6.54
h;z, ifj=1 654

m 9i(@) = {
where ZZ:a [anything] = 0 if @ > b. What types of functions are these (quadratic, linear,

concave, etc.)?

6.14 (Proof of (6.13)) In this problem you will prove (6.13). Throughout this problem,
you may use any of the results up until (6.12), but nothing that comes later.
a) Prove that
IL;.(t) =1IL;(t) —IP;_1(t).

b) Use part (a) to prove that

ITPJ(t) == min{Sj, ILj+1(t)}.

6.15 (Approximate Two-Stage SSM Model) Consider a 2-stage serial system following
an echelon base-stock policy under the SSM model. The costs, demand rate, and lead times
are as given in Section 6.2.1. Assume the demand per unit time is distributed as N (u, 02),
so the lead-time demand for stage j has a mean of ;1; = pL; and a standard deviation of
g 5 =0 \/E .

In this problem, you will develop an approximate method for computing the cost of
a given echelon base-stock policy. This method is much easier to implement than the
Clark—Scarf recursion in Theorem 6.3.

From (6.9), the expected cost for a given echelon base-stock policy S = (.57, .52) can
be written

g(S) = E[hllLl + holLs + (p + hll)ILl_]

This expression has three random variables; you’ll use exact expressions for the expectations
of the first two and develop an approximation for the third.

From (6.30),
p+he
p+hi ) '
At stage 2, ITP, = I[P, = S, since stage 2’s supplier never has stockouts. Therefore,
from (6.16),

St =y +o,07! ( (6.55)

E[IL,] = E[ITP\] — p1. (6.57)

a) Prove that

(6.58)

E[ITP =S — 02. (m) 7

02
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where £ () is the standard normal loss function. You may assume So > Sj.

b) From (6.16), IL, = ITP, — D;. To calculate E[IL] ] exactly, therefore, we
need to use the distribution of IT'P;. Unfortunately, this distribution is fairly
complicated. The approximation we are proposing instead is to replace the
stochastic IT Py with its mean, E[IT P;]. (We are not suggesting this is a very
good approximation. In general, replacing a random variable with its mean can
lead to significant inaccuracy. But it makes the problem more tractable, so we
will try it.)

Prove that, under this approximation,

EUTPl]_'ul) ) (6.59)

E[ILT] =01 % (
g1
¢) Do you think the approximation in part (b) will underestimate or overestimate
E[IL7]? Explain your answer in one or two sentences.

6.16 (Implementing Approximate Two-Stage SSM Model) Implement the approxima-
tion from Problem 6.15 in MATLAB to compute the expected cost using the optimal Sy
and a given value for Ss.

(Hint: To double-check that your calculations are correct, we’ll tell you the following:
Ifhl :hg:l,p:lO,Ll :L2:2,u:10,a:3,51 :10,3’2:25,then
g(S) = 172.7378.)

a) Compute the optimal S for a system with hy = 5, ho = 2, p = 24, 1 = 8§,
Ly = 3, p =20, and 0 = 4. Use (6.55) to find S}, then find S5 in MATLAB
using a method of your choosing: trial and error; MATLAB’s fminunc function;
etc. Report S7, S5, and g*. Include a printout of all MATLAB code, including a
transcript of the session in which you found S3.

b) Compute values for the following quantities assuming S is set to the optimal
values from part (a). (Hint: You should not have to evaluate any more integrals.)

The expected on-hand inventory at stage 1, E[IL]].

The expected backorders at stage 1, E[IL].

The expected inventory level at stage 1, E[IL,].

The expected local on-hand inventory at stage 2, E[(IL5)"].

The expected local backorders at stage 2, E[(IL4)7].

The expected echelon inventory level at stage 2, E[I Ls].

The expected number of units in transit from stage 2 to stage 1, E[IT}].
The expected holding, stockout, and total costs per period.



CHAPTER 7

POOLING AND FLEXIBILITY

7.1 INTRODUCTION

The stochastic inventory models in Chapters 4-6 assume that inventory is the only tool
for mitigating uncertainty. In contrast, this chapter examines uncertainty mitigation using
other means. In all of the strategies covered here, the idea is to “pool” multiple demand
streams in some way, and to share some resource—inventory or capacity—among them.
Because not all of the demand streams will need all of the resources at all times, there is
no need to dedicate whole resources to each stream. By pooling them, we can reduce the
amount of safety stock required to meet a given service level (or increase the service level
attained by a given level of safety stock).

Section 7.2 deals with risk pooling, in which we physically combine the inventories
used to satisfy multiple demand streams, by storing them together in the same warehouse.
Section 7.3 discusses a strategy called postponement, in which we differentiate products
later in their manufacturing process. This allows a reduction in inventory since multiple de-
mand streams (from different end products) are sharing inventory of the the undifferentiated
product. The cost savings from postponement is due to the risk pooling effect.

Another way that inventory can be pooled is by allowing transshipments—*lateral”
transfers of inventory from one retailer to another when one has extra inventory and the
other has a shortage. In Section 7.4, we discuss a model for deciding how much inventory
to hold at a given retailer, anticipating that transshipments either to or from that retailer
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(a) Decentralized system. (b) Centralized system.

Figure 7.1 The risk-pooling effect with identical retailers.

may occur later in the period. The benefit from transshipments is similar to that from risk
pooling, although there is no physical pooling of inventory.

Similarly, when multiple products are sold, and each product is manufactured by a
dedicated plant, it is sometimes beneficial for one plant to make multiple products so that
when one product has very high demand (exceeding the capacity of a plant that makes the
product), other plants can help produce more units of the product to meet the demand. In
this case, we have “lateral” transfers of production capacity, in a strategy known as process
flexibility. We can think of process flexibility as a type of pooling that occurs when the
product is manufactured, rather than when it is stored. We discuss process flexibility in
Section 7.5.

7.2 THE RISK-POOLING EFFECT

7.2.1 Overview

Consider a network consisting of N distribution centers (DCs) or other facilities, each of
which faces random demand for a single product. The DCs each hold inventory of this
product. In fact, they act like N independent newsvendors, each facing N (u, 0?) demand
per period. If the DCs each wish to meet a type-1 service level of « (that is, they wish to
stock out in no more than 100(1 — )% of the periods on average), they must each hold an
amount of safety stock equal to z,0 (from (4.24)). The total safety stock in this system is
therefore Nz,0. (See Figure 7.1(a).)

Now suppose that all N DCs are merged into a single DC. What are the inventory
implications of this consolidation? (We’re ignoring the possible increase in transportation
cost, lead time, and hassle the consolidation may cause.) The new DC’s demand process is
equal to the sum of all of the original DCs’ demands. This process has a mean demand of
Ny and a standard deviation of V/No. Therefore, to meet the same service level («), the
new DC needs to hold v N zq0 of safety stock (see Figure 7.1(b)), which is less than the
safety stock required when N DCs each hold inventory.

This phenomenon is known as the risk-pooling effect (Eppen 1979). The basic idea is
that by pooling demand streams, we can reduce the amount of safety stock required to meet
a given service level, and hence, we can reduce the holding cost.
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We next discuss the risk-pooling effect in greater generality. Our analysis is adapted
from that of Eppen (1979).

7.2.2 Problem Statement

We’ll assume that each DC follows a base-stock inventory policy under periodic review,
with S; the base-stock level for DC 4. The lead time is L = 0 at every DC. Excess inventory
may be stored from period to period (with a holding cost of A per unit per period), and
excess demand is backordered (with a penalty cost of p per unit per period). We assume
p > h. Note that h and p are the same at every DC.

The demand per period seen by DC 1 is represented by the random variable D;, with
D; ~ N(u;,0?). Let f; and F; be the pdf and cdf, respectively, of D;. Demands may be
correlated among DCs. The covariance of D; and D; is given by o;; and the correlation
coefficient by p;;; then 0;; = 0;0,p;;. (Corbett and Rajaram (2006) extend these results
to general probability distributions and dependence structures.)

For each DC, the sequence of events in each period is the same as in Section 4.3.

7.2.3 Decentralized System

We will refer to the N-DC system as the decentralized system since each DC operates
independently of the others. S; is the base-stock level at DC i; this is a decision variable.
The expected cost per period at DC ¢ can be expressed as a function of \S; as follows:

[ee)

S
gi(S) = h /O (S, — d)f(d)dd + p /S (d— i) fi(d)dd.

i

This formula is identical to the formula for the newsvendor cost (4.3) except for the
subscripts ¢. Therefore, from Theorems 4.1 and 4.2, the optimal solution is

S,Zk = Fi_l <hf—p) - ‘LLZ + Za0i,

where oo = p/(p + h) and z, is the ath fractile of the standard normal distribution, and the
optimal cost at DC i is

9:(S7) = (p+ h)¢(za)0.
(Recall that ¢(-) is the pdf of the standard normal distribution.) Defining n = (p+h)d(z4)
for convenience, the optimal total expected cost (at all DCs) in the decentralized system,
denoted g7, is

N N
9h =Y 9:/(S5)=n) o (7.1)
=1 =1

7.2.4 Centralized System

Now imagine that the DCs are consolidated into a single DC, denoted with index 0, that
serves all of the demand. We will refer to this as the centralized system. Let D be the
total demand seen by this super-DC. Its mean and standard deviation are

N
Ho = Z Hi
i=1
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(Note that by definition, o;; = U? .) Similar logic as above shows that the optimal base-stock
level for the centralized system is

So = 1o + 2200

with optimal expected cost

(7.2)

7.2.5 Comparison

Now let’s compare the centralized and decentralized systems. The next theorem says that
the centralized system is no more expensive than the decentralized system. This is the
risk-pooling effect.

Theorem 7.1 For the decentralized, N-DC system and the centralized, single-DC system
formed by merging the DCs, g¢ < gp.

Proof.

g =n Za —1—22 Z 005 Pij

=1 j=i+1

<n ZO‘ +2 Z Z 00 (since p;; < 1)
1=1 j=i+1
N 2
(%)
i=1

One interpretation of the risk-pooling effect is that pooling inventory allows the firm to
take advantage of random fluctuations in demand. If one DC sees unusually high demand
in a given time period, it’s possible that another DC sees unusually low demand. In the
centralized system, the excess inventory at the low-demand DC can be used to make up the
shortfall at the high-demand DC. In the decentralized system, there is no opportunity for
this supply—demand matching.

A more mathematical explanation is that risk pooling occurs because the centralized
system takes advantage of the concave nature of safety stock requirements. The amount
of safety stock required is proportional to the standard deviation of demand. The standard
deviation of demand at the centralized site is smaller than the sum of the standard deviations
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Table 7.1 Demand mean and standard deviation at DCs in Example 7.1.

{ i o

1 32,500 6200
2 18,200 1100
3 21,000 5900
4 11,400 1400
5 29,300 4200

of the individual sites in the decentralized system since variances, not standard deviations,
are additive.

Somewhat surprisingly, the variances of the costs of the centralized and decentralized
systems are equal at optimality; that is,

Var [gp(S7, ..., 55)] = Var [§e(55)]

where

N
Gp(S1,...,Sn) =Y [h(Si — Di)* +p(Di - Si)*]

i=1

Gc(So) = h(So — Do)t + p(Do — So)*

are the costs in the decentralized and centralized systems, respectively, for given (random)
values of the demands.

0 EXAMPLE 7.1

Gauss & Poisson manufactures household cleaners, beauty products, facial tissues,
and other consumer packaged goods (CPG). G&P currently operates five DCs. The
mean and standard deviation of the demand served by each DC per month, expressed
in thousands of pallets, is listed in Table 7.1. The demands at the five DCs are
normally distributed and are independent of one another. Each pallet of inventory
incurs a holding cost of $1.30 per month, and each pallet of backordered demand
incurs a stockout cost of $17.50 per month. What is the optimal total expected cost
at the DCs? Suppose G&P decides to merge the five DCs into a single DC. What is
the new optimal expected cost?

We have @ = p/(p + h) = 0.9309 and z, = 1.4822. Therefore, n = (17.5 +
1.3)¢(1.4822) = 2.5006. Under the decentralized system (five DCs), the total
expected cost, from (7.1), is

gp = 2.5004 - (6200 4 1100 + 5900 + 1400 + 4200) = 47,010.78.

If the five DCs are merged, the resulting standard deviation of demand is

o9 = \/62002 -+ 11002 + 59002 + 14002 + 42002 = 9698.4535,
so the new expected cost, from (7.2), is
g = 2.5004 - 9698.4534 = 24,251.69,

significantly smaller than g7,. g
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7.2.6 Magnitude of Risk-Pooling Effect

Let’s try to get a handle on the magnitude of the risk-pooling effect. Let

N-1 N
1)222 Z 0i0jPij-

i=1 j=i+1

Note that

Uncorrelated Demands: First assume that the demands are uncorrelated, i.e., p;; = 0 for
all 7, 7, sov = 0. Then

The magnitude of the difference between g7, and g7, depends on the magnitude between

VY o?and Y o;.

Positively Correlated Demands: Next suppose that demands are positively correlated. In
fact, consider the extreme case in which p;; = 1 for all ¢, j. Then

N
9o =n ZJQJrv*n ZaquQZ ZJZUJ
\ 1=1 j=1+1

N 2 N
i=1 i=1
so there is no risk-pooling effect at all (in the extreme case of perfect correlation).

Negatively Correlated Demands: Finally, assume that demands are negatively correlated.
It’s difficult to identify the extreme case since p;; can’t equal —1 for all ¢, j. (Why?) But
we can say that v > — Z _, o2 since

N
ZO’?—FUZO’%«ZO.
i=1

N

So let’s assume as an extreme scenario thatv = —» .7 | o2. Then

The centralized cost is 0, while the decentralized cost is not.
So the risk-pooling effect is very pronounced when demands are negatively correlated,
smaller when demands are uncorrelated, and smaller still, or even non-existent, when
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demands are positively correlated. Why? Recall the explanation given in Section 7.2.5:
The risk-pooling effect occurs because excess inventory at one DC can be used to meet
excess demand at another. If demands are negatively correlated, there is a lot of opportunity
to do this since demands will be very disparate at different locations. On the other hand, if
demands are positively correlated, they tend to be all high or all low at the same time, so
there is little opportunity for supply—demand rebalancing.

0 EXAMPLE 7.2

In Example 7.1, we assumed that G&P’s demands are independent. Suppose instead
that the demands are positively correlated, with correlation matrix

1.0 03 09 07 0.7
0.3 1.0 05 03 0.3
p= 109 05 1.0 08 0.7/,
0.7 03 08 1.0 0.7
0.7 03 0.7 07 1.0

or that some of the demands are negatively correlated, with correlation matrix

1.0 -03 00 00 =07
-03 10 00 00 05
p=100 00 1.0 —-0.6 0.0
00 00 -06 1.0 0.0
-07 05 0.0 0.0 1.0

How does the magnitude of the risk-pooling effect compare among these three cases?
From Example 7.1, we have g7, = 47,010.78 in all three cases and g7 = 24,251.69
for the independent-demand case.
In the case of positive correlation, we have v = 1.8487 x 108, so

g5 = 2.50061/9.4060 x 107 + 1.8487 x 108 = 41,762.57.

And in the case of negative correlation, v = —4.5840 x 107, so

95 = 2.50061/9.4060 x 107 — 4.5840 x 107 = 17,364.14.

Thus, as expected, the risk-pooling effect is greatest when the demands are negatively
correlated, smallest when they are negatively correlated, and in between when they
are independent. O

7.2.7 Closing Thoughts

The analysis above only considers holding and stockout costs; it does not consider fixed
costs (to build and operate DCs) or transportation costs. Clearly, as DCs are consolidated,
the fixed cost will decrease. But the transportation cost will increase, since retailers (or
other downstream facilities) will be served from more distant DCs. In many cases, the
magnitude of the risk-pooling effect may be far outweighed by the increases or decreases
in fixed and transportation cost. Any analysis of a potential consolidation of DCs must
include all factors, not just risk pooling. The location model with risk pooling (LMRP),
discussed in Section 12.2, attempts to incorporate all of these factors when choosing facility
locations.
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7.3 POSTPONEMENT

Many firms have product lines containing closely related products. In many cases, multiple
end products are made from a single generic product. For example, the clothing retailer
Benetton sells many colors of sweater, each of which comes from the same white sweater
that’s dyed multiple colors (Heskett and Signorelli 1984). Hewlett-Packard sells the same
printer in dozens of countries, with a different power supply module, manual, and labels
in each (Feitzinger and Lee 1997, Lee and Billington 1993). IBM builds individualized
computers by building partially finished products called “vanilla boxes” and customizing
them to order (Swaminathan and Tayur 1998).

A key question in the design of the manufacturing process for each of these products
is: When should the end products be differentiated? For example, consider a manufacturer
of mobile phones that sells phones in many countries. The company programs each phone
with a given language at the factory—the phone is “localized” when it is manufactured.
The number of phones to be programmed in each language is determined based on a
forecast of the demand in each country. The phones are then shipped to regional DCs,
approximately one on each continent. The regional DCs store the phones until they are
required by retailers, at which point they are shipped to individual countries. If the demand
forecasts were wrong, and demand for phones in, say, Thailand was higher than expected
while demand in Holland was lower than expected, the company would have to correct this
discrepancy by reprogramming some of the Dutch phones into Thai phones, then shipping
them from the Europe DC to the Asia DC—a costly and time-consuming proposition.

Now suppose that generic phones are shipped to the regional DCs, and languages are
programmed at the DCs once the phones are requested by retailers. Since the phones are
localized on demand, there is much less risk of having too many phones of one language
and too few of another. In addition, the firm holds inventory of generic phones, not
localized phones, which means that fewer phones need to be held in safety stock due to the
risk-pooling effect, as we will see below.

This strategy is called postponement or delayed differentiation. The idea is to delay, as
much as possible, the point in the manufacturing process at which end products are differ-
entiated from one another. Of course, designing a postponement strategy may be extremely
complicated, since it may require the redesign of the product and the manufacturing and
distribution processes. In the mobile phone example, the regional DCs would have to be
outfitted with language-programming equipment.

To take the Benetton example to an extreme, postponement might mean that sweaters
are dyed in the retail stores once they are demanded by a customer. You would request, say,
a red sweater, and it would be dyed for you on demand; stores would never be out of stock
of the sweater you wanted. This seems silly, since the costs of implementing such a system
would probably far outweigh the benefits. But some products are actually sold this way.
For example, paint is mixed to order from generic white paint at your hardware store, giving
you access to an enormous range of colors that would be prohibitively expensive to keep
in stock. (See Lee (1996) for a discussion of the benefits and challenges of postponement.)

The cost savings from postponement is due to the risk-pooling effect: Generic products
represent pooled inventory, while end products represent decentralized inventory. Suppose
there are N end products. If the products are differentiated at the beginning of the man-
ufacturing process (so that separate inventory is held of each end product), then the total
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safety stock required is
N
Za Z 04,
i=1

which is proportional to the safety stock required in the decentralized system in our discus-
sion of risk pooling. Similarly, if the products are differentiated at the end (so that only a
single inventory pile is required), the total safety stock is

which is proportional to the safety stock in the centralized system.

7.4 TRANSSHIPMENTS

7.4.1 Introduction

When multiple retailers stock the same product, it is sometimes advantageous for one
retailer to ship items to another if the former has a surplus and the latter has a shortage.
Such “lateral” transfers are called fransshipments. Transshipments are a mechanism for
improving service levels since they allow demands to be satisfied in the current period when
they might otherwise be lost or backordered until the following period. In that regard, the
benefit from transshipments is very similar to that from risk pooling, since transshipments
use one retailer’s surplus to reduce another retailer’s shortfall. In this case, however,
there is no physical pooling of inventory, though the strategy is sometimes referred to as
“information pooling.” Of course, transshipments come at a cost: Transshipments are often
more expensive than replenishments from the DC because they are smaller and therefore
lack the economies of scale from larger shipments.

In this section, we will discuss a model for setting base-stock levels in a system with
two retailers that may transship to one another. This model is adapted from Tagaras (1989).
For models with more than two retailers, see Krishnan and Rao (1965), Tagaras (1999), or
Herer et al. (20006).

This model will assume that transshipments occur after the demand has been realized but
before it must be satisfied. Therefore, these transshipments are reactive since they are made
in reaction to realized demands. In contrast, one might consider proactive transshipments
that are made in anticipation of demand shortages. Proactive transshipments are of interest
when demands must be met instantaneously, since there is no opportunity for transshipping
between demand realization and satisfaction. On the other hand, proactive transshipments
are more complex to model, so we will focus only on reactive transshipments. We will
develop an analytical expression for the expected cost function, but the expected cost can
only be minimized using numerical methods (rather than using differentiation). We will
also discuss the improvement in service levels due to transshipments.

7.4.2 Problem Statement

Consider a system with two retailers served by a single DC. The retailers receive replen-
ishment shipments from the DC and are permitted to transship goods to each other. As
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previously stated, transshipment occurs after the demand has been realized but before it
must be satisfied. This is a periodic-review model with an infinite horizon. There is no
fixed cost and no lead time, either for replenishments or transshipments. Each retailer ¢
(i = 1, 2) follows a base-stock policy, with base-stock level S;. The demand at retailer ¢ is
arandom variable D; with pdf f; and cdf F;. If there are excess demands at a retailer after
transshipments have been made, they are backordered. The costs are as follows:

c; = ordering cost per unit at retailer ¢, for¢ = 1, 2

h; =holding cost per unit per period at retailer ¢, for i = 1,2
p; = backorder cost per unit per period at retailer ¢, for: = 1,2
cij = cost per unit to transship from i to j, fori = 1,2, ¢ # j

We will assume that

c; —cj+c; > 0. (7.3)

In other words, it is cheaper to ship directly to j than to ship to ¢ and then transship to j.
This is sometimes referred to as a triangle inequality. We will also make the following
assumptions:

(@) hi +pj —cij — (¢; — ¢j) > 0 (i.e., if there is a shortage at j and a surplus at 7, it is

better to transship than not to, since the cost to transship is ¢;;, while the cost to do
nothing is h; + p; + ¢; — ¢; (since we would incur the holding cost at 7, the penalty
cost at 7, and then next period we’d order one more unit at j and one fewer at 7))

(b) ¢ij + (¢i —¢j) — (h; — hj) > 0 (i.e., don’t transship if there is a surplus at both

retailers)

(©) ¢ij + (¢i —¢j) + (pi — pj) > 0 (i.e., don’t transship if there is a shortage at both

retailers)

These three assumptions imply that complete pooling is optimal: Transship if one retailer
has a surplus while the other has a shortage, but if both have surpluses or both have shortages
don’t transship—one retailer’s demand is not “more valuable” than the other’s.

The sequence of events in each period is as follows:

1.
2.

5.
6.

Retailers observe their inventory levels.

Each retailer i places a replenishment order of size (); to the DC and receives it
instantaneously.

. Demand is observed.

. Transshipment decisions are made. Transshipments are sent and arrive instanta-

neously.
Demand is satisfied to the extent possible, and excess demands are backordered.

Holding and stockout costs are assessed.

We will make use of the following random variables:

@; = replenishment order quantity at retailer ¢, fori = 1, 2
Y;; =amount transshipped from ¢ to j, fori = 1,2, i # j
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Do
S1 4+ 52
Yi2 >0
Y21 =0
IL =0 Yis = 0
IL>, <0 Y1 =0
Yio >0 IL; <0
Yo1 =0 1L, <0
IL; >0
IL, =0
Sa
Y12:O
Y51 >0
1L, <0
Yi2 =0 ILy =0
Y21 =0 _
IL1 >0 ?2;8
ILy >0 lelzo
IL> >0
+ Dl
S S1+ 52

Figure 7.2  Possible realizations of transshipment and ending inventories. Adapted with
permission from Tagaras, Effects of pooling on the optimization and service levels of two-

location inventory systems, /IE Transactions, 21, 1989, 250-257. @1989, Taylor & Francis, Ltd.,
http://www.informaworld.com.

IL; =inventory level at retailer ¢ after step 5, fori = 1,2
1 L;L = on-hand inventory at retailer ¢ after step 5, fori = 1,2
IL; =backorders at retailer ¢ after step 5, fori = 1,2

Then
ILi:ILj—IL;. (7.4)

Note that these are all random variables—they are not decision variables. The decision

variables are .S;, the base-stock levels for ¢ = 1,2. We will compute expectations of the

random variables once the base-stock levels are set, in order to compute the expected cost.
The complete pooling policy can be stated formally as follows:

(@) If D; < S;fori=1,2,thenY;; =Y;; =0
(b) If D; > S;fori=1,2,thenY;; =Y;; =0

(c) If D; < S;and D; > S;, then

Y;; = min{S; — D;, D; — S;}
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Y;; =0.

This policy is represented graphically in Figure 7.2, which indicates the transshipment
quantities and ending inventory levels for all possible realizations of the demand.

7.4.3 Expected Cost

The expected cost per period will be denoted g(S), where S = (S, S2) is the vector of
base-stock levels. g(S) is given by

2
=> |aEQ —I—ch Vil + hE[IL ]+ pE[IL;]| . (7.5)

i=1
J#l

In order to minimize g(S), we need to compute E[Q;], E[Y;;], E[IL;], and E[IL;]. First
note that

E[Q;] = S; — E[IL;] (7.6)

E[IL;) = E[IL}] - E[IL]]. (1.7)

(7.6) follows from the fact that the order quantity is the difference between the target level
and the ending inventory in the previous period, while (7.7) follows from (7.4).

The transshipment policy states that Y;; > 0 if and only if D; > S; and D; < S;. If

this condition holds, the amount shipped is min{.S; — D;, D; — Sj}. Therefore, we can
write

E[Yi;] =Ep, [Ep,[Yi;|Di]]

Si Sq,-'rSj—di
-/ [ / (d; — S,);(d;)dd
d;i=0 |Jd,;=s,
+/ (Si — di) fi(dj)dd; | fi(d;)dd
d;=5;+5;—d;

It can be shown that

Si
E[YZJ] = . Fi(dy)[1 — FJ(SZ +5; - d;))dd;. (7.8)

Figure 7.2 suggests that the ending inventory level is positive at retailer ¢ if and only if
D; < S; and Dj < Sj or Sj < Dj < Sl + Sj and D; < Sz -+ Sj — Dj. Therefore,

E[IL]] /_O/d . fi(di) f;(d;)dd;dd;
Si4S; pSi+S,—
/ / S + 85— dj) fi(di) f;(d;)dd;dd;

:/ Fi(d)Fy(S; + S; — dy)dd. (1.9)
d;=0
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Similarly, the ending inventory level is negative at retailer ¢ if and only if D; > S; and
Dj > Sj or Dj < Sj and D; > S; + Sj — Dj. Therefore,

E[IL]] :/d,-:s,- /d,-:s,- (di — Si) fi(ds) f(dj)dd;dd;

S; o
+ / / (di +dj — Si — S;) fi(ds) f;(dy)dd;dd;
d;=0 Jd;=8,+8,;—d;

S, S]‘
d;=0 d;j=0
Combining (7.7) with (7.9) and (7.10), we get
Si S;
E[IL] =S —E[D;|- | Fid)dd; + [ Fy(d;)dd
d;=0 d;=0
Si
+ Fi(d;)F;(Si + S; — d;)dd;
d;=0
Si-‘rSj
—/ Fi(d)Fj(S; + S, — d;)dd;. (7.11)

This gives us E[Q;] using (7.6), so we now have all the components we need to compute
g(S). We won’t write out g(S) in its entirety since it’s a long formula, but it’s straightforward
to do so using (7.5). As in several of the inventory optimization models we have seen so
far, g(S) cannot be optimized in closed form. In other words, we can’t set the derivative to
0 and solve for S in the form S7 = [something] and S5 = [something]. Instead, we must
use numerical methods—general-purpose nonlinear programming algorithms—to solve the
problem.

7.4.4 Benefits of Transshipments

Transshipments are beneficial both by reducing costs and by improving service levels. The
cost reduction is evident from assumption (a) on page 238—transshipments are less costly
than holding and stockouts. Put another way, the transshipment model can be obtained
from a “no-transshipment” model by relaxing a constraint—therefore, the optimal cost can
only improve (or stay the same).

We will next examine the effect of transshipments on both type-1 and type-2 service
levels. (See Section 5.3.1.3 for definitions.) Let

a?(S) =type-1 service level at retailer 7 if transshipments are not allowed

and base-stock levels are set to S

a;(S) =type-1 service level at retailer ¢ if transshipments are allowed
and base-stock levels are set to S

BY(S) =type-2 service level at retailer i if transshipments are not allowed

and base-stock levels are set to S
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B:(S) =type-2 service level at retailer i if transshipments are allowed

and base-stock levels are set to S

We will show that transshipments improve both types of service levels. In fact, we
will quantify the improvement. We will prove that transshipments improve the service
levels for a given base-stock level, but this, in turn, implies that the optimal solution with
transshipments has a higher service level than the optimal solution without transshipments.
(Why?)

Theorem 7.2 Transshipments increase the type-1 service level by the marginal decrease
in the expected transshipment quantity for a unit increase in the base-stock level; that is,

IE[Yi]

a;i(S) = o] (S) + ’8&

fori=1,2.

9(S) is the probability that no stockout occurs in a given period with no

Proof. Since o
transshipments,
ad(8) = Fi(S;). (7.12)

7

Now, no stockouts occur at retailer ¢ in the system with transshipments if either D; < S; or
D, > S; and retailer j has sufficient excess inventory to meet ¢’s excess demand. Therefore,

O[Z(S) = ]P(DZ < Sz) +IP(DJ < Sj and S; < D; < S; + Sj — Dj)

Si+S;—d;
/d fi(di)ddi] fi(d;)dd;

Fi(Si) + / [Fi(Si + S; — dj) — Fi(Si)]f;(d;)dd;
d
dj:()

Differentiating (7.8) with respect to .S; using Leibniz’s rule (C.49) gives

OE[Y}; Si
Therefore,
E[Y;;
;= al — 88[57 }, (7.15)
but since
OR[Y;; S; Si+85;—d;
a[s? l_ /d._o Vd._s fi(d)dd; | f;(d;)dd; < 0,
(from (7.13) and (7.14)), we can write (7.15) as
a; = al + ’a]ggﬁ] , (7.16)

as desired. [
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Theorem 7.3 Transshipments increase the type-2 service level at retailer i by the ratio of
the expected transshipment quantity from j to i to the expected demand at i, that is,

E[Yji]

E[D;]

Bi(S) = B(S) +
fori=12.
Proof. Omitted; see Problem 7.7. n

As youmight expect, the larger the base-stock levels are, the better the post-transshipment
service levels are:

Theorem 7.4 The type-1 and type-2 service levels (with transshipments) at both i and j
are nondecreasing with S;.

Proof. Omitted. [

With more than two retailers, transshipment problems become much harder to analyze.
It is often true that a base-stock replenishment policy is still optimal in this case (Robinson
1990). In general, it is difficult to determine the optimal transshipment policy, so some
authors use heuristic policies such as “grouping” policies in which retailers are divided
into groups using some logical rules, and then transshipments are allowed only within
groups. Models with a small number of retailers, say 3, usually assume complete pooling,
even though this policy may not be strictly optimal. Other transshipment policies are
possible, of course—for example, Tagaras (1999) compares complete pooling to a random
transshipment policy (in which, for example, we choose randomly between two retailers
with positive inventory to ship to a retailer with negative inventory) and a risk-balancing
policy (which tries to account for the risk of stockout in at least the next period). Lien
et al. (2011) propose a “chaining” structure in which all retailers are connected in a single
loop; they show that this structure, while suboptimal, outperforms others. Fortunately,
it is usually true that a base-stock replenishment policy is optimal even if a nonoptimal
transshipment policy is used.

Often, these models are so complex that even the expected cost cannot be calculated using
formulas, and instead must be estimated using simulation. In this case, an optimization-
by-simulation procedure, such as infinitesimal perturbation analysis (IPA), is used to find
the optimal base-stock levels (Herer et al. 2006). One insight to come from these papers
is that a small increase in the flexibility with which transshipments are allowed can lead to
large decreases in cost. Therefore, more flexible transshipment policies may be preferable,
even if they are more difficult to analyze and implement.

7.5 PROCESS FLEXIBILITY

7.5.1 Introduction

Manufacturers in most industries today face increasingly demanding customers and in-
creasingly fierce competition. These factors have led to a huge proliferation in product
varieties offered by manufacturers of everything from breakfast cereals to automobiles. For
example, the number of car and light truck models for sale in the United States rose from
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195 in 1984 to 282 in 2004 (Van Biesebroeck 2007). This so-called product proliferation
leads to increased diversity and unpredictability of demand. At the same time, firms are
under increasing financial pressure to keep capacity as tight as possible, which makes it
crucial for manufacturing facilities to have the flexibility to produce a range of products.

The importance of flexibility can be demonstrated by some examples from the automotive
industry:

BMW designs its factory to build cars with the specific colors, features, and options
requested by customers. (In contrast, many other auto manufacturers offer a more
limited range of combinations, which are ordered by dealers, not by individual
customers.) A customer can even change the specifications of his or her car as late
as 5 days before the car is built (Henry 2009).

In 2000-2001, Chrysler saw an unexpectedly large demand for its new PT Cruiser
model, while the demand for another car, the Neon, was lower than forecast. As
a result, there was a shortage of the PT Cruiser while a manufacturing plant in
Belvidere, IL that built only Neons—which have many similar parts as the PT
Cruiser—had excess capacity. Chrysler’s lack of flexibility to reassign PT Cruiser
production to the Belvidere plant cost the company nearly $500 million in lost
profit (Biller et al. 2006).

Learning from this mistake, Chrysler invested heavily in the mid-2000s to ensure
that its factories are more flexible and can each make more than one type of vehicle.
The Belvidere plant began to make three additional models, and it produced roughly
twice as many vehicles in 2006 as it did in 2005. Chrysler Group’s CEO, Thomas
LaSorda, said that the extra flexibility “gives us a wider margin of error” (Boudette
2006).

Ford Motor Company invested $485 million to retool two Canadian engine plants
with flexible systems. The redesigned plants can produce multiple types of engines
and, just as importantly, can switch production from one to another in a matter of
hours or days, rather than months. Chris Bolen, the manager of one of the plants,
said that “the initial investment is slightly higher, but long-term costs are lower in
multiples.” The company also had a plan to convert the systems at most of its other
engine and transmission plants all over the world to flexible ones (Phelan 2002).

In the late 1990s, Honda invested $400 million to make its three plants in Ohio flex-
ible. The increased flexibility allowed the company to keep its production closely in
line with demand patterns that changed rapidly during the 2000s due to wide fluctu-
ations in gasoline prices and to the global recession. Because most Honda vehicles
are designed to be assembled using a similar process, plants can be flexible and can
change production from one product to another in as little as five minutes (Linebaugh
2008).

Flexibility can provide a firm with a competitive advantage by allowing it to react
quickly to changing demand patterns and supply conditions. It is becoming an increasingly
prevalent practice in a wide range of industries, including apparel (DesMarteau 1999) and
semiconductors and electronics (McCutcheon 2004). Greater flexibility entails a greater
up-front investment, however, and this trade-off must be carefully considered.
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In this chapter, we discuss models for evaluating the effectiveness of, and optimizing,
process flexibility, by which we mean the ability to manufacture a variety of products at the
same facility, the ability to manufacture a given product at multiple facilities, or both.

7.5.2 Flexibility Design Guidelines

One of the most important questions in designing a flexible supply chain is, “How much
flexibility is enough?” If there is no flexibility, then each plant is assigned to a unique
product. If the demand for one product is unexpectedly high while that for another product
is low, the firm will stock out of the high-demand product and have excess capacity at
the plant that makes the low-demand one. At the other extreme, every plant can produce
every product, leaving the firm much better able to reconfigure production in response to
demands. Jordan and Graves (1995) describe a simple simulation model that shows that,
for a particular set of assumptions, the full-flexibility structure resulted in approximately a
12% increase in sales and capacity utilization. On the other hand, this additional flexibility
requires additional capital investments. Is full flexibility really required, or would some
in-between strategy be sufficient? As we will see below, it is often possible to choose a
partial-flexibility strategy that achieves most of the benefit of the full-flexibility structure
with a much smaller resource requirement.

It is common to model process flexibility problems using bipartite graphs (i.e., graphs
whose nodes are partitioned into two sets such that no edge has both endpoints in the same
set). One set of nodes represents the plants, while the other represents the products. If a
plant node and a product node are connected by an edge in the network, then the plant is
capable of manufacturing the product. Greater flexibility therefore means more edges in
the graph. For example, if there are n plants and n products, then in the dedicated (i.e.,
no-flexibility) system, there are n edges in the graph, whereas in the full-flexibility system,
there are n?. (See Figures 7.3(a) and 7.3(b).)

[ ] Products O Plants

(a) Dedicated system. (b) Full flexibility. (c) Chaining structure.

Figure 7.3 Examples of flexibility configurations.

We would like to evaluate the effectiveness of a given flexibility structure (i.e., a given
set of edges connecting plants and products). There are many possible ways to define and
measure this effectiveness. Typically, we assume that, once the demands for each product
in a given period are known, the firm assigns production to the various plants, following the
plant—product capabilities implied by the edges and satisfying a fixed capacity constraint at
each. One of the most popular ways to measure the effectiveness of a flexibility structure is
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to evaluate the total shortfall (i.e., stockouts) that occurs after the production is optimized
and demands are satisfied.

The problem of optimizing production to minimize the shortfall (or, equivalently, max-
imize the sales) when the demands are known can be formulated as follows (Jordan and
Graves 1995). Let G = (V1, Va, E) be a bipartite graph consisting of a set V; of products,
a set V5 of plants, and an edge set . Every edge in £ has one endpoint in V; and one
in V5, indicating a plant—product capability. For example, the full-flexibility structure has
edge set £ = {(i,4)|i € V1,j € Vo}. Let d; be the observed demand realization for
product ¢ € V1, and let C; be the capacity of plant j € V5. Let s; be the shortfall, i.e.,
the unsatisfied demand, for product ¢, and let y;; be the number of units of product i
produced at plant j, for all (i,7) € E. (s and y are decision variables.) Then, given an
observed realization of demand, the production allocation decisions can be optimized, and
the minimum total shortfall of a flexibility structure E can be determined by solving the
following optimization problem.

minimize Z s (7.17)
%1
subject to Z yi; <C;  VieV, (7.18)
i€Vy:(i,j)EE
Y witsi=d;  VieW (7.19)
JjEVa:(1,5)EE
Yij = 0 v(i,j) e E (7.20)
5,20 Vie Vi (7.21)

The objective function (7.17) calculates the total shortfall over all products. (Alternately, we
could weight the shortfalls differently, if some products are more important than others.)
Constraints (7.18) enforce the capacity restriction at each plant, and constraints (7.19)
require the shortfall variable s; to equal the difference between the demand for product ¢ and
the total amount of it produced. Constraints (7.20) and (7.21) are nonnegativity constraints.
This problem can be generalized to handle multiechelon supply chains; see Graves and
Tomlin (2003) and Chou et al. (2008).

This problem is equivalent to a maximum-flow problem and can therefore be solved
efficiently. However, we are interested in evaluating the performance of a given flexibility
guideline under random demands D, rather than deterministic demands d;. (After all, if we
knew the demands, we would not need flexibility.) Therefore, we need to solve a stochastic
version of the problem, in which we minimize the expected total shortfall over all possible
demand realizations. Unfortunately, this problem has a complicated combinatorial and
stochastic structure, and finding an optimal solution is challenging. Therefore, researchers
have developed intuitive flexibility guidelines that can yield shortfalls that are nearly as
low as the shortfall generated by the full-flexibility structure. Moreover, they use far fewer
edges and are therefore much less costly to implement. We discuss two of these guidelines
next.

Chaining Guideline: Perhaps the best-known flexibility guideline is the chaining guideline
proposed by Jordan and Graves (1995). (See Figure 7.3(c).) Assume firstthat |V;| = |V5| =
n. Then the chaining guideline is defined as follows:
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Plant 1 makes products 1 and 2

Plant 2 makes products 2 and 3

Plant 5 makes products j and j + 1

e Plant n makes products n and 1.

This structure uses 2n edges. Jordan and Graves (1995) report that chaining can achieve
well above 90% of the benefits of the full-flexibility configuration, while using only a
fraction of that configuration’s n? edges. This intuitive result is believed to be true in a
wide variety of settings, both analytically and in practice, and has been applied successfully
in many industries.

The number of edges is not the only consideration when determining the effectiveness
of a chaining guideline. Consider the two flexibility structures in Figure 7.4. Both are
chaining structures, both have 12 edges, and in both, every plant makes two products and
every product is made at two plants. The structure in Figure 7.4(a) uses a single chain
for all products and plants, while that in Figure 7.4(b) partitions the system into three
separate chains. The single-chain structure is much more effective, though, achieving
nearly twice the benefits (in terms of expected sales) as the three-chain structure in a
simulation discussed by Jordan and Graves (1995). (In fact, we prove the optimality of
the single-chain structure among all chain-type structures in Section 7.5.3.) The reason is
that the single-chain structure allows a greater degree of flexibility in reassigning products
to plants than the three-chain structure. For example, if the demand for product 1 is very
high and plant 5 has excess capacity, the single-chain structure can take advantage of the
discrepancy while the three-chain structure cannot.

(a) One chain. (b) Three chains.

Figure 7.4 Two chaining structures.

Lim et al. (2012) examine the chaining guideline for systems with random supply
disruptions that can affect either nodes (representing a disruption of an entire plant) or
edges (representing disruptions for particular plant—product pair). For node disruptions,
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they confirm Jordan and Graves’s intuition that longer chains are better, but they find that
short chains are preferable when edge failures are the issue.

The discussion so far assumes that the number of products and plants is the same; that
the products are identical, as are the plants; and that any plant can be configured to make
any product. Real-life situations do not follow this idealized model. Jordan and Graves
(1995) outline three guidelines for adding flexibility to chains in more realistic situations:

1. All products should be made by roughly the same number of plants; more precisely,
the total capacity of the plants making each product should be roughly the same.

2. All plants should make roughly the same number of products; more precisely, the
total expected demand of the products made at each plant should be roughly the
same.

3. Longer chains are better than shorter ones.

Node-Expansion Guideline: A more connected guideline is inherently more flexible.
With this in mind, Chou et al. (2011) propose the node-expansion guideline. The guideline
is used to augment a given flexibility structure by adding links iteratively to improve the
node-expansion ratio. The node-expansion ratio of product ¢ € V; is the total capacity of
the plants capable of making product ¢ divided by the expected demand for i:

ZjeVz:(i,j)EE Cj

%= ED)

Similarly, the node-expansion ratio of plant 7 € V5 is the total expected demand of the
products that can be made at plant j divided by the capacity of plant j:

EiEVl:(i,j)EE E[Dj]

5= o
J

Smaller node-expansion ratios suggest products or plants that do not have enough flexibility.
The node-expansion guideline says that, at each iteration, we add an edge that is not yet in
FE in order to increase all node-expansion ratios as much as possible; that is, to increase

0 = min {min 0;, min 5j}
i€V jeEV:
as much as possible. One heuristic for doing this is to add, at each iteration, an edge
connecting the product and the plant with the lowest node-expansion ratios, skipping any
edges that have already been added. This procedure repeats until the number of edges
reaches a predetermined limit.

7.5.3 Optimality of the Chaining Structure

In Section 7.5.2, we remarked that long flexibility chains tend to perform very well, attaining
more than 90% of the benefit of a fully connected flexibility graph and performing better
than multiple smaller chains (Jordan and Graves 1995). But why is this so? Simchi-Levi
and Wei (2012) address that question by proving analytically that a single long chain is
optimal among all 2-flexibility designs for certain types of systems. A 2-flexibility design
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is one in which each plant can produce exactly two products and each product can be
produced by exactly two plants, but the process does not necessarily form a single chain.
For example, both structures in Figure 7.4 are 2-flexibility designs. In this section, we will
discuss Simchi-Levi and Wei’s proof.

We begin with a few definitions. A balanced system is one that has an equal number of
plants and products and in which all of the plants have the same capacity. In a balanced
system of size n (i.e., with n plants and n products), we say the demand D is exchangeable
if the joint probability distribution of D is the same no matter what order we put the products
in.

As before, we will describe a flexibility structure by the set E of edges it contains. We
also assign specific notation to certain structures:

e Dedicated design: D,, = {(4,4)|]i = 1,2,...,n}

e Long-chain design: C,, =D, U{(i +1,i)[i =1,2,....,n =1} U{(n,1)}
e Full-flexibility design: F,, = {(¢,7)]i,7 =1,2,..,n}

e Openchain: L, =Dy U{(i+1,4)]i=1,...,k—1},fork >0

An open chain Ly, is obtained from a single (closed) chain on nodes 1, .. . , k by removing
edge (1, k). We call an edge (i, j) a dedicated edge if i = j and a flexible edge otherwise.

Formulation (7.17)—(7.21) minimizes the total demand shortfall. It will be more conve-
nient for us to work with an equivalent model that instead maximizes the performance, i.e.,
the sales that result from a particular realization d of the demand and a given flexibility
structure E:

P(d, E) = maximize Z Yij (7.22)
(i,5)€E

subject to Y w<C View (7.23)
i€Vy:(i,j)EE

>y <ds View (7.24)
jeVL:(i,5)EE

vi; 20  V(i,j)€E (7.25)

Yi; =0 V(i,j) ¢ E (7.26)

As in (7.17)=(7.21), here y;; is the number of units of product ¢ produced at plant j. In
(7.22)—(7.26), we omit the shortfall variable s and instead maximize the total sales.

Lemma 7.5 Let E be a flexibility design for a balanced system of size n, with E C C,.
Let o and 3 be two flexible edges in E. Then

P(d,E) + P(d,E\ {a, 8}) > P(d, E\ {a}) + P(d, E'\ {B}). (7.27)
Proof. Omitted; see Simchi-Levi and Wei (2012). (]

In other words, Lemma 7.5 says that if we start with &/ minus two edges, as we
add those two edges back into E, we get more marginal benefit from the second edge
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Figure 7.5 L} structure for k = 4 and n = 6.

(P(d, E)— P(d, E\{B})) than we did from the first (P(d, E\ {a}) — P(d, E\ {a, 5})).
Because Lemma 7.5 holds for any demand realization, it must also hold in expectation. For
the sake of brevity, for a given edge set F, let [E] = E[P(D, E)], where the expectation is
over the random demand vector D. Then we have:

Corollary 7.6 Let E be a flexibility design for a balanced system of size n, with E C C,,.
Let o and 3 be two flexible edges in E. Then

[E]+[E\{a, B}] = [E\{a}] + [E\{B}]. (7.28)

Therefore, any two flexible arcs in the long-chain design complement each other, in the
sense that having one flexible edge in the system increases the marginal benefit that can be
gained when another flexible edge is added.

Our goal is to prove that among all 2-flexibility designs, the long-chain structure maxi-
mizes the expected performance, E[P(D, E)]. We will do that by first showing that as we
add edges to the dedicated system to build up to a long chain, each new edge brings more
benefit than the previous edge did. Next, we will express the expected performance of the
long chain in terms of open chains, and finally, we will prove the optimality of long chains.

Define L} = D, and L} = L, U{(2,9)]i = k+1,...,n}for2 <k < n. Inwords, L}
consists of the open chain from plant 1 through product &, plus the dedicated edges between
product/plant pairs k + 1,...,n. (See Figure 7.5.) Note that £ is simply £,,. The next
lemma shows that the incremental benefit of each additional flexible edge is nondecreasing
as the long chain is constructed.

Lemma 7.7 For any balanced system of size n with exchangeable demand,

[£5] = [£7] < [£5] = [£3]
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Proof. For any fixed 2 < k < n—1,leta = (2,1) and 8§ = (k + 1,k). Note that
a, 3 € Ly, . By Corollary 7.6 (treating E as L ), we have

[Lhia] + Lk \{a, BY = [Li o \{a}] + L1 \ {B}]- (7.29)

Now, if we remove 3 from L}, |, we simply get L. If we remove «, then by rearranging
the product/node pairs so that pair 1 moves to the end (which we are allowed to do since
the demands are exchangeable), we again obtain £}}. Similarly, if we remove both o and
B, we obtain £}_,. Therefore, (7.29) becomes

(Ll + [£7-1) = [£F]) + [£g],

or
[£7] = (L] < (L] = [£5)-
Since this holds for all k = 2,...,n — 1, we have now proven all of the inequalities in the
lemma except the final one.
To prove the final inequality, let « = (2,1) and 8 = (1,n). Using similar logic as
above, we have C,, \ {a} = C, \ {8} = L} and C,, \ {o, 8} = L}_,. Therefore, by
Corollary 7.6 (treating F as C,,), we have

[C] + [£na] = [£3] + [£3],

[£a] = L) < [Cal = [£3],

n—1

completing the proof. ]

The result in Lemma 7.5 holds for any demand realization, which allowed us to prove the
same result in expectation in Corollary 7.6. In contrast, Lemma 7.7 holds in expectation,
but the same result does not hold for every individual demand instance. (See Problem 7.15.)

Next, we characterize the performance of the long-chain design using the performance
of open chains.

Lemma 7.8 For any balanced system of size n with exchangeable demand, we have

[Cn] = n([ﬁn] - [‘Cnfl])-
Proof. For any demand realization d, one can show (Simchi-Levi and Wei 2012, Theorem
3) that

n

P(d,Co) = D (P(d,Cu \{(i+1.)}) = P(d,Co\ {3, = 1), (i, ), (i +1,4)})). (7.30)

i=1
Forany 1 <: < n,

Co\{(i+1,9)} =L,
Cn \ {(iai* 1)7 (i’i)v (Z + 172)} =Lp

since the demand is exchangeable. (Imagine removing one diagonal edge, or two consecu-
tive diagonal edges and the horizontal edge between them, and then rearranging the nodes
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to obtain an open chain.) Taking the expectation of both sides of (7.30), we obtain the
desired result. ]

Lemma 7.8 expresses the performance of a long-chain design in terms of the performance
of open chains, which are much easier to compute and analyze using a greedy heuristic
(see Chou et al. 2010b).

Finally, we are ready to prove the optimality of the single-chain structure (i.e., the
long-chain design) among all 2-flexibility designs.

Theorem 7.9 Let Fy be the set of all 2-flexibility designs of the system. Then,

C,, € argmax {[A]}.
A€,

Proof. Let A € [F5 be any 2-flexibility design. It suffices to show that [A] < [C,].

By the definition of a 2-flexibility design, A must consist of one or more closed chains.
If it consists of only a single chain, then A = C,,, so [A] < [C,,] trivially. Suppose instead
that A consists of m > 2 disjoint closed chains, and let n; be the number of products and
plants in the jth closed chain, for 1 < 7 < m. Then:

m

[A] = Z[an] = ni([Ln,] = [Lny-1]).

j=1

The first equality follows from the fact that A consists of m chains, each of length n;. The
second equality follows from Lemma 7.8. Since EZJ_ equals L,,; plus n —n; disjoint edges
and Eﬁjfl equals £, 1 plus n — n; + 1 disjoint edges,

(£, = (£, 1] = [£3,] ~ [£5, ) + Elmin{Cy, D}, (31)
where E[min{C1, D1 }] is the expected sales of the “extra” edgein £;; . _; (which we assume

is for plant and product 1, without loss of generality due to the exchangeable demand).
Therefore,

[A] =Y ny([L,] = €5, 1] + E@min{1, D1 }))

= an([ﬁn] [‘C'n—l])
=n L:n] - [ﬁn—l})
= [Cn]a

where the inequality follows from Lemma 7.7, the second equality follows the same logic
as (7.31), the third follows from the fact that Z:”Zl n; = n, and the last follows from
Lemma 7.8. ]
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7.6 A PROCESS FLEXIBILITY OPTIMIZATION MODEL

So far we have discussed flexibility guidelines for symmetric networks, in which all plants
have the same capacity and all products have independent, identical demand distributions.
However, real systems are much more complex. Jordan and Graves’s (1995) three rules
of thumb listed on page 248 provide some guidance, but it would be helpful to have a
more rigorous, optimization-based approach to design flexibility structures. In addition,
the models we have discussed so far ignore the possibility that the investment and operating
costs of different flexible resources can be different. For example, it is generally cheaper
for a plant to produce two similar products than two very different products.

In addition, some flexible plants are designed for one primary product (or product
family), and when it is called upon to produce a different product, production costs may
increase—for example, due to additional costs for training workers to produce the new
product, or to the change-over time required to switch products on an assembly line. These
“recourse” costs are ignored in many process flexibility models. One exception is Chou
et al. (2010a), who assume that it costs more for a plant to manufacture products other than
those it is primarily designed for. Their results show that chaining can be less beneficial
relative to full flexibility when recourse costs are taken into consideration, but that chaining
still yields significant benefits over the no-flexibility structure.

Another paper that accounts for recourse costs, as well as nonhomogeneous products
and plants, is that of Mak and Shen (2009), which optimizes the flexibility structure to
maximize the firm’s expected profit, accounting for the costs to invest in process flexibility.
We discuss their model in this section.

7.6.1 Formulation

As in earlier parts of this chapter, we consider a set V; of products, indexed by ¢, and a set
V5 of plants, indexed by j, each with n elements.! Demands for the products are random.

This is a two-stage stochastic optimization model. In the first stage, we decide which
edges (i,7) € E to construct, i.e., which plants should be made capable of producing
which products. There is a fixed investment cost of a;; to add edge (3, j), representing
the cost of retooling the manufacturing process or purchasing a flexible technology. At the
beginning of the second stage, we observe the random demands and then choose production
levels for each product at each plant, subject to the flexibility structure chosen in the first
stage. There is a production cost of ¢;; for each unit of plant j’s capacity that is used to
produce product 7 and a selling price of p; for each unit of product ¢ sold. The objective is
to maximize the profit, which equals the sales revenue minus the costs of production and
flexibility investments.

We model the random product demands using scenarios: The demand for product 7 in
scenario s is given by d;, and the probability that scenario s occurs is ¢5.

We summarize the notation as follows:

Sets

ITo be consistent with the literature, we assume that |[Vi| = |V2| = n. However, it is trivial to allow these
numbers to be different; see Mak and Shen (2009).

2Mak and Shen (2009) consider a much more general multivariate demand model. We consider the scenario-based
approach here for the sake of simplicity.
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V1 =set of products
Vo = set of plants
S =set of scenarios
Parameters
a;; = cost to invest in technology that allows plant j to produce product ¢
cij = cost to produce one unit of product ¢ at plant j
p; = revenue from selling one unit of product ¢
C; = capacity of plant j
d;s = demand for product ¢ in scenario s
qs = probability that scenario s occurs
Decision Variables
x;; = 1if plant j is configured to produce product %, O otherwise
Yijs = the number of units of product 7 produced at plant j in scenario s

We formulate the model for optimizing process flexibility as follows:

maximize Z Z —a;jTi; + qu(pi — Cij)Vijs (7.32)

icVy jeVa SES
subjectto > yijs < Cj VjieVa,Vse S (7.33)
ieVh
> Yije < dis VieVi,Vs € S (7.34)
JEV2
Yijs < disl‘,‘j Vi € W,V] (S VQ,VS es (7.35)
zij €{0,1}  VieW,VjeVs (7.36)
Yijs = 0 VieVy,VjeVyVse S (7.37)

The objective function (7.32) calculates the expected profit—the expected sales revenue
minus investment costs and expected production costs. Constraints (7.33) enforce the
capacity limit at each plant in each scenario. Constraints (7.34) require the amount of
product ¢ produced in scenario s to be less than or equal to the demand. Without these
constraints, the model might choose to produce more than the demand in order to increase
the profit. Note, however, that the formulation does not require the demand to be met in
full. A product’s demand may not be met in full, or at all, if there is insufficient capacity or
if it is not profitable to meet the demand. Constraints (7.35) allow production of product ¢
at plant j in scenario s only if that capability was established in the first stage. Constraints
(7.36) and (7.37) require the x variables to be binary and the y variables to be nonnegative.

The second stage of this problem (i.e., the problem in the y variables) is similar to the
deterministic model (7.17)—(7.21) except that (1) the goal is to maximize profit rather than
minimize shortfall and (2) the plant—product capabilities are first-stage decisions rather
than exogenous factors.

7.6.2 Lagrangian Relaxation

We now describe a Lagrangian relaxation algorithm to solve the process flexibility de-
sign model. (Lagrangian relaxation is covered in more detail in Section 8.2.3 and in
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Appendix D.1.) We relax constraints (7.34) and (7.35) with Lagrange multipliers 7 and
7, respectively. Since we are relaxing < constraints in a maximization problem, 7 and
7 are both restricted to be nonnegative (see Section D.1.5). The Lagrangian subproblem
becomes:

maximize Z Z [ azyxm"‘z% Pi — Cij yus]

iceVy jeVa sES

+ Z Z Tis | dis Z Yijs | + Z 771]5 Léxlj yzjs)

i€V seS JjeEVS JjeEVL
i€Vy jeEV, seS
+ Z Z Z QS i Cz] Tis — nijs]yijs + Z ZTisdis (738)
i€Vy jeVa seS i€Vy s€S
subjectto Y yijs < Cj VjeVa,VseS (7.39)
eV
Tij € {O, 1} Vie Vi,Vj eV, (7.40)
Yijs > 0 VieVi,VjeVyVse S (7.41)

This problem decouples into two subproblems, one involving only  and one involving
only y. The z-problem is trivial to solve: We simply set x;; = 1 if

—a;; + Znijsdis >0
seS

and set z;; = 0 otherwise. Solving the y-problem amounts to solving the following
problem for each j and s:

(Pjs) maximize Z a;Yy; (7.42)
eV
subject to Z Y < Cj (7.43)
i€V
yi >0 Vie W, (7.44)

where
a; = QS(Pi - Cij) — Tis — TNijs
Yi = Yijs-

This problem, too, is easy: We simply set y; = C}; for the 7 that has the largest a; and
y; = 0 for all other ¢. (If a; < 0 for all ¢, then we set y; = O for all .) The problem could
be strengthened somewhat by adding a constraint

Yijs < dis Vi€ V1,Vj e Vo,Vse€ S

to the original problem. This constraint is redundant in the original problem but strengthens
the y-problem by reducing its optimal objective value (or leaving it the same), thereby
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[D Products with [high|low] demand

Figure 7.6  Examples of different chaining structures for nonhomogeneous demand case.

tightening the Lagrangian upper bound. If we do this, the y-problem becomes a continuous
knapsack problem, which is still easy to solve.

In Mak and Shen’s (2009) formulation of this problem, the demands are modeled using
a continuous, multivariate distribution, rather than the discrete scenarios used here. In
effect, this means that there are an infinite number of demand scenarios, and hence, we
must relax an infinite number of constraints of type (7.34) and (7.35). To handle this issue,
Mak and Shen propose the use of scenario-independent Lagrange multipliers; that is, to
omit the subscript s from 7 and 7 and to use the same multipliers for all scenarios. This
results in a weaker upper bound from the Lagrangian subproblem than if the multipliers
depend on the scenario, but it also leads to a more tractable Lagrangian dual problem.
In general, the quality of the bound is better if the demand variability is relatively small.
(See, for example, Kunnumkal and Topaloglu (2008) for a discussion.) This approach has
been used successfully in stochastic network flow and stochastic dynamic programming
problems (Cheung and Powell 1996, Topaloglu 2009).

Feasible solutions to the original problem can be obtained from solutions to the La-
grangian subproblem in order to obtain lower bounds. To do this, we set the first-stage
(x) variables to their values from the subproblem. Once these variables are fixed, the y
variables can be determined by solving a network flow problem for each scenario s. (For
the continuous-demand case in Mak and Shen (2009), the y variables must be determined
by solving a stochastic linear program.)

Mak and Shen (2009) compare the solutions obtained from this flexibility optimization
model with the simple chaining structure. When the products are identical in terms of
demand distribution and production cost, the two approaches produce solutions with similar
expected profit. For nonhomogenous products, the performance of the chaining strategy
can be sensitive to the sequences of the products and plants. For example, if there are two
high-demand products and two low-demand products, then the solutions will be different if
we number the high-demand products as 7 = 1, 2 than if we number them as 7 = 1, 3. (See
Figure 7.6.) Therefore, the performance of the straightforward chaining structure, in which
plant j produces products ¢ = j and 7 + 1, may depend on how the products happen to be
indexed. On the other hand, the process flexibility design model discussed in this section
accounts for these nonhomogeneities explicitly. As a result, this approach outperforms the
simple chaining approach considerably for some problem instances.
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CASE STUDY 7.1 Risk Pooling and Inventory Management at Yedioth Group

Yedioth Group is the largest media group in Israel. The group sells magazines and
other publications through thousands of independent retailers, which receive merchan-
dise at the beginning of each week (for weekly magazines) or each day (for daily news-
papers). The retailers cannot order additional stock if they run out during the period,
and unused inventory is collected at the end of the period and scrapped. Therefore,
the retailers function exactly as in the newsvendor problem (in addition to being actual
newsvendors).

Demand for magazines and newspapers is typically highly variable. At the same time,
the lost-sales penalty is considered to be very high because unmet demands mean lost
advertising revenue. Yedioth reimburses the retailers in full for any unused inventory,
which means the retailers incur no overage risk, and therefore, their optimal base-stock
level would be infinite. Therefore, Yedioth chooses delivery quantities directly for the
retailers, based on demand forecasts. Inventory is stored at each of the retailers, and
the retailers cannot transship to one another. Therefore, under this setting, there is no
risk pooling, either physical pooling or information pooling.

Yedioth suspected this was not an ideal distribution strategy, so they partnered
with researchers from the Technion—Israel Institute of Technology and from the Mas-
sachusetts Institute of Technology (MIT) to develop a better approach. Their research
is described by Avrahami et al. (2014).

The key idea behind the new approach is to make two deliveries per week. Demand
during the first part of the week is used to choose delivery quantities for the second
delivery, which can be used to restock the retailers whose inventory is low. Groups of
about 80-100 retailers are each handled by a single sales agent, and their model makes
decisions for one retailer group at a time. The model makes three sets of decisions: (1)
how many copies to print at the beginning of the week (printing more copies during the
week is prohibitively expensive, so there is only one print run); (2) how many copies to
deliver to each retailer in the group at the beginning of the week; and (3) how many
copies to deliver to the retailers in the middle of the week. The first two decisions
must be made before observing any demand information for the week, while the third
decision can exploit the observed demands in the first part of the week.

Avrahami et al. (2014) formulate this problem as a two-stage stochastic optimization
model that makes decisions for the n retailers assigned to a given group. The model
has two subperiods, denoted ¢ = 1, 2; subperiods 1 and 2 correspond to the portions
of the week before and after the second delivery, respectively. D} is a random variable
representing the demand at retailer ¢ in subperiod ¢; its distribution is estimated using
historical data. The relevant costs are ¢, the production cost per unit; h, the overage
cost per unit not sold by the end of subperiod 2 (h represents a disposal cost, i.e., a
negative salvage value); and p, the stockout cost per unit of unmet demand in either
subperiod. There is no distribution cost.

The model has the following decision variables: y! is the on-hand inventory at retailer
i after items are delivered in subperiod t; Q' is the number of units not delivered in
subperiod 1; and z; is the inventory level (positive or negative) at retailer i at the end
of subperiod 1.
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At the beginning of the week, we must choose y} and Q', accounting for the random
demand in the first subperiod and the subsequent (random) deliveries that will be made
in the second subperiod. That is, we wish to solve

minimize ¢ <zn: yi + Q1> +E [P(Q',y{ — Di,...,y; — D)) (7.45)
i=1

subject to yb>0  Vi=1,...,n (7.46)
Q' >0, (7.47)
where Po(Q',x1,...,x,) is the expected cost in subperiod 2, given that subperiod 1

ends with Q' undelivered units and an inventory level of z; at retailer i. That is:
Py(Q*, 1, ..., z,) = minimize E Z [h(y? — DIt +p(D} —y7) "] (7.48)

i=1
subject to yf =x; + Q? Vi=1,...,n (7.49)
i Qi =q' (7.50)
i=1

Q>0 Vi=1,...,n (7.51)

Note that the stockout cost is not incurred until the end of the second subperiod,
since first-subperiod stockouts are passed along to the second subperiod via the term
i —Dj.

The expectations are taken over the first- and second-subperiod demands (respec-
tively), whose distributions are discretized so that the expectations are sums rather
than integrals. This allows the resulting objective functions to be linearized, but it also
makes the scenario space huge; for example, if there are 50 retailers and each can have
high, medium, or low demand in each subperiod, we have (3°°)? ~ 5.2 x 10%" scenar-
ios. Therefore, Avrahami et al. (2014) use sampling to estimate the expectations. They
show that the objective function is convex and use this property to develop a stochastic
subgradient-based optimization algorithm. The algorithm executes very quickly, solving
each retailer group in a few seconds.

This model looks very different from the risk-pooling models discussed in Section 7.2,
but the principle is very similar. By adding a second delivery in each week, Yedioth can
maintain a centralized inventory for part of the week, which allows it to exploit the risk-
pooling effect across the retailers. Alternately, we can interpret this as a postponement
strategy in which the differentiation refers to the delivery to retailers (rather than
customization of the product).

Yedioth initially implemented the new approach for only one product, the weekly
magazine La'lsha, and for only 50 retailers. This pilot project was very successful, so
the company expanded it to more publications and many more retailers. The initial
results showed a 9% reduction in production levels (without a decrease in sales) and a
35% reduction in product returns. The company estimates savings of $1,000,000 per
year in printing costs when the new approach is rolled out to all 8,000 of its retailers.
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PROBLEMS

7.1 (Risk-Pooling Example) Three distribution centers (DCs) each face normally dis-
tributed demands, with Dy ~ N(22,8%), Dy ~ N(19,4?), and D3 ~ N(17,3%). All
three DCs have a holding cost of h = 1 and p = 15, and all three follow a periodic-review
base-stock policy using their optimal base-stock levels.
a) Calculate the expected cost of the decentralized system.
b) Suppose demands are uncorrelated among the three DCs: pi12 = p13 = p23 = 0.
Calculate the expected cost of the centralized system.
¢) Suppose pi12 = p13 = p23 = 0.75. Calculate the expected cost of the centralized
system.
d) Suppose p12 = 0.75, p13 = pag = —0.75. Calculate the expected cost of the
centralized system.

7.2 (No Soup for You) A certain New York City soup vendor sells 15 varieties of soup.
The number of customers who come to the soup store on a given day has a Poisson
distribution with a mean of 250. A given customer has an equal probability of choosing
each of the 15 varieties of soup, and if his or her chosen variety of soup is out of stock (no
pun intended), he or she will leave without buying any soup.

You may assume (although it is not necessarily a good assumption) that the demands
for different varieties of soup are independent; that is, if the demand for variety ¢ is high
on a given day, that doesn’t indicate anything about the demand for variety j.

Every type of soup sells for $5 per bowl, and the ingredients for each bowl of soup cost
the soup vendor $1. Any soups (or ingredients) that are unsold at the end of the day must
be thrown away.

a) How many ingredients of each variety of soup should the soup vendor buy? What
is the restaurant’s total expected underage and overage cost for the day?
b) What is the probability that the vendor stocks out of a given variety of soup?
¢) Now suppose that the soup vendor wishes to streamline his offerings by reducing
the selection to 8 varieties of soup. Assume that the total demand distribution
does not change, but now the total demand is divided among 8 soup varieties
instead of 15. As before, assume that a customer finding his or her choice of soup
unavailable will leave without purchasing anything. Now how many ingredients
of each variety of soup should the vendor buy? What is the restaurant’s total
expected underage and overage cost for the day?
d) In a short paragraph, explain how this problem relates to risk pooling.
Note: You may use the normal approximation to the Poisson distribution, but make sure to
specify the parameters you are using.

7.3 (In-Flight Trash) On a certain airline, the flight attendants collect trash during flights
and deposit it all into a single receptacle. Airline management is thinking about instituting
an on-board recycling program in which waste would be divided by the flight attendants
and placed into three separate receptacles: one for paper, one for cans and bottles, and one
for other trash.

The volume of each of the three types of waste on a given flight is normally distributed.
The airline would maintain a sufficient amount of trash-receptacle space on each flight so
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that the probability that a given receptacle becomes full under the new system is the same
as the probability that the single receptacle becomes full under the old system.

Would the new policy require the same amount of space, more space, or less space for
trash storage on each flight? Explain your answer in a short paragraph.

7.4 (Days-of-Supply Policies) Rather than setting safety stock levels using base-stock
or (r, Q) policies, some companies set their safety stock by requiring a certain number of
“days of supply” to be on hand at any given time. For example, if the daily demand has a
mean of 100 units, the company might aim to keep an extra 7 days of supply, or 700 units,
in inventory. This policy uses u instead of o to set safety stock levels.

Consider the N-DC system described in Section 7.2.1, with independent demands across
DCs (p;; = 0 for ¢ # j). You may assume that all DCs are identical: y; = ppand 0; = o
for all 7. Assume that p and o refer to weekly demands, and that orders are placed by the
DCs once per week. Finally, assume that each DC follows a days-of-supply policy with k
days of supply required to be on hand as safety stock; each DC’s order-up-to level is then

k
S =+ =p.
u+7u

a) Prove that the centralized and decentralized systems have the same amount of
total inventory.

b) Derive expressions for g7, and g7, the total expected costs of the decentralized
and centralized systems. Your expressions may not involve integrals; they may
involve the standard normal loss function, £ (+).

Hint: Since the DCs are not following the optimal stocking policy, the cost is
analogous to (4.29), not to (4.30).

¢) Prove that g/ < g7,.

d) Explain in words how to reconcile parts (a) and (c)—how can the centralized cost
be smaller even though the two systems have the same amount of inventory?

7.5 (Negative Safety Stock) Consider the V-DC system described in Section 7.2.1, with
independent demands across DCs (p;; = 0). Suppose that the holding cost is greater than
the stockout cost: h > p.

a) Prove that negative safety stock is required at DC i—that the base-stock level is
less than the mean demand.

b) Prove that the total inventory (cycle stock and safety stock) required in the
decentralized system (each DC operating independently) is less than the total
inventory required in the centralized system (all DCs pooled into one). (This is
the opposite of the result in Section 7.2.)

¢) Prove that, despite the result from part (b), the total expected cost of the centralized
system is less than that of the decentralized system (g5 < g7)).

d) Explain in words how to reconcile parts (b) and (c)—how can it be less expensive
to hold more inventory?

7.6 (Rationalizing DVR Models) A certain brand of digital video recorder (DVR) is
available in three models, one that holds 40 hours of TV programming, one that holds 80
hours, and one that holds 120 hours. The lifecycle for a given DVR model is short, roughly
1 year. Because of long manufacturing lead times, the company must manufacture all of
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Table 7.2 DVR parameters for Problem 7.6.
Storage | Manufacturing  Selling  Goodwill Mean Annual SD of Annual

Space Cost (¢;) Price (r;) Cost(g;) Demand (1;) Demand (o)
40 80 120 150 40,000 12,000
80 90 150 150 55,000 15,000
120 100 250 150 25,000 8,000

the units it intends to sell before the DVRs go on the market, and it will not have another
opportunity to manufacture more before the end of the products’ 1-year life cycles.

Demand for DVRs is highly volatile, and customers are very picky. A customer who
wants a given model but finds that it’s out of stock will almost never change to a different
model—instead, he or she will buy a competitor’s product. In this case, the firm incurs
both the lost profit and a loss-of-goodwill cost. Moreover, any DVRs that are unsold at the
end of the year are taken off the market and destroyed, with no salvage value (or cost).

The cost, revenue, and demand parameters for the three models of DVR are given in
Table 7.2. Demands are normally distributed with the parameters specified in the table.
Moreover, demands for the 80- and 120-hour models are negatively correlated, with a
correlation coefficient of pgg 120 = —0.4. (Demands for the 40-hour model are independent
of those for the other two models.)

The company is currently designing its three models for next year, and a very smart
supply chain manager noticed that although the models sell for different prices, they
cost nearly the same amount to manufacture. The manager thus proposed that the firm
manufacture only a single model, containing 120 hours of storage space. When customers
purchase a DVR, they specify how much storage space they’d like it to have (either 40, 80,
or 120 hours) and pay the corresponding price, and the unit is activated with that much
space. If the customer asks for 40 or 80 hours, the remaining storage space simply goes
unused. This change can be made with software rather than hardware and therefore costs
very little to make.

a) Let (); be the quantity of model ¢ manufactured, 7 = 1, ..., 3, if the supply chain
manager’s proposal is not followed. Write the firm’s expected profit for model ¢
as a function of Q);.

b) Find the optimal order quantities ()} and the corresponding total optimal expected
profit (for all three models).

c) Let () be the quantity of the single model manufactured if the manager’s proposal
is followed. Write the firm’s total expected profit as a function of ). Although it
is not entirely accurate to do so, you may assume that the expected selling price
for the single model is given by a weighted average of the r;, with weights given
by the u;.

d) Find the optimal order quantity () and the corresponding optimal expected profit.
Based on this analysis, should the firm follow the manager’s suggestion?

e) What other factors should the firm consider before deciding whether to implement
the manager’s proposal?

7.7 (Proof of Theorem 7.3) Prove Theorem 7.3.
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7.8 (Transhipment Simulation) Build a spreadsheet simulation model for the two-
retailer transshipment problem from Section 7.4. Your spreadsheet should include columns
for the demand at each location; the inventory at each location at the start of the period,
before transshipments, and after transshipments; the amount transshipped; and the costs
for the period. Assume that demands are Poisson with mean \; per period and that

A1 =30 A2 =20
c1 =12 c =17
hy =0.6 ho =0.8
p1=28.0 p2 =8.0
c12 = 3.0 co1 = 3.0.

Use S; = 33 and Sy = 22 as the base-stock levels, and assume that both retailers begin
the simulation with .S; — \; units on-hand (that is, at the start of period 1, retailer ¢ needs
to order \; units to bring its inventory position to S;).
a) Simulate the system for 500 periods and include the first 10 rows of your spread-
sheet in your report.
b) Compute the average ordering, transshipment, holding, and penalty costs per
period from your simulation.
¢) Compute the expected transshipment quantity from retailer 1 to retailer 2 (E[Y72])
and the expected ending inventory at retailer 1 (E[/L]]) using (7.8) and (7.9). To
compute these quantities, you will need to evaluate some integrals numerically.
d) Compare the results from parts (a) and (c). How closely do the simulated and
actual quantities match?
e) By trial and error, try to find the values of S; and S5 that minimize the simulated
cost. What are the optimal values, and what is the optimal expected cost?

7.9 (Binary Transshipments) Consider the transshipment model from Section 7.4, ex-
cept now suppose the demands are binary. That is, the demands can only equal O or 1, and
they are governed by a Bernoulli distribution: D; = 1 with probability ¢; and D; = 0 with
probability 1 — g;, for ¢ = 1,2. All of the remaining assumptions from Section 7.4.2 hold.
Your goal in this problem will be to formulate the expected cost and evaluate several
feasible values for the base-stock levels (S1,.52). Assume that S; must be an integer.
a) Explain why ST + 55 < 2.
b) For each possible solution (51, S2) below, write the expected values of the state
variables Q;, Yij;, I L;r, and I L, and then write the expected cost g(S1, S2).
1. (S1,52) =(0,0)

2. (51,52) = (1,1)
3. (S1,52) = (1,0)
4. (S1,582) =(2,0)

(The cases in which (S1,.52) = (0,1) or (0, 2) are similar to the cases above, so
we’ll skip them.)

Hint I: If S; = 0, that does not mean that stage ¢ never orders!

Hint 2: To check your cost functions, we’ll tell you the following: If ¢; =
hi=p;=1,¢;; =3,and ¢; = 0.5 forall ¢ = 1,2, then g(0,0) = 2, g(1,1) = 2,
g(1,0) = 2.25, and ¢(2,0) = 3.5. Note, however, that these parameters do not
satisfy the assumptions on page 238.



PROBLEMS 263

Suppliers Plants Products

(1)

Figure 7.7 Three-stage flexibility structure for Problem 7.10.

¢) Find an instance for which (S7,S53) = (1,1). Your instance must satisfy the
assumptions on page 238.

d) Find a symmetric instance for which (S7,55) = (1,0). Your instance must
satisfy the assumptions on page 238. A symmetric instance is one for which the
parameters for the two retailers are identical (¢c; = c2, h1 = ha, etc.). (It’s a little
surprising that a symmetric instance can produce a nonsymmetric solution, but it
can.)

e) Prove or disprove the following claim: ¢(2,0) > g(1,1) for all instances that
satisfy the assumptions on page 238.

7.10 (Three-Stage Flexibility) Consider the three-stage supply chain flexibility design
problem pictured in Figure 7.7.

There are n; products, ny plants, and ng suppliers. In the full-flexibility structure, each
product can be produced at any plant using raw materials sourced from any supplier. We
assume that each unit of product consumes one unit of material from each supplier and
uses one unit of capacity at each plant. We assume further that the production capacities at

the plants are C'j, j = 1,...,ng, and that the suppliers have a limited amount By, of raw
materials, k = 1,...,n3. The demand for each product is random and is denoted by the
random variable D;, 7 =1,...,n1.

a) Derive an expression for the expected sales in the full-flexibility structure.

b) Let y;;1 be a decision variable representing the amount of raw materials from
supplier k used to produce product ¢ at plant j. Formulate the flexibility design
problem for this three-stage supply chain.

7.11 (Capacity Investment) Recall the formulation of the flexibility design problem
(7.32)—(7.37). Suppose now that the capacity is also a decision, to be made jointly with the
network design problem. In particular, the capacities C; are first-stage decision variables,
together with the flexibility investment variables x;;. We assume a linear investment cost
function for the capacity, with constant marginal investment cost v; per unit.
a) Write the new objective function after adding the capacity-investment cost term.
b) Discuss a method for solving this new problem.

7.12 (Auto Repair) A small car repair shop has four certified technicians, Irene, Larry,
Max, and Suzanne. The shop specializes in four types of vehicles, labeled A, B, C, and
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D. Each technician has been trained to repair one type of vehicle. On average, the repair
of each type of vehicle takes 4 hours. It is estimated that the number of customers who
want a type-A vehicle fixed during a given week is equally likely to be 8, 10, or 12. That
is, the probability is % for each of the possible outcomes, 8, 10, or 12 customers. Each of
the other three vehicle types has the same demand distribution for repairs. Furthermore,
the demands are iid across time and type. Each technician has a nominal work week of 40
hours at $55 per hour and will be paid for 40 hours even if he or she works fewer than 40
hours in the week. But if a technician works more than 40 hours, then the overtime rate is
150% of the normal pay. The overtime rate applies only to the hours in excess of 40.

a) Calculate the expected yearly cost of the dedicated system (in which Irene, Larry,
Max, and Suzanne can only service vehicles of type A, B, C, and D, respectively).

b) After reading this chapter, the repair shop’s manager decides to try a flexible
system. Suppose first that the manager uses a chaining structure in which Irene
will also be trained to repair type-B vehicles, Larry to repair type-C vehicles,
Max to repair type-D vehicles, and Suzanne to repair type-A vehicles. Calculate
the expected yearly cost of overtime for this system.

Note: Given the assumptions made in this problem, for each realization of
the random demands, it is possible to calculate the total overtime cost based
on the total hours required without determining the assignments of vehicles to
technicians.

¢) Suppose instead that the manager chooses a full-flexibility system in which every
technician is trained to repair all four vehicle models. Calculate the expected
yearly cost of overtime for this system.

d) Determine the optimal assignment of vehicles to technicians under both the
chaining and full flexibility structures if the demands are 12, 8, 10, and 12 for
vehicles of types A—D, respectively.

e) Suppose the cost of training one technician to repair one new vehicle type is
$10,000. What is the expected number of years until the shop recoups the
investment cost to convert the dedicated system to the partial flexibility system
with the chaining structure? What about the full flexibility system?

7.13 (Auto Repair, Part 2) Consider again the auto repair shop in Problem 7.12. Suppose
that the number of repairs of type-A vehicles in a given week has a normal distribution
with a mean of 22 and a standard deviation of 3, while the number of repairs of vehicles
of types B-D is deterministic and equal to 6 for each type. Calculate the expected yearly
cost of overtime for both the chaining structure (as described in Problem 7.12(b)) and the
full flexibility system.

Note: Unlike in Problem 7.12, in this problem you must determine the optimal assign-
ment of vehicles to technicians for each realization of the demand in order to calculate the
expected overtime cost for the chaining system.

7.14 (Max-Flow Formulation) The production-allocation problem (7.17)—(7.21) can
also be formulated using a max-flow formulation.
a) Formulate the problem as a max-flow problem, using the notation already defined
in the chapter.
b) Research has shown that when demands are independent, chaining can achieve
most (roughly 97%) of the benefits of full flexibility as the number of nodes n
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approaches co. Show that if the demands are correlated, the situation can be very
different.

7.15 (Lemma 7.7 Only Holds in Expectation) Develop a counterexample to show that,
although Lemma 7.7 holds in expectation, the result does not hold for every individual
demand instance.



CHAPTER 8

FACILITY LOCATION MODELS

8.1 INTRODUCTION

One of the major strategic decisions faced by firms is the number and locations of factories,
warehouses, retailers, or other physical facilities. This is the purview of a large class of
models known as facility location problems. The key trade-off in most facility location
problems is between the facility cost and customer service. If we open a lot of facilities
(Figure 8.1(a)), we incur high facility costs (to build and maintain them), but we can provide
good service since most customers are close to a facility. On the other hand, if we open
few facilities (Figure 8.1(b)), we reduce our facility costs but must travel farther to reach
our customers (or they to reach us).

Most (but not all) location problems make two related sets of decisions: (1) where to
locate, and (2) which customers are assigned or allocated to which facilities. Therefore,
facility location problems are also sometimes known as location—allocation problems.

A huge range of approaches has been considered for modeling facility location decisions.
These differ in terms of how they model facility costs (for example, some include the costs
explicitly, while others impose a constraint on the number of facilities to be opened) and
how they model customer service (for example, some include a transportation cost, while
others require all or most facilities to be covered—that is, served by a facility that is within
some specified distance). Facility location problems come in a great variety of flavors based
on what types of facilities are to be located, whether the facilities are capacitated, which
(if any) elements of the problem are stochastic, what topology the facilities may be located
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(a) Many facilities open.

(b) Few facilities open.

Figure 8.1 Facility location configurations. Squares represent facilities; circles represent
customers.
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on (e.g., on the plane, in a network, or at discrete points), how distances or transportation
costs are measured, and so on. Several excellent textbooks provide additional material for
the interested reader; for example, see Mirchandani and Francis (1990), Drezner (1995a),
Drezner and Hamacher (2002), or Daskin (2013). For an annotated bibliography of papers
on facility location problems, see ReVelle et al. (2008b). The book by Eiselt and Marianov
(2011) contains chapters on a number of seminal papers in facility location, each describing
the original contribution as well as later extensions.

In addition to supply chain facilities such as plants and warehouses, location models
have been applied to public sector facilities such as bus depots and fire stations, as well
as to telecommunications hubs, satellite orbits, bank accounts, and other items that are not
really “facilities” at all. In addition, many operations research problems can be formulated
as facility location problems or have subproblems that resemble them. Facility location
problems are often easy to state and formulate but are difficult to solve; this makes them a
popular testing ground for new optimization tools. For all of these reasons, facility location
problems are an important topic in operations research, and in supply chain management
in particular, in both theoretical and applied work.

In this chapter, we will begin by discussing a classical facility location model, the
uncapacitated fixed-charge location problem (UFLP), in Section 8.2. The UFLP and its
descendants have been deployed more widely in supply chain management than perhaps
any other location model. One reason for this is that the UFLP is very flexible and, although
it is NP-hard, lends itself to a variety of effective solution methods. Another reason is that
the UFLP includes explicit costs for both key elements of the problem—facilities and
customer service—and is therefore well suited to supply chain applications.

In Section 8.3, we discuss other so-called minisum models (in particular, the p-median
problem and a capacitated version of the UFLP), and in Section 8.4, we discuss cover-
ing models (including the p-center, set covering, and maximal covering problems). We
briefly discuss a variety of other deterministic facility location problems in Section 8.5. In
Section 8.6, we introduce stochastic and robust models for facility location under uncer-
tainty. We then discuss models for network design—a close cousin of facility location—in
Section 8.7.

8.2 THE UNCAPACITATED FIXED-CHARGE LOCATION PROBLEM

8.2.1 Problem Statement

The uncapacitated fixed-charge location problem (UFLP) chooses facility locations in
order to minimize the total cost of building the facilities and transporting goods from
facilities to customers. The UFLP makes location decisions for a single echelon, and the
facilities in that echelon are assumed to serve facilities in a downstream echelon, all of
whose locations are fixed. We will tend to refer to the facilities in the upstream echelon
as distribution centers (DCs) or warehouses and to those in the downstream echelons as
customers. However, the model is generic, and the two echelons may instead contain other
types of facilities—for example, factories and warehouses, or regional and local DCs, or
even fire stations and homes. Sometimes it’s also useful to think of an upstream echelon,
again with fixed location(s), that serves the DCs.

Each potential DC location has a fixed cost that represents building (or leasing) the
facility; the fixed cost is independent of the volume that passes through the DC. There is
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a transportation cost per unit of product shipped from a DC to each customer. There is
a single product. The DCs have no capacity restrictions—any amount of product can be
handled by any DC. (We’ll relax this assumption in Section 8.3.1.) The problem is to choose
facility locations to minimize the fixed cost of building facilities plus the transportation
cost to transport product from DCs to customers, subject to constraints requiring every
customer to be served by some open DC.

As noted above, the key trade-off in the UFLP is between fixed and transportation costs.
If too few facilities are open, the fixed cost is small, but the transportation cost is large
because many customers will be far from their assigned facility. On the other hand, if too
many facilities are open, the fixed cost is large, but the transportation cost is small. The
UFLP tries to find the right balance, and to optimize not only the number of facilities, but
also their locations.

8.2.2 Formulation
Define the following notation:

Sets
I = set of customers
J = set of potential facility locations
Parameters
h; = annual demand of customer i € [
ci; = cost to transport one unit of demand from facility j € J to customer ¢ € I
f; =fixed annual cost to open a facility at site j € J
Decision Variables
x; = 1 if facility j is opened, O otherwise
yi; = the fraction of customer 7’s demand that is served by facility j

The transportation costs c;; might be of the form k x distance for some constant k (if
the shipping company charges k per mile per unit) or may be more arbitrary (for example,
based on airline ticket prices, which are not linearly related to distance). In the former case,
distances may be computed in a number of ways:

e Euclidean distance: The distance between (a1, b;) and (asg, b2) is given by
Vi~ wP + - B

The Euclidean distance metric is also known as the 5 norm. This is an intuitive
measure of distance but is not usually applicable in supply chain contexts because
Cartesian coordinates are not useful for describing real-world locations.

e Manhattan or rectilinear metric: The distance is given by
|CL1 - CL2| + ‘bl — bg‘

This metric assumes that travel is only possible parallel to the z- or y-axis, e.g., travel
along city streets. It is also known as the ¢; norm.

e Great circle: This method for calculating distances takes into account the curvature of
the earth and, more importantly, takes latitudes and longitudes as inputs and returns
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distances in miles or kilometers. Great circle distances assume that travel occurs
over a great circle, the shortest route over the surface of a sphere. Let (a1, 51) and
(cva, B2) be the latitude and longitude of two points in radians, and let Ac = a3 — o
and AB = 1 — 32 be the differences in the latitude and longitude (respectively).
Then the great circle distance between the two points is given by

2r arcsin <\/sin2 <A204> + cos a1 cos aip sin? (?)) , (8.1)

where r is the radius of the Earth, approximately 3958.76 miles or 6371.01 km (on
average), and the trigonometric functions are assumed to use radians.

A simpler formula, known as the spherical law of cosines, sets the distance equal to
r arccos (sin «q sin g + cos @y cos ag cos (Af)) (8.2)

and is nearly as accurate as (8.1) except when the distance between the two points is
very small. (See Problem 8.44.)

e Highway/network: The distance is computed as the shortest path within a network,
for example, the US highway network. This is usually the most accurate method for
calculating distances in a supply chain context. However, since they require data on
the entire road network, they must be obtained from geographic information systems
(GIS) or from online services such as Mapquest or Google Maps. (In contrast, the
distance measures above can be calculated from simple formulas using only the
coordinates of the facilities and customers.)

e Matrix: Sometimes a matrix containing the distance between every pair of points is
given explicitly. This is the most general measure, since all others can be considered
a special case. It is also the only possible measure when the cost structure exhibits
no particular pattern—for example, when they are based on airline ticket prices.

In general, we won’t be concerned with how transportation costs are computed—we’ll
assume they are given to us already as the parameters c;;.
The UFLP is formulated as follows:

(UFLP) minimize Z fiz; + Z Z hicijYij (8.3)
jed iel jeJ
subject to Z Yij =1 Viel (8.4)
jeJ
Yij < VieI,VjelJ (8.5)
zj € {0,1} VjiedJ (8.6)
Yij =0 Viel,VjeJ 8.7)

Formulations very similar to this were originally proposed by Manne (1964) and Balinski
(1965). The objective function (8.3) computes the total (fixed plus transportation) cost. In
the discussion that follows, we’ll use z* to denote the optimal objective value of (UFLP).
Constraints (8.4) require the full amount of every customer’s demand to be assigned, to
one or more facilities. These are often called assignment constraints. Constraints (8.5)
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prohibit a customer from being assigned to a facility that has not been opened. These are
often called linking constraints. Constraints (8.6) require the location (x) variables to be
binary, and constraints (8.7) require the assignment (y) variables to be nonnegative.

Constraints (8.4) and (8.7) together ensure that 0 < y;; < 1. Infact, it is always optimal
to assign each customer solely to its nearest open facility. (Why?) Therefore, there always
exists an optimal solution in which y;; € {0,1} forall ¢ € I, j € J. It is therefore
appropriate to think of the y;; as binary variables and to talk about “the facility to which
customer ¢ is assigned.”

Another way to write constraints (8.5) is

Sy <lz;  Vied (8.8)

i€l
If z; = 1, then y;; can be 1 for any or all ¢ € I, while if z; = 0, then y;; must be O for all
1. These constraints are equivalent to (8.5) for the IP. But the LP relaxation is weaker (i.e.,
it provides a weaker bound) if constraints (8.8) are used instead of (8.5). This is because
there are solutions that are feasible for the LP relaxation with (8.8) that are not feasible
for the LP relaxation with (8.5). To take a trivial example, suppose there are 2 facilities
and 10 customers with equal demand, and suppose each facility serves 5 customers in a
given solution. Then it is feasible to set x1 = x5 = % for the problem with (8.8) but not
with (8.5). Since the feasible region for the problem with (8.8) is larger than that for the
problem with (8.5), its objective value is no greater. It is important to understand that the
IPs have the same optimal objective value, but the LPs have different values—one provides
a weaker LP bound than the other.

The UFLP is NP-hard (Garey and Johnson 1979). A large number of solution methods
have been proposed in the literature over the past several decades, both exact algorithms
and heuristics. Some of the earliest exact algorithms involve simply solving the IP using
branch-and-bound. Today, this would mean solving (UFLP) as-is using CPLEX, Gurobi,
or another off-the-shelf IP solver, although such general-purpose solvers did not exist when
the UFLP was first formulated. This approach works quite well using modern solvers,
in part because the LP relaxation of (UFLP) is usually extremely tight, and in fact it
often results in all-integer solutions “for free” (Morris 1978). (ReVelle and Swain (1970)
discuss this property in the context of a related problem, the p-median problem.) Current
versions of CPLEX or Gurobi can solve instances of the UFLP with thousands of potential
facility sites in a matter of minutes. However, when it was first proposed that branch-
and-bound be used to solve the UFLP (by Efroymson and Ray (1966)), IP technology
was much less advanced, and this approach could only be used to solve problems of
modest size. Therefore, a number of other optimal approaches were developed. Two of
these—Lagrangian relaxation and a dual-ascent method called DUALOC—are discussed
in Sections 8.2.3 and 8.2.4, respectively. Many other IP techniques, such as Dantzig—Wolfe
or Benders decomposition, have also been successfully applied to the UFLP (e.g., Balinski
(1965) and Swain (1974)). We discuss heuristic methods for the UFLP in Section 8.2.5.

8.2.3 Lagrangian Relaxation

8.2.3.1 Introduction One of the methods that has proven to be most effective for
the UFLP and other location problems is Lagrangian relaxation, a standard technique for
integer programming (as well as other types of optimization problems). The basic idea
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behind Lagrangian relaxation is to remove a set of constraints to create a problem that’s
easier to solve than the original. But instead of just removing the constraints, we include
them in the objective function by adding a term that penalizes solutions for violating the
constraints. This process gives a lower bound on the optimal objective value of the UFLP,
but it does not necessarily give a feasible solution. Feasible solutions must be found using
some other method (to be described below); each feasible solution provides an upper bound
on the optimal objective value. When the upper and lower bounds are close (say, within
1%), we know that the feasible solution we have found is close to optimal.

For more details on Lagrangian relaxation, see Appendix D.1. See also Fisher (1981,
1985) for excellent overviews. Lagrangian relaxation was proposed as a method for solving
a UFLP-like problem by Cornuejols et al. (1977).

We want to use Lagrangian relaxation on the UFLP formulation given in Section 8.2.2.
The question is, which constraints should we relax? There are only two options: (8.4)
and (8.5). (Constraints (8.6) and (8.7) can’t be relaxed using Lagrangian relaxation.)
Relaxing either (8.4) or (8.5) results in a problem that is quite easy to solve, and both
relaxations produce the same bound (for reasons discussed below). But relaxing (8.4)
involves relaxing fewer constraints, which is generally preferable (also for reasons that will
be discussed below). Therefore, we will relax constraints (8.4), although in Section 8.2.3.8
we will briefly discuss what happens when constraints (8.5) are relaxed.

8.2.3.2 Relaxation We relax constraints (8.4), removing them from the problem and
adding a penalty term to the objective function:

Z)\i 1—Zyij

iel jeJ

The \; are called Lagrange multipliers. There is one for each relaxed constraint. Their
purpose is to ensure that violations in the constraints are penalized by just the right amount—
more on this later. We’ll use A to represent the vector of \; values.

For now, assume A is fixed. Relaxing constraints (8.4) gives us the following problem,
known as the Lagrangian subproblem:

(UFLP-LR)) minimize > fiz;+ Y Y hicijyij + Y A [ 1= wij

jeJ iel jeJ iel jeJ
=" a3 (hic — M)yi + DA (8.9)
JjeJ el jed iel
subject to Yij < T Viel,VjelJ (8.10)
z;€{0,1}y VjeJ (8.11)
yij >0 Viel,VjeJ (8.12)

(The subscript A on the problem name reminds us that this problem depends on A as a
parameter.) Since the \; are all constants, the last term of (8.9) can be ignored during the
optimization.

How can we solve this problem? It turns out that the problem is quite easy to solve
by inspection—we don’t need to use an IP solver or any sort of complicated algorithm.
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Suppose that we set x; = 1 for a given facility j. By constraints (8.10), setting z; = 1
allows y;; to be set to 1 for any ¢ € I. For which ¢ would y;; be set to 1 in an optimal
solution to the problem? Since this is a minimization problem, y;; would be set to 1 for
all 7 such that h;c;; — A; < 0. So if x; were set to 1, the benefit (or contribution to the
objective function) would be

B =Y min{0, hici; — Ai}. (8.13)
el

Now the question is, which z; should be set to 1? It’s optimal to set z; = 1 if and only
if B; + f; < 0; that is, if the benefit of opening the facility outweighs its fixed cost.
Theorem 8.1 summarizes these conclusions.

Theorem 8.1 Let

1, ifp; i <0

T = IR (8.14)
0, otherwise

B 1, ifz; =1and h;c;; — \; <0

yq;j = f J . J (815)
0, otherwise.

Then (,4) is an optimal solution for (UFLP-LR}), and it has an objective value of

ZLR(A) = Z min{O, 6]' + fj} + Z /\Z

jed i€l

Notice that in optimal solutions to (UFLP-LR} ), customers may be assigned to 0 or
more than 1 facility since the constraints requiring exactly one facility per customer have
been relaxed.

Why is this problem so much easier to solve than the original problem? The answer
is that (UFLP-LR,) decomposes by j, in the sense that we can focus on each j € J
individually since there are no constraints tying them together. In the original problem,
constraints (8.4) tied the js together—we could not make a decision about y;; without also
making a decision about y;;, since ¢ had to be assigned to exactly one facility.

The method for solving (UFLP-LR} ) is summarized in Algorithm 8.1.

8.2.3.3 Lower Bound We’ve now solved (UFLP-LR}) for given \;,. How does this
help us? Well, from Theorem D.1, we know that, for any A, the optimal objective value of
(UFLP-LR}) is a lower bound on the optimal objective value for the original problem:

The point of Lagrangian relaxation is not to generate feasible solutions, since the solutions
to (UFLP-LR)) will generally be infeasible for (UFLP). Instead, the point is to generate
good (i.e., high) lower bounds in order to prove that a feasible solution we’ve found
some other way is good. For example, if we’ve found a feasible solution for the UFLP
(using any method at all) whose objective value is 1005 and we’ve also found a A so that
zLr(A) = 1000, then we know our solution is no more than (1005 — 1000)/1000 = 0.5%
away from optimal. (It may in fact be exactly optimal, but given these two bounds, we can
only say it’s within 0.5%.)
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Algorithm 8.1 Solve (UFLP-LR)
1: input Lagrange multipliers A

2: forall j € J do > Main loop
3: Bj < D iy min{0, hicij — A} > Calculate benefit
4: if 3; + f; < 0 then > Check benefit vs. fixed cost
5: T+ 1 > Open j
6: forall: € I do

7: if hjc;; — A; < 0 then §j;; < 1 else 3j;; < 0 end if

8: end for

9: else

10: Z; <0 > Do not open j
11: forall: € I do

12: gij 0

13: end for

14: end if

15: end for

16: 21R(A) <= Dy min{0, B; + fi} + > icr A > Calculate objective function

17: return Z, , zir ()

Now, if we pick A at random, we’re not likely to get a particularly good bound—that is,
zLr(A) won’t be close to z*. We have to choose A cleverly so that we get the best possible
bound—so that z1g(\) is as large as possible. That is, we want to solve problem (LR)
given in (D.8), which, for the UFLP, can be written as follows:

mingy 35 fiw 4 Dier(hici; = Xi)yij + e A
s.t. Yij Sl‘j VZEI,VJEJ
T; 6{0,1} Vied
y”ZO Viel,VjeJ

(LR) max (8.17)

We’ll talk more later about how to solve this problem. For now, let’s assume we know the
optimal A* and that the optimal objective value is z.gr = zLr(A*). How large can z1 g be?
Theorem D.1 tells us it cannot be larger than z*, but how close can it get? The answer turns
out to be related to the LP relaxation of the problem. From Theorem D.2, we have

z1p < 2R, (8.18)

where zpp is the optimal objective value of the LP relaxation of (UFLP) and 2y is the
optimal objective value of (LR).
Combining (8.16) and (8.18), we now know that

zip < 2R < 25 (8.19)

For most problems, zip S z*, so where in the gap does z1g fall? An IP is said to have the
integrality property if its LP relaxation naturally has an all-integer optimal solution. You
should be able to convince yourself that (UFLP-LR ) has the integrality property for all
A since it is never better to set « and y to fractional values. Therefore, the following is a
corollary to Lemma D.3:
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Corollary 8.2 For the UFLP, z1p = 2R-

Combining (8.19) and Corollary 8.2, we have
2R = 2p < 27

This means that if the LP relaxation bound from the UFLP is not very tight, the Lagrangian
relaxation bound won’t be very tight either. Fortunately, as noted in Section 8.2.2, the
UFLP tends to have very tight LP relaxation bounds. This raises the question of why we’d
want to use Lagrangian relaxation at all since the LP bound is just as tight.

There are several possible answers to this question. The first is that when Lagrangian
relaxation was first applied to the UFLP, computer implementations of the simplex method
were quite inefficient, and even the LP relaxation of the UFLP could take along time to solve,
whereas the Lagrangian subproblem could be solved quite quickly. Recent implementations
of the simplex method, however (for example, recent versions of CPLEX), are much more
efficient and are able to solve reasonably large instances of the UFLP—LP or IP—pretty
quickly. Nevertheless, Lagrangian relaxation is still an important tool for solving the UFLP.
One advantage of this method is that it can often be modified to solve extensions of the
UFLP that IP solvers can’t solve—for example, nonlinear, nonconvex problems like the
location model with risk pooling (LMRP), which we discuss in Section 12.2.

It is important to distinguish between z; r (the best possible lower bound achievable by
Lagrangian relaxation) and z g () (the lower bound achieved at a given iteration of the
procedure). At any given iteration, we have

2R(A) < zir = 21p < 2* < 2(z,y), (8.20)

where z1g(\) is the objective value of the Lagrangian subproblem for the particular \ at
the current iteration, and z(x,y) is the objective value of the particular feasible solution
(z,y) found at the current iteration.

8.2.3.4 Upper Bound Now that we’ve obtained a lower bound on the optimal objec-
tive of (UFLP) using (UFLP-LR) ), we need to find an upper bound. Upper bounds come
from feasible solutions to (UFLP). How can we build good feasible solutions? One way
would be using construction and/or improvement heuristics like those described in Section
8.2.5. But we’d like to take advantage of the information contained in the solutions to
(UFLP-LR); that is, we’d like to convert a solution to (UFLP-LR} ) into one for (UFLP).
Remember that solutions to (UFLP-LR ) consist of a set of facility locations (identified by
the x variables) and a set of assignments (identified by the y variables). It is the y variables
that make the solution infeasible for (UFLP), since customers might be assigned to 0 or
more than 1 facility. (If every customer happens to be assigned to exactly 1 facility, the
solution is also feasible for (UFLP). In fact, it is optimal for (UFLP) since it has the same
objective value for both (UFLP-LR} ), which provides a lower bound, and (UFLP), which
provides an upper bound. But we can’t expect this to happen in general.)

Generating a feasible solution for (UFLP) is easy: We just open the facilities that are
open in the solution to (UFLP-LR}) and then assign each customer to its nearest open
facility. (See Algorithm 8.2.) The resulting solution is feasible and provides an upper
bound on the optimal objective value of (UFLP). Sometimes an improvement heuristic
(like the swap or neighborhood search heuristics discussed in Section 8.3.2.3) is applied to
each feasible solution found, but this is optional.
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Algorithm 8.2 Get feasible solution for UFLP from solution to (UFLP-LR )
1: input location vector = for (UFLP-LR})

2 x4 > Open facilities in lower bound solution
3: forall: € I do > Main loop
4 J* < argming _, {cij} > Find nearest open facility to 4
5: Yij= 1 > Assign ¢ to j*
6: forallje J,j# j*do

7 Yij < 0

8 end for

9: end for

10: 2(2,y) < D iey [iTj + Dier 2 jeg hiCijYij > Calculate obj. function

11: return z, y, z(z,y)

8.2.3.5 Updating the Multipliers Each )\ gives a single lower bound and (using
the method in Section 8.2.3.4) a single upper bound. The Lagrangian relaxation process
involves many iterations, each using a different value of ), in the hopes of tightening the
bounds. It would be impractical to try every possible value of \; we want to choose A
cleverly.

Using the logic of Section D.1.3, if )\; is too small, there’s no real incentive to set the
¥i; variables to 1 since the penalty will be small. On the other hand, if A; is too large, there
will be an incentive to set lots of y;; variables to 1, making the term inside the parentheses
negative and the overall penalty large and negative. (Remember that (UFLP-LR}) is a
minimization problem.) By changing );, we’ll encourage fewer or more y;; variables to
be 1.

So:

o If ) jesYij = 0, then ); is too small; it should be increased.
o If Zj <y Yij > 1, then \; is too large; it should be decreased.
o If Zjej ¥i; = 1, then \; is just right; it should not be changed.

Here’s another way to see the effect of changing );. Remember that if z; = 1 in the
solution to (UFLP-LR ), y;; will be set to 1 if

hicij — X <0.

Increasing A; makes this hold for more facilities j, while decreasing it makes it hold for
fewer.

There are several ways to make these adjustments to A. Perhaps the most common
is subgradient optimization, discussed in Section D.1.3. For the UFLP, the step size at
iteration ¢ (denoted A?) is given by

at(UB — zir(AY)) N
dicr (1 - ZjGJ yij)

where zLR()\t) is the lower bound found at iteration ¢, UB is the best upper bound found
(i.e., the objective value of the best feasible solution found so far), and ! is a constant

Al =

8.21)
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that is generally set to 2 at iteration 1 and divided by 2 after a given number (say 20)
of consecutive iterations have passed during which the best known lower bound has not
improved. The step direction for iteration ¢ is simply given by

1= vy
jeJ
(the violation in the constraint).
To obtain the new multipliers (call them A**1) from the old ones (\*), we set

AFL =P AY 1 - Zy] . (8.22)
jeJ

Note that since A* > 0, this follows the rules given above: If > jes¥iz = 0, then A;
increases; if > jes¥ij > L, then \; decreases; and if 3 jes¥ij = L, then ); stays the
same.

The process of solving (UFLP-LR}), finding a feasible solution, and updating \ is
continued until some of criteria are met. (See Section D.1.4.)

At the first iteration, A can be initialized using a variety of ways: For example, set
A; = 0 for all 4, set it to some random number, or set it according to some other ad-hoc
rule.

If the Lagrangian procedure stops before the upper and lower bounds are sufficiently
close to each other, we can use branch-and-bound to close the optimality gap; see Sec-
tion D.1.6. The Lagrangian procedure is summarized in Section D.1.7.

8.2.3.6 Summary The Lagrangian relaxation method for the UFLP is summarized in
the pseudocode in Algorithm 8.3. In the pseudocode, (Z, 3) represents an optimal solution
to (UFLP-LRy), (z,y) represents a feasible solution to (UFLP), and (xVB, yyYB) represents
the current best solution for (UFLP). Note that in step 29, other termination criteria can be
used, instead or in addition.

] EXAMPLE 8.1

The instance pictured in Figure 8.1 is the 88-node instance from Daskin (1995). It
consists of the capitals of the 48 continental United States, plus Washington, DC,
plus the 50 largest cities in the 1990 US census, minus duplicates. In this instance,
I = J: Every node is both a customer and a potential facility site. Demands h; are
set equal to the city populations divided by 1000; fixed costs f; are set equal to the
median home value; and transportation costs c;; are set equal to 0.5 times the great
circle distance between ¢ and j. (The full data set, along with other related data sets,
are available on the book’s companion web site.)

The optimal solution locates five facilities, in Houston, TX; Philadelphia, PA;
Detroit, MI; Fresno, CA; and Topeka, KS. The total cost of this solution is $783,813,
with fixed and transportation costs of $521,713 and $262,100, respectively. We
obtained this solution using the Lagrangian relaxation algorithm discussed in this
section, implemented in MATLAB, with a total CPU time of less than 2 seconds on
a laptop computer.

In case you’re curious: The 9-facility solution shown in Figure 8.1(a) has a total
cost of $1,480,059 ($954,600 fixed cost plus $525,459 transportation cost), while the
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Algorithm 8.3 Lagrangian relaxation algorithm for UFLP

1: input initial multipliers \', initial constant a°, a-halving constant -y, optimality toler-

ance k, iteration limit ¢

2: t <+ 1,LB < —o0, UB < o0, NonImprCtr < 0 > Initialization
3: repeat > Main loop
4; solve (UFLP-LR)) using Algorithm 8.1 with input A\ > Lower bound
5: (Z,7), 2Lr(A\?) < output of Algorithm 8.1

6: if z1r(\') > LB then > Compare to best-known lower bound
7 LB ZLR()\t)
8: NonImprCtr < 0 > Reset non-improvement counter
9: else

10: NonImprCtr <— NonImprCtr + 1 > Increment non-impr. counter
11: if NonImprCtr = +y then > Check whether to halve o
12: al «— at71/2

13: NonImprCtr < 0

14: else

15: al + af~t

16: end if

17: end if

18: get feasible solution from Algorithm 8.2 with input = > Upper bound
19: x, Yy, z(x,y) < output of Algorithm 8.2

20: if z(z,y) < UB then > Compare to best-known upper bound

21: UB « z(z,y)

22: (xUBv yUB) « (z,9)

23: end if )

24: Al o' (UB — zir(N))/ > er (1 —Yjes gij) > Update multipliers

25: forall: € I do

26: XL e X+ A (1= 5 e, 5

27: end for

28: t+—t+1 > Increment ¢

29: until UB — z1gr(\!) < kort > ¢ > Check for termination

30: return 2VB, VB UB
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./i\ ¢ 7S

Figure 8.2 Optimal solution to 88-node UFLP instance. Total cost = $783,813.

3-facility solution in Figure 8.1(b) has a total cost of $1,238,911 ($512,800 fixed cost
plus $726,111 transportation cost).

O

8.2.3.7 Variable Fixing Sometimes the Lagrangian relaxation procedure terminates
with the lower and upper bounds farther apart than we’d like. Before executing branch-
and-bound to close the gap, we may be able to fix some of the x; variables to 0 or 1 based
on the facility benefits and the current bounds. The variables can be fixed permanently,
throughout the entire branch-and-bound tree. The more variables we can fix, the faster the
branch-and-bound procedure is likely to run. Essentially, the method works by “peeking”
down a branch of the tree and running a quick check to determine whether the next node
down the branch would be fathomed.

Theorem 8.3 Let UB be the best upper bound found during the Lagrangian procedure, let
A be a given set of Lagrange multipliers that were used during the procedure, let 3; be the
facility benefits (8.13) under X\, and let z1r(\) be the lower bound (the optimal objective
value of (UFLP-LRy)) under . If x; = 0 in the solution to (UFLP-LR}) and

z2r(A) + B + f; > UB, (8.23)

then x; = 0 in every optimal solution to (UFLP). If z; = 1 in the solution to (UFLP-LR},)
and

2ir(A) — (B + f;) > UB, (8.24)
then x; = 1 in every optimal solution to (UFLP).
Proof. Suppose we were to branch on z;, setting x; = 0 for one child node and z; = 1

for the other, and suppose we use \ as the initial multipliers for the Lagrangian procedure
at each child node.
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At the “z; = 1” node, the same facilities would be open as in the root-node solution,
except that now facility j is also open. The cost of this solution for (UFLP-LR ) is the cost
of the original solution, z g (), plus 5, + f;. Therefore, we would obtain zi g (A) + 3; + f;
as a lower bound at this node. Since this lower bound is greater than the best-known upper
bound, we would fathom the tree at this node, and the optimal solution would be contained
in the other half of the tree—the “z; = 0” half.

A similar argument applies to the second case. At the “z; = 0” node, we obtain a lower
bound of zir(A) — (8; + f;), and if this is greater than UB, we fathom the tree at this
node. |

Note that, in the second part of the theorem, if z; = 1 then, by (8.14), 5; + f; < 0,
which is why the left-hand side of (8.24) might be greater than UB.

This trick has been applied successfully to a variety of facility location problems; see,
e.g., Daskin et al. (2002) and Snyder and Daskin (2005). Typically, the conditions in
Theorem 8.3 are checked twice after processing has terminated at the root node, once using
the most recent multipliers A and once using the multipliers that produced the best-known
lower bound. The time required to check these conditions for every j is negligible.

8.2.3.8 Alternate Relaxation As stated above, we could have chosen instead to relax
constraints (8.5). In this case, the Lagrangian subproblem becomes

(UFLP-LR)) minimize »  fiw;+ > > hicijui; + > > Xij (2 — i)

jeJ i€l jeJ iel jeJ
= Z <Z ij + fj) zj + Z Z(hicij — Xij)yij  (8.25)
j€J \iel i€l jeJ
subjectto Y y;; =1 Viel (8.26)
jeJ
z; €{0,1} VjelJ (8.27)
yi; >0 VieLVjelJ (8.28)

Now every customer must be assigned to a single facility, but that facility need not be open.
There are no constraints linking the « and y variables, so the problem can be written as two
separate problems:

(2-problem) minimize Z (Z Aij + fj) zj (8.29)
jeJ \iel
subject to zj €{0,1} VjelJ (8.30)
(y-problem) minimize Z Z(hicij — Xij )i (8.31)
i€l jeJ
subject to Zy] =1 Viel (8.32)
jeJ

yi; >0  YieINjelJ (8.33)
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To solve the 2-problem, we simply set z; = 1 for all j such that ) 3, _; A;; + f; < 0. (Note
that since the constraints relaxed are < constraints, A < 0; see Section D.1.5.1.) To solve
the y-problem, for each 7, we set y;; = 1 for the j that minimizes h;c;; — A;;. The rest of
the procedure is similar, except that the step-size calculation becomes

Oét (UB — ZLR ()\t))

Al = (8.34)
Zie] Zje](xj — Yij)?
and the multiplier-updating formula becomes
A= X+ A — vij)- (8.35)

In practice, relaxing the assignment constraints (8.4) tends to work better than relaxing
the linking constraints (8.5). One reason for this is that the former relaxation involves
relaxing fewer constraints, which generally makes it easier to find good multipliers using
subgradient optimization. Another reason is that since y;; will be 0 for many j that are
open, there will be many constraints such that y;; < x;. It is often difficult to get good
results when relaxing inequality constraints if many of them have slack.

8.2.4 The DUALOC Algorithm

The DUALOC algorithm was proposed by Erlenkotter (1978). Itis a dual-ascent or primal—
dual algorithm that constructs good feasible solutions for the dual of the LP relaxation of
(UFLP) and then uses these to develop good (often optimal) integer solutions for the primal,
i.e., for (UFLP) itself.
We form the LP relaxation of (UFLP), denoted (UFLP-P), by replacing constraints (8.6)
with
z; >0 Vi e J. (8.36)

Let v; and w;; be the dual variables for constraints (8.4) and (8.5), respectively. In addition,
for notational convenience, let ¢;; = h;c;;. Then the LP dual is given by

(UFLP-D) maximize Z v (8.37)
el

subjectto Y wi; < f VjeJ (8.38)
el

Vi — Wiy < éij Viel,VjelJ (8.39)

The complementary slackness conditions for (UFLP-P) and (UFLP-D) are given by

x; (f]- - Zwi}) =0 (8.41)

el
Y [éij — (vf = w;kj)} =0 (8.42)
vi 1=y =0 (8.43)

JjeJ
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w; (y;kj — x]*) =0 (8.44)
Suppose we are given arbitrary values of the variables v;. Then either it is feasible to
set w;; as small as possible, i.e.,

Wi = maX{O, V; — éij} (845)

for all 7 and j, or there are no feasible w;; values (for the given v; values). Moreover,
since w;; does not appear in the objective function, any feasible w;; (for fixed v;) is
acceptable. Thus, we assume that (8.45) holds and substitute this relationship into (UFLP-
D). Constraints (8.39) and (8.40) are automatically satisfied when (8.45) holds; therefore,
we obtain the following condensed dual, which uses only v; and not w;;:

(UFLP-CD) maximize ) v; (8.46)
i€l

subject to Zmax{O,vi — i} < f; VjedJ (8.47)
iel

Substituting (8.45) into the complementary slackness conditions (8.41)—(8.44), we obtain

oy (fj — > max{0,v] — éij}> =0 (8.48)

el
yfj [¢ij — (v —max{0,v] —é&;})] =0 (8.49)
vi 1= 5| =0 (8.50)
jeJ
max{0,v; — é;} (yi; —25) =0 (8.51)

Note that (UFLP-CD) is not an LP, since the max{-} function is nonlinear. One could
develop a customized simplex-type algorithm to solve it—an approach like this is proposed
by Schrage (1978) for the p-median problem, among others—but instead, the DUALOC
approach exploits the structure of (UFLP-CD) to find near-optimal solutions directly.

The DUALOC algorithm consists of two main procedures. The first is a dual-ascent
procedure that generates feasible dual solutions for (UFLP-CD) and corresponding primal
integer solutions for (UFLP). The second is a dual-adjustment procedure that attempts to
reduce complementary slackness violations (thereby improving the primal or dual solutions,
or both) by adjusting the dual solution iteratively and calling the dual-ascent procedure as
a subroutine. If these procedures terminate without an optimal integer solution to (UFLP),
branch-and-bound is used to close the optimality gap.

8.2.4.1 Primal-Dual Relationships The dual-ascent procedure generates both a
dual solution v for (UFLP-CD) and a set J© C J of facility locations such that the
following properties hold:

e Primal-Dual Property 1 (PDP1): Y. _; max{0,v;" — é&;} = f; forall j € J*

e Primal-Dual Property 2 (PDP2): For each i € I, there exists at least one j € J©
such that ¢;; < v;r
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Such a solution can easily be converted to an integer primal solution: The set J* provides
the x variables for (UFLP), and, as in the Lagrangian relaxation procedure (Section 8.2.3.4),
the y variables can be set by assigning each customer to its nearest open facility. That is,
an integer primal solution for (UFLP) can be obtained from J* as follows:

1, ifjeJt
ot = Hred (8.52)
J 0, otherwise
1, ifj=4%(©)
+ ’ 8.53
Yij { 0, otherwise, (8:53)

where j1 (i) = argming ¢ ;+ {¢ix }-

The primal—-dual solution (x*, y™, v™) satisfies three of the four complementary slack-
ness conditions: (8.48) is satisfied because of PDP1, and (8.50) is satisfied because each ¢
is assigned to exactly one j in (8.53). To see why (8.49) is satisfied, suppose y:; =1,ie,
j = j*(i). By PDP2, ¢; < v for some j € J* and é; j+(;) < ¢; by the definition of
J* (i), so

Yy [Gigry — (0 —max{0,0f = & j+)})]
=Ci g+ — (v — (0 =& @)

=0.

Thus, (z T, y™") and v are optimal for (UFLP-P) and (UFLP-CD), respectively, if and only
if (8.51) holds. Moreover, since (z 1, y™") is integer, if it is optimal for (UFLP-P), then it is
also optimal for (UFLP). (It may seem strange to hope that the integer solution (z*,y™) is
optimal for the LP relaxation (UFLP-P). But remember that (UFLP-P) often has all-integer
solutions “for free” (see page 272), and is usually very tight when it is not all-integer so
that good integer solutions to (UFLP-P) are likely to be good also for (UFLP).)

Condition (8.51) may be violated when ¢;; < v for some j # j* (i), since in that
case y;; = 0 but :c;r = 1. This suggests that complementary slackness violations can be
reduced by focusing on the vi+ — ¢;; terms for j # j7 (i), and indeed those terms directly
affect the duality gap, as the next lemma attests.

Lemma 8.4 Let z}’; be the objective function value of (UFLP-P) under the solution
(xF,y™"), and let zE be the objective function value of (UFLP-CD) under the solution

vT. Then
zh— 25 = Z Z max{0, v;" — ¢&;}.
i€l jest
J#iT ()
Proof. Omitted; see Problem 8.40. [

The dual-ascent procedure (Section 8.2.4.2) generates v+ and J . The dual-adjustment
procedure (Section 8.2.4.3) then attempts to improve the solutions by reducing v;” — Cij
terms for j # 5T (4).

8.2.4.2 The Dual-Ascent Procedure The dual-ascent procedure constructs a dual
solution v and a facility set J such that properties PDP1 and PDP2 hold for v and J .
The procedure begins by constructing an easy feasible solution in which the v; variables
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are small (in order to ensure feasibility with respect to (8.47)) and then increasing the v;
one by one (in order to improve the objective (8.46)).

For each ¢ € I, sort the costs ¢;; in nondecreasing order and let éf be the kth of these
costs, for k = 1,...,|J|. Define éLJlH = oo. Then an initial solution can be generated
by setting v; = ¢} for all i € I; this solution is feasible for (UFLP-CD). (Why?) Actually,
any initial feasible solution will work, but this one is easy to obtain.

The dual-ascent procedure is given in Algorithm 8.4. In line 1, we initialize v; to
¢} and initialize the index k; to 2. Throughout the algorithm, k; equals the smallest
k such that v; S éf; as the v; increase in the algorithm, so do the k;. In line 2, s;
represents the slack in constraint (8.47) for facility j; since v; equals the smallest ¢;;,
sj = fj — 2 ieymax{0,v; — ¢;;} = f;. The algorithm loops through the customers; for
each customer %, we would like to set v; to the next larger value of ¢;;, i.e., to éf However,
increasing v; increases the left-hand side of (8.47) for all j such that v; — ¢;; > 0. (These
j are the facilities whose costs are ¢}, . . . ,éf’ﬁl.) Therefore, line 6 calculates the largest
allowable increase in v; without violating (8.47) for any j. Note that we only consider
J such that v; — &;; > 0; for the other j, the left-hand sides of (8.47) will not increase
because we will not increase v; past 657, as enforced by lines 7-8. Lines (9)—(10) update
the IMPROVED flag and the index k;. (The IMPROVED flag is only set to TRUE if we were
able to increase v; all the way to éf for some 7, not for smaller increases.) Lines 12-14
adjust the slack for all facilities whose left-hand sides of (8.47) will change, and line 15
performs the update to v;. The process repeats until v; cannot be increased to éf for any
customer. Line 18 sets v+ equal to the final value of v and builds the set JT, and the
algorithm returns both these values.

Algorithm 8.4 Dual-ascent procedure for DUALOC algorithm

v« Chk; < 2Viel > Initialization
2: 85 4 fj Vjed

3: repeat > Improvement
4: IMPROVED < FALSE

5 forall: € I do

6 Aj 4 minje jip, ¢, >015;5 > Calculate allowable increase in v;
7: if A; > éfl — v; then > Did we get all the way to éf’ ?
8 A; +— 651 — U,

9: IMPROVED < TRUE
10: ki +— ki +1
11: end if
12: forall j € Js.t.v; —¢; > 0do
13: 55455 — A > Adjust slack
14: end for
15: v; v+ A > Adjust v;
16: end for
17: until not IMPROVED > Stop when no improvement
18: v v, JT « {j € J|s; =0} > Build solutions to return

19: return vt, J*t

Proposition 8.5 The v and J ™ returned by Algorithm 8.4 satisfy PDPI and PDP2.
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Proof. PDPI1: It suffices to show that, throughout the progression of the algorithm,
55 = fj — > ey max{0,v; — &;;}. (We use v to refer to the values set during the course
of the algorithm, and v to refer to the final values returned by the algorithm.) Clearly,
this holds after line 2. In the main loop, each time v; increases by A; for any i, then
either v; — ¢;; > 0, in which case we reduce s; by A;; or v; — ¢;; < 0, in which case
we increase v; to at most &; (in line 8), so f; — max{0,v; — é&;;} does not change,
and neither does s;. In other words, at the end of each iteration through the main loop,
sj = [ = 2icr max{0,v; — &;}.

PDP2: Suppose, for a contradiction, that there exists an 4 € I such that ¢;; > Uf for
all j € J*. This means that s; > 0 for all j such that v;r — ¢;5 > 0. Then at line 6, A;
would have been set to a positive number, and at line 15, v; would have been increased by
A,;. This contradicts our assumption that v is the solution returned by the algorithm. m

If there is a strict subset of J+ that still satisfies PDP1 and PDP2, it is better to use that
subset. To see why, suppose there is a facility j” with s;; = 0 that is not included in J+.
PDP1 does not prohibit this situation; it prohibits the converse. Would it be better to add ;'
to J*? Lemma 8.4 suggests the answer is no: For each i € I, either ¢;;» < Cij+ (i) (04

becomes the new closest facility to ¢), in which case zjg increases by v;r - ¢, j+@) > 0;or

Cijr > C; j+(i)» in which case z; increases by max{0, v; — ¢é;;7} > 0. Therefore, we want
J7T to be minimal in the sense that no facility can be removed from it without violating
PDP2. Of course, finding a minimal J* is itself a combinatorial problem. Erlenkotter
(1978) suggests a simple heuristic for finding such a set, but to keep things simple, we’ll
just assume that J* contains all j for which s; = 0.

You might be wondering why we limit A; to éf — v, in line 8, since we want v; to be as
large as possible, and we can leave A; at the value set in line 6 while maintaining feasibility.
Recall that the complementary slackness condition (8.51) is violated when ¢;; < v; and j
is open but ¢ is not assigned to j. There tend to be fewer of these violations when we spread
the ¢;; < v; among the customers ¢ rather than having a few customers with very large v;
values.

Once we have J T, we can generate an integer primal solution (z ™, y™") using (8.52) and
(8.53). If (zT,y™,v™) satisfies (8.51) for all ¢ and 4, then the complementary slackness
conditions are all satisfied and (z+, y™) is optimal. If, instead, (8.51) is violated for some
1 and j, then we attempt to reduce these violations using the dual-adjustment procedure,
described in the next section.

[l EXAMPLE 8.2

Figure 8.3 depicts an instance of the UFLP with four customers (marked as circles)
and three potential facility sites (marked as squares). Fixed costs f; are marked next
to each facility. Each customer has a demand of h; = 1, and transportation costs are
equal to the Manhattan-metric distance between the facility and customer. We will
use DUALOC’s dual-ascent procedure (Algorithm 8.4) to find a feasible solution for
this instance.

First, we sort the transportation costs for each customer. In Figure 8.4, for each
customer, each facility is positioned based on its distance from the customer. The
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Figure 8.3 Customer and facility layout for Example 8.2.
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Figure 8.4 Sorted facility positions for Example 8.2.
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algorithm begins by setting v; +— ¢} and k; = 2 for all 4, and s; + f; for all j:

UlzélAZQ k1:2 SA:5
’ngégczl k2:2 SB:4
1)3:&3]3:4 k3:2 SC:7
’U4=é4B:3 k4:2

(You can imagine v; as being positioned at the relevant spot in Figure 8.4.) Next the
algorithm searches for v; values to increase. One could choose to loop through the
customers in any order; we’ll go in increasing order to keep things simple. For¢ = 1,
facility A is the only j for which v; — ¢;; > 0, so we have A; < s, = 5. Since
A1 > ¢ — v = 3, weset Ay < 3, k1 < 3, sp < 2, and v; < 5. Similarly, for
1 =2, Ag < Sc = T;since Ay > éoc — 9 = 5, we set Ay < 5, ko < 3, sc + 2,
and vy < 6. Fori = 3: Az + 2, k3 < 3, sg < 2, and v3 < 6. Finally, for ¢ = 4:
Ay 1,k4 <+ 3, s + 1, and vy < 4. At the end of this iteration, we have:

1)1:5 k1:3 SA:2
1}2:6 k‘2:3 SB:].
’03:6 k3:3 SC:2
1)4:4 k4:3

Since A; reached éf’ — v, for at least one ¢ (actually, for all of them), we repeat for
another iteration. For ¢ = 1: Ay < min{sa, sg} = 1 since v; — é;; > 0 for both
j = Aand B. Since A; < é]fl —v1, we leave A; and k7 where they are, and then set
spa < 1,5 <+ 0,and v; < 6. For¢ = 2: AQ — min{sA7sC} = 1 since vy — égj
for both j = A and C. Since Ay = 6152 — Vg, We set kg < 4, sp < 0, sc < 1, and
vg <— 7. For ¢ = 3 and 4, we have A3, A4 < 0 (since sg = 0), so there is nothing
to do. At the end of this iteration, we have:

U1:6 1{31:3 SAZO
02:7 k2:4 SBZO
U3:6 k‘3=3 Sczl
U4:4 k‘4=3

Since A, reached 612“2 — v, we repeat for another iteration. However, at this iteration,
we cannot increase v; for any ¢ since s, = sg = 0, so the repeat - - - until loop
terminates.

The algorithm returns v* = (6,7,6,4) and J© = {A,B}. The feasible primal
solution obtained from (8.52)~(8.53) is z* = (1,1,0) and y, = yon = yis =
yii; = 1. The dual solution v™ has objective value z;; = 23 and the primal solution
has objective value z;g = 24. The fact that there is a duality gap indicates that either
we have not found an optimal solution to the dual LP, or we have not found an optimal
solution to the primal IP, or there is an integrality gap, i.e., the LP relaxation has a
fractional optimum.

We can’t tell which—yet. To resolve this question, we would run the dual-
adjustment procedure. For this instance, the dual-adjustment procedure would yield
no improvement to the solution above. We would then use branch-and-bound to close
the duality gap, and we would find that there is an optimal integer solution in which
we locate only at facility B and to assign all customers to it, for a total cost of 23.
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Therefore, the dual solution found by the dual-ascent procedure was optimal, but the
corresponding primal solution was not. O

8.2.4.3 The Dual-Adjustment Procedure The dual-adjustment procedure identi-
fies customers and facilities that violate the complementary slackness condition (8.51) and
reduces these violations by decreasing the dual variable v; for some ¢ € I. Doing so frees
up slack on some of the binding constraints (8.47), which allows us to increase v,/ for other
1’ € I. Each unit of decrease in v; allows one unit of increase in v/ (since the coefficients in
(8.51) equal 1). The dual objective value will increase if more than one v;» can be increased
in this way and will stay the same if only one can be increased. In either case, we may
obtain a new (potentially better) primal solution since the set J T might change.

We face three questions: (1) Which dual variables v; are candidates for reduction? (2)
Once we reduce v;, adding slack to some of the constraints, which v;; are candidates for
increase? (3) How much should we increase each of the candidate v;,? We’ll answer each
of these questions in turn.

Which v; to decrease? A customer 1 is a candidate for reduction in v; if it violates the
complementary slackness condition (8.51). The next lemma characterizes those customers
in terms of v and ¢.

Lemma 8.6 Let v be a dual solution and J+ be a facility set that satisfy PDPI and PDP2,
and let (x%,y") be the corresponding feasible solution calculated from (8.52)—(8.53).
Then i € I violates (8.51) if and only if v; > ¢;; for at least two j € J+.

Proof. i € I violates (8.51) if and only if there is some j' € J¥ such that v; > C;;+ but
yjj, = 0. This happens if and only if 7 is assigned to a different j € J7, i.e., if and only
if there is a j”/ € J such that &;;» < ¢;;-. This happens if and only if v; > ¢é;; for at least
twoj e JT. n

Therefore, a customer 4 is a candidate for reduction in v; if v; > ¢é;; for at least two
Jj € J*. The algorithm reduces it only as far as the next-smaller ¢;;; that is, it reduces it to
¢; , where ¢; is the largest ¢;; (among all j € J) that is strictly less than v;:

éz_ = I}léi}({éiﬂvi > Cij}.

Which v;: to increase? Suppose v; > ¢;; for at least two j € J * and so we reduce v;.
This adds slack to (8.47) for all j € J such that v; > ¢;;. Lemma 8.6 implies that two
of these constraints correspond to 57 () and 5V (4), where j 77 (i) is the second-closest
facility in JT to 4. (Recall that 57 (i) is the closest.) Suppose there is some i’ € [ for
which there is only one j € JT such that v;; > é;;. We'll say that i’ is solely constrained
by j in this case, because j is the only facility preventing an increase in vy If 4’ is solely
constrained by jT (i) or 57T (i), then a decrease in v; can be matched by an increase v;.
The algorithm therefore focuses on such ', attempting to increase their v, values first. It
also uses the “solely constrained” test to identify candidates for reduction in v;: If there
are no 4’ that are solely constrained by jT (i) or 577 (i), the algorithm does not consider
reducing v;, even if ¢ is a candidate for a decrease in v; as described above.

How much to increase vy ? Deciding which v,/ to increase, and by how much, is precisely
the intent of the dual-ascent procedure! Therefore, the dual-adjustment procedure uses the
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dual-ascent procedure as a subroutine—first with the set of customers restricted to the
candidates for increases in v;., then with ¢ added, and then with the full customer set 1.

The dual-adjustment procedure is described in pseudocode in Algorithm 8.5. The
algorithm loops through the customers to identify candidates for reducing v;. A customer
is a candidate if (1) it violates the complementary slackness condition (8.51) (this check
occurs in line 3, making use of Lemma 8.6), and (2) there are at least two customers that
are solely constrained by either j7 (i) or 77 (i) (this check occurs in lines 4-5). Assuming
customer % passes both checks, lines 68 increase the slack for all j for which v; > ¢;;, and
line 9 reduces v; to the next smallest ¢;; value.

Next, the algorithm calls the dual-ascent procedure to decide how to use up the newly
created slack. Line 10 restricts I to the customers that are solely constrained by j7(4)
or j77(i); line 11 adds 1 itself to this set; and line 12 runs the dual-ascent algorithm on
the entire set I in order to ensure a valid solution v*. If v; has increased, the adjustment
procedure repeats (for the same 7), and this continues until there is no improvement or v;
reaches its original value. At that point, we move on to the next customer. The algorithm
terminates when all customers have been considered.

Algorithm 8.5 Dual-adjustment procedure for DUALOC algorithm

1: forall: € I do > Loop through customers
2: repeat

3 if v; > ¢;; for at least two j € J * then > Check for CSC violation
4 It + {i’ € I]¢’ is solely constrained by j* (i) or ;77 (i)}

5 if I # () then > Are there other v, we can increase?
6: forall j € Js.t.v; > ¢;j do

7 Sj 855 +v; — ¢ > Increase slack
8 end for

9: v < C; > Reduce v;
10: Run Alg. 8.4 with [ restricted to I™ > Increase other v;
11: Run Alg. 8.4 with I restricted to I U {7}
12: Run Alg. 8.4 for full I
13: end if
14: end if
15: until no improvement in dual objective or v; has resumed its original value

16: end for

If the dual-ascent and dual-adjustment procedures result in primal and dual solutions
(vT, 2T, yT) whose objective values are equal, then v™ is optimal for the dual LP and
(zT,y™) is optimal for the primal LP and IP. If the objectives are unequal, then a straight-
forward implementation of branch-and-bound can be used to close the optimality gap.
Erlenkotter (1978) reports excellent computational results for this method on several test
problems, typically with little or no branching required.

Korkel (1989) proposes computational improvements that speed the DUALOC algorithm
up considerably. DUALOC has been adapted to solve many other problems, such as the
p-median problem discussed in Section 8.3.2 (Galvao 1980, Nauss and Markland 1981),
the stochastic UFLP discussed in Section 8.6.2 (Mirchandani et al. 1985), the Steiner tree
problem (Wong 1984), and general supply chain network design problems (Balakrishnan
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et al. 1989). Goemans and Williamson (1997) discuss DUALOC and other primal-dual
algorithms.

8.2.5 Heuristics for the UFLP

Heuristics for combinatorial problems such as the UFLP fall into two categories: con-
struction heuristics and improvement heuristics. Construction heuristics build a feasible
solution from scratch, whereas improvement heuristics start with a feasible solution and
attempt to improve it.

The most basic construction heuristics for the UFLP are greedy heuristics such as the
“greedy-add” procedure (Kuehn and Hamburger 1963): Start with all facilities closed and
open the single facility that can serve all customers with the smallest objective function
value; then at each iteration open the facility that gives the largest decrease in the objective,
stopping when no facility can be opened that will decrease the objective. (See Algorithm 8.6.
In the algorithm, 2%, 3/*, and 2" refer to the solution when facility k is (temporarily) opened.)

Algorithm 8.6 Greedy-add heuristic for UFLP

Iz« 0VjeJ;z+ o0 > Initialization
2: repeat

3: IMPROVED < FALSE

4 forall k € Js.t.z, =0do > Main loop
5: Pz yf —y > Make copy of current solution
6: ok 1 > Open facility k
7 forall: € I do

8 Jli) « argminje‘,:xyzl{cij} > Assign 4 to nearest open j
o Vi ¢ 1
10: end for
1 2= Y [ e Yjes hiciiyl > Calculate cost if open j
12: end for
13: if mingec ;{z*} < 2 then > Compare to current cost
14: k* « argmin, ;{z"} > Open best facility
15: T L1y ¥ 5 2 < minge s {2F} > Update current solution
16: IMPROVED < TRUE
17: end if

18: until not IMPROVED
19: return z, y, 2

[l EXAMPLE 8.3

Let us apply the greedy-add heuristic to the UFLP instance in Example 8.1. We
begin with all facilities closed and, one by one, calculate the cost of opening each
facility and assigning all customers to it. For example, if we open facility 1 (New
York, NY), the single-facility solution costs $2,591,762 ($189,600 in fixed cost and
$2,402,162 in transportation cost). If we open facility 2 (Los Angeles, CA), the cost
is $3,638,252, and so on. The best and worst facilities to open, given that we only
open one facility, sorted by cost, are listed in Table 8.1, and a few of the corresponding
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Table 8.1 Greedy algorithm costs: Iteration 1.

Rank Facility # City, State Cost
1 34 St. Louis, MO 1,935,714
2 69 Springfield, IL 1,941,395
3 13 Indianapolis, IN 1,950,055
4 80 Jefferson City, MO 1,970,644
5 44 Cincinnati, OH 1,983,877
84 68 Salem, OR 3,911,294
85 11 San Jose, CA 3,913,554
86 81 Olympia, WA 3,991,424
87 14 San Francisco, CA 4,019,984
88 21 Seattle, WA 4,030,326

Table 8.2 Greedy algorithm costs: Iteration 2.

Rank Facility # City, State Cost
1 46 Fresno, CA 1,338,962
2 9 Phoenix, AZ 1,391,766
3 78 Carson City, NV 1,398,997
4 41 Sacramento, CA 1,414,305
5 33 Tucson, AZ 1,424,947
83 42 Minneapolis, MN 1,930,728
84 51 St. Paul, MN 1,933,291
85 69 Springfield, IL 1,936,401
86 66 Tallahassee, FL. 1,945,300
87 45 Miami, FL 1,980,578

solutions are depicted in Figure 8.5. Since St. Louis, MO is the best city to open, we
open it and leave it open for the duration of the heuristic.

Next we determine the best second facility to open, given that St. Louis is also
open. The best and worst facilities are given in Table 8.2 and Figure 8.6.

So, we fix open the facilities in St. Louis, MO, and Fresno, CA. Proceeding in
this manner, in iteration 3, we open facility 5, in Philadelphia, PA, to obtain the
solution shown in Figure 8.7(a), which has a cost of 904,055. In iteration 4, we open
facility 28 in Fort Worth, TX, for a solution with a cost of 821,501 (Figure 8.7(b)).
In iteration 5, we open facility 7 in Detroit, MI, for a solution with a cost of 793,443
(Figure 8.7(c)). In iteration 6, the best facility to open is facility 15 (Jacksonville,
FL), but the resulting solution has a cost of 807,938, which is greater than the cost
of the previous solution. Therefore, the heuristic terminates, returning the 5-facility
solution in Figure 8.7(c).

O
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(d) Seattle, WA (cost = 4,030,326).

Figure 8.5 Considering each facility for iteration 1 of greedy algorithm for UFLP.
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(d) Miami, FL (cost = 1,980,578).

Figure 8.6  Considering each facility for iteration 2 of greedy algorithm for UFLP, with facility in
St. Louis, MO, fixed open.
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(b) Iter. 4: Fort Worth, TX (cost = 821,501). (c) Iter. 5: Detroit, MI (cost = 793,443).

Figure 8.7 Solutions from iterations 3, 4, and 5 of greedy algorithm for UFLP.

By assuming that the next facility to open will be the last, the greedy-add heuristic can
easily fall into a trap. For example, if it is optimal to open two facilities, the greedy-add
heuristic may first open a facility in the center of the geographical region, which then must
stay open for the second iteration, when in fact it is optimal to open one facility on each
side of the region.

A reverse approach is called the “greedy-drop” heuristic, which starts with all facilities
open and sequentially closes the facility that decreases the objective the most. It has similar
advantages and disadvantages as greedy-add.

One important improvement heuristic is the swap or exchange heuristic (Teitz and Bart
1968), which attempts to find a facility to open and a facility to close such that the new
solution has a smaller objective function value. For more on the swap heuristic, see
Section 8.3.2.3. Other procedures attempt to find closed facilities that can be opened to
reduce the objective function, or open facilities that can be closed.

The heuristics mentioned here have proven to perform well in practice, which means they
return good solutions and execute quickly. Metaheuristics have also been widely applied to
the UFLP. These include genetic algorithms (Jaramillo et al. 2002), tabu search (Al-Sultan
and Al-Fawzan 1999), and simulated annealing (Arostegui et al. 2006).

8.3 OTHER MINISUM MODELS

The UFLP is an example of a minisum location problem. Minisum models are so called
because their objective is to minimize a sum of the costs or distances between customers and
their assigned facilities (as well as possibly other terms, such as fixed costs). In contrast,
covering location problems are more concerned with the maximum distance, with the goal
of ensuring that most or all customers are located close to their assigned facilities.
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At the risk of over-generalizing, it can be said that minisum models are more commonly
applied in the private sector, in which profits and costs are the dominant concerns, and
covering models are most commonly applied in the public sector, in which service, fairness,
and equity are more important. For further discussion of this dichotomy, see Revelle et al.
(1970).

In this section, we discuss two other minisum models—the capacitated fixed-charge
location problem and the p-median problem. In Section 8.4, we discuss covering models.

8.3.1 The Capacitated Fixed-Charge Location Problem (CFLP)

In the UFLP, we assumed that there are no capacity restrictions on the facilities. Obviously,
this is an unrealistic assumption in many practical settings. The UFLP can be easily
modified to account for capacity restrictions; the resulting problem (not surprisingly) is
called the capacitated fixed-charge location problem, or CFLP. Suppose v; is the maximum
demand that can be served by facility j per year. The CFLP can be formulated as follows:

(CFLP) minimize Z fixz; + Z Z hicijYij (8.54)

JjeJ el jeJ
subjectto Y gy =1 Viel (8.55)

jeJ
Yij < T Yiel,VjeJ (8.56)
> hiyi; < vj VieJ (8.57)
el

z;€{0,1} VjeJ (8.58)
yi; >0 VielNjeJ (8.59)

This IP is identical to (UFLP) except for the new capacity constraints (8.57). Sometimes
the following constraint is added, which says that the total capacity of the opened facilities
is sufficient to meet the total demand:

> wiw =Y hi (8.60)
jeJ el

This constraint is redundant in the IP formulation but tightens some relaxations.

Many approaches have been proposed to solve this problem. We briefly outline a method
very similar to the method discussed for the UFLP. We relax the assignment constraints
(8.55) to obtain the following Lagrangian subproblem:

(CFLP-LR)) minimize Z fiz; + Z Z hicijyi; + Z Ai|1- Z Yij

jed icl jeJ i€l jed
:ijxj +ZZ(hiCij — Ai)Yij +Z)\i (8.61)
jeJ i€l jeJ iel
subject to Yij < T Viel,VjelJ (8.62)
> hiyi; < vj VieJ (8.63)

icl
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zj € {0,1} VjeJ (8.64)
Yi; = 0 VielI,VjeJ (8.65)
As in the UFLP, this problem separates by j, but now computing the benefit 3; is a little

more complicated because of the capacity constraint. In particular, for each j € J, we
need to solve a problem of the form

(P;) minimize f; = Z aizi (8.66)
el

subject to > hizi <w (8.67)
i€l

0<z<1 Viel, (8.68)

where a; = hic;; — N, z; = yi;, and v = v;. This is a continuous knapsack problem,
which can be solved efficiently by sorting the ¢s so that

S

1

]

1]

F
SiiS
>

1

(This sort order favors large negative values of a; and small positive values of /,.) We then
set z; = 1fori =1,...,r, where r is the largest number such that a,, < 0 and

i hl S Uj.
=1

If r < |I|, we set z,41 = (vj — Y ._; h;) /hyy1. Other aspects of the Lagrangian
procedure (finding upper bounds, subgradient optimization, branch-and-bound) are similar
to those discussed in Section 8.2.3, although the upper-bounding procedure must take into
account the capacity constraints.

Several other relaxations for the CFLP have been studied, often using slightly different
formulations from (CFLP). Davis and Ray (1969) solve the LP relaxation of the CFLP in
a branch-and-bound algorithm, as do Akinc and Khumawala (1977). Nauss (1978) and
Christofides and Beasley (1983) use Lagrangian relaxation, relaxing constraints (8.55),
similar to the method outlined above. Klincewicz and Luss (1986) relax the capacity con-
straints (8.57) to obtain a UFLP. Van Roy (1986) also relaxes (8.57) but rather than using
standard Lagrangian relaxation, he uses cross-decomposition, a hybrid of Lagrangian re-
laxation and Benders decomposition. Barcelo et al. (1991) use variable splitting (Guignard
and Kim 1987), also known as Lagrangian decomposition, a method in which some of the
variables are doubled, the new variables are forced equal to the original ones via a con-
straint, and that constraint is then relaxed using Lagrangian relaxation. Also see Geoffrion
and McBride (1978) and Cornuejols et al. (1991) for a discussion of the relative tightness
of the theoretical bounds from the various relaxations of the CFLP.

Generally, the optimal solution to (CFLP) will not have y;; € {0,1} as in (UFLP).
(Why?) This means that some customers will receive product from more than one DC.
Sometimes it is important to prohibit this from happening by requiring y;; € {0, 1}; this is
called a single-sourcing constraint. The CFLP with single-sourcing constraints is harder
to solve because (P;) becomes a 0-1 knapsack problem, which is NP-hard. On the other
hand, good algorithms exist for the knapsack problem, and since the knapsack problem
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does not have the integrality property, the Lagrangian bound will be tighter than the LP
bound. This highlights the important trade-off between the quality of the Lagrangian bound
and the ease with which the subproblem can be solved.

A closely related problem is the capacitated concentrator location problem (CCLP), in
which the demands h; are ignored in the objective function (or, equivalently, the transporta-
tion costs c;; are divided by h;) but not in the capacity constraints. The CCLP features
prominently in the location-based heuristic for the vehicle routing problem (Section 11.3.3).
See Mirzaian (1985), Klincewicz and Luss (1986), and Gourdin et al. (2002).

8.3.2 The p-Median Problem (pMP)

In the UFLP, the fixed costs in the objective function prevent the model from opening too
many facilities. Another way to accomplish the same thing is simply to add a constraint that
explicitly limits the number of open facilities. This is the approach taken by the p-median
problem (pMP), which was introduced by Hakimi (1965).

Hakimi focused on problems on networks, in which the distances among nodes are
defined not by a geographical measure like Euclidean or great circle distances, but rather
on shortest-path distances along the edges of the network. (See Section 8.2.2.) His main
result, which has come to be known as the Hakimi property, is that there is always an
optimal solution consisting of nodes of the network rather than points along the edges. In
particular, suppose I = J are the nodes of the network. For any set X consisting of p points
on the network (either at the nodes or along the edges) and for any ¢ € I, define ¢(i, X)
to be the shortest-path distance from ¢ to the nearest point in X. (This is a generalization
of the notation ¢;; to consider distances to points that are not nodes.) Hakimi proved the
following:

Theorem 8.7 (Hakimi (1965)) There exists a set 1, C I consisting of p nodes of the
network such that, for any set X consisting of p points on the network (nodes or edges),

> hicli, I3) <Y hic(i, X).

icl i€l

In other words, there exists an optimal set that consists only of nodes. This allows us to
treat the problem as a discrete one consisting of a finite number of feasible solutions rather
than a continuous one with an infinite number. Hakimi solved the pMP using complete
enumeration of all subsets of p nodes, but of course this approach only works for small p
and |I|. Many more efficient algorithms have been proposed since Hakimi’s original work,
several of which we discuss below.

8.3.2.1 Formulation The pMP uses the same notation as the UFLP (Section 8.2.2),
plus the following:

Parameter
p = number of facilities to locate

The problem is formulated as follows:

(pMP) minimize ZZhiqjyij (8.69)

i€l jeJ
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subjectto Y y;; =1 Viel (8.70)
jeJ

Yij < T Viel,VjelJ (8.71)

> zi=p (8.72)
jeJ

z; €{0,1}  VjeJ (8.73)

yij >0 VielI,VjeJ (8.74)

The objective function (8.69) computes the transportation cost. (Often c;; is defined as
distance, rather than per-unit cost, in which case the objective function is interpreted as
representing the demand-weighted distance.) Constraint (8.72) requires exactly p facilities
to be opened. This constraint could be written with a < instead of =, but since the objective
function decreases with the number of open facilities, the optimal solution under such a
constraint will always open exactly p facilities; therefore, the two forms of the constraint
are equivalent. The other constraints function the same as the corresponding constraints in
the (UFLP).

8.3.2.2 Exact Algorithms for the pMP The pMP is NP-hard for arbitrary p but is
polynomially solvable if p is fixed (Garey and Johnson 1979). This means that there exist
algorithms for which the worst-case running time is a polynomial function of the problem
size (|1, |.7]) but not of p. The pMP can also be solved in polynomial time for arbitrary p
when the underlying network is a tree (Kariv and Hakimi 1979b), i.e., when the distance
matrix is derived from shortest-path distances on a tree network. Despite its NP-hardness,
however, the pMP, like the UFLP, can be solved relatively efficiently, partly due to the fact
that its LP relaxation is typically quite tight (ReVelle and Swain 1970).

The Lagrangian relaxation procedure discussed in Section 8.2.3 can be easily modified
for the pMP (Cornuejols et al. 1977). Relaxing constraints (8.70), we obtain the following
Lagrangian subproblem:

(pMP-LR,) minimize Z Z hicijyi; + Z Ai | 1— Z Yij

i€l jeJ iel jeJd
=2 (hici; = Aa)yij + D N (8.75)
i€l jeJ iel

subject to Yij < T Viel,VjelJ (8.76)
S a=p (8.77)

jes
z;€{0,1} VjielJ (8.78)
Yij = 0 Viel,VjedJ (8.79)

The benefit of opening facility j is given by (8.13), exactly as in the UFLP. Then, we set
x; = 1 for the p facilities with the smallest 5; (negative or positive). (Recall that for the
UFLP, we set x; = 1 if and only if 5; + f; < 0.) Finally, we set y;; = 1 if z; = 1 and
hic;j — A < 0. The optimal objective function value of the subproblem,

ar(N) =Y Bz + >\,

JjeJ i€l
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Figure 8.8 Optimal solution to 88-node pMP instance with p = 6. Total cost = $386,856.

provides a lower bound on the optimal objective function value of (pMP). Feasible solutions
can be found by assigning each customer to the nearest facility that is open in the solution to
the subproblem, and the corresponding objective function value provides an upper bound.
The Lagrange multipliers can be found using subgradient optimization (Section 8.2.3.5).
Branch-and-bound can then be used to close any remaining optimality gap.

] EXAMPLE 8.4

Return to the 88-node data set described in Example 8.1. The optimal solution to the
pMP with p = 6 is shown in Figure 8.8. This solution locates facilities in New York,
NY; Los Angeles, CA; Chicago, IL; Fort Worth, TX; Oakland, CA; and Montgomery,
AL, with a total cost of $386,856. As in Example 8.1, MATLAB took less than 2
seconds to solve this problem to optimality on a laptop computer.

O

Other exact methods include LP relaxation/branch-and-bound (ReVelle and Swain
1970), decomposition methods (Garfinkel et al. 1974), row and column reduction (Rosing
et al. 1979), and adaptations by Galvao (1980) and Nauss and Markland (1981) of the DU-
ALOC algorithm (Erlenkotter 1978) discussed in Section 8.2.4. Reese (2006) provides a
thorough survey of the literature on the pMP, including both exact and heuristic algorithms.

8.3.2.3 Heuristics for the pMP Most heuristics for the UFLP (Section 8.2.5) are
easily adapted for the pMP. For instance, we can apply the greedy-add and greedy-drop
heuristics, except that the procedure terminates when there are exactly p facilities open
rather than when no objective-reducing adds or drops can be found.

One of the earliest and most widely known heuristics for the pMP is the swap or exchange
heuristic introduced by Teitz and Bart (1968). The swap heuristic attempts to find a pair j,
k of facilities with j open and k closed such that if j were closed and k& opened (and the
customers reassigned as needed), the objective function value would decrease. If such a
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pair can be found, the swap is made and the procedure continues. Pseudocode for the swap
heuristic is given in Algorithm 8.7. It takes as inputs the current solution variable x and its
objective value z. In the pseudocode, (Z, ) is a temporary solution and Z is its cost.

Algorithm 8.7 Swap heuristic for pMP
1: input current solution x, current cost z

2: repeat > Main loop
3: IMPROVED < FALSE

4 forall j € Js.t.z; =1do > Loop through open facilities
5 forall £ € Js.t.x, =0do > Loop through closed facilities
6: T—2;05 0,7 <1 > Try swapping j and k&
7 foralli € I do

8 J(i) « argmin;¢ ;.5 1 {ci;} > Assign ¢ to nearest open j
9: Yij(iy < L Gie <= 0VC € J\ {i(2)}

10: end for

11: Z4= D ier 2ovey hicielie > Calculate cost if swap j and k
12: if Z < z then > Check for improvement
13: T Ty~ Y, 24— 2 > Update current solution
14: IMPROVED <« TRUE

15: end if

16: end for
17: end for

18: until not IMPROVED
19: return z, y, z

0 EXAMPLE 8.5

Applying the greedy-add heuristic to the 88-node instance described in Example 8.4,
we open the following facilities, in sequence: Springfield, IL; Los Angeles, CA; New
York, NY; Dallas, TX; Jacksonville, FL; Oakland, CA. The resulting solution, shown
in Figure 8.9(a), has a cost of $423,620—9.5% more expensive than the optimal
solution found in Example 8.4.

Let us now apply the swap heuristic to the greedy solution. First, we can close the
facility in Springfield, IL, and open the one in Chicago, IL, to reduce the cost by 7.6%,
to $391,314. Next, we can close Jacksonville, FL, and open Atlanta, GA, for a new
cost of $387,226; then close Dallas, TX, in favor of Ft. Worth, TX ($387,021); and
finally close Atlanta, GA (opened a few iterations earlier) in favor of Montgomery,
AL ($386,856). These moves are shown in Figures 8.9(b)-8.9(e). No other profitable
swaps can be made, and in fact, this is the optimal solution found in Example 8.4.
Note, however, that the greedy and swap heuristics do not find the optimal solution
in all instances—we just got lucky for this one.

0

The swap heuristic can be modified in many ways. For example, at each iteration,
we can either implement the first swap we find that reduces the objective (this is called
a first-improving strategy) or implement the swap that reduces the objective function the
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(b) Swap iter. 1: close Springfield, open Chicago (cost (c) Swap iter. 2: close Jacksonville, open Atlanta (cost
=$391,314). = $387,226).

(d) Swap iter. 3: close Dallas, open Ft. Worth (cost = (e) Swap iter. 4: close Atlanta, open Montgomery (cost
$387,021). = $386,856).

Figure 8.9 Greedy and swap solutions for 88-node pMP instance with p = 6.
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most (a best-improving strategy). (Algorithm 8.7 uses a first-improving strategy.) Or, we
can randomize the procedure by choosing randomly from among, for example, the five best
swaps at each iteration, possibly with a bias toward the better swaps.

A straightforward implementation of the swap heuristic is relatively slow since we must
evaluate O(p|J|) possible swaps and, for each, determine O(]I|) customer assignments,
for an overall complexity of O(p|I||J|) for each iteration. Whitaker (1983) proposed
an implementation known as fast interchange, which was further refined by Hansen and
Mladenovi¢ (1997) so that each iteration takes O(|I|(|J]| — p)).

Another improvement heuristic is the neighborhood search heuristic (Maranzana 1964).
For simplicity, assume that I = J, that is, every node is both a customer and a potential
facility location. Define the neighborhood of an open facility j in a given solution, denoted
Nj, as the set of nodes ¢ that are assigned to j. The neighborhood search heuristic solves
the 1-median problem in each neighborhood N; to check whether j is in fact the best
facility for IV;. If it is not, it closes j and opens the 1-median. The neighborhoods are then
redefined (i.e., the customers are reallocated), and the procedure repeats. Pseudocode for
the neighborhood search heuristic is given in Algorithm 8.8.

Algorithm 8.8 Neighborhood search heuristic for pMP
1: input current solution z, y

2: repeat > Main loop
3: IMPROVED < FALSE

4 forall j € Js.t.z; =1do > Loop through open facilities
5 Nj+—{iel:y; =1} > Determine neighborhood of j
6: k < argmin,e {ZZE N, hicig} > Determine 1-median of N;
7 if £ # j then

8 x5 0o 1 > Swap j and k
9 (i) « argmin;¢ 5., —1{ci;} > Assign 7 to nearest open j
10: Yiji) & Liyie < 0VLe T\ {j(i)}

11: IMPROVED < TRUE

12: end if

13: end for

14: until not IMPROVED

150 2 4= D icr D ovey hicieyi > Calculate new cost

16: return x, y, z

The neighborhood search heuristic is, in some ways, similar to the swap heuristic in the
sense that it searches for an open facility j to close and a closed facility k to open. The
difference is that the neighborhood search heuristic only searches over facilities k that are
in j’s neighborhood, and when it evaluates the new cost after swapping j and k, it only
considers reassignments of customers in the neighborhood, rather than the entire customer
set. Both of these differences lead to some loss of accuracy, but also significantly faster run
times. (See Problem 8.45.)

The discussion above assumed that I = J. If I # J, then instead of searching over the
neighborhood of j, N;, for a new facility k, we must instead define some suitable set M
of facilities that are likely candidates for the 1-median of ;. For example, we might set
M; to the set of k € J that are in the convex hull of the points in IV;. The pseudocode in
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Figure 8.10  Neighborhood of Springfield, IL in greedy solution to 88-node instance for pMP with
p = 6.

Algorithm 8.8 remains the same except for step 6, in which we would replace £ € IN; with
lLe M G

0 EXAMPLE 8.6

Consider the solution found by the greedy-add heuristic in Example 8.5, shown
in Figure 8.9(a). The neighborhood of the facility in Springfield, IL, is shown in
Figure 8.10. It happens that Springfield is not the 1-median for this neighborhood;
Chicago is. (Chicago is shown in the figure as an open square; light lines connect the
customers to that facility.) So, we close Springfield and open Chicago, then check
whether there are any Springfield customers that should be assigned to a facility
other than Chicago, or any non-Springfield customers that should now be assigned
to Chicago. (There are not.) Making this swap reduces the cost to $391,314.

The other open facilities are the 1-medians of their respective neighborhoods, so
there are no more moves to make, and the heuristic terminates.

O

Many metaheuristics are available for the pMP. For example, Hosage and Goodchild
(1986) propose a genetic algorithm (GA) for the pMP, one of the first GAs for facility
location problems. Chiyoshi and Galvao (2000) propose a simulated annealing algorithm
for the pMP that makes use of the swap heuristic. Hansen and Mladenovi¢ (1997) propose
a variable neighborhood search (VNS) heuristic. For a survey of metaheuristic approaches
for the pMP, see Mladenovic et al. (2007).
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Figure 8.11 400-mile coverage radii around facilities in 6-median solution to 88-node instance.
Total covered demand is 4268 out of 3979 (88.7%). Solid customers are covered by an open facility;
shaded customers are not. Radii around different facilities have different sizes due to the Mercator
projection used in this map, which exaggerates distances farther from the equator.

8.4 COVERING MODELS

In 2001, the National Fire Protection Association established Standard 1710, which, among
many other guidelines, says that fire departments should have the objective of arriving to a
fire within 4 minutes of receiving a call (National Fire Protection Association, Inc. 2001).
The ability of a fire department to adhere to this standard is driven largely by the locations
of its fire stations, since a fire will surely have to wait more than 4 minutes if it is located
too far from its nearest fire station, no matter how quickly the firefighters respond.

However, this is not an objective that the UFLP, pMP, or other minisum models can help
much with, since the optimal solutions to those problems may assign some customers to
very distant facilities if it is cost effective to do so. Instead, we need to use the notion of
coverage, which indicates whether a given customer is within a prespecified distance, or
coverage radius, of an open facility.

For example, Figure 8.11 shows the optimal facilities from the 6-median problem on
the 88-node data set (from Figure 8.8), along with 400-mile coverage radii around each
facility. (Since transportation costs ¢;; for this data set are equal to 0.5 times the distance,
a 400-mile coverage radius is the same as a $200 coverage radius.) Some customers are
covered, but many are not, especially in the western part of the United States, which is
more sparsely populated (and hence less expensive to serve with long hauls in minisum
models). In total, the covered nodes have a demand of 3979, or 88.7% of the total demand
of 4484.

Note that in Figure 8.11 and others in this section, radii around different facilities are
drawn in different sizes due to the Mercator projection used in this map, which exaggerates
distances farther from the equator.

In this section, we discuss three seminal facility location models that use coverage to
determine the quality of the solution. The first, the set covering location problem (SCLP),
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locates the minimum number of facilities to cover every demand node. The second, the
maximal covering location problem (MCLP), covers as many demands as possible while
locating a fixed number of facilities. In other words, the SCLP puts the number of facilities
in the objective function while constraining the coverage, and the MCLP does the reverse.
The third model, the p-center problem, locates a fixed number of facilities to minimize the
maximum distance from a demand node to its nearest open facility—or, put another way,
to minimize the coverage radius required to cover every demand node.
For further reading on covering problems, see Snyder (2011) or Daskin (2013).

8.4.1 The Set Covering Location Problem (SCLP)

In the set covering location problem (SCLP), we are required to cover every demand node;
the objective is to do so with the fewest possible number of facilities. The SCLP was first
formulated in a facility location context by Hakimi (1965), though similar models appeared
in graph-theoretic settings prior to that.

In addition to the notation introduced in earlier sections, we use the following new
notation:

Parameters
a;; = 1 if facility 7 € J can cover customer 4 € I (if it is open), 0 otherwise

The coverage parameter a;; can be derived from a distance or cost parameter such as
ci; in the UFLP, for example:

1, if Cij <r
Qij = .
0, otherwise

for a fixed coverage radius 7. Or a;; can be derived in other ways that are unrelated to
distance, especially in the nonlocation applications of the SCLP discussed below.
The SCLP can be formulated as follows:

(SCLP) minimize » (8.80)
jeJ

subjectto Y ajjx; > 1 Viel (8.81)
JjeJ

z;€{0,1} VjeJ (8.82)

The objective function (8.80) calculates the total number of open facilities. Constraints
(8.81) ensure that every customer is covered by some open facility (some facility such that
both a;; = 1 and x; = 1), and constraints (8.82) are integrality constraints.

Sometimes we wish to minimize the total fixed cost of the opened facilities, rather than
the total number, in which case the following objective function is appropriate:

minimize Y _ f;x;. (8.83)
jedJ

The SCLP is NP-hard (Garey and Johnson 1979). Hakimi (1965) proposed a solution
method for the SCLP based on Boolean functions, which has not proven to be effective
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for realistic-sized instances. Instead, the problem is usually solved using some form of
branch-and-bound, an approach first proposed by Toregas et al. (1971). Since the optimal
objective function value of the LP relaxation, zr, p, is a lower bound on that of (SCLP), and
since the optimal objective function value of (SCLP) must be an integer under objective
(8.80), Toregas et al. (1971) propose adding the following constraint to (SCLP):

> x> [zp). (8.84)

jeJ

Constraint (8.84) acts as a cut (see Section 10.3.3), potentially eliminating some fractional
solutions without changing the optimal integer solution. The LP relaxation of (SCLP) is
usually very tight (and sometimes all-integer) (Bramel and Simchi-Levi 1997), and the
addition of constraint (8.84) makes it even tighter.

Toregas and ReVelle (1972) propose row- and column-reduction techniques that can
reduce the size of the optimization problem, making it easier to solve. Because of the binary
nature of coverage, certain facilities and customers can be eliminated from consideration
because they are dominated. In particular, a facility j is dominated by a facility k, and we
can set z; = 0 (i.e., eliminate column j from the formulation), if a;; < a;, foralli € I. In
this case, k covers every customer that j serves (and possibly more), so we have no reason
to open j. Similarly, a customer ¢ is dominated by a customer £ if a;; > ay; forall j € J.
In this case, every facility that covers £ also covers i. As long as ¢ is covered by an open
facility, so is ¢, so we can ignore the constraint (row) corresponding to 7. See Eiselt and
Sandblom (2004) and Daskin (2013) for further discussion of these methods.

0 EXAMPLE 8.7

Return to the 88-node instance from Example 8.4. Using a coverage radius of 400
miles, the optimal solution to the SCLP locates 10 facilities, in El Paso, TX; Fort
Worth, TX; Miami, FL; Fresno, CA; Boise City, ID; Tallahassee, FL; Salem, OR;
Springfield, IL; Trenton, NJ; and Pierre, SD. See Figure 8.12. Note to achieve total
coverage, we needed four more facilities than we needed to obtain 88.7% coverage
in Figure 8.11. For example, note the facility in Miami, at the very southern tip of
Florida; this facility is in the solution only to cover the city of Miami itself.

O

8.4.2 The Maximal Covering Location Problem (MCLP)

The SCLP requires every customer to be covered by an open facility. Sometimes this is
impractical, because complete coverage would require opening too many facilities. For
example, it takes 10 facilities to cover 100% of the demand in the 88-node data set with
a 400-mile coverage radius. (See Example 8.6.) But we know from Example 8.7 that we
can cover 88.7% of the demand with only six facilities. In fact, if we are only allowed six
facilities, we can do better than 88.7%, as we will see below.

The maximal covering location problem (MCLP) seeks to maximize the total number of
demands covered subject to a limit on the number of open facilities. It was introduced by
Church and ReVelle (1974). It uses the same notation as the SCLP, plus the usual parameter
p that specifies the allowable number of facilities, as well as a new set of decision variables:
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Figure 8.12  Optimal SCLP solution for 88-node instance with coverage radius of 400 miles. 10
facilities are required.

Decision Variables
z; =1if customer ¢ € I is covered by an open facility, 0 otherwise

The MCLP can be formulated as follows:

(MCLP) maximize Z h;z; (8.85)

iel
subject to zi < Zaijwj Viel (8.86)

jeJ
Y wi=p (8.87)
jeJ

z; € {0,1} Vied (8.88)
z; € {0,1} Viel (8.89)

The objective function (8.85) calculates the total number of covered demands. Constraints
(8.86) prevent a customer ¢ from being counted as “covered” unless there is some open
facility that covers it. Constraint (8.87) requires exactly p facilities to be opened; as in the
pMP, the constraint would be equivalent if we replaced = with <. Constraints (8.88) and
(8.89) are integrality constraints. Like the assignment variables y;; in the UFLP, we can
relax the z; variables here to be continuous, and they will always be binary in the optimal
solution. (Why?)

The MCLP is NP-hard (Megiddo et al. 1983). Heuristics include a greedy-add heuristic
(in which at each iteration, we choose the facility that increases the covered demand the
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most) and a greedy-add-with-substitution heuristic that considers a “swap” move at each
iteration. Both heuristics were proposed by Church and ReVelle (1974). Other heuristics
include genetic algorithms (Fazel Zarandi et al. 2011) and another metaheuristic approach
called heuristic concentration (ReVelle et al. 2008a).

The LP relaxation of (MCLP) tends to be rather tight, and Church and ReVelle (1974)
report that 80% of their test instances yielded an all-integer solution for the LP relaxation;
Snyder (2011) reports an even higher percentage. Therefore, straightforward LP-based
branch-and-bound is often effective. Galvao and ReVelle (1996) propose a Lagrangian
relaxation method in which constraints (8.86) are relaxed. The resulting Lagrangian sub-
problem is:

(MCLP-LR)) maximize Z hiz; + Z i Z AT — %

iel iel jeJ
= Z(hz — /\i)Zi + Z Z /\iaijmj (8.90)
iel iel jeJ
subjectto > x; =p (8.91)
jeJ
z;€{0,1} VjeJ (8.92)
ze{0,1} VielVjelJ (8.93)

This subproblem decomposes into two separate problems, one that involves only the =
variables and one that involves only the z variables. The z-problem can be solved by
setting x; = 1 for the p facilities with the largest values of >, ;> .c ; Aiai;. The
z-problem can be solved by setting z; = 1if h; — A; > 0.

[l EXAMPLE 8.8

Return to the 88-node instance from Example 8.4. Suppose p = 6 and we have
a coverage radius of 400 miles. Then the optimal solution to the MCLP locates
facilities in Fort Worth, TX; Fresno, CA; Madison, WI; Montgomery, AL; Trenton,
NIJ; and Santa Fe, NM. (See Figure 8.13.) This solution covers 4268 of the 4484
demands, or 95.2%.

Figure 8.14 plots the percentage of demand covered vs. p. From the plot, it is
clear that the first several facilities gain a significant percentage of covered demand,
whereas subsequent facilities have a diminishing return. When p > 10, all of the
demand is covered, which is what we would expect given that the optimal solution
to the SCLP has 10 open facilities (Example 8.7).

O

8.4.3 The p-Center Problem (pCP)

The third covering problem we discuss is the p-center problem (pCP), which minimizes
the maximum distance from a customer to its assigned facility while restricting the number
of open facilities to p. Although this may not sound at first like a covering problem, the
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Figure 8.13  Optimal MCLP solution for 88-node instance with coverage radius of 400 miles and
p = 6. Total covered demand is 4268 out of 4484 (95.2%).
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Figure 8.14 Coverage vs. p for 88-node data set with 400-mile coverage radius.
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connection can be made explicit by thinking of the pCP as minimizing the coverage radius
required to ensure that all customers can be covered by p facilities. Like the SCLP, the pCP
aims for an equitable solution, in which no customer is “too far” from an open facility.

For example, in the optimal 6-median solution for the 88-node data set in Figure 8.8,
the maximum assigned distance is 801.6 miles, from the customer in Helena, MT, to the
facility in Oakland, CA. The pCP asks whether we can make this distance (and all other
assigned distances) smaller.

There are two categories of p-center problems: absolute and vertex. In the absolute
p-center problem, facilities can be located anywhere on the network (i.e., on the vertices
or on the links), whereas in the vertex p-center problem, facilities can only be located on
the vertices of the network. The two are not equivalent since the Hakimi property does not
hold for the pCP. (Why?) In this chapter, we consider only vertex p-center problems, and
we drop the word “vertex” when referring to the problem. (See Problems 8.37 and 8.38 for
algorithms for simple absolute p-center problems.)

The pCP uses notation defined in earlier sections, as well as a single new decision
variable:

Decision Variable
r = maximum distance, over all 7 € I, from ¢ to its assigned facility

In addition, we will tend to think about the parameter c;; as referring to distance, rather
than transportation cost, though the distinction is not so important.
The problem can then be formulated as follows:

(pCP) minimize r (8.94)
subjectto  » y;; =1 Viel (8.95)

jedJ
Yij < T Viel,VjelJ (8.96)
> ay=p (8.97)

jedJ
> ey < Viel (8.98)

JjEJ

x;€{0,1} VjelJ (8.99)
yi; € {0,1}  VielVjelJ (8.100)

The objective function (8.94) is simply the maximum assigned distance, . Constraints
(8.95)—(8.97) are identical to (8.70)—(8.72); they require all customers to be assigned,
prevent assignments to facilities that are not opened, and require p facilities to be opened.
Constraints (8.98) define r by ensuring that it is at least as large as every assigned distance.
Constraints (8.99) and (8.100) are integrality constraints on x and y. (The nonnegativity
of 7 is ensured by (8.98).) Note that in the pCP, relaxing (8.100) to 0 < y;; < 1 will not
ensure integer-valued y variables in the optimal solution. (Why?)
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Sometimes we wish to weight the customers differently and minimize the maximum
weighted assigned distance. In this case, we simply replace (8.98) with

Zhicijyij <r Viel, (8.101)
jeJ

where h; is the weight on customer ¢ € 1.

Like the pMP, the pCP is NP-hard for arbitrary p (Kariv and Hakimi 1979a). Moreover,
an off-the-shelf MIP solver such as CPLEX or Gurobi will take orders of magnitude longer
to solve (pCP) than any of the other formulations in this chapter. For example, when we
solved the 88-node 6-center problem in CPLEX 12.6.1 (see Example 8.9), it took 1607.0
seconds of CPU time. In contrast, it took 0.7 seconds for CPLEX to solve the 6-median
problem on the same instance. This is typical of problems like the pCP that have a minimax-
type structure, because their LP relaxations tend to be much weaker. For example, the LP
relaxation value of the 88-node instance of the pCP is 36.6% smaller than the optimal
objective value of the MIP, whereas the LP relaxation of the pMP has an all-integer solution
(so the LP and MIP values are equal for this instance).

There is a close relationship between the SCLP and the pCP:

Lemma 8.8 Ler » > 0. Then the optimal objective function value of the pCP is less than
or equal to r if and only if the optimal objective function value of the SCLP with coverage
radius r is less than or equal to p.

Proof. Omitted; see Problem 8.47. n

This allows us to solve the pCP by exploiting the fact that the SCLP is much easier to
solve. In particular, we perform a bisection search on r. For each r, we solve the SCLP.
If the optimal objective function value of the SCLP is less than or equal to p, we reduce r,
otherwise, we increase it. We continue in this manner until we converge to an 7 value such
that the optimal objective function value of the SCLP equals p but would be larger than
p if we made r smaller; this r is the optimal objective function value of the pCP, and the
optimal solution to the SCLP is also optimal for the pCP. This approach is typically much
faster than solving the MIP (pCP) directly. A method similar to this was first proposed by
Minieka (1970).

Algorithm 8.9 summarizes this method in pseudocode. In the algorithm, € is the desired
level of optimality tolerance. The inputs r* and r¥ are lower and upper bounds on the
optimal r; for example, we can set rl'=0and rU = maXiej,jej{Cij}. At the end of the
algorithm, we use r = 7 since we know for sure that the optimal solution to the SCLP with
coverage radius 7 has at most p facilities, but we do not know this for smaller values of r.

[ EXAMPLE 8.9

Let us use Algorithm 8.9 to solve the 6-center problem on the 88-node instance
from Example 8.4. We’ll set ¢ = 0.1. We begin by setting r* = 0 and Y =
max; j{c;j} = 2743.3. The iterations proceed as follows:

1. r =2743.3/2 = 1371.6; SCLP has optimal objective 2; set T + 1371.6
2. r =1371.6/2 = 685.8; SCLP has optimal objective 4; set T < 685.8
3. r = 685.8/2 = 342.9; SCLP has optimal objective 11; set r < 342.9
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Algorithm 8.9 SCLP-based algorithm for pCP

1: input lower and upper bounds 7~ and 7V on

2 r—rlFe U > Initialization
3: repeat > Main loop
4: r« (r+7)/2 > Candidate value for r
5: x* < optimal solution to SCLP with coverage radius r > Solve SCLP
6: WY, ;a; <pthenT +r > Reduce r
7: elser < r > Increase r
8: end if

9 until7 —r < ¢ > Convergence check

—
=4

return z*, 7

4. r = (342.9 + 685.8) /2 = 514.4; SCLP has optimal objective 7; set r < 514.4

5. r = (514.4 4 685.8)/2 = 600.1; SCLP has optimal objective 6; set 7 <— 600.1

14. r = (525.8 + 526.08) /2 = 525.9; SCLP has optimal objective 7; set r + 525.9

15. r = (525.9 4+ 526.08) /2 = 526.0; SCLP has optimal objective 7; set r + 526.0

At this point, we have r = 526.0 and ¥ = 526.08. Since their difference is less than
€, the algorithm terminates.

The optimal solution is shown in Figure 8.15. This solution has a maximum
assigned distance of 526.06. It locates facilities in Houston, TX; Jacksonville, FL;
Tucson, AZ; Omaha, NE; Boise, ID; and Harrisburg, PA.

Using Algorithm 8.9, it took less than 0.5 seconds to find this solution on a laptop
computer. In contrast, as noted above, it took over 1600 seconds to solve the MIP
(pCP) directly using CPLEX.

O

Most exact algorithms for the pCP proceed along similar lines, though there are some
variations. For example, Daskin (2000) proposes an algorithm similar to Algorithm 8.9 but
using the MCLP as a subroutine instead of the SCLP. Elloumi et al. (2004) propose a new
MIP formulation of the pCP whose LP relaxation is tighter than that of (pCP); they also
obtain an even tighter lower bound by relaxing only a subset of the integer variables and
show how this bound can be obtained in polynomial time. The bound can then be used in
a bisection search similar to that in Algorithm 8.9.

The pCP is polynomially solvable for certain network topologies, such as tree networks
(Megiddo et al. 1981, Jeger and Kariv 1985). In some cases, this is true even when ¢;; is
replaced by a nonlinear function of the distance from ¢ to j (Tansel et al. 1982). 1-Center
problems on general networks can also be solved in low-order polynomial time, even for
absolute pCPs in which the facility may be located at any point along the edges of the
network (Kariv and Hakimi 1979a, Shier and Dearing 1983); see also Problems 8.37 and
8.38. Many other results of this type exist; see Tansel (2011) for a review.
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Figure 8.15  Optimal pCP solution for 88-node instance with p = 6. Maximum assigned distance
= 526.06 miles, from San Jose, CA to facility in Boise, ID.

8.5 OTHER FACILITY LOCATION PROBLEMS

There are many other types of facility location models in the literature and in practice. We
mention some other types of location models in this section. For further reading, see the
books cited in Section 8.1.

8.5.1 Undesirable Facilities

The problems discussed in this chapter assume that we want customers to be close to
facilities. In some cases, the opposite is true. For example, when siting toxic waste dumps,
weapons repositories, and so on, the goal is usually to locate facilities as far as possible
from population centers. In some cases, we want a certain balance: For example, landfills
should not be located too close to customers (because of odors, truck traffic, etc.) but also
should not be located too far (since garbage collection costs are a function of the distance
traveled by the collection trucks).

Problems such as these are known as undesirable, obnoxious, or semiobnoxious facility
location problems. One example is the maxisum location problem, which seeks to locate
p facilities to maximize the sum of the weighted distances between each customer and its
nearest open facility. (It is not sufficient to simply change the objective function of the pMP
(8.69) from minimize to maximize—why?) See Shamos (1975), Shamos and Hoey (1975),
and Church and Garfinkel (1978) for examples of such problems, and see Melachrinoudis
(2011) for a review of this literature. Problem 8.31 asks you to formulate the maxisum
location problem.

Another type of undesirable location problem is the p-dispersion problem, in which we
locate p facilities to maximize the minimum distance between any pair of open facilities.
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Note that customers are not considered in this model—only facilities. The intent is to
ensure that facilities are spread apart as much as possible, as when locating facilities that
may interact negatively with one another (such as nuclear power plants) or compete with
one another (such as retail locations). See Shier (1977) and Chandrasekaran and Daughety
(1981) for early work on this problem. A variant known as the maxisum dispersion problem
seeks to maximize the sum or average of the distances between pairs of open facilities,
rather than the maximum distance. See Kuby (1987) for a discussion of both of these
problems.

8.5.2 Competitive Location

Competitive location problems assume that two (or more) firms are locating facilities and
that customers will choose a facility to patronize based, at least in part, on distance.
These problems are often formulated and analyzed using ideas from game theory (see
Section 14.2), in which the goal is to determine a Nash equilibrium solution—a solution
that neither player wishes to deviate from unilaterally. A Nash equilibrium solution specifies
the optimal strategy for both players.

This idea dates back to Hotelling (1929), who considers two competitors who each locate
a single facility to serve customers located uniformly along a line (such as a highway or
railroad, or, as later authors have suggested, two ice cream vendors on a beach). The firms
can locate their facilities anywhere on the line. Hotelling proves that the Nash equilibrium
solution is for both players to locate at the midpoint of the line, sharing the demand equally.
He also considers how the competitors should set their prices, a factor that has tended to
be considered less in subsequent competitive location research. (d’ Aspremont et al. (1979)
point out a significant error in Hotelling’s original work.)

Hotelling’s model is a simultaneous game in which the two players choose their strategies
at the same time, without knowledge of the other’s strategy. Most of the more recent work
on competitive location has focused on Stackelberg or leader—follower games in which one
player (the leader) moves first, followed by the other player (the follower). Stackelberg
games are often modeled as bilevel optimization problems in which the optimality of the
follower’s response is ensured through constraints in the leader’s problem. Bilevel problems
are difficult in general; see Colson et al. (2007), DeNegre and Ralphs (2009).

Suppose X, is the set of p facilities that the leader has already located. Then the
follower’s optimal set of r facilities—the set of facilities that maximizes the follower’s
captured demand—is called an (r|X,) medianoid. The leader’s optimal set X, of p
facilities—the set of facilities that maximizes the leader’s captured demand, given that the
follower will respond by locating at the (r|X,,) medianoid—is called an (r|p) centroid.

Drezner (1982) considers the problem of finding (| X,,) medianoids and (r|p) centroids
on the continuous plane when r = 1 and/or p = 1. Hakimi (1983) considers medianoids
and centroids on networks, showing that the Hakimi property (in which an optimal solution
is guaranteed to contain only nodes of the network) does not hold in general and examining
medianoids’ and centroids’ relationships to other problems such as the pMP and pCP.
Hakimi proves that the medianoid problem is NP-hard for general r, even when p = 1, and
that the centroid problem is NP-hard for general p, even when r = 1.

ReVelle (1986) focuses on the medianoid (follower’s) problem, which he calls the
maximum-capture (or MAXCAP) problem. He formulates this problem as an integer
programming problem and shows that it is equivalent to the pMP. Serra and ReVelle (1994)
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consider the centroid (leader’s) problem and suggest a heuristic in which the leader locates
facilities; the follower solves MAXCAP in response; the leader then updates its facilities
using a swap heuristic; then the follower responds by solving MAXCAP; and so on. This
type of heuristic, iterating between the leader’s and follower’s solutions, is common (e.g.,
Ghosh and Craig (1983)) since the overall bilevel problem is difficult to solve exactly.

For reviews of competitive location models, see Eiselt et al. (1993), Eiselt (2011),
Younies and Eiselt (2011), and Dasci (2011).

8.5.3 Hub Location

In some systems, transportation occurs both from facilities to customers and between pairs
of facilities. Many airlines use such a structure, offering flights between hub airports and
from hubs to other cities. To fly between two nonhub cities, one has to fly through one or
more hubs and change planes. Similar designs are used in telecommunications and other
networks. Such networks are called hub-and-spoke networks, and problems that optimize
their structure are called hub location problems.

A straightforward example of a hub location problem uses the pMP as a starting point.
Instead of defining the demand in terms of the nodes (h;), we define the traffic or flow
between nodes 7 and j as h;;. This traffic must travel from ¢ to a hub k, then to another
hub m, and finally to the destination j. It is possible that k = m, i.e., the route from i to j
travels through only one hub. We wish to

minimize g fizi+

jed
S h, (z ot 0SS o+ Y cﬁ,Lyjm) G0
el jel keJ keJmeJ meJ

subject to the pMP constraints (8.69)—(8.73) and binary constraints on the y variables. The
first term inside the parentheses in (8.102) calculates the cost of 1—j traffic as it flows from
1 to its assigned hub k; the second term is the cost as the i—j traffic travels between hubs k
and m; and the third term is the cost of the traffic as it travels from m to j. The second term
is discounted by a factor of & < 1 to reflect the economies of scale in shipping between
hubs. This problem, known as the p-hub median problem, was first introduced by O’Kelly
(1987).

The primary difficulty with a formulation using (8.102) is that it is nonlinear, due to
the second term inside the parentheses. O’Kelly (1987) proposes two enumeration-based
heuristics to solve the p-hub median problem. Subsequent papers worked to linearize
O’Kelly’s formulation. For example, Campbell (1996) introduces binary variables y;;xm
that equal the fraction of i—j traffic that is routed through hubs k£ and m. The resulting
formulation is linear but has many more variables (O(n?) instead of O(n?), where n is the
number of nodes). On the other hand, these variables are continuous rather than binary.

Other hub location problems are based on the UFLP, pCP, and SCLP; see Campbell
(1994a) for formulations of these and other problems. For reviews of hub location problems,
see Campbell (1994b), Alumur and Kara (2008), and Kara and Taner (2011).
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8.5.4 Dynamic Location

During the time when most facilities are operational—years, if not decades—demands
and other parameters may change. Dynamic location problems model these parameter
changes and allow facilities to be added, removed, and/or relocated over time to reflect
these changes. Note that we are still assuming that the parameters are deterministic, but
that they change over time—they are dynamic.

Ballou (1968) considers the problem of locating and relocating a single facility over a
finite planning horizon; he solves the problem heuristically by solving a series of single-
period models. Wesolowsky (1973) and Drezner and Wesolowsky (1991) consider a fixed
cost for each relocation in the single-facility problem. Scott (1971) considers a multi-
facility problem in which one facility is opened per time period; he presents a greedy-type
heuristic as well as a dynamic programming approach. Drezner (1995b) generalizes this
idea to allow the location of p facilities at any time during I" time periods; once open, a
facility must remain open. Van Roy and Erlenkotter (1982) consider both openings and
closures of facilities over time and solve it using a modified DUALOC algorithm (see
Section 8.2.4) embedded in branch-and-bound. Gunawardane (1982) and Schilling (1980)
propose dynamic location problems based on coverage objectives.

See Owen and Daskin (1998) for a review of dynamic location problems. Problem 8.51
asks you to formulate a simple example of a dynamic location problem.

8.6 STOCHASTIC AND ROBUST LOCATION MODELS

8.6.1 Introduction

The facility location models we have discussed so far in this chapter are deterministic—they
assume that all of the parameters in the model are known with certainty, and that facilities
always operate as expected. However, the life span of a typical factory, warehouse, or other
facility is measured in years or decades, and over this long time horizon, many aspects of
the environment in which the facility operates may change. It is a good idea to anticipate
these eventualities when designing the facility network so that the facilities perform well
even in the face of uncertainty.

In this section, we discuss approaches for optimizing facility location decisions when
the model parameters are stochastic. (In Section 9.6, we discuss a model in which the
performance of the facilities itself is stochastic, i.e., the facilities are subject to disruptions.)
The stochastic parameters are modeled using scenarios, each of which specifies all of the
parameters in one possible future state. We must choose facility locations now, before
we know which scenario will occur, but we may reassign customers to facilities after we
know the scenario. That is, facility locations are first-stage decisions, while customer
assignments are second-stage decisions.

In some models, we know the probability distribution of the scenarios (i.e., the probabil-
ity that each scenario occurs), while in others we do not. Models in which the probability
distribution is known fall under the domain of stochastic optimization, while those in which
it is not are part of robust optimization. In stochastic optimization models, the objective is
usually to minimize the expected cost over the scenarios. Several objectives are used for
robust facility location models, the most common of which is to minimize the worst-case
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cost over the scenarios. We will discuss both stochastic and robust approaches for facility
location in this section.

Suppose a given set of facilities is meant to operate for 20 years. There are several ways
to interpret the way scenarios occur over this time. One way is to assume that we build
the facilities today, and then a single scenario occurs tomorrow and lasts for all 20 years.
Another is to assume that a new scenario occurs, say, every year or every month, drawn
in an iid manner from the scenario distribution. Either interpretation is acceptable for the
models we consider in this section.

Choosing the scenarios to include in the model is a difficult task, as much art as science.
Expert judgment plays an important role in this process, as can the demand modeling
techniques described in Chapter 2. The number of scenarios chosen plays a role in the
computational performance of these models: They generally take longer to solve as the
number of scenarios increases.

A wide range of approaches for modeling and solving stochastic location problems has
been proposed. We discuss only a small subset of them. For more thorough reviews,
see Owen and Daskin (1998) or Snyder (2006).

We introduce the following new notation, which we will use throughout this section:

Set
S = set of scenarios
Parameters
h;s = annual demand of customer ¢ € I in scenario s € S
Cijs = cost to transport one unit of demand from facility j € .J to customer ¢ € [ in
scenario s € S
qs = probability that scenario s occurs
Decision Variables
Yi;s = the fraction of customer ¢’s demand that is served by facility j in scenario s

Otherwise, the notation is identical to the notation for the UFLP introduced in Section 8.2.2.

8.6.2 The Stochastic Fixed-Charge Location Problem

Suppose we know the scenario probabilities g;. Our objective is to minimize the total
expected cost of locating facilities and then serving customers. We will refer to this problem
as the stochastic fixed-charge location problem (SFLP). It was formulated by Mirchandani
(1980) and Weaver and Church (1983). The SFLP is an example of stochastic optimization,
a field of optimization that considers optimization under uncertainty. (In particular, this
formulation is an example of a deterministic equivalent problem.) Usually, the objective is
to optimize the expected value of the objective function under all scenarios, and that is the
approach we will take here.
The SFLP is formulated as follows:

(SFLP) minimize » fiz;+ Y Y Y qshisCijslijs (8.103)
JjeJ seS i€l jeJ
subject to Zyj =1 Vie ILVse S (8.104)

JjeJ
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Yijs < Tj VieI,VjeJVseS (8.105)
z; €{0,1} VjeJ (8.106)
Yijs > 0 Vie l,Vje JVseS (8.107)

The objective function (8.103) computes the total fixed plus expected transportation cost.
Constraints (8.104) and (8.105) are multiscenario versions of the assignment and linking
constraints, respectively. Constraints (8.106) require the location () variables to be binary,
and constraints (8.107) require the assignment (y) variables to be nonnegative. Note that, if
|S| = 1, this problem is identical to the classical UFLP. (Therefore, the SFLP is NP-hard.)

The SFLP can be solved using a straightforward modification of the Lagrangian relax-
ation algorithm for the UFLP (Section 8.2.3). We relax constraints (8.104) to obtain the
following Lagrangian subproblem:

(SFLP-LR,)
minimize  » fizi+ Y > > qehiscijsyizs + 3> Xis [ 1= ijs
= i€l jeJ ses i€l ses jet
=3 Fa YYD (@shiscizs — Nisyigs + D> Ais (8.108)
jed i€l jeJ s€S i€l s€S
subjectto  y;js < Vie I, Vje JVseS (8.109)
vy e{0,1}  VjelJ (8.110)
Yijs = 0 viel,Vje JVselS (8.111)

Just as for the UFLP, this problem can be solved easily by inspection. The benefit of
opening facility j is

Bj = Z Zmin{oa QShisCijs - )\zs}

i€l seS
An optimal solution to (SFLP-LR}) can be found by setting

1, ifB;+f;<0
T; =
’ 0, otherwise

1, if.%’j =1land hiscijs —Xis <0
Yijs = 0

otherwise.

The objective value of this solution is given by

jeJ i€l s€S

Upper bounds can be obtained from feasible solutions that are constructed by opening the
facilities for which z; = 1 in the Lagrangian subproblem and then assigning each customer
to its nearest open facility in each scenario. (Since the transportation cost may vary by
scenario, so may the optimal assignments.) The remainder of the Lagrangian relaxation
algorithm is similar to that for the UFLP.

The SFLP can actually be interpreted as a special case of the deterministic UFLP
obtained by replacing the customer set I with I x S. That is, think of creating multiple
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instances of each customer, one per scenario, and using this as the customer set. Viewed in
that light, the formulation and algorithm for the SFLP are identical to those for the UFLP.
This means that an instance of the SFLP with 100 nodes and 10 scenarios is equivalent to
an instance of the UFLP with 1000 nodes and can be solved equally quickly.

In fact, the SFLP can also be interpreted another way. Imagine a deterministic problem
with multiple products, each of which has its own set of demands and transportation costs.
The formulation for SFLP models this situation exactly, so long as we interpret S' as the set
of products rather than scenarios.

8.6.3 The Minimax Fixed-Charge Location Problem

In this section, we discuss the minimax fixed-charge location problem (MFLP), which
minimizes the maximum (i.e., worst-case) cost over all scenarios. Minimax problems
are an example of robust optimization. Robust optimization takes many forms, but the
general objective of all of them is to find a solution that performs well no matter how
the random variables are realized. Most robust models (including the MFLP) assume that
no probabilistic information is known about the random parameters. This is one of the
main advantages of robust optimization, since scenario probabilities can be very difficult
to estimate. On the other hand, robust optimization problems are generally more difficult
to solve than stochastic optimization problems, because of their minimax structure (like
the pCP). Moreover, minimax models are often criticized for being overly conservative
since their solutions are driven by a single scenario, which may be unlikely to occur.
Nevertheless, they are an important class of problems, both within facility location and in
robust optimization in general.
Conceptually, the MFLP can be formulated as follows:

minimize Igleaéi Z fiz; + Z Z RisCijsYijs (8.112)
jeJ i€l jeJ
subject to the same constraints as in (SFLP). However, this is not a valid objective function
for a linear integer program (because of the “max”), so instead we introduce a new
variable, w, that represents the maximum cost over all the scenarios. The MFLP can then
be formulated as follows:

(MFLP) minimize w (8.113)
subjectto > yijs =1 VielI,Vse S (8.114)
jeJ

yijsng ViEI,VjGJ,VSGS (8.115)
ijl‘j + Zzhiscijsyijs <w Vse S (8.116)

jeJ el jeJ
z; €{0,1} Vied (8.117)
Yijs > 0 Vie I,Vje JVseS (8.118)

Constraints (8.116) ensure that w is at least as large as the cost in each scenario. Since the
objective function (8.113) minimizes w, we are guaranteed that w will equal the maximum
cost over all scenarios. The remaining constraints are identical to those in (SFLP).
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Unfortunately, facility location problems that minimize the worst-case cost, such as
the MFLP, are generally much more difficult to solve than their stochastic counterparts.
The Lagrangian relaxation algorithm from Section 8.6.2, and most other algorithms for
stochastic location problems, cannot be readily adapted for robust problems. Therefore,
these problems are generally solved heuristically (e.g., Serra et al. 1996, Serra and Marianov
1998), or solved exactly for special cases such as locating single facilities or locating
facilities on specialized networks such as trees (e.g., Vairaktarakis and Kouvelis 1999).
Additional results are sometimes possible if the uncertain parameters are modeled using
intervals in which the parameters are guaranteed to lie rather than scenarios (e.g., Chen and
Lin 1998, Averbakh and Berman 2000a,b).

Another common approach for robust optimization is to minimize the worst-case regret
(rather than cost). The regret of a given solution in a given scenario is defined as the
difference between the cost of that solution in that scenario and the cost of the optimal
solution for that scenario. In other words, it’s the difference between how well your solution
performs in a given scenario and how well you could have done if you had known that that
scenario would be the one to occur. The absolute regret calculates the absolute difference
in cost, whereas the relative regret reports this difference as a fraction of the optimal cost.
If (x, y) is the solution to a facility location problem and z, (z, ) is the cost of that solution
in scenario s, then the absolute regret of (z, y) in scenario s is given by

Zs(xv y) - Zs(xzv y:)
and the relative regret is given by

Zs($7y) - ZS(ZC:,Z/:)
zs (2%, y%)

b

where (%, y¥) is the optimal solution for scenario s.

Minimax-regret models are closely related to minimax-cost models. In fact, the MFLP
can be modified easily to minimize the worst-case regret rather than the worst-case cost
simply by subtracting z,(x%, y*) from the left-hand side of (8.116) (to minimize absolute
regret) and by also dividing the left-hand side of (8.116) by z,(x%,y%) (to minimize
relative regret). The constants z, (%, y¥) must be calculated ahead of time by solving |.S|
single-scenario problems. Since we are modifying constraints by adding and multiplying
constants, the structure of the problem does not change (though the optimal solutions
might). Therefore, solutions methods for minimax-cost problems are often applicable for
minimax-regret problems, and vice-versa.

8.7 SUPPLY CHAIN NETWORK DESIGN

The facility location models discussed so far in this chapter make decisions about which
facilities to open in only a single echelon (the DCs). In practice, firms must often make
open/close decisions about multiple echelons (suppliers, factories, etc.), as well as about the
transportation links connecting them. We will refer to these more complicated optimization
problems as supply chain network design problems.

Roughly speaking, supply chain network design problems fall into two categories: node
design problems, in which we must decide which nodes (facilities) to open, and arc design
problems, in which we must decide which arcs (links) to open. Both types of problems
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typically allow for multiple commodities, capacitated nodes and/or arcs, and other side
constraints. Facility location problems are examples of relatively simple node design
problems.

In some cases, problems of one type can be converted to problems of the other type
through suitable modeling tricks such as adding dummy nodes or arcs, and so on. Moreover,
some supply chain network design models consider open/close decisions for both nodes
and arcs. Nevertheless, we will draw a distinction between the two types of problems and
will discuss each type separately: node design problems in Section 8.7.1 and arc design
problems in Section 8.7.2.

Although we discuss supply chain network design models in the context of transportation
networks, these models are also widely applied in other arenas such as telecommunications,
energy, water distribution, and so on.

We will tend to avoid the more generic phrase “network design” since it means different
things to different people. To optimizers and other operations researchers, “network design”
usually refers to arc design models of the type described in Section 8.7.2, whereas to supply
chain practitioners, it usually connotes node design models like those in Section 8.7.1.

8.7.1 Node Design

8.7.1.1 Introduction In this section, we present a model that makes location decisions
about two echelons and can be extended to consider a general number of echelons. In
addition, this model considers multiple products and joint capacity constraints that reflect
the limited capacity in each facility that the several products “compete” for. This problem
can be thought of as a multiechelon, multicommodity, capacitated facility location problem.
Models such as these are at the core of many commercial supply chain network design
software packages.

The seminal paper on multiechelon facility location problems is by Geoffrion and Graves
(1974), which presents a three-echelon (plant—-DC—customer) model. This paper considers
location decisions only at the DC echelon, but it optimizes product flows among all three
echelons. The model we will present in this section also considers location decisions at the
plant echelon. It is adapted from Pirkul and Jayaraman (1996).

8.7.1.2 Problem Statement This problem is concerned with a three-echelon system
consisting of plants, DCs, and customers. The customer locations are fixed, but the plant
and DC locations are to be optimized. (See Figure 8.16.) In addition, the model considers
multiple products and limited capacity at the plants and DCs. As in the UFLP and CFLP,
the objective is to minimize the total fixed and transportation cost.

We will use the following notation:

Sets
I =set of customers
J = set of potential DC locations

K = set of potential plant locations
L = set of products
Demands and Capacities
h;; = annual demand of customer i € I for product! € L
v; =capacityof DCj € J
by = capacity of plant k € K



SUPPLY CHAIN NETWORK DESIGN 323

Plants (K) DCs (J) Customers (/)

Figure 8.16 Three echelons in node design problem: plants (A), DCs (), and customers ().
Customer locations are fixed; plant and DC locations are to be determined by the model.

s; = units of capacity consumed by one unit of product/ € L
Costs
f; = fixed (annual) cost to open a DC at site j € J
gr = fixed (annual) cost to open a plant at site k € K
ciji = cost to transport one unit of product [ € L from DC j € J to customer
1el
dj11 = cost to transport one unit of product [ € L from plant k € K to DC
jed
Decision Variables
x; =1if DC jis opened, 0 otherwise
2z = lif plant k is opened, O otherwise
¥i;1 = number of units of product [ shipped from DC j to customer ¢
w;x; = number of units of product [ shipped from plant £ to DC j

The usage parameter s; must be expressed in the same units used to express the capacities
v; and ¢i. That is, if capacities are expressed in square feet, then s; is the number of square
feet taken up by one unit of product [. If capacities are expressed in person-hours of work
available per year, then s; is the number of person-hours of work required to process one
unit of product {. And so on.

The transportation variables y and w indicate the amount of product ! shipped along each
arc, from plants to DCs (w) and from DCs to customers (y). There is an alternate way to
formulate a model like this in which we define a single set of transportation variables, call
it y;;%1, that specifies the amount of product / shipped from plant & to customer 4 via DC j.
(Geoffrion and Graves (1974) use this approach.) This type of formulation is more compact
and has certain attractive structural properties. However, this strategy requires |I||.J|| K||L|
transportation variables, which is generally larger than the |I||J||L| + |J|| K||L| variables
required by the formulation below.

Moreover, the strategy of defining a new set of transportation variables for each pair
of consecutive echelons allows us to extend this model to more than three echelons. The
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number of such variables in the alternate approach grows multiplicatively with the number
of echelons, while the approach taken here grows only additively.

Note that while in the UFLP, the y;; variables indicated the fraction of 7’s demand served
by j, here y;;; is a quantity.

8.7.1.3 Formulation The multiechelon location problem can be formulated as a
mixed-integer programming (MIP) problem as follows:

minimize Z fjl’j + Z ngk-l-Z Z Z CijlYijl + Z Z djklekl (8.119)

jeJ keK leL |jeJ iel keEK jeJ
subject to > wiji = ha VielIVleL (8.120)
jedJ
SN s <vizy Vied (8.121)
1€l leL
S wiw = yijy VjeJVIeL (8.122)
keK el
ZZ s1wjg < brzi Vk e K (8.123)
jeJ leL
x5,z €{0,1} VieJVkeK (8.124)
Yist, Wikt > 0 Viel,VjeJVke KNl eL (8.125)

The objective function (8.119) computes the total fixed and transportation cost. Con-
straints (8.120) require the total amount of product / shipped to customer 7 to equal i’s
demand for [. These constraints are analogous to constraints (8.4) in the UFLP. Constraints
(8.121) ensure that the total amount shipped out of DC j is no more than the DC’s capacity,
and that nothing is shipped out if DC j is not opened. Constraints (8.122) require the total
amount of product [ shipped into DC j to equal the total amount shipped out. Constraints
(8.123) are capacity constraints at the plants and prevent product from being shipped from
plant % if k£ has not been opened. Finally, constraints (8.124) and (8.125) are integrality
and nonnegativity constraints.

The UFLP and CFLP are special cases of this problem, and hence it is NP-hard. We
will discuss a Lagrangian relaxation algorithm for solving it.

8.7.1.4 Lagrangian Relaxation We will solve the multiechelon location problem
using Lagrangian relaxation. Before we do, though, we’ll add a new set of constraints to

the model:
Yijit < ha Viel,Vje JVlel (8.126)

These constraints simply say that the amount of product ! shipped to customer ¢ cannot
exceed ¢’s demand for [. They are redundant in the original model in the sense that they
are satisfied by every feasible solution. However, they will not be redundant after we relax
some of the original constraints. Adding constraints (8.126) tightens the relaxation, as we
will see below.

We relax the assignment constraints (8.120) (as in the UFLP) as well as the “balance”
constraints (8.122). We use Lagrange multipliers A;; for the first set of constraints and s
for the second. The resulting subproblem is as follows:
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minimize Z fiz; + Z k2K + Z ZZ CijlYiji + Z Zdjklekl

jeJ keK leL |jeJ icl keK jeJ
XY N[ ha =Y g | DD (Z vijl — Y wjkl) (8.127)
i€l leL jeJ jeJ leL el keK

subject to Yiji < ha VieI,Vje JVlel (8.128)

SO swip <vjay Vield (8.129)
iel leL

S swin <beze VEEK (8.130)
jeJleL

zj,2, €{0,1} Vi€ JVke K (8.131)

Yiit, Wikt > 0 Vie,Vje JVke KVl €L (8.132)

The first two sets of constraints involve only the x and y variables, while the third set
involves only the z and w variables. This allows us to decompose the subproblem into two
separate subproblems:

(xy-problem) minimize Z fimj + Z Z Z(Ciﬂ — Xt + 151)Yiji (8.133)

jeJ i€l jeJ lel
subject to yijg <hy VieIVjeJVieL  (8.134)
S s <vjry Vied (8.135)
i€l leL
z;€{0,1} VjelJ (8.136)
yin >0  VielVjeJVieL  (8.137)

(zw-problem) minimize Z grzk + Z Z Z(djkl — [51) Wik (8.138)

keK keK jeJ leL
subjectto Y Y sjwjp <bpzy  Vk €K (8.139)
jeJleL
zr€4{0,1} Vke K (8.140)
wjg >0 Vje J,Vke K,VleL

(8.141)

Both problems are quite easy to solve. First, consider the zy-problem. If we set z; = 1
for a given j, then we are allowed to set some of the y;;; variables to something greater
than 0. The problem of determining values for the y;;; variables (assuming x; = 1) is
a continuous knapsack problem. Here’s where constraints (8.126) come into play. If we
didn’t have these constraints in the formulation, we would set y;;; = v; /s for only a single
i and /. By imposing bounds on the y;;; variables, we obtain a solution that is much closer
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to the true optimal solution and hence provides a tighter lower bound. For each j, we solve
the continuous knapsack problem, and if the optimal objective value is less than — f;, we
set x; = 1; otherwise, we set x; = 0. Solving the zw-problem is very similar, except that
there are no explicit upper bounds on the w;y,; variables.

As in the UFLP, upper bounds are found using a greedy-type heuristic, and the Lagrange
multipliers are updated using subgradient optimization. In computational tests reported by
Pirkul and Jayaraman (1996), this algorithm could solve small- to medium-sized problems
in roughly 1 minute.

[J EXAMPLE 8.10

Let us broaden the scope of the 88-node UFLP instance to include plant-location
decisions, as well as multiple products. The data set node_design_data.xlsx
considers a set K of 10 possible locations for plants, each of which has a total
capacity of 10,000 units and a fixed cost of $1,000,000. The set L of products in this
data set consists of five products, of which product 1 is from the original 88-node
data set. We assume that each DC in J has a capacity of 2000 units and the same
fixed costs as in the UFLP instance. Transportation costs d;j; are set equal to 0.25
times the great circle distance between plant k£ and DC j, whereas c;;; continues to
equal 0.5 times the distance between DC j and customer ¢. (Plant-DC shipments
are typically larger and therefore benefit from economies of scale; hence the smaller
per-unit costs.) Transportation costs are the same for every product.

The optimal solution to this 98-node instance of the node design problem is shown
in Figure 8.17(a). This solution opens nine DCs (in Chicago, IL; Houston, TX;
Philadelphia, PA; Detroit, MI; Phoenix, AZ; Fresno, CA; Topeka, KS; Harrisburg,
PA; and Frankfort, NY) and two plants (in Louisville, KY, and Anaheim, CA). The
plants are drawn as triangles in Figure 8.17(a). To make the plant-DC shipments
easier to visualize, Figure 8.17(b) draws the customers and their inbound links in a
lighter shade.

In the optimal solution, two customers are served from more than one DC. In
particular, the customer in New York, NY, receives product 1 from both Philadelphia,
PA, and Harrisburg, PA; it receives all other products only from Philadelphia. In
addition, the customer in Salt Lake City, UT, receives products 1 and 2 from Phoenix,
AZ, and the other products from Fresno, CA. At first, it may seem surprising that only
2 of the 88 customers are served by multiple DCs, but this is actually fairly typical;
when a given facility’s capacity is fully utilized, only the “final” customer will have
its demand split. In this solution, only two of the DCs (Fresno and Philadelphia) are
fully utilized.

This solution is different from the solution we would obtain by following a se-
quential approach in which we first solve for the optimal DC locations (ignoring the
plants), then fix open the resulting DCs and find the optimal plant locations. That
solution, which is pictured in Figure 8.18, opens 11 DCs and the same 2 plants as
the optimal solution. It has a total cost of $4,776,380, which is only 2.1% more
expensive than optimal. In general, however, the error from this sequential approach
can be considerably larger.

O
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(b) Plant—-DC shipments.

Figure 8.17  Optimal solution to 98-node node design instance. Total cost = $4,678,145.
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(b) Plant—-DC shipments.

Figure 8.18  Sequential-optimization solution to 98-node node design instance. Total cost =
$4,776,380.
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Figure 8.19  Simple arc design problem instance. Grey and black bars inside nodes indicate supply
(> 0) or demand (< 0) for two products.

8.7.2 Arc Design

We now turn our attention to arc design problems, in which the nodes of the network are
already determined, and we are to make decisions about which arcs (or links, or edges) to
open. These are classical OR models; indeed, as noted above, the generic phrase “network
design” often connotes this type of problem when used by an optimizer or other operations
researcher. For a more thorough discussion of arc design problems, see Magnanti and
Wong (1984).

8.7.2.1 Problem Statement We are given a set N of nodes (which are already open)
and a set F of potential arcs. We will assume that the arcs are directed, i.e., that arc (i, j)
is not the same as arc (j,4) for ¢,7 € N. To model undirected networks, we can simply
double each arc, orienting one copy in each direction.

The network can handle multiple products (commodities), which are contained in the
set L. Each node i € N has a certain number b} of “available units” of product I € L: If
bl > 0, then node 7 supplies b units of product I to the network; if b < 0, then node i
demands —bf; units of product /; and if bf; = 0, then node 7 does neither. In any of these
cases, product [ may flow through node 7 en route to other nodes.

We will assume that if node 7 supplies product [ (b > 0), then it must send exactly
bt units into the network. This implies that the total supply of product [ equals the total

demand:

> b=0

ieN
foralll € L. Itis simple to relax this assumption by adding a dummy node that “absorbs”
the excess supply if >, bt > 0.

For example, Figure 8.19 depicts a simple instance for an arc design problem with two
products. The small bar graph inside each node indicates the available units of each of the
two products. For example, the node in the top left supplies 5 units of product 1 and 3
units of product 2; the node in the middle demands 3 units of product 1 and supplies 3 units
of product 2; the node in the bottom right does not supply or demand any units of either
product; and so on.

If we open arc (7, j), we incur a fixed cost of f;;. If it is opened, we can send product
flows along arc (i, 7), at a cost of céj per unit of product [. Arc (i, j) has a total capacity of
v;; units of flow (summed across all products). We assume that the capacity v;; is expressed
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in the same units as the b} values. We use decision variables z;; and y! ; to denote whether
arc (4, j) is opened and the flow of product { on arc (4, j), respectively.

In addition to the constraints described above, we may include other “side constraints.”
(See Problem 8.57 for some examples.) We let S denote the set of solutions (z, y) that are
feasible with respect to these side constraints. If there are no side constraints, we can set .S
equal to a set that does not impose any additional constraints, such as

S = {0,171 x RIFIIEL (8.142)

where R is the set of all nonnegative real numbers.

As in the UFLP, the key trade-off in this problem is between the fixed cost to construct
arcs and the variable cost in using them. The more arcs we open, the higher our fixed costs,
but the more flexibility we have in transporting the products, and therefore, the lower the
flow costs.

We summarize the notation below:

Sets

N = set of nodes

E = set of potential arcs

L =set of products

S =set of solutions (z,y) that are feasible with respect to side constraints
Parameters

bl = available units of product | € L atnode i € T
v;; = capacity of arc (i,j) € E
fi; =fixed cost to open arc (¢,5) € E
L ; = cost to transport one unit of product [ € L along arc (i,j) € E
Decision Variables

x;; =1ifarc (4,7) € E is opened, 0 otherwise

yf] = number of units of product ! € L shipped along arc (i,j) € F

C

8.7.2.2 Formulation The arc design problem can be formulated as follows:

minimize Z fiji; + Z Zcﬁjygj (8.143)

(i,J)EE (i,j)€E lEL

subject to D= D2 vy = b Vi€ NVl €L (8.144)
JEN JEN

Yoyl Sviywiy V(@G €E (8.145)
leL

(z,y) € 8 (8.146)

zi; €{0,1}  V(i,j)€E (8.147)

vij >0 V(i,j) € E,Vl € L (8.148)

The objective function calculates the total fixed cost plus flow costs over all arcs and
products. Constraints (8.144) are flow balance constraints: They require the net flow out
of node ¢ of product [ (flow out minus flow in) to equal the available supply of [ at node i.
If bé > 0, then more units of [ flow out of than into node ¢; if bé < 0, then more units flow
in than out; and if bé = 0, then all units that enter node ¢ also leave it. Constraints (8.145)
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prevent flow along an arc that has not been opened, and also enforce the capacity (joint
across all products) on the arc. Constraints (8.146) are the side constraints. Constraints
(8.147) and (8.148) are integrality and nonnegativity constraints.

This problem is NP-hard; the easiest way to see this is to note that many well known
NP-hard problems are special cases of it. Even if the x variables are fixed, the problem is
still difficult to solve: It becomes a multicommodity network flow problem. If fractional
flows are allowed, the multicommodity network flow problem is usually formulated as an
LP, but it is a large and particularly challenging LP to solve. If the flows must be integer,
even finding a feasible solution is NP-complete. (See Ahuja et al. (1993).)

If there are no capacities (v;; = oo for all (¢,7) € E) and no side constraints, the
problem is sometimes called the fixed-charge design problem. If there are no capacities,
no fixed costs (f;; = 0 for all (i,5) € E), and a single side constraint consisting of
a budget constraint, it is known as the budget design problem. Both of these problems
are considerably easier to solve than their capacitated counterparts, primarily because the
presence of capacities weakens the LP relaxation.

Arc design problems exist in many other flavors. For example, sometimes each product
l is assumed to have a single origin and destination (Magnanti and Wong 1984); this is
common in telecommunications networks in which the flow represents packets that must
be routed from one node to another. Sometimes the commodity is even required to follow
a single path through the network, rather than being split and recombined (Gavish and
Altinkemer 1990). In other models, we must decide how many facilities to open on each
arc or, similarly, how much capacity to add to each arc (Bienstock and Giinliik 1996,
Gendron et al. 1999). Other models include nonlinear costs, arc congestion, dynamically
changing parameters, and so on.

8.7.2.3 Solution Methods Uncapacitated arc design problems are frequently solved
using Benders decomposition. The basic idea is to choose values for the = variables in a
“master problem,” solve for the optimal resulting flows in a “subproblem,” and then use
those flows to determine additional cuts that can be added to the master problem to eliminate
the current (infeasible or suboptimal) x and find a better one. For further discussion of
Benders decomposition applied to arc design problems, see Magnanti and Wong (1984),
Magnanti et al. (1986), and Costa (2005). A dual-ascent procedure based on the DUALOC
algorithm was proposed by Balakrishnan et al. (1989).

As noted above, capacitated arc design problems are considerably more difficult to
solve. Algorithms have been proposed using branch-and-cut (Giinliikk 1999, Atamtiirk
2002) and Lagrangian relaxation (Holmberg and Yuan 2000, Crainic et al. 2001), among
others. For a survey, see Gendron et al. (1999). Heuristics such as add/drop-type methods
have been applied to arc design problems (Powell 1986), as have tabu search (Crainic et al.
2000, Ghamlouche et al. 2003), genetic algorithms (Drezner and Salhi 2002), and other
metaheuristics.

0 EXAMPLE 8.11

Figure 8.20 maps the ten largest cities in Hungary along with potential arcs connecting
them. This instance consists of three products, all of whose demand occurs in
Budapest. Product 1 is produced in Szeged and Székesfehérvar; product 2 is produced
in Szeged and Debrecen; and product 3 is produced in Pécs and Miskolc. Available
units b} are plotted as bar graphs, as in Figure 8.19. The arc widths are proportional
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Miskolc

44,09 Nyiregyhdza

Szombathely

Pécs

Figure 8.20 Hungary cities arc design problem instance. Grey and black bars inside nodes indicate
supply (> 0) or demand (< 0) for three products.

to their capacities, and the fixed and variable costs are listed along the arcs. Variable
costs are the same for all products. (For the complete specification of the instance,
see the file hungary.x1lsx.)

The optimal solution to this instance of the arc design problem is drawn in Fig-
ure 8.21(a). This solution has a total cost of 647.6. The solution opens 8 arcs.
CPLEX solved this instance in less than 1 second.

The optimal solution is different from the solution that would result from solving
3 separate single-product problems, one for each product, and then combining the
results. That solution is plotted in Figure 8.21(b). In fact, that solution is not even
feasible for the original problem, since it sends 6 units of flow along the arc from
Szeged to Kecskemét, but that arc only has a capacity of 3. Solving for each product
individually ignores the shared capacity and results in this infeasible solution. This
highlights the fact that it can be difficult even to find a feasible solution for the
capacitated arc design problem, let alone an optimal one.

O

CASE STUDY 8.1 Locating Fire Stations in Istanbul

Istanbul, Turkey, is one of the world's largest cities, with a population of over 13
million and growing. By 2008, the population growth had rendered the existing set of
fire stations insufficient to meet the current needs, prompting the Istanbul Metropolitan
Municipality (IMM) to sponsor a project by researchers from Dogus University and
Istanbul Technical University to determine locations for new fire stations in the city.
Their project is described by Aktas et al. (2013) and summarized here.

The city of Istanbul is divided into 40 districts and 790 subdistricts. The researchers
treated these subdistricts as both the demand nodes and potential facility locations in
their location models. The IMM aims to respond to fire incidents within 5 minutes,
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(a) Optimal solution.
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(b) Solution obtained by solving for each product individually.

Figure 8.21 Solutions to Hungary cities arc design problem instance. Arcs selected in the solution
are black; nonselected potential arcs are gray.
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leading the researchers to use coverage models with a coverage radius based on a five-
minute travel time. The researchers used the set covering location problem (SCLP) to
identify the cheapest solution that would achieve 100% service, as well as the maximal
covering location problem (MCLP) to find solutions that maximize coverage subject to
a budget constraint. Both models required all existing fire stations to remain open; the
goal was to choose locations for new fire stations.

Their SCLP model differs from the formulation given in Section 8.4.1 in two ways.
First, it allows for multiple types of fire stations, each with its own fixed cost and
capacity. Second, it requires a given subdistrict to be covered by sufficiently many,
or sufficiently large, fire stations to meet the annual number of fire incidents in that
subdistrict. In particular, it replaces constraints (8.81) with

S ragae > hi Vi€l (8.149)
jeJ keK

where K is the set of fire station types, r} is the capacity of a type-k station (number
of incidents it can handle per year), h; is the number of incidents in subdistrict i per
year, and zj, = 1 if we open a fire station of type k in subdistrict j. The model
also imposes a constraint requiring at most one type of station to be opened in each
subdistrict:
dap<l Vel (8.150)
kEK
Finally, the objective function (8.83) is modified to sum over k in addition to j.
Their MCLP model is similarly modified, replacing constraints (8.86) with

hizi <33 reagaye Vi€l (8.151)

jeJ keK

In other words, ¢ only counts as covered if the opened facilities that cover i have
sufficient combined capacity to respond to the number of incidents at 7. In some
versions of their model, they also modify h; to reflect the number of cultural heritage
sites in the subdistrict and to give more weight to those subdistricts that have more
such sites. (The city’s history goes back more than 2500 years. A group of sites called
the Historical Areas of Istanbul was placed on the UNESCO World Heritage List in
1985.)

The research team used a commercial geographic information system (GIS) to as-
semble the data for the study. The GIS calculated the geographical center of each
subdistrict and the average travel times between subdistricts, taking into account the
road network and the typical speed on each road link. These travel times were then
used to determine the coverage parameters a;; for the SCLP and MCLP. Fixed location
costs were assumed to be the same at every location, but different for different fire
station types. Demands h; were estimated from 12 years of historical incident data
from IMM.

The status quo solution, consisting of Istanbul’s existing 60 fire stations, was shown
to cover only 56.6% of the demands in the model (as measured by historical incidents)
within a 5-minute service time, and only 18.2% of demands from subdistricts that
contain cultural heritage sites. This poor coverage was the result of the city’'s expansion
or changes in the road system and is what prompted this study in the first place.
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The SCLP solution, which covers 100% of all demands, required 149 new stations.
This exceeded the IMM's budget for opening new stations, which allowed for the equiv-
alent of 64 new stations. Therefore, the researchers imposed this budget constraint in
the MCLP and found a solution that covers 93.9% of the demand, including 71.1%
of demands from heritage subdistricts. It also double-covers 35.6% of the subdistricts,
more than twice the number that are double-covered in the status quo solution. The
problems were solved in the modeling language GAMS using the MIP solver CPLEX,
with run times of less than 1 second.

As of their 2013 paper, Aktas, et al. report that IMM had opened 25 new fire stations
in subdistricts proposed by the model, with a subsequent slowdown due to economic
conditions. Their solution provides a roadmap for future expansion of the fire station
network that can be implemented as budgets allow.

PROBLEMS

8.1 (Locating DCs for Toy Stores) A toy store chain operates 100 retail stores throughout
the United States. The company currently ships all products from a central distribution
center (DC) to the stores, but it is considering closing the central DC and instead operating
multiple regional DCs that serve the retail stores. It will use the UFLP to determine where
to locate DCs. Planners at the company have identified 24 potential cities in which regional
DCs may be located. The file toy-stores.x1sx lists the longitude and latitude for all of
the locations (stores and DCs), as well as the annual demand (measured in pallets) at each
store and the fixed annual location cost at each potential DC location. Using optimization
software of your choice, implement the UFLP model from Section 8.2.2 and solve it using
the data provided. Assume that transportation from DCs to stores costs $1 per mile, as
measured by the great circle distance between the two locations. Report the optimal cities
to locate DCs in and the optimal total annual cost.

8.2 (10-Node UFLP Instance: Exact) The file 10node.x1sx contains data for a 10-
node instance of the UFLP, with nodes located on the unit square and I = .J, pictured
in Figure 8.22. The file lists the x- and y-coordinates, demands h;, and fixed costs f;
for each node, as well as the transportation cost ¢;; between each pair of nodes ¢ and j.
Transportation costs equal 10 times the Euclidean distance between the nodes. All fixed
costs equal 200.

Solve this instance of the UFLP exactly by implementing the UFLP in the modeling
language of your choice and solving it with a MIP solver. Report the optimal locations,
optimal assignments, and optimal cost.

8.3 (10-Node UFLP Instance: Greedy-Add) Use the greedy-add heuristic to solve the
10-node UFLP instance described in Problem 8.2. Report the facility that is opened at each
iteration, as well as the final locations, assignments, and cost.

8.4 (10-Node UFLP Instance: Swap) Suppose we have a solution to the 10-node UFLP
instance described in Problem 8.2 in which x3 = x3 = 1 and x; = 0 for all other j. Use
the swap heuristic to improve this solution. Use a best-improving strategy (that is, search
through the facilities in order of index, and at each iteration, implement the first swap
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Figure 8.22 10-node facility location instance for Problems 8.2-8.11.

found that improves the cost.) Report the swaps made at each iteration, as well as the final
locations, assignments, and cost.

8.5 (10-node pMP Instance: Exact) Using the file 10node.x1sx (see Problem 8.2),
solve the pMP exactly by implementing it in the modeling language of your choice and
solving it with a MIP solver. Ignore the fixed costs in the data set and use p = 4. Report
the optimal locations, optimal assignments, and optimal cost.

8.6 (10-Node pMP Instance: Swap) Suppose we have a solution to the 10-node pMP
instance described in Problem 8.5 in which 29 = 3 = x5 = g3 = 1 and z; = 0 for all
other j. Use the swap heuristic to improve this solution. Use a best-improving strategy
(that is, search through the facilities in order of index, and at each iteration implement the
first swap found that improves the cost.) Report the swaps made at each iteration, as well
as the final locations, assignments, and cost.

8.7 (10-Node pMP Instance: Neighborhood Search) Suppose we have a solution to
the 10-node pMP instance described in Problem 8.5 in which x4 = x5 = 24 = 19 = 1
and x; = 0O for all other j. Use the neighborhood search heuristic to improve this solution.
Report the swaps made at each iteration, as well as the final locations, assignments, and
cost.

8.8 (10-node SCLP Instance) Using the file 10node . x1sx (see Problem 8.2), solve the
SCLP exactly by implementing it in the modeling language of your choice and solving it
with a MIP solver. Set the fixed cost of every facility equal to 1. Assume that facility j
covers customer 4 if ¢;; < 2.5. Report the optimal locations.

8.9 (10-node MCLP Instance) Using the file 10node.x1sx (see Problem 8.2), solve
the MCLP exactly by implementing it in the modeling language of your choice and solving
it with a MIP solver. Set p = 4. Assume that facility j covers customer % if ¢;; < 2.5.
Report the optimal locations and the total number of demands covered.
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8.10 (10-node MCLP Instance: Coverage vs. p) Using the file 10node.x1sx (see
Problem 8.2), solve the MCLP exactly for p = 1,2,...,10 using the modeling language
and solver of your choice. Assume that facility j covers customer ¢ if ¢;; < 2.5. Construct
a plot similar to Figure 8.14.

8.11 (10-node pCP Instance) Use Algorithm 8.9 to solve the 10-node instance of the
pCP specified in the file 10node.x1sx (see Problem 8.2). Set p = 3. Use r’ = 0,
r¥ = max;c 1jes{cij}, and e = 0.1. Report the value of r at each iteration, as well as the

optimal locations, assignments, and objective function value.

8.12 (Locating Homework Centers for Chicago Schools) Suppose the City of Chicago
wishes to establish homework-help centers at 12 of its public libraries. It wants the
homework center locations to be as close as possible to Chicago public schools. In
particular, it wants the homework centers to cover as many schools as possible, where a
school is “covered” if there is a homework center located within 2 miles of it.

a) Using the files chicago-schools.csv and chicago-libraries.csv and de-
termining coverage using great circle distances, find the 12 libraries at which
homework centers should be established. Report the indices of the libraries se-
lected, as well as the total number of schools covered. (Chicago school and
library data are adapted from Chicago Data Portal (2017a,b).)

b) Suppose now that the city wishes to ensure that all schools are covered. What is
the minimum number of homework centers that must be established to accomplish
this?

8.13 (Easy or Hard Modifications?) Which of the following costs can be implemented
in the UFLP by modifying the parameters only, without requiring structural changes to
the model; that is, without requiring modifications to the variables, objective function, or
constraints? Explain your answers briefly.

a) A per-unit cost to ship items from a supplier to facility j. (The cost may be
different for each j.)

b) A per-unit processing cost at facility j. (The cost may be different for each j.)

¢) A fixed cost to ship items from facility j to customer ¢. (The cost is independent
of the quantity shipped but may be different for each ¢ and j.)

d) A transportation cost from facility j to customer i that is a nonlinear function
of the quantity shipped (for example, one of the quantity discount structures
discussed in Section 3.4).

e) A fixed capacity-expansion cost that is incurred if the demand served by facility
7 exceeds a certain threshold.

f) Some facilities are already open; an open facility j can be closed at a cost of fj.
(In addition, we can open new facilities, as in the UFLP.)

8.14 (LP Relaxation of UFLP) Develop a simple instance of the UFLP for which the
optimal solution to the LP relaxation has fractional values of the x; variables. This solution
must be strictly optimal—that is, you can’t submit an instance for which the LP relaxation
has an optimal solution with all integer values, even if there’s another optimal solution,
that ties the integer one, with fractional values. Your instance must have I = J, that is,
all customer nodes are also potential facility sites. Your instance must have at most four
nodes.
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Include the following in your report:
e A diagram of the nodes and edges.
e The values of h;, f;, and ¢;; for all 4, 5.
e The optimal solution (x1p and yy,p) and optimal objective value (21 p) for the LP
relaxation.
o The optimal solution (z* and y*) and optimal objective value (z*) for the IP.

8.15 (LP Relaxation of pMP) Repeat Problem 8.14 but for the pMP instead of the
UFLP.

8.16 (Ignoring Some Customers in the UFLP) The UFLP includes a constraint that
requires every customer to be assigned to some facility. It is often the case that a small
handful of customers in remote regions of the geographical area are difficult to serve and
can influence the solution disproportionately. In this problem, you will formulate a version
of the UFLP in which a certain percentage of the demands may be ignored when calculating
the objective function.

Let o be the minimum fraction of demands to be assigned; that is, a set of customers
whose cumulative demand is no more than 100(1 — «)% of the total demand may be
ignored. The parameter « is fixed, but the model decides endogenously which customers
to ignore. Customers must be either assigned or not—they cannot be assigned fractionally.

a) Using the notation introduced in Section 8.2.2, formulate this problem—we’ll call
it the “partial assignment UFLP” (PAUFLP)—as a linear integer programming
problem. Explain each of your constraints in words.

b) Now consider adding a dummy facility, call it u, to the original UFLP. Facility
u has a fixed capacity, so we are really dealing with the capacitated fixed-charge
location problem (CFLP), not the UFLP. (See Section 8.3.1 for more on the CFLP.)
Assigning customers to this dummy facility in the CFLP represents choosing
not to assign them in the PAUFLP. Explain how to set the dummy facility’s
parameters—its fixed cost, capacity, and transportation cost to each customer—
so that solving the CFLP with the dummy facility is equivalent to solving the
PAUFLP. Formulate the resulting integer programming problem.

¢) Using Lagrangian relaxation, relax the assignment constraints in your model
from part (b). Formulate the Lagrangian subproblem, using \; as the Lagrange
multiplier for the assignment constraint for customer %.

d) Explain how to solve the Lagrangian subproblem you wrote in part (c) for fixed
values of \.

e) Once you have a solution to the Lagrangian subproblem for fixed values of A,
how can you convert it to a feasible solution to the CFLP?

8.17 (UFLP with Multiple Assignments) Suppose that, in the UFLP, customers do
not receive 100% of their demand from their nearest open facility. For example, a given
customer might receive 80% of its demand from the closest facility, 15% from the second-
closest, and 5% from the third-closest. This situation might arise, for example, when
locating ambulances, repair centers, or other services for which the primary facility may
sometimes be busy.

Let m be the maximum number of facilities that serve each customer, and let b;;. be
the fraction of demand that customer ¢ € I receives from the kth-closest open facility, for
k=1,...,m. (Inthe example above, m = 3, b;; = 0.8, b;2 = 0.15, and b;5 = 0.05.) The



PROBLEMS 339

b;i, are inputs to the model; that is, the assignment fractions are known in advance. Assume
that, for a given 4, the b;; are nonincreasing in k.

a) Formulate this problem as an integer linear optimization problem. Use the
notation introduced in Section 8.2.2, with the following modification: y;; equals
1 if facility j serves customer ¢ as the kth closest, and O otherwise. If you
introduce any new notation, define it clearly. Explain the objective function and
each constraint in words.

b) If customer i is assigned to j; at level &y and jy at level ko for k1 < ks, then
we must have ¢;;, < ¢;5,. Explain why the model does not need a constraint
enforcing this condition.

¢) If we require y;;; > O rather than y;;; € {0,1}, as we did in the UFLP, does
there always exist an optimal solution in which these variables are binary, as there
is in the UFLP?

d) In your model from part (a), you should have a constraint that requires each
customer ¢ to be assigned to exactly one facility j at each proximity level k. Relax
this constraint via Lagrangian relaxation. Write the Lagrangian subproblem that
results. Explain how to solve this problem efficiently for fixed values of the
Lagrange multipliers. Your method must be exact (i.e., it must be guaranteed to
find the optimal solution) and self-contained (i.e., it may not rely on CPLEX or
another solver).

e) Bonus: Suppose the b;;; are not nonincreasing in k. Then the distance-ordering
property in part (c) may not hold unless we enforce it using constraints. Write
constraints to enforce this condition.

8.18 (Relaxing x Variables in UFLP) Prove or disprove the following claim: If we
constrain the y variables to be binary in the UFLP but allow the z variables to be continuous,
then there always exists an optimal solution to the resulting problem in which the z variables
are binary.

8.19 (Locating Paper Factories) A paper company needs to decide where to locate
paper factories in order to supply its five regional branches, which are located in Akron,
OH, Albany, NY, Nashua, NH, Scranton, PA, and Utica, NY. The Assistant to the Regional
Manager of the Scranton office has selected four potential locations for factories: Bethle-
hem, PA, Pittsburgh, PA, Rochester, NY, and Springfield, MA. Table 8.3 lists the annual
fixed costs and capacities at the four potential plant locations; the annual demand at each of
the regional branches; and the cost to produce and ship one case of paper from each plant
to each branch. Plant capacities and branch demands are expressed in cases per year.

Where should the company build its plants? Which plant(s) should each branch receive
paper from? What is the total cost of your solution? Solve the problem using the modeling
environment and solver of your choice.

8.20 (DUALOC #1) Figure 8.23 depicts an instance of the UFLP with three customers
(marked as circles) and three potential facility sites (marked as squares). Fixed costs f; are
marked next to each facility. Each customer has a demand of h; = 1, and transportation
costs are equal to the Manhattan-metric distance between the facility and customer.

Apply DUALOC’s dual-ascent procedure (Algorithm 8.4) to this instance. Report:

e The values of v; for all 7 € I and s; for all j € J at the end of the first complete
iteration, i.e., after looping through all the customers once.
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Table 8.3 Paper-company data for Problem 8.19.

Production + Shipping Costs
Bethlehem  Pittsburgh ~ Rochester  Springfield | Demand

Akron $2.20 $1.80 $2.70 $3.80 1,200,000
Albany $1.60 $3.20 $1.20 $0.60 1,150,000
Nasuha $3.20 $4.00 $2.50 $0.70 1,350,000
Scranton $0.80 $2.10 $1.40 $1.30 1,800,000
Utica $1.60 $2.40 $0.70 $1.50 900,000

Fixed Cost | $4,000,000 $7,500,000 $4,500,000 $5,200,000
Capacity 3,300,000 4,800,000 4,200,000 3,750,000
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Figure 8.23 UFLP instance for Problem 8.20. Distances use Manhattan metric.

e The final values of v, JT, ™, yT, and the dual and primal objective function
values.

e Whether the solution to this instance of the UFLP is (a) definitely optimal, (b)
definitely sub-optimal, or (c) you can’t tell.

8.21 (DUALOC #2) Repeat Problem 8.20 for the instance depicted in Figure 8.24.

8.22 (Warehouses for Quikflix) Quikflix is a mail-order DVD-rental company. You
choose which DVDs to rent on Quikflix’s web site, and the company mails the DVDs to
you. When you’ve finished watching the movies, you mail them back to Quikflix. Quikflix’s
business plan depends on fast shipping times (otherwise, customers will get impatient). But
overnight delivery services like FedEx are prohibitively expensive. Instead, Quikflix has
decided to open enough DCs so that roughly 90% of their customers enjoy 1-day delivery
times.

In this problem, you will formulate and solve a model to determine where Quikflix
should locate DCs to ensure that a desired percentage of the US population is within a
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Figure 8.24 UFLP instance for Problem 8.21. Distances use Manhattan metric.

1-day mailing range while minimizing the fixed cost to open the DCs. (You may assume
that the per-unit cost of processing and shipping DVDs is the same at every DC.)

a)

b)

Formulate the following problem as an integer programming problem: We are
given a set of cities, as well as the population of each city and the fixed cost to
open a DC in that city. The objective is to decide in which cities to locate DCs in
order to minimize the total fixed cost while also ensuring that at least « fraction
of the population is within a 1-day mailing range.

Define your notation clearly and indicate which items are parameters (inputs)
and which are decision variables. Explain each of your constraints in words.
Implement your model using a modeling language of your choice. Solve the
problem using the data set provided in quikf1lix.x1sx, which gives the locations
and populations of the 250 largest cities in the United States (according to the
2000 US Census), as well as the average annual fixed costs to open a DC in the
cities (which are fictitious). The file also contains the distance between each
pair of cities in the data set, in miles. Assume that two cities are within a 1-day
mailing radius if they are no more than 150 miles apart.

Using these data and a coverage percentage of o = 0.9, find the optimal
solution to the Quikflix DC location problem. Include a printout of your model
file (data not necessary) in your report. Report the total cost of your solution and
the total number of DCs open.

8.23 (Solving the Quikflix Problem) In Problem 8.22, you formulated an IP model
to solve Quikflix’s problem of locating DCs to ensure that a given fraction (a) of the
population is within a 1-day mailing range of its nearest DC. In this problem, you will
develop a method for solving this IP using Lagrangian relaxation.

The IP formulation for Problem 8.22 contains two sets of decision variables. We’ll
assume that the = variables represent location decisions, while the z variables indicate
whether or not a city is covered (i.e., is within a 1-day mailing radius of an open facility).
If you defined z as a continuous variable, make sure you have added a constraint requiring
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it to be less than or equal to 1. (This constraint is not strictly necessary since it is implied
by other constraints, but it strengthens the Lagrangian relaxation formulation.)

The IP formulation also has a set of constraints that allow city 7 to be covered only if
there is an open facility that is less than 150 miles away. If necessary, rewrite your model
so that those constraints are written as < constraints. Then relax those constraints, and let
A; be the Lagrange multiplier for the constraint corresponding to node ¢ € J, where J is
the set of cities.

a) Write out the Lagrangian subproblem that results from this relaxation.

b) The subproblem should decompose into two separate problems, one containing
only the x variables and one containing only the z variables. Write out these two
separate problems.

¢) Explain how to solve each of the two subproblems, the z-subproblem and the
z-subproblem. Your solution method may not rely on using the simplex method
or any other general-purpose LP or IP algorithm.

d) Suppose that the problem parameters and Lagrange multipliers are given by the
following values:

fi h; Ai

100 80 =50
100 120 =50
100 40 —40
100 90 —200

.

W =

Suppose also that « = 0.7 and that node 1 covers nodes 1, 2, 3; node 2 covers
nodes 1, 2, and 4; node 3 covers nodes 1 and 3; and node 4 covers nodes 2 and 4.

Determine the optimal values of = and z, as well as the optimal objective
value, for this iteration of the Lagrangian subproblem.

8.24 (UFLP with Enemy Customers) Suppose that, in the UFLP model, some pairs
of customers are “enemies” and cannot be served by the same facility. Let a;;, = 1 if
customers i, k € I (i # k) are enemies of each other, 0 otherwise. (a;j is a parameter.)
Assume that the enemy pairs don’t overlap: If ¢ and & are enemies of each other, then ¢ and
k aren’t enemies of any other customers.

a) Write one or more linear constraints that can be added to the UFLP to enforce the
condition that two customers may not be assigned to the same facility if they are
enemies of each other. If you introduce any new notation, define it clearly.

b) Suppose we add your constraints from part (a) to the UFLP and then relax
constraints (8.4) using Lagrangian relaxation, with Lagrange multipliers \;. Write
the resulting Lagrangian subproblem.

¢) Explain how to solve the Lagrangian subproblem you formulated in part (b) for
fixed values of A. Your solution method may not rely on using the simplex method
or any other general-purpose LP or IP algorithm.

d) Choose one option and briefly explain your reasoning: For every instance of the
UFLP with enemy constraints, the optimal objective function value will be [<,
<, =, >, >] the optimal objective function value of the corresponding instance
of the classical UFLP.
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e) Choose one option and briefly explain your reasoning: For every instance of the
UFLP with enemy constraints, the optimal number of open facilities will be [<,
<, =, >, 2] the optimal number of open facilities in the corresponding instance
of the classical UFLP.

8.25 (Locating Warehouses for Vandelay Industries) Vandelay Industries manufac-
tures latex products at several plants (whose locations must be chosen from among a set
of potential locations) and ships products to customers (whose locations and demands are
known). There is a fixed cost to open each plant, and each has a fixed production capacity.
For each unit of demand shipped to a given customer, Vandelay Industries earns a certain
amount of revenue. However, the company may choose to satisfy only a part of a given
customer’s demand, or not to satisfy its demand at all (for example, if it is too expensive to
ship to that customer). The only penalty for failing to serve a customer is the lost revenue.
In order to ensure adequate service to customers spread throughout the country, Vandelay
Industries also wishes to ensure that no two plants are located less than a certain distance
apart.
The company’s objective is to maximize the total profit, accounting for the revenue from
serving customers and the costs of opening facilities and shipping goods to customers.
Formulate this problem as a linear mixed-integer optimization problem (MIP). In addi-
tion to the notation in Sections 8.2.2 and 8.3.1, please use the following notation. If you
use any additional notation, define it clearly.

cjr = distance (miles) between plant j € J and plant k € J
Cmin = minimum allowable distance (miles) between two open plants

8.26 (Locating Snack Bars) You have been hired as a consultant for a new theme park
to help choose locations for the park’s snack bars (restaurants). The park has been divided
into sectors, each representing a small area of land. The management team has forecast the
number of people that are expected to be in each sector at any point in time.

Let I be the set of sectors and let .J be the set of possible locations for the snack bars.
The set .J is a subset of I because each possible snack bar location is also a sector. Let h;
be the number of people located in sector ¢, for ¢ € I. (Of course, h; is just an estimate,
because this number will constantly be changing, but we’ll treat it as though the number of
people in sector 7 is static and deterministic.) Let ¢;; be the number of minutes it takes to
walk from sector ¢ to sector j.

The management team has decided there will be four snack bars in the theme park.
The snack bars are to be located so as to maximize the number of people that are within a
5-minute walk of a snack bar. Let a;; equal 1 if sector j is within a 5-minute walk of sector

7; that is,
1, ift; <5
aij = .
0, otherwise

Let x; equal 1 if we locate a snack bar in sector j and O otherwise (j € J). Let z; equal 1
if sector ¢ is within a 5-minute walk of a snack bar (z € I).
a) Formulate this problem as a linear mixed-integer optimization problem (MIP). If
you use any new notation, define it clearly. Explain your constraints in words.
b) Suppose that the management team wants instead to maximize the number of
customers covered by at least two snack bars. We can redefine z; to equal 1 if
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c)

d)

sector 7 is covered by at least two open snack bars. Explain how to modify your
model from part (a) to enforce this new requirement. Clearly define any new
notation you introduce and explain your new constraint(s) in words.

Return to the original formulation—assume again that a customer is “covered”
if there is one open snack bar within 5 minutes. Suppose now the management
team also wants to ensure that the average distance traveled by a customer to
his or her closest snack bar is no more than 6 minutes. (The average is taken
across all customers.) That is, we want to maximize the number of customers
within 5 minutes of a snack bar, but we also want to ensure that the average time
for all customers is no more than 6 minutes. Revise the model to include this
requirement. Clearly define any new notation you introduce and explain any new
constraints in words.

Continuing with the model in part (c), suppose that the management wants to
require that the average distance traveled by a customer to his or her second-
closest snack bar is no more than 6 minutes. Explain how to modify your model
from part (c) to include this requirement. Clearly define any new notation you
introduce and explain any new constraints in words.

8.27 (Locating RFID Readers) The theme park from Problem 8.26 issues bands to all of
the visitors to the park. The bands are worn on the wrist, and they contain RFID chips that
allow the park to identify visitors, without paper tickets, barcodes, etc. The RFID chips are
“read” by RFID readers that are located throughout the park—at the park entrance, near the
entrances to rides, and so on. RFID is wireless, and each RFID reader can detect RFID chips
that are within a certain radius. In fact, there are two types of RFID readers—short-range
and long-range—and the wrist bands contain both types of RFID chips. Some locations
within the park must be covered by a short-range reader, some by a long-range reader, and
some by both.
Two technical constraints restrict the locations of the readers:

1. Short- and long-range readers cannot be placed at the same location.

2. No location can be covered by more than four readers, total (including both types).

Park planners want to locate RFID readers throughout the park to cover all of the
necessary sites with the reader types required, at minimum possible cost, while satisfying
the technical constraints.

a)

b)

Let I be a set of nodes representing locations in the park that must be covered
by an RFID reader. (We’ll call these “demand nodes.”) Let J be a set of nodes
representing potential sites for the readers. Let £k = 1,2 be the two types of
readers (1 = short-range, 2 = long-range). Let r;; be a parameter (an input) that
equals 1 if demand node 7 € I must be covered by a reader of type k. Let f;;, be
the fixed cost to locate a type-k reader at location j € J. Let z;; be a decision
variable that equals 1 if we locate a reader of type k at location j € J.

Using this notation, formulate the problem as a linear integer optimization
model. Explain the objective function and the constraints in words. If you
introduce any new notation, define it clearly.

Now suppose the theme park’s engineers have found a way to locate a short-range
and a long-range RFID reader in the same location j € J, but due to the expense
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involved in doing so, planners wish to have at most two locations that have both
types of readers. Write one or more linear constraints to enforce this restriction.

8.28 (Locating Compost Sites) The city of Greentown is planning to open several
composting facilities, which will convert organic matter (kitchen waste, leaves, yard waste,
shredded paper, etc.) into fertilizer instead of sending it to landfills. While the population
of Greentown agrees that this is a good idea, nobody wants a new compost site too close to
their homes, due to the noise, smell, and truck traffic to and from the site. The city’s mayor
has hired you to develop a model to choose locations for the new compost facilities.

The population of the city has been aggregated into a set I of neighborhoods, each
with population h;. City planners have identified a set J of potential sites for the compost
facilities. The distance between neighborhood ¢ and site j is given by c;; miles. The city
wishes to locate p compost sites in order to maximize the minimum distance between a
neighborhood and its nearest open compost facility.

Define the following decision variables:

{1, if we locate a compost facility at site j,
T =

0, otherwise

1, if site j is the nearest open compost facility to neighborhood i,
Yij = .
“ 0, otherwise

a) Formulate this problem as a linear integer optimization model. Explain the objec-
tive function and constraints in words as well as formulating them in mathematical
notation. If you introduce any new notation (sets, parameters, decision variables),
define it clearly.

b) Now suppose that, instead of maximizing the minimum distance between a neigh-
borhood and its nearest open facility, the mayor wants to maximize the shortest
distance between any two open compost facilities. Note that this objective func-
tion focuses only on the distances among compost facilities and ignores distances
between facilities and neighborhoods.

Formulate this modified problem as a linear integer optimization model. Ex-
plain the objective function and new constraints in words. If you introduce any
new notation, define it clearly.

8.29 (Convex Hulls are Nonoverlapping) Consider a facility location instance with
nodes in R? and Euclidean distances. Suppose we open a set J' C J of facilities and assign
each customer in I to the nearest open facility. Recall that the neighborhood of an open
facility j is N; = {¢ € I|y;j=1}. Prove that the convex hulls of the neighborhoods of the
open facilities do not overlap.

8.30 (LR Iteration for UFLP) The file LR-UFLP.x1sx contains data for a 50-node
instance of the UFLP, as well as the Lagrange multipliers for a single iteration of the
Lagrangian relaxation algorithm described in Section 8.2.3. For each facility 7 € J,
column B lists the fixed cost f;. For each customer ¢ € I, row 2 lists the demand h; and
row 3 lists the Lagrange multiplier \;. Finally, the cells in the range C6:AZ55 contain the
matrix of transportation costs c;;.
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a) For each j € J, calculate the benefit 3;, the optimal value of x, and the optimal
objective value of (UFLP-LR)). The worksheet labeled “solution” contains
spaces to list 3; (column B), z; (column C), and the objective value (cell C5).

Hint: To double-check your calculations, we’ll tell you thatif : = 6 and j = 3,
then hicij - )‘z = 12422.34.

b) Using the method described in Section 8.2.3.4, generate a feasible solution to the
UFLP. In row 2 of the “solution” worksheet, list the index of the facility that
each customer is assigned to in your solution. In cell C6, list the objective value
of your solution.

8.31 (Maxisum Location Problem) Consider the following problem: We must locate
exactly p facilities, for fixed p. The objective is to maximize the sum of the demand-
weighted distances between each customer and its nearest facility. Formulate this problem
as an IP. Define any new notation clearly. Explain the objective function and each of the
constraints in words.

8.32 (Supplier-Facility Capacities) Consider the following extension of the UFLP: We
are given a set K of suppliers whose locations are fixed. Each supplier £ € K can ship
at most by, units to facility j € J. This is like a capacity constraint, but it is (supplier,
facility)-specific rather than the facility-specific capacities discussed in Section 8.3.1. Such
constraints might arise from, say, the capacity of the truck transporting goods from k£ to
j. Let djj, be the cost to transport one unit of demand from supplier £ € K to facility
j € J, and let z;;, be a decision variable representing the number of units transported from
k to j. Note that z;;, is a flow-type variable (z;, > 0), whereas y;; is a fractional variable
(0 < y;; < 1). Multiple-sourcing is allowed; that is, facility 7 may receive shipments
from more than one supplier k. In addition to the notation just defined, use the notation in
Section 8.2.2. If you need to define any additional notation, define it clearly.

a) Formulate this extension of the UFLP as a linear mixed-integer optimization
problem. Explain the objective function and each constraint clearly in words.

b) In Section 8.2.3, we solved the UFLP by relaxing the “assignment” constraints
that require each customer to be assigned to exactly 1 facility. Write the objective
function of the Lagrangian subproblem that results from relaxing the analogous
constraint in your model from part (a).

¢) Consider the special case in which h; = h for all ¢ € I, i.e., all of the customers
have the same demand, and b, is an integer multiple of & for all j, k. Explain
how to solve the Lagrangian subproblem from part (b) for this special case. Your
method must be exact (i.e., it must be guaranteed to find the optimal solution) and
self-contained (i.e., it may not rely on a general-purpose optimization solver).

d) Describe a method that, given a feasible solution to the Lagrangian subproblem,
produces a feasible solution for the original problem.

8.33  (Salt Stockpiles) You are the director of your local Department of Transportation.
You have decided to build silos to stockpile the salt the department uses on roadways during
winter weather. A stockpile is considered to cover a town if they are within r miles of each
other. Your job is to determine where to locate up to p stockpiles to maximize the total
population of the towns that are double-covered, i.e., covered by at least two stockpiles.
Local planners have provided you with the population of each town that you would like to
be covered.
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a) Formulate this problem as an integer programming problem. Define any new
notation clearly.

b) Now suppose that the two stockpiles that double-cover a given town must be at
least s miles from each other. (Two stockpiles may be located less than s miles
from each other, but a given town doesn’t count as double-covered unless there
are two stockpiles that cover it and that are at least s miles apart.) Formulate the
new model, and define any new notation clearly.

8.34 (Pre-Positioning Disaster Relief Shelters) A disaster relief agency plans to estab-
lish shelters in preparation for a hurricane that has been forecast for the coming days. The
agency wishes to choose shelters from a set J of potential locations in order to cover every
population center in the set I. A shelter covers a population center if it is within r miles
of it. As in the set covering and maximal covering models, we define the parameter a;; to
equal 1 if a shelter at site 7 € J covers population center ¢ € I.

If we locate a shelter at site j, we incur a fixed cost of f;, as well as an “assignment
cost” of w; for each population center assigned to the shelter at j (regardless of the size of
these population centers). For example, if shelter j serves 12 population centers, then we
pay an assignment cost of 12w;.

Define the following decision variables:

1, if we locate a shelter at site j
T =
’ 0, otherwise

1, if a shelter at site j serves population center ¢
Yij = .
0, otherwise

a) Formulate this problem as a linear integer optimization problem. If you introduce
any new notation, define it clearly. Briefly explain your objective function and
constraints.

b) In part (a), the assignment cost is a linear function of the number of population
centers assigned to each shelter: It equals w;n, where n is the number of popula-
tion centers assigned to j. Suppose instead that the assignment cost is a nonlinear
function g;(n), where n is the number of population centers assigned to j. Define
the following decision variables:

1, if exactly n population centers are assigned to a shelter at j
Zin =
" 0, otherwise

Formulate this problem as a linear integer programming problem. Define any
new notation clearly, and explain the objective function and any new constraints.

8.35 (Stochastic Pre-Positioning) A humanitarian relief agency wishes to pre-position
stockpiles of emergency supplies (food, water, blankets, medicine, etc.) for use in the
aftermath of disasters. Its objective is to locate the smallest possible number of stockpiles
while ensuring a low probability that, for each population center, a disaster strikes and the
population center cannot be served by any stockpile. Whether a given stockpile can serve
a given population center depends on their physical distance as well as on the disaster that
strikes.
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Disasters are represented by scenarios. A scenario can be thought of as a disaster type,
magnitude, and location (e.g., magnitude 7.5 earthquake in city A, influenza pandemic in
city B, etc.). However, mathematically each scenario simply specifies whether a given
population center can be served by a given stockpile during a given disaster.

Let I be the set of population centers, and let .J be the set of potential stockpile locations.
Let S be the set of scenarios (including the scenario in which no disaster occurs), and let g;
be the probability that scenario s occurs. Stockpile j is said to “cover” population center %
in scenario s if either stockpile j can serve population center ¢ in scenario s or population
center ¢ does not need disaster relief in scenario s. Let a;j, be a parameter that equals
1 if stockpile 7 covers population center ¢ in scenario s, and O otherwise. Assume each
stockpile is sufficiently large to serve the needs of the entire population it covers.

Formulate a linear integer programming problem that chooses where to locate stockpiles
in order to minimize the total number of stockpiles located while ensuring that, for each
1 € I, the probability that 7 is not covered by any open stockpile is less than or equal to o,
for given 0 < o < 1. Clearly define any new notation you introduce. Explain the objective
function and all constraints in words.

8.36  (Error Bias) Suppose the transportation costs are estimated badly in the UFLP. It
is natural to expect that the true cost of the solution found under the erroneous data has
an equal probability of being larger or smaller than the cost calculated when solving the
problem. Test this hypothesis by solving the instance given in random-errors.x1lsx 100
times, each time perturbing the transportation costs by multiplying them by U[0.75, 1.25]
random variates. For each instance generated this way, record the objective function value,
as well as the objective function of the same solution when the correct costs are used. If the
hypothesis is correct, the objective function should be less than the true cost for roughly
half of the instances and greater for the other half. Do your results confirm the hypothesis?
In a few sentences, explain your results, and why they occurred. Also comment on the
implications your results have for the importance of having accurate data when choosing
facility locations.

8.37 (1-Center on a Tree) Consider the 1-center problem on a tree network in which
all of the demands are 1. Prove that the Algorithm 8.10 finds the optimal solution to both
the absolute and the vertex 1-center problem. (Recall from Section 8.4.3 that the absolute
p-center problem allows facilities to be located on either the edges or the nodes of the
network, whereas the vertex p-center problem restricts facilities to the nodes.)

Algorithm 8.10 1-Center on a tree
1: v; < any point on the tree
2: vy < node that is farthest from v
3: v3 < node that is farthest from vq
4: absolute 1-center is at the midpoint of the (unique) path from vy to vs; vertex 1-center
is at the vertex of the tree that is closest to the absolute 1-center

8.38 (2-Center on a Tree) Prove that Algorithm 8.11 finds the optimal solution to the
absolute 2-center problem.

8.39 (IN-Echelon Location Problem) By extending the approach used in Section 8.7.1,
formulate a facility location model with IV echelons, for general N > 3. Echelon N ships
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Algorithm 8.11 2-Center on a tree
1: using Algorithm 8.10, find the absolute 1-center of the tree
2: delete from the tree the link containing the absolute 1-center. (If the absolute 1-center
is on a vertex, delete one of the links incident to the center on the path from v to vs.)
This divides the tree into two disconnected subtrees
3: use Algorithm 8.10 to find the absolute 1-center of each of the subtrees; these constitute
a solution to the absolute 2-center problem

products to echelon N — 1, which ships products to echelon N — 2, and so on; echelon
1 serves the end customer. The locations of the facilities in echelons 2, ..., N are to be
decided by the model, and there are fixed costs for each. Define any new notation clearly.
Explain the objective function and each of the constraints in words. Note: No decision
variables should have more than 3 indices.

8.40 (UFLP Duality Gap) Prove Lemma 8.4.

8.41 (Another Relaxation for the pMP) Suppose that we use Lagrangian relaxation to
relax constraint 8.72 in the pMP. Write the resulting Lagrangian subproblem. This problem
is structurally identical to another problem discussed in this chapter; what is it? Briefly
summarize the advantages and disadvantages of this relaxation compared to the relaxation
discussed in Section 8.3.2.2: Which subproblem is harder to solve? Which approach will
give a tighter bound? For which approach will the subgradient optimization procedure
converge more quickly?

8.42 (Tightening the CFLP Relaxation) Suppose we add the following constraint to

the CFLP:
> wiwg =Y hi (8.152)
jeJ i€l
Explain in words what this constraint says. Explain why this constraint is redundant for
the CFLP (adding it does not change the optimal solution for the CFLP) and why adding it
tightens the Lagrangian relaxation discussed in Section 8.3.1. Finally, explain how to solve
the Lagrangian subproblem when constraint (8.152) is included in the model.

8.43 (Variable-Splitting Method for CFLP) In this problem, you will develop a
variable-splitting method for the CFLP. Variable splitting (also known as Lagrangian
decomposition) is a method that involves duplicating one or more sets of variables, adding
a constraint that requires those variables to be equal to their duplicates, and then relaxing
that constraint using Lagrangian relaxation. (See Guignard and Kim (1987).)
a) Introduce new decision variables w;; for i € I, j € J. Rewrite the objective
function as

minimize ij(ﬂj +ﬁZthC”y” + (]. —ﬂ)ZZhiCij’wij,
jeJ el jeJ i€l jeJ

where 0 < 8 < 1 is a constant. Rewrite constraints (8.55) using w instead of
y. Add the following new constraints, which require w and y to be equal, and
require w to be nonnegative:

Wij = Yij VieIVjeJ (8.153)
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wi; >0 VieIYjeJ (8.154)

Write the resulting problem. This problem is equivalent to (CFLP).

b) Relax constraints (8.153) using Lagrangian relaxation. Write the resulting sub-
problem.

¢) Explain how to solve the subproblem from part (b).

d) Based on your intuition, will this relaxation provide a tighter, weaker, or equiva-
lent bound to the relaxation discussed in Section 8.3.1?

8.44 (Accuracy of Spherical Law of Cosines Formula) Calculate the distances between
every pair of nodes in the 88-node data set (88node.x1sx) using both the great circle
distance formula (8.1) and the spherical law of cosines formula (8.2). Compare the results.
Are there any cases for which the two formulas produce distances that differ by more than
a mile or so? If so, what characterizes those cases?

8.45 (Swap vs. Neighborhood Search for p-Median) Implement the swap and neigh-
borhood search heuristics for the pMP (Algorithms 8.7 and 8.8). Conduct a numerical
experiment to compare the effectiveness (as measured by objective function value) and
efficiency (as measured by CPU time) of these two heuristics. Your experiment should use
randomly generated p-median instances with at least 100 nodes.

8.46 (Hakimi Property for SCLP) Does the Hakimi property hold for the set covering
problem? Explain your answer.

8.47 (Proof of Lemma 8.8) Prove Lemma 8.8.

8.48 (Solving the pCP using the MCLP) Algorithm 8.9 relies on the relationship
between the pCP and the SCLP stated in Lemma 8.8. A similar relationship exists between
the pCP and the MCLP.
a) State a lemma similar to Lemma 8.8 that describes this relationship.
b) Write pseudocode similar to Algorithm 8.9 for an exact algorithm that solves the
pCP by iteratively solving MCLPs.

8.49 (The MCLP with Mandatory Closeness Constraints) The MCLP with mandatory
closeness constraints is identical to the MCLP except that it also requires every customer
to be covered within a distance of s, with s > r. That is, we wish to maximize the number
of demands that are covered within r, but every customer must be covered within s. Write
an integer programming formulation for this problem. If you introduce any new notation,
define it clearly. Explain the objective function and each constraint in words.

8.50 (MCLP is a Special Case of pMP) Show that the MCLP is a special case of the
pMP by showing how to set the parameters of the pMP so that solving it is equivalent to
solving the MCLP.

8.51 (A Dynamic Location Problem) Consider a dynamic facility location problem in
which the demands over a finite time horizon are known but change in each time period:
h;t is the demand at node ¢ € I in period ¢, where t = 1,...,7T. We can open and close as
many facilities as we like in each time period. Facility j € J incurs a fixed cost of f jt if
it is opened in period ¢ (but was closed in period ¢ — 1), a fixed cost of fﬁ if it is closed in
period ¢ (but was open in period ¢ — 1), and a fixed cost of f;; if it remains open in period
t (that is, if it was also open in period ¢ — 1). Assume that no facilities are open at the
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start of the horizon, that is, in period 0. The transportation cost from facility j to customer
1 in period ¢ is given by c¢;;;. Formulate an integer programming model to optimize the
locations of facilities over the time horizon to minimize the total fixed and transportation
costs. If you introduce any new notation, define it clearly. Explain your objective function
and constraints in words.

8.52 (MCLP Modifications) Modify the MCLP to accommodate each of the changes
described below (one at a time). For each modification, change either the objective function
or exactly one constraint to reflect the modification. Indicate the number of the equation
(objective function or constraint) you are changing.
a) We wish to maximize the total number of nodes covered, not the total population
covered.
b) Each facility j has a fixed construction cost of f;. Rather than restricting the
number of facilities to equal p, restrict the total amount spent to construct facilities
to a budget of b.
¢) A demand node only counts as covered if there are two facilities within the
coverage radius.

8.53 (Subproblem Assignments) Prove that, if customer ¢ is assigned to at least one
facility in the optimal solution to (UFLP-LR ), then one of the facilities it is assigned to is
the nearest open facility. (This implies that in step 4 of Algorithm 8.2, it suffices to check
only those j such that y;; = 1 in the optimal solution to (UFLP-LR}).)

8.54 (Location of Power Generators) Consider the problem of locating generators
within an electricity network.

a) First consider a single generator. Suppose the generator’s load (i.e., the total
demand for electricity from the generator) is given by D ~ N (u,0?), where D
is measured in kilowatt-hours (kWh). The cost to generate enough electricity to
meet a load of d kWh is given by %ydz, where v > 0 is a constant. Prove that
the expected generation cost is given by %V(MQ +0?).

b) Now consider an electricity network consisting of multiple generators, whose
locations we need to choose. Let I be the set of loads (demand nodes), with
load i having a daily demand distributed N (11;, 07). Let J be the set of potential
generators. The daily fixed cost if generator j is open s f;, and the generation cost
coefficient for j is ;. Formulate the problem of choosing generator locations and
assigning loads to generators in order to minimize the expected daily cost of the
system. Assume that, once location and assignment decisions are made, the power
network for a given generator and its loads is disconnected from the remaining
generators and loads (so that the physics of power flows can be ignored). Also
assume that the cost to transmit power is negligible.

8.55 (Stochastic Location for Toy Stores) Return to Problem 8.1, and suppose now that
the demands are stochastic. The file toy-stores-stochastic.xlsx gives the demands
for five scenarios, as well as the probability that each scenario occurs.
a) Implement the stochastic fixed-charge location problem in a modeling language
of your choice. Find the optimal solution for the instance given in the data set.
Report the optimal set of facilities and the corresponding cost.
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b) Now implement and solve the minimax fixed-charge location problem. Report
the optimal set of facilities and the corresponding cost.

8.56 (Minimax Cost # Minimax Regret) Construct a small example of the minimax
fixed-charge location problem (MFLP) in which minimizing the maximum cost results in
an optimal solution that is different from the solution that minimizes the maximum regret.
(You may choose either relative or absolute regret.) Your instance may have at most five
nodes.

8.57 (Side Constraints for Arc Design) Formulate each side constraint listed below for
the arc design model in Section 8.7.2.2. Your constraints must be linear. If you introduce
any new notation, define it clearly.
a) We have aset P C F x F of ordered pairs of arcs such that, for (e, es) € P, if
arc e; is opened, then arc e must be opened.
b) We have a set of E/ C E of arcs such that at most r arcs in £’ may be opened.
¢) We have a set of £’ C E of arcs such that at least 7 arcs in £/ must be opened.
d) We have an upper bound B on the transportation cost that may be spent shipping
on a subset £/ C E of the arcs.

8.58 (Modified Hungary Network) Consider the Hungary instance of the arc design
problem shown in Figure 8.20. The file hungary2.x1sx contains a modification of the
instance described in Example 8.11. It lists the latitude and longitude of each node, the
available units for each node and product, and the fixed cost and capacity for each arc. The
variable cost is 1 for every arc and product. Formulate the arc design model in a modeling
language of your choice, and solve this instance. Report the optimal arcs to open, the
optimal flows, and the optimal total cost.

8.59 (Campaign Offices) A candidate for a national political position wishes to establish
campaign offices and decide how much money to spend on campaign activities at those
offices. The candidate’s staff has identified a set J of potential locations for campaign
offices (facilities) and a set I of neighborhoods (demand nodes) that they wish to “cover”
using these offices. Let a;; be a parameter that equals 1 if office location j € J covers
neighborhood ¢ € I, and O otherwise. Neighborhood ¢ € I has h; registered voters living
in it. Opening an office at location j € J incurs a fixed cost of f;.

In addition to choosing where to locate offices, the candidate’s staff needs to determine
how much money to spend on campaign activities (get-out-the-vote, marketing, etc.) at
each office. They can only perform campaign activities at offices that they have chosen to
open. Staffers have estimated that each $1 spent on these activities will earn the candidate
exactly one extra vote.

For example: Suppose the candidate opens an office at location j € J, and location j
covers 1000 registered voters. If the campaign spends $1000 on campaign activities (not
including the fixed cost f;), the candidate will earn all of their votes; if it spends $500,
the candidate will earn half of their votes; and if it spends $0, the candidate will earn none
of their votes. Note that there is no advantage to spending more than $1000 on campaign
activities in this example. There is also no advantage to opening an office at j if we spend
$0 since the candidate will not earn any votes.

If a neighborhood is covered by more than one open campaign office, its votes can only
be earned once. Therefore, only one office should direct its campaign activities at that
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neighborhood. Your model should choose which of the open offices should “serve” each
customer.

The candidate’s objective is to maximize the number of votes earned. The campaign
has a total budget of $B to spend on borh fixed costs and campaign activities.

Define the following decision variables:

z; =1, if we open a campaign office at location j € J, 0 otherwise
w; = the number of dollars we spend on campaign activities at office j € J

Formulate this problem as an integer linear optimization problem. If you introduce any new
notation, define it clearly. Explain your objective function and each constraint in words.

8.60 (Exchange Rate Hedging) An automobile manufacturer wishes to decide where to
locate factories around the world in order to account for random fluctuations in currency
exchange rates. The company will change the production levels at the various factories
to take advantage of changes in the exchange rates. Exchange rates are expressed as «
$/11, where $ stands for US dollars (USD) and & stands for the local currency in the other
country. For example, if the exchange rate between the United States and Thailand is
o = 0.028 $/B, then 1 Thai baht is worth US$0.028.

The manufacturer is considering a set J of potential locations for the factories, which
will ship automobiles directly to the customers in a set I. Customer ¢ € I has a demand of
h; units per year. We have the following costs:

e Building afactory atsite j € J incurs a fixed annual cost of § f;, which is deterministic
and expressed in USD.

e The cost to produce one automobile at factory j € J is b, which is deterministic
and expressed in the local currency of the country in which factory j is located.

e The cost to ship one automobile from factory j € J to customer i € I is $c;;, which

is deterministic and expressed in USD.

The factories have effectively unlimited capacity.

Once the factories are built, the random exchange rates are realized, and the company
then decides how much to produce at each factory, as well as how much to ship from each
factory to each customer. The exchange rates are described by a set .S of scenarios, such
that o, is the exchange rate (in $/1) in scenario s for the country in which facility j € J
is located. Let g5 be the probability that scenario s occurs.

Let x; equal 1 if we open a factory at site j € J, 0 otherwise. Let y;;s equal the number
of automobiles to be shipped from a factory at site j € J to customer ¢ € [ in scenario
s € S. These are our decision variables. You may treat y;;, as a continuous variable.

a) Formulate a stochastic optimization problem that minimizes the total expected
annual cost of locating facilities and producing and transporting automobiles. If
you introduce any new notation, define it clearly. Explain your objective function
and each constraint in words.

b) Suppose we allow y; ;s to be continuous and nonnegative. If the demands h; are
expressed as integers, will there necessarily exist an optimal solution in which
the y;;, are integers? Why or why not?

¢) Suppose that, instead of minimizing the total expected cost, the company wishes
to minimize the maximum absolute regret that can occur, across all exchange
rate scenarios. Formulate this new problem. If you introduce any new notation,
define it clearly.



CHAPTER 9

SUPPLY UNCERTAINTY

9.1 INTRODUCTION TO SUPPLY UNCERTAINTY

Supply chains are subject to many types of uncertainty, and many approaches have been
proposed for modeling uncertainty in the supply chain. So far in this book, we have
primarily considered uncertainty in demand. In this chapter, we study models that consider
uncertainty in supply; in other words, what happens when a firm’s suppliers, or the firm’s
own facilities, are unreliable.

Supply uncertainty may take a number of forms. These include:

e Disruptions. A disruption interrupts the supply of goods at some stage in the supply
chain. Disruptions tend to be binary events—either there’s a disruption or there isn’t.
During a disruption, there’s generally no supply available. Disruptions may be due
to bad weather, natural disasters, strikes, suppliers going out of business, etc.

e Yield Uncertainty. Sometimes the quantity that a supplier can provide falls short of
the amount ordered; the amount actually supplied is random. This is called yield
uncertainty. It can be the result of product defects, or of batch processes in which
only a certain percentage of a given batch (the yield) is usable.

e Capacity Uncertainty. Uncertainty in the quantity that a supplier can provide.
Whereas yield uncertainty is typically dependent on the order quantity (e.g., we
order S units, but only a portion of them are usable), capacity uncertainty usually as-
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