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2.1 Introducciom

La observacién de un fenémeno es en general incompleta a menos que dé lugar
a una informacién cuantitativa. Para obtener dicha informaciéon se requiere la
medicién de una propiedad fisica, y asi la medicion constituye una buena parte
de la rutina diaria del fisico experimental. Lord Kelvin sefialé que nuestro cono-
cimiento es satisfactorio solamente cuando lo podemos expresar mediante ni-
meros. Aunque esta afirmacion es quizds exagerada, expresa una filosofia que
un fisico debe tener en mente todo el tiempo en sus investigaciones. Pero como
indicamos en el capitulo 1, la expresién de una propiedad fisica en términos de
nimeros requiere no solamente que utilicemos las matematicas para mostrar las
relaciones entre las diferentes cantidades, sino también tener el conocimiento
para operar con estas relaciones. Esta es la razon por la cual la matematica es
el lenguaje de la fisica y sin matematicas es imposible comprender el fenémeno
fisico, tanto desde un punto de vista experimental como teérico. La matematica
es la herramienta del fisico; debe ser manipulada con destreza y cabalidad de
modo que su uso ayude a comprender en lugar de oscurecer su trabajo.

En este capitulo no solamente definiremos las unidades necesarias para expre-
sar los resultados de una medicion, sino también discutiremos algunos
topicos (todos los cuales son importantes) que apareceran continuamente en el
texto. Estos son: densidad, 4ngulo en un plano, angulo sélido, cifras significativas
y el proceso del analisis de los datos experimentales.

2.2 Mediciones

La medicién es una técnica por medio de la cual asignamos un numero a una
propiedad fisica, como resultado de una comparacion de dicha propiedad con
otra similar tomada como patron, la cual se ha adoptado como unidad. La mayor
parte de las mediciones realizadas en el laboratorio se reducen esencialmente a
la mediciéon de una longitud. Utilizando esta medicién (y ciertas convenciones
expresadas por formulas), obtenemos la cantidad deseada. Cuando el fisico mide
algo debe tener gran cuidado de modo de producir una perturbacién minima
del sistema que est4 bajo observacion. Por ejemplo, cuando medimos la tempe-
ratura de un cuerpo, lo ponemos en contacto con un termémetro. Pero cuando
los ponemos juntos, algo de energia o “calor” se intercambia entre el cuerpo y
el termometro, dando por resultado un pequefio cambio en la temperatura del
cuerpo, afectando asi la misma cantidad que deseabamos medir. Ademas todas
las medidas son afectadas en algin grado por el error experimental debido a las
imperfecciones inevitables del instrumento de medida, o las limitaciones im-
puestas por nuestros sentidos (vision y audicién) que deben registrar la informa-
cion. Por lo tanto, cuando un fisico disefia su técnica de medicién procura que
la perturbacién de la cantidad a medirse sea mas pequefa que su error experi-
mental. En general esto es siempre posible cuando medimos cantidades en el
campo macroscopico (es decir, en cuerpos compuestos de un gran numero de
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moléculas), ya que entonces lo que tenemos que hacer es usar un instrumento
de mediciéon que produzca una perturbacién mas pequena, en varios érdenes de
magnitud, que la cantidad a medirse. Asi cualquiera que sea la perturbacion
producida, ésta es despreciable comparada con el error experimental. En otros
casos la perturbacion puede ser calculada y el valor medido corregido.

La situacion, sin embargo, es muy diferente cuando estamos midiendo propie-
dades atémicas individuales, tales como el movimiento de un electrén. Ahora
no tenemos la opcion de usar un instrumento de medida que produzca una per-
turbacién més pequena que la cantidad a medirse ya que no poseemos un dis-
positivo tan pequefio. La perturbacién introducida es del mismo orden de mag-
nitud que la cantidad a medirse y puede aun no ser posible estimarse su valor
o darse cuenta de él. Por lo tanto debe hacerse una distincién entre las medi-
ciones de cantidades macroscopicas y de cantidades microscopicas. Es necesario
formular una estructura teérica especial cuando tratamos con cantidades atémi-
cas. Dicha técnica no se discutird en este momento; se denomina mecdnica
cudntica.

Otro requisito importante es que las definiciones de las cantidades fisicas deben
ser operacionales, en el sentido que deben indicar explicitamente o implicitamente
como medir la cantidad definida. Por ejemplo, decir que la velocidad es una
expresion de la rapidez de un cuerpo en movimiento no es una definicion opera-
cional de velocidad, pero decir que velocidad es la distancia desplazada dividida
entre el tiempo es una definicién operacional de velocidad.

2.3 Cantidades fundamentales y unidades

Antes de efectuar una medicién, debemos seleccionar una unidad para cada
cantidad a medirse. Para propésitos de medicion, hay cantidades fundamentales
y derivadas, y unidades. El fisico reconoce cuatro cantidades fundamentales inde-
pendientes: longitud, masa, tiempo y carga.*

La longitud es un concepto primario y es una nocién que todos adquirimos
naturalmente; es inutil intentar dar una definicion de ella. De igual manera lo
es el tiempo. La masa y la carga sin embargo, no son de un caracter tan intuitivo.
El concepto de masa se analizard en detalle en los capitulos 7 y 13. Diremos
ahora solamente que la masa es un coeficiente, caracteristico de cada particula
que determina su comportamiento cuando interactia con otras particulas asi
como la intensidad de sus interacciones gravitacionales.

Similarmente, la carga, concepto que se discutird en detalle en el capitulo 14,
es otro coeficiente, caracteristico de cada particula, que determina la intensidad
de su interaccion electromagnética con otras particulas. Pueden existir otros
coeficientes que caractericen otras interacciones entre particulas, pero hasta el

* Con esto no queremos decir que no hay otras cantidades “fundamentales” en fisica ; sin em-
bargo, las otras cantidades son tales que puede expresarse como una combinaciéon de estas
cuatro, o no requieren una unidad especial para su expresion,
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Fig. 2-1. DBalanza de brazos iguales para comparar las masas de dos cuerpos.

momento no han sido identificados, y en el presente no parece requerirse de can-
tidades fundamentales adicionales.

La masa puede definirse operacionalmente utilizando el principio de la balanza
de brazos iguales (Fig. 2-1); esto es, una balanza simétrica soportada en su cen-
tro 0. Se dice que dos cuerpos C y C’ tienen masas iguales cuando, colocado un
cuerpo en cada platillo, la balanza permanece en equilibrio. Experimentalmente
se verifica que si la balanza se halla en equilibrio en un lugar de la tierra, per-
manece en equilibrio cuando se le coloca en cualquier otro lugar. Entonces la
igualdad de las masas es una propiedad de los cuerpos independiente del lugar
donde se comparen. Si C’ esta constituido por varias unidades patron, la masa
de C puede obtenerse como un miultiplo de la masa patréon. La masa asi obtenida
es realmente la masa gravitatoria (capitulo 13). Pero en el capitulo 7 veremos
un método para comparar dindmicamente las masas. La masa obtenida dinami-
camente se denomina masa inercial. Como se discutira en el capitulo 13 no se ha
encontrado ninguna diferencia entre los dos métodos de mediciéon de masa.

Con unas pocas excepciones, todas las cantidades usadas hasta ahora en fisica
pueden relacionarse a estas cuatro cantidades por sus definiciones, expresadas
como relaciones matematicas involucrando longitud, masa, tiempo y carga. Las
unidades de todas estas cantidades derivadas son a su vez expresadas en funcién
de las unidades de las cuatro cantidades fundamentales mediante estas rela-
ciones de definicion. Luego es necesario solamente estar de acuerdo en las uni-
dades para las cuatro cantidades fundamentales a fin de tener un sistema con-
sistente de unidades. Los fisicos se han puesto de acuerdo (en la Onceava
Conferencia General sobre Pesos y Medidas realizada en Paris en 1960) para
usar el sistema de unidades MKSC, y éste sera el utilizado en este libro. Las ini-
ciales representan el metro, el kilogramo, el sequndo y el coulomb. Sus definiciones son:

El metro, abreviado m, es la unidad de longitud. Es igual a 1.650.763,73 lon-
gitudes de onda de la radiacién electromagnética emitida por el is6topo 8¢Kr en
su transicion entre los estados 2p,, y 5d;. Estos dos simbolos se refieren a estados
fisicos particulares del atomo de kriptén. La radiacion emitida puede identificarse
facilmente porque aparece como una linea roja en un espectrograma.

El kilogramo, abreviado kg, es la unidad de masa. Se define como la masa del
kilogramo internacional, un bloque de platino conservado en la Oficina Inter-
nacional de Pesos y Medidas en Sevres, cerca de Paris. Para todos los propositos



13 Mediciones y unidades (2.3

practicos es igual a la masa de 10—3 m? de agua destilada a 4°C. La masa de 1 m3
de agua es asi 10 kg. Un volumen de 103 m3 se denomina un litro. Por analogia
con el metro, podemos asociar el kilogramo con una propiedad atémica diciendo
que es igual a la masa de 5,0188 x 10% atomos del is6topo 12C. En realidad, éste
es el criterio adoptado al definir la escala internacional de masas atémicas.

El sequndo, abreviado s, es la unidad de tiempo. Se define de acuerdo con la
Unién Astronémica Internacional, como 1/31.556.925,975 de la duracion del afo
tropical 1900. El afio tropical se define como el intervala de tiempo entre dos
pasajes sucesivos de la tierra a través del equinoccio vernal, el que tiene lugar
aproximadamente el 21 de marzo de cada afo (Fig. 2-2). Puede también definirse
como 1/86.400 del dia solar medio, el cual es el intervalo de tiempo entre dos
pasajes sucesivos de un punto situado sobre la tierra frente al sol, promediados
en un aino. Pero esta definicion tiene la inconveniencia que, debido a la accion
de las mareas el periodo de la rotacion de la tierra esta decreciendo gradualmente,
y por ende esta unidad cambiaria gradualmente. Por esta razon se escogio arbi-
trariamente un aiio particular, el de 1900.

Equinoccio
de otofio

— ——
s — —
b4

Posicién:
aparente
del sol

Tierra{

Equinoccio
de primavera

|
|
i
|
|
|
|
Ecliptica” |
: S

Fig. 2-2. Definicién del afio tropical. Fig. 2-3. Oscilaciéon del atomo de ni-
trégeno entre dos posiciones simétricas
en la molécula de amoniaco.

La unidad de tiempo podria también relacionarse a una propiedad atémica,
como se ha hecho con la unidad de longitud, resultando los llamados relojes
atémicos. Por ejemplo, la molécula de amoniaco(NH,) tiene una estructura pira-
midal, con los tres d&tomos H en la base y el &tomo N en el vértice (Fig. 2-3).
Obviamente hay una posicion simétrica, N’, para el 4tomo de nitrégeno a la
misma distancia del plano H-H-H pero en el lado opuesto. El atomo N puede
oscilar entre estas dos posiciones de equilibrio con un periodo fijo. El segundo
puede definirse entonces como el tiempo necesario para que el &tomo N realice
2,387 x 101 de tales oscilaciones. El primer reloj atomico basado en este prin-
cipio fue construido en el National Bureau of Standards en 1948. Desde entonces
otras sustancias han sido utilizadas como relojes atomicos. Sin embargo, ain
no se ha llegado a un convenio internacional para tener un patréon atémico de
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tiempo, aunque parece que hay un consenso general hacia la adopcion de tal
definiciéon de la unidad de tiempo.*

El coulomb, abreviado C, es la unidad de carga eléctrica. Su definicién precisa
y oficial se dara en el capitulo 14, pero en este momento podemos decir que es
igual en valor absoluto a la carga negativa contenida en 6,2418 x 10!® electrones,
o a la carga positiva de igual niimero de protones.

Nota : Estrictamente hablando, en adiciéon al metro, al kilogramo y al segundo, la cuarta unidad
adoptada en la Onceava Conferencia fue el umpere (en lugar del coulomb) como unidad de
corriente eléctrica. El coulomb estd definido como la cantidad de carga eléctrica que pasa a
través de una seccion de un conductor durante un segundo cuando la corriente es de un ampere.
La razoén para escoger el ampere es que una corriente es mas facil de establecer como un patrén.
Nuestra decisién de utilizar el coulomb estd basada en nuestro deseo de expresar el caracter
mas fundamental de la carga eléctrica, sin separarnos esencialmente de las recomendaciones
de la Onceava Conferencia. El Sistema Internacional de unidades es el MKSA, designados por
el simbolo SI.

El metro y el kilogramo son unidades originalmente introducidas durante la
revolucion francesa, cuando el gobierno francés decidio establecer un sistema
racional de unidades, conocido desde entonces como el sisfema méfrico, para
suplantar las unidades caodticas y variadas utilizadas en aquel tiempo. El metro
se defini6 primeramente como la ‘“‘diez millonésima (10-7) parte de un cuadrante
de un meridiano terrestre. Con dicho proposito se midié cuidadosamente un arco de
un meridiano, operacion que llevé varios anos y se fabrico una barra patron
de platino que media un metro la cual se conservé bajo condiciones controladas
a 0°C en la Oficina Internacional de Pesos y Medidas en Sevres. Medidas posterio-
res indicaron que la barra patrén era mas corta en 1,8 X 10-* m que la diez mi-
llonésima parte del cuadrante de un meridiano y se decidio adoptar la longitud
de la barra como el metro patrén sin mas referencia al meridiano terrestre. En
muchos paises existen duplicados del metro patrén. Sin embargo, se reconocié
la conveniencia de tener un patroén de caracter mas permanente y de fécil acce-
sibilidad en cualquier laboratorio. Por esta razon se escogio la linea roja del ®¥Kr.

Para la masa, la unidad escogida por los franceses fue el gramo, abreviado g,
definida como la masa de un centimetro cubico (1 cm = 10-2 m = 0,3937 pulg,
y 1 cm® = 10-% m3) de agua destilada a 4°C. Se escogio esta temperatura porque
-es la temperatura a la cual la densidad del agua es un maximo. El kilogramo
es entonces igual a 10® gramos. Se construyé un bloque de platino, con una masa
de un kilogramo. Posteriormente se decidi6 adoptar este bloque como el Kilo-
gramo patrén sin hacer mas referencia al agua.

Antes que se adoptara el sistema MKSC, era muy popular otro sistema en
trabajos cientificos: el sistema cgs, en el cual la unidad de longitud es el centi-
metro, la unidad de masa el gramo, y la unidad de tiempo el segundo. No se
habia asignado a este sistema ninguna unidad definida de carga, aunque se utili-
Zaban dos: el estatcoulomb y el abcoulomb, iguales respectivamente a 3 x 10— C
y 10 C. El sistema cgs est4 siendo reemplazado gradualmente en trabajos cienti-
ficos y practicos por el sistema MKSC.

* En octubre de 1964, el Comité Internacional de Pesos y Medidas basé temporalmente el in-
tervalo internacional del tiempo en una transicién particular del atomo de !33Cs. El segundo
queda asi definido femporalmente como el tiempo necesario para que el oscilador que fuerza a los
atomos de cesio a realizar la transiciéon establecida oscile 9.192.631.770 veces.
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En muchos paises de habla inglesa se utiliza otro sistema de unidades el cual
es usado ampliamente en aplicaciones practicas y de ingenieria. La unidad de
longitud es el pie, abreviado ft, la unidad de masa es la libra, abreviada Ib y la
unidad de tiempo es nuevamente el segundo. Las unidades métricas equivalen-
tes son:

1 pie = 0,3048 m
1 libra = 0,4536 kg

1 m = 3,281 pie
1 kg = 2,205 1b

TABLA 2-1 Prefijos para potencias de diez

Magnitud Prefijo Simbolo
10-10 ato- a

10-15 femto- f

10-12 pico- p

10-° nano- n

10-¢ micro- 7

10-3 mili- m

10-2 centi- c

101 deci- d

10 = 1 Unidad fundamental

10 deca- D

102 hecto- H

103 kilo- k (0 K)
108 mega- M

108 giga- G

1012 tera- T

Se espera que eventualmente se use solamente el sistema MKSC en todo el mundo
para mediciones cientificas, de ingenieria y caseras.

Por razones practicas se han introducido multiplos y submultiplos como po-
tencia de diez de las unidades fundamentales y derivadas. Los mismos se designan
con un prefijo, de acuerdo al esquema dado en la tabla 2-1.

2.4 Densidad

La densidad de un cuerpo se define como su masa por unidad de volumen. Asi
un cuerpo de masa m y volumen V tiene una densidad de

m

p=—y 2.1)

La densidad se expresa en kg m-2. Obviamente la densidad del agua es:

p=1®kgm=3 (61 gcm3y 624 Ibpie3d).
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La densidad en la forma definida en la ecuaciéon (2.1), es aplicable solamente a
cuerpos homogéneos; es decir, a cuerpos que tienen la misma composicién o
estructura a través de todo su volumen. De otra manera, resulta la densidad
promedio del cuerpo. Para un cuerpo heterogéneo la densidad varia de un lugar
a otro. Para obtener la densidad en un lugar particular, se mide la masa dm,
contenida en un volumen pequefio (o infinitesimal) dV localizado alrededor de
un punto. Entonces se aplica la ec. (2.1), en la forma

dm
=, 2.2
v (2.2)

TABLA 2-2 Densidades (relativas al agua)
Sélidos Liquidos Gases

Hierro 7,86 Agua (4°C) 1,000 | Aire 1,2922 x 10-3
Hielo 0,917 Mercurio 13,59 Hidrégeno 8,988 x 10-°
Magnesio 1,74 Alcohol etilico 0,791 | Oxigeno 1,42904 x 10-3
Aluminio 2,70 Gasolina 0,67 Nitrégeno 1,25055 x 10-3
Uranio 18,7 Aire (— 147°C) 0,92 Helio 1,7847 x 10—*

Puesto que la densidad es un concepto estadistico, para que el volumen dV,
tenga un significado fisico, debe tener un tamafio tal que contenga un gran ni-
mero de moléculas.

Otro concepto util es el de densidad relativa. Si p; y p, son las densidades de
dos sustancias diferentes, su densidad relativa es:

oy = 2. (2.3)
P1

No se expresa en unidades por ser una cantidad relativa; es decir, el cociente
de dos cantidades de la misma clase. Es costumbre expresar las densidades rela-
tivas con respecto al agua como referencia. En la tabla 2-2 damos las densidades
de varias sustancias relativas al agua. Los valores numéricos se dan a tempe-
ratura y presién normales (STP: 0°C y 1 atm) a menos que se indique de otro modo.

2.5 Angulos en un plano

Hay dos sistemas para medir 4ngulos en un plano: grados y radianes. El segundo
sistema es el m4s importante en fisica. La circunferencia de un circulo esta arbi-
trariamente dividida en 360 grados (°). Un 4ngulo recto, por ejemplo, corresponde
a 90°, Cada grado esta dividido en 60 minutos (') y cada minuto en 60 segun-
dos ("). La medida de un 4ngulo cualquiera se expresa en grados, minutos y
segundos, tal como 23°42'34".
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Para expresar un angulo en radianes, se traza con radio arbitrario R (Fig. 2-4)
el arco AB con centro en el vértice O del angulo. Luego la medida de 6 en radianes
(abreviada rad) es:

B 6 = R (2.4)
) donde [ es la longitud del arco AB. Este método se

basa en el hecho de que dado un angulo, la relacion

0 [/R es constante e independiente del radio, y es
R J4 por lo tanto la medida del angulo expresada en ra-
Figura 2-4 dianes. Notese que [y R deben expresarse en las mis-
mas unidades de longitud. De la ec. (2.4) tenemos

! = Ro. | (2.5)

Considerando que la circunferencia de un circulo es 2xR, vemos que un angulo
completo alrededor de un punto, medido en radianes es 2rR/R = 2= rad. Asi
2n rad equivale a 360°, y

7 180°

1° = rad = 0,017453 rad, 1 rad =
180 7

= 57°17'44,9".

2.6 Angulos solidos

Un dngulo sélido es el espacio comprendido dentro de una superficie conica (o
piramidal), como en la Fig. 2-5. Su valor, expresado en esferadianes (abreviado
esterad), se obtiene trazando con radio arbitrario R y centro en el vértice O,
una superficie esférica y aplicando la relacion

S
= — (2.6)

donde S es el area del casquete esférico interceptado por el angulo sélido. Como
el drea de una esfera es 4=R? el angulo s6lido completo alrededor de un punto

Z

S = %WRZ

Fig. 2-5. Angulo sélido. Figura 2-6
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es 4 esteradianes. El dngulo sélido formado por los tres ejes coordenados, mu-
tuamente perpendiculares 0X, 0Y y OZ (Fig. 2-6) es } (4~) o =/2 esteradianes.
Cuando el angulo solido es pequeiio (Fig. 2-7) el area S se vuelve dS y no es
necesariamente un casquete esférico, sino que puede ser una pequeia superficie
plana perpendicular a OP de modo que '

do =22, (2.7)

En algunos casos la superficie dS no es perpendicular a OP, y su normal N hace
un angulo 6 con OP (Fig. 2-8). Entonces es necesario proyectar dS en un plano
perpendicular a OP, el cual nos da el area dS’ = dS cos 6. Asi

6
10 = is_%‘;_s_, 2.8)

es una expresion que serd muy util en discusiones futuras.

2.7 Precision y exactitud

La palabra precision usualmente tiene un significado de exactitud. En el mundo
de las medidas, sin embargo, precision tiene el significado de inexactitud. Esto
significa que cuando una propiedad fisica se describe por una cantidad numérica
y su correspondiente unidad, la cantidad numérica depende de un nimero de

Figura 2-7 Figura 2-8

factores distintos, incluyendo el tipo particular de aparato utilizado para realizar
la medicion, el tipo y el niimero de mediciones realizadas, y el método empleado
por el experimentador para obtener el valor numérico. A menos que dicho ni-
mero esté acompanado por otro que describa la precision de la medicion, el nimero
dado es tan bueno como inutil. Un niimero puede ser extremadamente exacto
(esto es ser exactamente correcto) pero puede no ser preciso debido a que la
persona que proporciona el niimero no ha dicho por lo menos algo sobre el mé-
todo de medicion empleado.



24 Mediciones y unidades 2.7

Consideremos algunos ejemplos a fin de clarificar estas ideas. Si uno ve un
cesto que contiene siete manzanas, la proposicion “Yo cuento siete manzanas en
el cesto’’es una determinacion directa de una cantidad numérica. Es precisa y exacta
porque el nimero de unidades a contarse es pequefia y entera. Si hay dos per-
sonas una colocando lenfamenlfe manzanas en el cesto y otra sacandolas lenia-
mente, entonces uno puede establecer con exactitud y precisién el numero de
manzanas en cualquier instante.

Compliquemos ahora la situacién. Consideremos el nimero de personas en una
pequefia villa. Aqui el namero es mis grande, pero ain razonablemente y defi-
nitivamente entero. Un observador que pasa por el centro de una calle de la
villa, mediante la observacion censal de las personas que vienen y van, puede
establecer con exactitud el nimero de personas en la villa. Pero su cantidad
numérica no sera precisa, porque le sera dificil descubrir el momento exacto del
nacimiento o muerte de los pobladores. Si la villa es una ciudad o un pueblo
el trabajo se torna aun mas dificil.

Preguntemos ahora. jPor qué necesitamos una cantidad exacta del niimero de
habitantes de un pueblo? A fin de proporcionar diferentes servicios para todos
los habitantes no es realmente necesario conocer, en cada instante, el nimero
exacto de ellos. En su lugar necesitamos una cantidad exacta cuya precisi6bn
dependa del servicio particular en cuestion. Por ejemplo, para determinar el
niumero de nuevos colegios que deben construirse en un drea debemos tener una
clase diferente de precision numeérica para la poblacion que la que seria nece-
saria si tuviéramos que determinar el nimero de departamentos de incendios.
Si nosotros establecemos la poblacion del pueblo con una precision del 1 9,
queremos decir que el niimero dado puede ser mayor en 1 %, o menor en 1 % que
la poblacién real, pero no sabemos en qué direccion, ni interesa en muchos casos.
En una villa de 200 personas, una precision del 1 9%, significa que conocemos la
poblacion con un error de mas o menos 2 personas. En un pueblo de 100.000 ha-
bitantes, la precision estd dentro de 1000 personas. Si conocemos la poblacién
de los Estados Unidos con una precision del 1 9, nuestra cifra puede variar
dentro de un margen de un millén y medio, pero no la conocemos exactamente.
Obviamente, bajo algunas condiciones, una precision mayor del 1 % es nece-
saria; en otras circunstancias una precision menor puede ser suficiente.

Hasta este momento hemos estado interesados en la operaciéon de contaje
en si. La suposicién es que dadas la informacién suficiente y una habilidad para
procesar la informacién rdpidamente, podemos encontrar la poblacion exacta.
Si es necesario conocer esto con precisién o no ya ha sido discutido. Ahora debe-
mos comprender que hay operaciones que no nos dan un nimero exacto de uni-
dades. Por ejemplo, es cierto que en un punto particular de una habitacién hay
un valor exacto de la temperatura. Su valor, sin embargo, depende de una defi-
nicién, puesto que la temperatura es un concepto humano. A pesar de ello,
no medimos temperatura en si por un método de contaje, sino mas bien midiendo
la longitud de una columna de mercurio, cuya longitud representa la temperatura.
Por varias razones la longitud medida de la columna no se registrara idéntica-
mente, cada vez que se lea, aun si la temperatura permaneciera constante. Una
de las mayores razones de las variaciones en las lecturas es el espacio finito entre
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divisiones y escalas. Un metro ordinario tiene una distancia de 1 mm entre sus di-
visiones. Luego si se lee un metro teniendo en cuenta la divisién mds pequeiia,
la lectura en cada erfremo puede tener errores como de 4 mm. Hay otros
tipos de errores de lectura que se tratan en libros especializados sobre este tépico
(ver la bibliografia al final del capitulo sobre unos libros selectos y articulos acerca
de mediciones).

La precision o incertidumbre de un nimero nos permite definir el namero de
cifras significativas asociadas con la cantidad. Por ejemplo, si una medicién se
da como 642,54389 4 1 9, significa que la incertidumbre es alrededor de 6,4.
Entonces tenemos justificacién en retener solamente aquellas cifras en el nu-
mero que son realmente significativas. En este caso el nimero debia expresar-
se como 642 + 1 9%, 6 642 4 6. Cuando el estudiante vea una propiedad fisica (tal
como la velocidad de la luz o el numero de Avogadro) expresada en este libro,
el numero serd dado hasta con cinco cifras significativas aun cuando el nimero
pueda ser conocido con mayor exactitud, no se especificard la precisiéon. Si el
estudiante desea usar estos niimeros en el cilculo de una incertidumbre, puede
considerar la ultima cifra significativa expresada con una precisiéon de + 1.

Cuando uno realiza una serie de operaciones matematicas utilizando numeros
que tienen una precisién establecida, el procedimiento mas simple es realizar las
operaciones, una a la vez, sin tener en cuenta el problema de las cifras signifi-
cativas hasta la conclusién de la operacién. Luego, el nimero resultante debe
reducirse a un numero que tenga el mismo néiimero de cifras significativas (es
decir, la misma precisién) que el menos exacto de los niimeros.

2.8 Mediciones en el laboratorio

Con un ejemplo relativamente simple, el periodo de un péndulo, describiremos
los métodos utilizados para obtener la cantidad numérica asociada con una pro-
piedad fisica. El perfodo de un péndulo es el tiempo entre dos pasajes sucesivos
del extremo del péndulo a través del mismo punto, moviéndose en la misma
direccién. Se hizo oscilar un péndulo particular y se midié el tiempo de una sola
oscilacién cincuenta veces. La tabla 2-3 contiene las cincuenta mediciones, en
segundos.

De la tabla se puede ver que no hay un periodo particular para el péndulo.
Lo que debemos hacer es tomar estas cincuenta mediciones del periodo, determinar
su valor promedio, y luego determinar la precisibn de este valor promedio. Su-
mando todos los periodos y luego dividiendo la suma entre el nimero total de
mediciones, encontramos que el valor medio (0 promedio) para el periodo del
Péndulo es 3,248 segundos. {Notar que por el momento hemos conservado todo
el nimero; tendremos que modificarlo a su debido tiempo). Tomando la diferencia
entre este valor medio y cada medicion, obtenemos la desviacion de cada medi-
cién del valor medio. La suma de los valores absolutos de las desviaciones divi-
dida entre el nimero de mediciones se denomina desviacion media, la cual da una
indicacién de la precision de la medicion. Para nuestro ejemplo, la desviacién
media del periodo es 0,12 segundos. Entonces debemos escribir el periodo del
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péndulo, medido en el laboratorio, como 3,25 4 0,12 seg 6 3,25 4 4 9, segundos
(aproximadamente). |

Otra manera de expresar la precision de la medicion es mediante el uso de
la desviacion rme (raiz media cuadratica), definida como la raiz cuadrada de la
cantidad obtenida sumando los cuadrados de las desviaciones divididas entre el
numero de mediciones. En nuestras mediciones, la rmc es de 0,15 segundos. El
calculo adicional realizado al obtener la desviacion rmc bien vale el esfuerzo,
ya que tiene un significado relativamente simple. Suponiendo que las variaciones
que aparecen en el conjunto de mediciones no se debe a ninguna causa, sino que
son justamente fluctuaciones normales, la desviacion rmc nos dice que aproxima-
damente dos tercios de todas las mediciones caen dentro de esta desviacion del
valor medio. O, en otras palabras, tenemos la confianaa que, la proxima vez que
tomemos las mediciones del periodo de nuestro péndulo con el mismo aparato
hay una probabilidad de un 67 %, de que midamos un periodo no mayor de 3,4 se-
gundos 0 no menor que 3,10 segundos.

N Distribucién Gausiana
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Fig. 2-9. Histograma que muestra el numero de mediciones del periodo de un
péndulo mostradas en la tabla 2-3, en intervalos de tiempo de 0,04 s. La distribucién
gausiana correspondiente estd indicada por la linea sélida.

TABLA 2-3

3,12 3,18 3,25 3,32 3,32
3,62 3,33 3,30 3,42 3,27
3,33 3,28 3,15 3,12 3,20
3,17 3,18 3,20 3,18 2,98
3,17 3,52 3,35 3,33 3,38
3,58 3,02 3,00 3,32 3,08
3,27 3,35 3,63 3,15 3,38
3,00 3,15 3,27 2,90 3,27
2,97 3,18 3,28 3,28 3,37
3,18 3,45 3,18 3,27 3,20

Para mostrar esta situacion en una manera ligeramente diferente se usa la Fig. 2-9,
que es un histograma, en el cual se representa la distribucion de frecuencias de
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las lecturas. Hay una irregularidad aparente en la manera en la cual ocurre el
numero de lecturas diferentes. A medida que se tomen mas y mas lecturas, sin
embargo, tiende a aparecer una forma definida, mostrando que la frecuencia de
apariciéon de una medida dada es proporcionalmente menor cuanto mayor es su
desviacion del valor medio. El resultado es la familiar curva de campana. El
analisis muestra que la curva bajo la cual los picos del histograma quedan maés
y mas cercanos a medida que el nimero de medidas aumenta tiene una forma
analitica denominada distribucion normal o gausiana.
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