
SPACE AND ITS MEASURES

CHAPTER 3

We began the last chapter by describing time as

"one of the basic notions of science," and went on

to speak at some length about time. Perhaps you

noticed that we were unable to confine the dis-

cussion to time and time alone. We were speak-

ing also of positions and distances, of motion, of

matter.

These, too, are basic notions. Each of them is

intertwined with all the others. It is impossible

to deal with one without dealing with all the rest.

To discuss them intelligibly, it is necessary to deal

with them one after another, although they do

not appear in nature one after another. They

come together.

To use these notions skillfully, we must refine

our understanding of each of them, and we must

do this even though, strictly speaking, we have

no place to start. The procedure — and all our

history has shown it to be a very practical pro-

cedure — is to move back and forth among these

basic notions, registering gains wherever we can

and using these gains in turn to register further

gains. We use our crude notions of space, for

example, to refine our notion of time. Then we
are able to use our refined knowledge of time to

improve our notion of space. But while we carry

on this process, we must remember that physics

itself is one indivisible subject dealing with the

whole universe of which we are part. We sub-

divide it for our own convenience, but only so

that later we may put it together again.

What we can say with assurance is that size and

distance, as divisions of space, determine the na-

ture of the world just as much as does time.

Think of the sun, whose bright glare showers the

earth with light, makes our crops grow, and keeps

our earth from being a dead, frozen planet. It

appears to us as a large, bright disc, too brilliant

to look at directly. Compare it with a star which

appears as nothing but a tiny bright spark in the

dark night. The difference is one of distance.

The sun is a star we happen to live "near." The

little twinkling star, though a furiously hot sun

like our own, is relatively far away from us.

Or consider the very small. You know that a

drop of pond water looks a little cloudy perhaps

to the unaided eye, but nothing more. Under the

microscope, it is a jungle of plants and animals,

living, hunting, fleeing. Beyond the microscope's

grasp is a still more wonderful part of the world,

the world of the atom, which we are going to

probe.

When we say the sun is "near," compared to

any other star, or that Bombay is "far," compared

to any place in our state, we have started to

measure intervals of distance, or size. Intervals

of space — sizes or distances— can best be com-

pared by the same scheme we used in comparing

time intervals. We have only to make a count.

We count how many times we have to span with

our fingertips, or lay off with a ruler, or pace out

with equal steps, and we have measured a distance.
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3-1. The Unit of Distance

Every people has had a unit of length. Hunt-

ing folk, like the North American Indians, used

the pace, the bowshot.' and the day's journey.

When it became necessary to measure off land for

irrigation and for plowing, standard rods were

made. As early as ancient Egyptian times, when

great buildings were made of stone, rather wide

use was made of a standard of length, a cubit, or

the distance from the elbow to the tip of the

middle finger. In the times of the Ptolemies, there

were professional pacers who helped make maps
by pacing out the roads in units called stadia. By
medieval times, with the growth of the European

nations, there were many measuring units. In

England, length was measured by the inch, foot,

yard, fathom, rod, furlong, mile, and league.

These units reflect convenient early standards.

The French Revolution brought to power a

government set sharply against all that was tradi-

tional and old-fashioned. An early action of the

new government of France was the establish-

ment of a group of learned men ("experts," we
would say nowadays) to produce a rational set of

units for all measurements, the common, every-

day ones as well as those of science and the blos-

soming technologies. They set up standards of

length, among many others, which have become
world-wide in science, and nearly world-wide in

everyday life. They called their scheme of units

the metric system, and its fundamental length

unit is the meter (from the Greek metron, to

measure). They felt it was better to adopt a

length standard which had some more lasting

significance than the length of the pace, and they

were convinced of the value of the decimal system.

They therefore chose the meter to be one ten-

millionth (10~ 7
) of the distance from the equator

to the North Pole. In the 1790's, this dimension

was rather well known in terms of carefully laid

out base lines surveyed in Europe. This is the

origin of the metric system, which we employ

throughout physics in all countries today.

It was one thing to say that the meter was to be

10-7 of a quadrant of the earth's circumference,

but quite another to lay off this distance on a

short metal bar. However, it is not important

that the standard meter be related to the earth's

circumference. As our standard of length we
now employ the standard meter bar the French

made. Many careful copies have been produced.

The Founding Fathers of our own American

republic, very much steeped in the same climate of

opinion that later produced the metric system of

weights and measures in France, introduced a

kind of "metric system" in currency which we use

to this day. They established our decimal system

of coinage, with 100 cents = 1 dollar, and a few

other multiples, like dimes and quarters, to re-

place the traditional English system in which 12

pence = 1 shilling, and 20 shillings = 1 pound

sterling. Anyone who struggles to calculate a

10 per cent discount on the price of an English

book will see the virtue of a system of units

which matches the number system. This is the

great value of the metric system, which has made
it universal in science. Even our inch is now
legally defined in terms of the meter: it is defined

as exactly 2.54 X 10~- meters.

It is worth remembering that a meter is roughly

a yard and a foot is about 30 cm, while a milli-

meter is about the thickness of a pencil lead.

Names and Definitions of Metric Units

of Distance

1 kilometer (km) = 10
3 meters (m)

1 centimeter (cm) = 10" 2 m
1 millimeter (mm) = 10" 3 m = 10

_1 cm
1 micron (fi) = 10

-6 m = 10"3 mm
1 Angstrom (A) = lO"

10 m = 10" 8 cm

Note that in the table the prefix kilo means 103
,

centi is 10-2 , milli is 10~ 3
, and micro is 10-6 .

Another prefix, often used, is mega, which means

106
. A widespread habit has grown up among

American physicists in recent years of referring

to a large sum of money as a "megabuck." This

use of Greek and Latin prefixes for multiples and

submultiples of a unit has been extended to many
different units. Have you ever heard of a. megohm
or a microfarad? What is a millisecond?

Throughout this book, to save time and space,

we shall follow the practice of physicists and,

whenever convenient, use the abbreviations given

in the table instead of writing out the full name of

the unit.

3-2. Measuring Large Distances —
Triangulation

The method of laying standard lengths end to

end can be used to measure quite large distances

on the surface of the earth. It is sometimes used
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3—1. Measuring a distance by triangulation.

in surveying, but often it becomes inconvenient.

To measure the distance across a river, or the

height of a mountain, or indeed the distance to a

star, we can use a simple, indirect method. This

method is based on the geometry of a triangle

and is called triangulation.

One way to measure a distance by triangulation

is illustrated in Fig. 3-1. We wish to measure

the distance AT across the river. To do so we

line up the tree, T, on the far side of the river,

with two stakes A and B. We then construct the

right angle BAC. (To do this we can use a large

carpenter's square.) We drive a stake into the

ground at C, a measured distance from A. Then
we continue along line AC and drive another

stake, D, into the ground a measured distance

farther on. Now we construct a right angle CDE.
We drive in a stake at E so placed that it is in

line with the tree, T, and the stake, C. Finally

we measure the distance DE.

As you can see in the figure, the triangles

TAC and EDC are similar because they have two

pairs of equal angles, the right angles TAC and

EDC and the vertical angles TCA and ECD.
Therefore the corresponding sides are in the same

ratio. In particular

AT _ AC
DE ~ DC'

and the distance A T across the river is

AC
AT =W XDE.

Since we have measured AC, DC, and DE, we

can now determine the distance AT across the
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3—2. When we have measured the length of a base line and

know the direction of an object from each end of the base line,

we can find the distance to the object.

river. For example, if we suppose that the

measured distances are AC = 60 m, DC = 2 m,

and DE = 6 m, then the width of the river is

AT = ^ X 6m = 180m.

We can simplify the procedure. All we need to

do is to construct the right angle TAC; measure

off a convenient distance, AC, called the base

line; and measure the angle TCA. By making a

scale drawing we can get the answer.

An instrument can be constructed that will

measure the angles and work out the geometry

automatically. An example of such a triangulat-

ing instrument, for measuring distances by simple

sighting, is the range finder found in almost all

good cameras. The base line of the range finder

is no larger than the camera, and distant objects

will appear at almost the same angle from both

ends of it. Just where the sight lines cross is then

difficult to say. The camera range finder, there-

fore, measures only the distances to near-by

objects. You can make range finders with longer

base lines, and you will find that the bigger you

make the base line, the greater the distance you

can measure.

The big range finders on warships have base

fines limited by the size of the ship. To measure

the distances of planets, astronomers use base lines

extending over half the earth. The largest base

line we can use is the diameter of the earth's orbit,

the distance from one point on its path around

the sun to the point reached a half year later.

This sets the limit for measuring big distances

geometrically.
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To use a base line to find the distance to an

object, we must measure the direction of the

object from each end of the base line. (Fig. 3-2.)

To measure these two directions, an astronomer

who uses the diameter of the earth's orbit as a

base line must have a way of establishing a refer-

ence direction when he takes his observation at

one end of the diameter and when he takes it at

the other end. To fix this reference direction, he

uses the most distant stars. He can pick them

out because they do not change their apparent

positions with respect to one another. Here he

is using something very familiar to you. As you
watch through a window of a rapidly moving
car, the objects near you apparently move rapidly

backward but the distant features of the landscape

do not seem to move at all. In the same way,

the most distant stars stand still relative to each

3-3. In these photographs the two positions of the camera

were somewhat less than a meter apart. Note the apparent

shift of the ruler with respect to the more distant blackboard.

other and show little or no apparent motion even

over thousands of years. For this reason, we call

them the fixed stars and we can use them to give

us known directions from any point on the earth's

orbit.

Unlike the extremely distant stars a near-by star

will appear to move relative to the distant ones

as we go from one point to another on the earth's

orbit. This shift in the apparent direction of the

near-by star is just like the shifts you see looking

out the car window or the shift you see when you

hold out a finger before your eyes and look at it

first with one eye open and then with the other.

The finger appears to shift its position along a

distant wall; and the nearer it is to your face the
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image of

far star

3—4. Finding the distance to a near star by geometry. The

triangles in the figure are similar, therefore

d = b X -

3—5. The shift in position of a near star (Barnard's Star) with

respect to the very distant "fixed" stars. Three pictures were

made at six-month intervals with the 24-in. telescope at Swarth-

more's Sproul Observatory. In this illustration, the pictures have

been superimposed. The images of the two very distant fixed

stars in the upper right coincide, while the three images of

Barnard's Star (lower left) show a horizontal and vertical

separation representing two motions of the star. One, in-

dicated by the vertical separation of the three images, is the

star's own "proper motion" in a straight line with respect to the

fixed stars. The other, the horizontal displacement, is the ap-

parent shift of the star's position as viewed from the two ex-

tremes of the earth's orbit. Notice that it goes to the right and

then back to the left in successive six-month intervals. It is this

displacement that enables us to calculate the distance to the

star. The actual shift in the original photo was about 0.03 mm,

giving a distance of about 6 X 10 - km.

farther it shifts. Fig. 3-3 is another example of

such a shift.*

In Fig. 3^4 we see a simplified version of how
an astronomer can fix the distance to a near-by

star using the diameter of the earth's orbit as a

base line. In order to get the fundamental idea,

we assume that the astronomer is lucky: at one

moment he finds the near-by star directly lined

up with a distant star. The astronomer then

waits for half a year so that the earth is now at

*This apparent shift of one object with respect to another

is called parallax. Only when two objects are both ex-

tremely far away or both at the same position do they

show no parallax. Only then is there no shifting with

respect to each other when we move.
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the other end of the base line. Then he takes a

picture, pointing his camera at the far star so as

Bt the same direction again. Because the

earth has moved, the two stars are no longer in

line; and consequently he obtains two separate

images on his photographic plate. Because the

direction to the distant star is the same, the sepa-

ration of the images on the photographic plate

is related to the length of the earth's orbit in just

the same way that the length of the path of light

in the camera is related to the distance to the

near-by star. You can see this from the similar

triangles in the figure. Of course, if no distant

star ever lines up with the near-by star (Fig. 3-5),

the job is a little bit harder, but the method is

essentially the same.

To make things clear in Fig. 3-4 we have used

a near "star" whose distance is only a few times

the diameter of the earth's orbit. In fact, there

are no such stars. Even with the earth's orbit as

the base line, the change in direction of the nearest

star is very small, for that star is about 135,000

orbital diameters (about 4 X 10 16 meters) away.

The distances to only a few hundred stars are

small enough to be measured in this way. For

greater distances in the universe, we must use

other methods, one of which is discussed briefly

in Section 4-3.

The planets are close enough so that even a

small telescope will show most of them as round

discs. (Fig. 3-6.) This is clearly what you

would expect if they are really globes whose sizes

are of the same order of magnitude as our earth.

But not even the Palomar telescope shows up

any such clear discs for the stars. They are too

far away. Astronomers have special means of

measuring the sizes of stars. For the present we
want to stress that we have a consistent picture.

The stars are very far away, and hence they show

no parallax, no disc. Closer to us they would

be so many glowing suns.

Table 1 on page 28 shows the range of distances

from our own size to larger and smaller sizes that

can be measured with rulers, geometry, and light.

The large distances beyond those that can be

measured in this way are shown in Table 2 on

page 30. The methods by which the geometrical

measurement of distance has been extended

to these distances beyond the reach of our best

base line and best angle measurements are many
and ingenious.
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3—6. Jupiter and its moons. As we go to distances beyond the

earth it is necessary to use telescopes to extend our senses.

The planet Jupiter is visible to the unaided eye, but looks like

a bright star. Have you ever noticed in viewing it that it doesn't

seem to twinkle as much as a star? The illustration above

shows the planet as photographed at three different times with

a small telescope. The four satellites that show up are the ones

discovered by Galileo and are often referred to as the Galilean

moons. (Courtesy: Clyde Fisher and Marian Lockwood,

"Astronomy," John Wiley & Sons, Inc.) In the illustration below,

we see the planet as photographed through Palomar's 200-in.

telescope. Note how much more detail is visible. Even the

shadow of one of the moons can be seen. Jupiter has a diam-

eter of the order of 10 s m and is at a distance of the order of

10' 2 m from the earth.
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3—7. The globular star cluster in the

constellation Hercules is so far from the

earth that its distance cannot be measured

by geometric methods. This photograph,

made with the 200-in. Palomar telescope,

shows one of the finest examples of

a globular cluster in the northern sky.

It is visible to the naked eye, under good

conditions, as a small hazy patch of light.

Its diameter subtends an angle of about 18

minutes at the eye. Actually, as you can

see in the photograph, it consists of thou-

sands of stars, most of which are larger

and more brilliant than the sun. Although

they seem to be crowding one another,

in reality they are separated from each

other by an average distance that is about

50,000 times the distance from the earth

to the sun. The great distance between

the cluster and the earth makes the stars

appear close together. How could we go

about measuring how far from the earth

these stars are located?

Table 1. Distance

Orders of Magnitude of Lengths Found with Rulers, Geometry, and Light

Length
in Meters Associated Distance

Length in

Meters Associated Distance

10
18

10 17

10 16

10 15

10"

10"

10 12

10 11

10
10

109

108

10 7

Greatest distance measurable by parallax

Distance to nearest star

Distance of Neptune from the sun

Distance of Saturn from the sun

Distance of Earth from the sun

Distance of Mercury from the sun

Mean length of Earth's shadow

Radius of the sun

Mean distance from Earth to the moon
Diameter of Jupiter (Fig. 3-6)

Radius of Earth

107 Air distance from Los Angeles to New
York

106 Radius of the moon
10 5 Length of Lake Erie

10* Average width of Grand Canyon
10 3 One mile

10 2 Length of football field

10 1 Height of shade tree

10° One yard
10- 1 Width of your hand
10~ 2 Diameter of a pencil

10~ 3 Thickness of windowpane

10
-4 Thickness of a piece of paper

10~5 Diameter of red blood corpuscle

A collection of a hundred billion distant suns

make up what is known as our galaxy. Our own
star, the sun, is probably a quite ordinary, though

rather elderly, family member. Beyond our

galaxy comes a great collection of other galaxies,

cousins of our own, dotting the heavens as far as

our greatest telescopes can reach. They spread

out in all directions, looking fainter and smaller

the greater their distance, but they are recognizably

similar to our own. The nearest of these is the

Great Nebula of Andromeda, which you can just

see with the naked eye on a dark, clear night.

(See Figs. 3-8 and 3-9.) Nearly a billion distant

galaxies are scattered throughout the universe,

according to estimates based on photographs of

the sky taken with the big Palomar telescope.

How many more there may be we are unable to

say.
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3—8. The Great Nebula in the constellation Andromeda.

This enormous island universe of stars, which is similar to our

own galaxy, is visible to the unaided eye under favorable con-

ditions as a hazy patch of light, subtending an angle of about

3 degrees. It is the most remote object that is visible to the

unaided eye. It is of the same order of size as the Milky Way,

about 100,000 light-years in diameter. This photograph,

made with the 48-in. Schmidt telescope at Mt. Palomar in

California, also shows two satellite galaxies of the Great

Nebula (center right and center left).

3—9. Cluster of galaxies in the constella-

tion Coma Berenices. This photograph

was made with Palomar's 200-in. Hale

telescope. If we examine closely the light

specks visible in this picture, we note that

some of the images have a shape that re-

sembles that of the Andromeda Nebula or

one of its satellite galaxies in Fig. 3—8.

These are indeed nebulae. They show

different shapes and orientations. From the

size of these images, this cluster of galaxies

can be estimated to be about 20 or 30

times farther away from us than the Great

Nebula in Andromeda. To an observer

in one of these galaxies, the Andromeda

Nebula and our own galaxy, the Milky

Way, would appear as two neighboring

members of a distant cluster.
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Table 2

Orders of Magnitude of Distances Too Large to

Measure by Geometric Means

Length
in Meters Associated Distance

10 2

102

102

10 2

10 2

10
2 '

10
1

Distance to farthest photographed object

(a galaxy)

Domain of the galaxies

Domain of the galaxies

Distance to the Great Nebula in An-
dromeda (nearest galaxy)

Distance to the smaller Magellanic Cloud

Distance of the sun from the center of our

galaxy

Distance to globular star cluster in

Hercules (Fig. 3-7)

Distance to the North Star (Polaris)

3-10. A micrometer caliper (above). Very small lengths, such

as the thickness of a piece of paper, can be measured with this

instrument. The basic part of this device, as shown in the simpli-

fied version sketched below, is a screw. Note the scale around

the barrel, corresponding to the disc below, which enables us

to measure a fraction of a turn. How does a screw help us to

measure a small distance accurately?

3-3. Small Distances

If we go in the other direction toward the very

small, we can still use straightforward geometrical

methods. It is not hard to measure the thickness

of a thin sheet of paper, if you have many of them.

Stack up a hundred sheets, use a ruler to measure

the stack; then you have marked off on the

ruler a hundred times the thickness. This ob-

vious indirect method is similar to what is often

done in physics. Of course if the sheets of paper

are very different in thickness, the result will refer

not to any real sheet, but to an average of the

thicknesses present. For many purposes this is

good enough. What we obtain is the thickness

of a sheet, assuming them all to be alike.

This page-thickness example shows how we can

extend the basic idea of counting or spacing off

to small distances. Another extension of count-

ing to small distances is found in the use of a

screw thread. If a screw is turned through one

revolution in a fixed nut, it advances only by the

distance between successive threads, the pitch of

the screw. By dividing the turn into say a hundred

parts, you can divide the advance of the screw

into a hundred equal parts as well. This is the

basis of the machinist's micrometer (Fig. 3-10).

Other similar tricks will help a little, but to go

further toward the very small we need to use

amplifying devices, of which the most familiar

is the microscope. With it, we can see small

objects, and measure them by placing tiny

"rulers" right beside them (Fig. 3-11). Again,

the laying-off and counting method is at work.

The atom and its sub-units are so small that the

ordinary microscope is no longer of help, for

light itself is not a delicate enough probe. Newer

sorts of instruments, and again a set of still more

indirect but convincing methods, carry us down
to the smallest distances about which we have

any real knowledge. Some of the methods are

simple enough for you to carry out. See your

laboratory guide. Table 3 gives some idea (in

terms of orders of magnitude) of the amount by

which we can extend our everyday notions of

distance and size into the very small.
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3—11 (o). The size of a human hair. In this photograph a hair

has been placed across a millimeter scale. It is barely visible.

How many hairs would have to be placed side by side to fill

the space between two adjacent millimeter marks on the scale?

3—11 (b). Here the hair has been photographed on a very small

ruler with the aid of a microscope. Each of the smallest divisions

on the ruler is one hundredth of a millimeter. The microscope

has made it possible for us to measure the diameter of the hair

more accurately. How accurate was your estimate from Fig,

3-11 (a) of the number of hairs that would be required to cover

a millimeter?
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Table 3

Orders of Magnitude of Distances Too Small to

Measure by Geometric Means

Length
in Meters Associated Distance

10"' Average distance between successive col-

lisions (mean free path) of molecules in

the air of a room

10" 7

10"

Thickness of thinnest soap bubble still

showing colors

Average distance between molecules of

air in a room

io-9 Size of molecule of oil

io-
10 Average distance between atoms of a

crystalline solid

io-n

IO" 12 Average distance between atoms packed

in center of densest stars

io- 13

io- 1 * Size of largest atomic nucleus

10" 15 Diameter of proton

3-4. The Dimensions of Space
The fact that space has three dimensions is

usually demonstrated by pointing out that three

separate measurements are needed to locate an

object in space. In the room in which you are now
sitting, for example, you can locate any point by

specifying its distance from one wall, its distance

from a second adjacent wall, and its height from

the floor. We can say this with complete con-

fidence, even though we may not know the shape

of the room. We assume that it has at least two

straight walls that meet in a corner of some kind.

If walls and floor meet at right angles, they repre-

sent what are called rectangular or Cartesian

coordinates. If the corners are all right-angled,

the calculations may be simpler, but they are no

better or no worse than any other kind. If the

room is circular, three numbers will still do the

job, although the calculation is different.

In any case, three numbers— and the rules that

say what they mean — define any point, and only

that point. This is merely one way of expressing

the fact that space is three-dimensional. It is,

however, not always the most interesting or the

most informative way.
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3—12. (a) Locating a point on a surface, (b) Locating a point

in a volume.

We may approach the three dimensions of space

in another manner. If you take a point— the

point of your pencil is ideal — and move it, you
create a line. Any position on the line can then

be specified by stating its distance from the begin-

ning of the line. The line, in other words, has

one dimension.

If you now take the line, and move it, you

create a surface. A windshield wiper is an excel-

lent example of this: the line of its rubber edge,

on each sweep, marks out a surface on the wind-

shield of the car. To locate a point on this surface,

you need two numbers, one to give the position

of the wiper when it lies across the point, and the

other to state how far out along the wiper the

point is. The surface, in other words, is two-

dimensional. [See Fig. 3-12 (a).]

In the engine of your car there are cylinders and

pistons. The piston head is a surface. As it

moves up and down from one position to another

inside the cylinder, it sweeps out a volume. To
find a point in this volume, we need three figures —
two to define a point on the piston head, and a

third to tell how far the piston is from one end

of its stroke. [See Fig. 3-12 (b).]

Having now seen how a moving point generates

a line, how a moving line generates a surface, how
a moving surface generates a volume, what

happens if we take the next step? What if we
move a volume? The result is not what we might

expect. A volume only sweeps out another

volume, no different in kind from the volume

swept out by a surface. We have run out of

dimensions. Space, it seems, offers us only three

upon which to work. Space is apparently three-

dimensional, and no more.

There is still another way of looking at dimen-

sionality. In this view, the pertinent character-

istic of a line is that we can move along it from

point to point without interruption— without

lifting our pencil, as it were. But if one point is

removed, we can no longer move directly from a

point on the line to any other point beyond the

gap. In effect, the line now is cut.

Removing a point from a surface, such as the

floor of the room, does not hinder us. We can

move from any point on the floor to any other

point merely by going around the missing point.

But cut the floor along a line so that it now has

two disconnected areas. If we are on one side of

the cut, we cannot go directly to the points on the

other side of the boundary.

Finally, within the room as a whole, a full

surface — a wall — is needed to prevent crossing

from one point to another. But here again we

come to the end. Any closed volume can be

walled into two separate volumes, but we can go

no further (unless the mathematicians invent new

spaces, and they often do exactly that).

What we have just done can be stated in simple

form: a point (with zero dimension) cuts a line;

a line (with one dimension) cuts a surface: a sur-

face (with two dimensions) cuts a volume or

space. A volume (with three dimensions) merely

cuts another volume.

All this may appear unimportant, or at best

not important enough to warrant three repetitions.

As we go along, however, we shall find reasons

to use each of these aspects of dimensionality.

We will be working in physics with things of no

dimensions, of one dimension, and of two dimen-
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sions. as well as with physical space and its three

dimensions.

Time, for example, has one dimension. It is

specified by one number. We say, "Ten minutes

from now." It is measured out by the passage of

zero-dimensional instants. And in passing through

time, we must pass through all the instants, one

after another. For example, there is no way of

setting from 8:30 a.m. to 8:32 a.m. without pass-

ins through 8:31 a.m. Each of these facts is

significant; each is a characteristic of something

having only one dimension.

3-5. Measuring Surfaces and Volumes

The clue for the measurement of surfaces and

volumes lies in the way we measured distance.

Ljv off a convenient unit of area and simply

count how many times the unit fits into the surface

to be measured. By subdividing sufficiently, it is

possible to fit the unit, or its subdivisions, into all

the corners and curves of any surface with as

much accuracy as you wish. (Fig. 3-13.) The

process is similar to laying a tile floor.

The convenient unit always used for surfaces is

a square whose edge is a standard unit of length.

Since we use meters for length, we have as a unit

of surface the square meter (m2
).

We can measure volume in the same way, fitting

little cubes into every portion of the volume to be

measured, until it is filled up. Here the unit we

shall use is the cubic meter (m3
). Familiar divi-

sions of these basic units are the square centi-

meter (cm 2
) for area and the cubic centimeter

(cm3
) for volume. How many square centimeters

are there in 3 m 2
? We know

1 m = 100 cm;

so 3 m2 = 3 x 100 cm X 100 cm = 3 x 104 cm2
.

Of course, the fitting of these little squares or

cubes into irregular surfaces or volumes is not

the only way to measure area or volume. Stand-

ard containers of convenient shape are usually on

hand, and an odd-shaped volume, such as a milk

bottle, might be measured by filling it with water

and then pouring the water into a standard

container or two, eventually using subdivisions

made in some geometrical way on a container of

simple shape like the familiar graduated cylinder.

The area of an irregular surface can be found

by weighing a paper pattern cut to fit the surface

neatly. One then compares the weight of the cut

3-13. Measurement of a surface. In measuring the area of

an irregular surface, such as the hand pictured above, we use

the same method that we used in measuring a distance. First

we lay off our units on the surface. To measure areas smaller

than our unit area, we subdivide our unit. In the illustration,

the unit is being subdivided to measure small irregularities.

As you can see, there are additional small areas that will not

fit these subdivisions. In such cases, we can subdivide the units

as many times as we wish until we reach a point beyond which

it is useless to go because the subdivisions become too small to

see.

pattern with the weight of a measured square of

the same material to find the area.

3-6. On the Limitations of Measuring

We have founded all our measurements on one

simple scheme. To measure the size of some

physical quantity, length, or time, you first choose

a unit— any length or time you wish will do.

Then to measure an interval larger than the unit,

just "lay off" the unit as many times as it will go

into the required interval. This is what we natu-

rally do with a ruler. For anything left over after

the count, or for any amount we want to measure

which is smaller than the unit, we simply divide

the unit into smaller equal parts, sub-units you

may call them, and take as many of them as we

need to match the given magnitude. We measure

a box and find its length to be 20 cm and some-

thing left over. Dividing our centimeter unit into

tenths, we find that the part left over contains

three of these sub-units; so we say the box is
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20.3 cm long. It is not hard to see that this

method will work for any length that we want to

measure. For we can make the divisions finer

and finer until irregularities in the edge of the box

we measure, or in the markings on our ruler, limit

the fineness of our measurements of its length.

Some measurements are not subject to the proc-

ess of making smaller and smaller subdivisions

for greater and greater accuracy. The counting

of the number of people in a room, for example,

has a natural unit, the individual. Here the whole

question of smaller and smaller subdivisions is

irrelevant. Unlike time and space, matter does

have known natural units. This is the real essence

of modern physics. The natural units of matter

are its building blocks, atoms and their few parts,

which combine in so many ways to make up the

whole of the material world— stars and sea,

pencil and paper, skin and bone. We do not

know whether space and time do or do not have

such natural units. We only know that we have

not run into them. Until we find such units (if we
ever do) we will freely use any subdivision of our

arbitrary unit of measurement to represent time

and space.

We have just looked at the problems involved

in the basic method of measurement by counting.

In many real measurements a second type of

problem arises. A measurement that is made by

an indirect method is always based on special

assumptions. In measuring the thickness of a

piece of paper, for example, we made an assump-

tion that the paper was uniform. The measure-

ment of large distances by triangulation also

involves an assumption— one we are pretty

familiar with in everyday life. We assume that

the line of sight — which is the line that light

travels to get to the eye from the object— is a

straight line. Only if this is right will our method

of sight-triangulation work. Commonly we check

the straightness of a board by sighting along it.

We seem to accept the straightness of the path of

light. Of course, it can deceive us and often does.

The heat-shimmer you see above a hot radiator or

a sun-warmed surface tells you that here are sight-

paths which are not straight and are constantly

changing. If we wish a reliable answer when
measuring long distances by triangulation, we
must avoid looking through heated, disturbed air.

We cannot measure the distance to a star by this

means on a night when the star is twinkling very

much as a result of changing air currents from

the warm surface of the earth. We want a clear,

still night, with the star well up in the sky.

Another assumption involved in measuring by

triangulation is that the laws of geometry are

correct. They cannot be taken for granted, how-

ever. All assumptions that we make in measur-

ing must be tested. The results of geometry and

the straight path of lines of sight have been well

tested, largely by the success of the whole picture

we can build up. But we must always be on the

watch, especially when using indirect methods in

measuring things far from everyday experience, to

see if such traditional assumptions can still be

relied upon.

We noted earlier that we must do our best to

understand the limitations of our instruments, in-

cluding our senses. The problem of measuring

the sizes of planets and stars illustrates this point.

When we look through a telescope at various

planets, they have various sizes; they appear as

discs of various diameters. Stars seen in tele-

scopes also appear to have some diameter, but the

diameter does not change as we look from star

to star. Instead it depends on which telescope we

use and on which way we point it. The apparent

size of stars seen in telescopes arises from the be-

havior of telescopes, not from the real size of

stars. (See Fig. 3-14.) We have run into a

limitation of our instrument, one which we can

later understand, and we must get the information

about the size of stars some other way. All in-

direct methods of measurement have limitations,

and no one method works for all cases.

Even the method of using standard lengths has

its problems. In very precise land surveys, for

example, the temperature of the steel tapes used

is measured meter by meter in order to correct

for expansion or contraction. Here, because we

employ physical objects, the direct method must

be carefully scrutinized.

3-7. Significant Figures

Numbers and their combinations by means of

arithmetic give us an exact way of speaking about

quantity. In physics, however, there are limits

to our accuracy of measurement, and they in

turn place limits on our use of numbers to record

our measurements.

We have learned that the use of a large string

of zeros on either side of the decimal point, to



SPACE AND ITS MEASURES 35

express the order of magnitude of a quantity, is

unnecessary. Every quantity can be written as a

decimal number between one and ten multiplied

by the appropriate power of ten. Instead of

writing the radius of the earth as about 6,370,000

meters, therefore, we write it as 6.37 x 10" meters.

Likewise, the diameter of a hair is about 0.00003

meter, which we write as 3 x 10-5 meter.

Now, in this way of writing numbers, we show

the limited accuracy of our knowledge by omitting

all digits about which we have no information.

Thus, for the earth's radius, when we write 6.37 X
10p m and not 6.374 x 10° m or 6.370 x 106 m,

we are saying that we are reasonably sure of the

third digit but have no idea of the value of the

fourth. The number of digits about which we do

feel reasonably sure is called the number of

significant figures. In the example of the hair,

we have indicated only one significant figure.

This means that we think three is a reasonable

value, but we are not at all sure of the next digit

(second significant figure).

A physicist who makes a measurement must

estimate its reliability, and the simplest way of

expressing that reliability is by writing the proper

number of significant figures. To write additional

figures that have no meaning is worse than a

waste of time. It may mislead people who use

those figures into believing them.

It is clear that the greater the accuracy of our

measurements, the larger the number of significant

figures we can use. When we write four signifi-

cant figures, we imply that a fifth digit would

have no meaning. If our accuracy were ten times

greater, we would use another significant figure.

The most careful physical measurements, using

the highest available accuracy of the primary

standards, still fall short of having twelve signifi-

cant figures.

Because the numbers used in physics reflect

the limitations of measurement, we modify our

ideas of arithmetic slightly so as to make sure

that we do not write meaningless digits in our

answers. Suppose we make the following time

measurements — 27.8 hr, 1.324 hr, and 0.66 hr —
and we want to find their sum. Paying no atten-

tion to significant figures, we might write

27.8 hr

1.324 hr

0.66 hr

29.784 hr

3—14. This illustration, an enlargement of a small section of

Fig. 3—7, shows two star images in detail. The images of the

two brightest stars display four rays, while the smaller stars

appear as small, irregular shapes. The four neat rays on the

bright stars are due to the out-of-focus image of a four-armed

support within the telescope. Even the roundish shapes of the

images of the fainter stars do not depend on the stars, but on

the nature of the telescope, the atmosphere, the photographic

plate, and the light. These cause the light from a distant star

to blur rather than focus to a sharp point. The true star image

in each case would be considerably smaller than the blurry

spot. For this reason, the star images of Fig. 3—7 appear much

more crowded than the stars which make them. In the same

way, the stars that form our Milky Way cannot be separated

by the unaided eye.

What is the meaning of this result? In any num-

ber obtained by measurement all the digits follow-

ing the last significant one are unknown — for ex-

ample, the hundredths and thousandths place in

the first measurement above. These unknown
digits are not zero. Clearly if you add an un-

known quantity to a known quantity you get an

unknown answer. Consequently, the last two

digits in the sum above are in fact unknown. In

this case, then, we should round off all of our

measurements to the nearest tenth so that all

the digits in our answer will be significant. This

gives

27.8 hr

1.3 hr

0.7 hr

29.8 hr

Since the first measurement is known only to the

nearest tenth of an hour, we know the sum only

to the nearest tenth of an hour.

Subtraction of measured quantities works the

same way. It makes no sense to subtract known

and unknown quantities. Particular care must

be taken in subtracting two numbers of nearly
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equal magnitude. For example, suppose you

wish to find the difference in length of two pieces

of wire. One you have measured to be 1.55

meters long and the other 1.57 meters long.

1.57 m - 1.55 m = 0.02 m = 2 x 10~ 2 m.

Notice that we do not write the answer as

2.00 X 10~2 m, since we are somewhat uncertain

about each of the last digits in the original

measurements. The difference certainly has only

one significant figure, and we would not be too

surprised if the difference were either twice as

large or zero instead of 2 cm. Subtraction of

nearly equal quantities destroys accuracy. For

this reason, you sometimes need measurements

much more accurate than the answers you want.

To avoid the difficulty of making more accurate

measurements, we would put the two wires side

by side if possible and measure the difference

directly with a micrometer screw rather than use

the difference between two large numbers.

Now what about multiplication? How do we
modify it to take account of the limitations of

measurement? Suppose we wish to find the

area of a long strip of tin. With a meter stick

we measure its width to be 1.15 cm and its length

to be 2.002 m. Here we have three-significant-

figure accuracy in our width measurement and

four-significant-figure accuracy in our length

measurement. To get the area we multiply length

by width. Paying no attention to significant

figures, we get

A = 2.002 m X 1.15 X 10~ 2 m
= 2.30230 X 10- 2 m2

.

But now think of the meaning of this answer.

When we measured the width we wrote 1.15 cm
because we were not sure that the real width

might not be a bit bigger or a bit smaller by per-

haps 0.01 cm. If in fact the width is that much
bigger, we have made a mistake in the area by

the product of this extra width times the length,

that is,

Error = 0.01 X 10- 2 m X 2.002 m
= 0.02 X 10- 2 m 2

.

Thus we see that we have an uncertain number in

the hundredths place, which means that our

original evaluation of the area may already be in

error in the third significant figure. All the figures

we write beyond the third have no significance.

The proper way to express the answer is

2.30 X 10
-2 m 2

, for when two numbers are mul-

tiplied together, their product cannot have more

accuracy (or more significant figures) than the

less accurate of the two factors. Don't think

that your results are improved by carrying out

simple arithmetical operations to many figures.

What has been said about multiplication applies

equally well to division. Never carry a diusion

out beyond the number of significant figures in

the least accurate measurement you are using.

It should be noted that numbers that are not

the result of measurement may have unlimited

accuracy and may be taken to any degree of

accuracy required by the nature of the problem.

For example, if an area was measured and found

to be 3.76 m2
, twice that area would be

2 X 3.76 m2 = 7.52 m2
.

We have seen how to handle numbers when

they represent physical quantities. But we have by

no means told the whole story of accuracy in

measurement. The use of significant figures

sometimes raises difficulties that would lead us

into a detailed study of the theory of errors.

However, the idea of significant figures helps us

avoid misleading numbers and unnecessary calcu-

lation.

Every physical quantity must have: a unit, to

tell what was counted; an order of magnitude;

and a statement about its reliability, which for

the present we can make in a rough way by writ-

ing only the correct number of significant figures.

There is no technique in physics more important

than the writing of physical quantities with all

these facts made clear.
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