SPACE AND ITS MEASURES

CHAPTER3 DR - ST N S S

WE began the last chapter by describing time as
*““one of the basic notions of science,” and went on
to speak at some length about time. Perhaps you
noticed that we were unable to confine the dis-
cussion to time and time alone. We were speak-
ing also of positions and distances, of motion, of
matter.

These, too, are basic notions. Each of them is
intertwined with all the others. It is impossible
to deal with one without dealing with all the rest.
To discuss them intelligibly, it is necessary to deal
with them one after another, although they do
not appear in nature one after another. They
come together.

To use these notions skillfully, we must refine
our understanding of each of them, and we must
do this even though, strictly speaking, we have
no place to start. The procedure —and all our
history has shown it to be a very practical pro-
cedure — is to move back and forth among these
basic notions, registering gains wherever we can
and using these gains in turn to register further
gains. We use our crude notions of space, for
example, to refine our notion of time. Then we
are able to use our refined knowledge of time to
improve our notion of space. But while we carry
on this process, we must remember that physics
itself is one indivisible subject dealing with the
whole universe of which we are part. We sub-
divide it for our own convenience, but only so
that later we may put it together again.
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What we can say with assurance is that size and
distance, as divisions of space, determine the na-
ture of the world just as much as does time.
Think of the sun, whose bright glare showers the
earth with light, makes our crops grow, and keeps
our earth from being a dead, frozen planet. It
appears to us as a large, bright disc, too brilliant
to look at directly. Compare it with a star which
appears as nothing but a tiny bright spark in the
dark night. The difference is one of distance.
The sun is a star we happen to live “‘near.” The
little twinkling star, though a furiously hot sun
like our own, is relatively far away from us.

Or consider the very small. You know that a
drop of pond water looks a little cloudy perhaps
to the unaided eye, but nothing more. Under the
microscope, it is a jungle of plants and animals,
living, hunting, fleeing. Beyond the microscope’s
grasp is a still more wonderful part of the world,
the world of the atom, which we are going to
probe.

When we say the sun is “‘near,” compared to
any other star, or that Bombay is “‘far,”” compared
to any place in our state, we have started to
measure intervals of distance, or size. Intervals
of space — sizes or distances — can best be com-
pared by the same scheme we used in comparing
time intervals. We have only to make a count.
We count how many times we have to span with
our fingertips, or lay off with a ruler, or pace out
with equal steps, and we have measured a distance.
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3-1. The Unit of Distance

Every people has had a unit of length. Hunt-
ing folk, like the North American Indians, used
the pace, the bowshot, and the day's journey.
When it became necessary to measure off land for
irrigation and for plowing, standard rods were
made. As early as ancient Egyptian times, when
great buildings were made of stone, rather wide
use was made of a standard of length, a cubit, or
the distance from the elbow to the tip of the
middle finger. In the times of the Ptolemies, there
were professional pacers who helped make maps
by pacing out the roads in units called stadia. By
medieval times, with the growth of the European
nations. there were many measuring units. In
England. length was measured by the inch, foot,
yard, fathom, rod, furlong, mile, and league.
These units reflect convenient early standards.

The French Revolution brought to power a
government set sharply against all that was tradi-
tional and old-fashioned. An early action of the
new government of France was the establish-
ment of a group of learned men (*“‘experts,” we
would say nowadays) to produce a rational set of
units for all measurements, the common, every-
day ones as well as those of science and the blos-
soming technologies. They set up standards of
length, among many others, which have become
world-wide in science, and nearly world-wide in
everyday life. They called their scheme of units
the metric system, and its fundamental length
unit is the meter (from the Greek metron, to
measure). They felt it was better to adopt a
length standard which had some more lasting
significance than the length of the pace, and they
were convinced of the value of the decimal system.
They therefore chose the meter to be one ten-
millionth (10-7) of the distance from the equator
to the North Pole. In the 1790’s, this dimension
was rather well known in terms of carefully laid
out base lines surveyed in Europe. This is the
origin of the metric system, which we employ
throughout physics in all countries today.

It was one thing to say that the meter was to be
107 of a quadrant of the earth’s circumference,
but quite another to lay off this distance on a
short metal bar. However, it is not important
that the standard meter be related to the earth’s
circumference. As our standard of length we
now employ the standard meter bar the French
made. Many careful copies have been produced.
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The Founding Fathers of our own American
republic, very much steeped in the same climate of
opinion that later produced the metric system of
weights and measures in France, introduced a
kind of “‘metric system” in currency which we use
to this day. They established our decimal system
of coinage, with 100 cents = 1 dollar, and a few
other multiples, like dimes and quarters, to re-
place the traditional English system in which 12
pence = | shilling, and 20 shillings = 1 pound
sterling. Anyone who struggles to calculate a
10 per cent discount on the price of an English
book will see the virtue of a system of units
which matches the number system. This is the
great value of the metric system, which has made
it universal in science. Even our inch is now
legally defined in terms of the meter: it is defined
as exactly 2.54 X 102 meters.

It is worth remembering that a meter is roughly
a yard and a foot is about 30 cm, while a milli-
meter is about the thickness of a pencil lead.

Names and Definitions of Metric Units
of Distance

1 kilometer (km) = 10° meters (m)
1 centimeter (cm) = 10° m

1 millimeter (mm) = 10 m = 10 cm
1 micron (u) =10"m = 10° mm
1 Angstrom (A) = 10 m = 10° cm

Note that in the table the prefix kilo means 103,
centi is 10-2 milli is 10~3, and micro is 10-5.
Another prefix, often used, is mega, which means
105. A widespread habit has grown up among
American physicists in recent years of referring
to a large sum of money as a “megabuck.” This
use of Greek and Latin prefixes for multiples and
submultiples of a unit has been extended to many
different units. Have you ever heard of a megohm
or a microfarad? What is a millisecond?

Throughout this book, to save time and space,
we shall follow the practice of physicists and,
whenever convenient, use the abbreviations given
in the table instead of writing out the full name of
the unit.

3-2. Measuring Large Distances —
Triangulation
The method of laying standard lengths end to
end can be used to measure quite large distances
on the surface of the earth. It is sometimes used
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3-1. Measuring a distance by triongulation.

in surveying, but often it becomes inconvenient.
To measure the distance across a river, or the
height of a mountain, or indeed the distance to a
star, we can use a simple, indirect method. This
method is based on the geometry of a triangle
and is called triangulation.

One way to measure a distance by triangulation
is illustrated in Fig. 3-1. We wish to measure
the distance AT across the river. To do so we
line up the tree, 7, on the far side of the river,
with two stakes 4 and B. We then construct the
right angle BAC. (To do this we can use a large
carpenter’s square.) We drive a stake into the
ground at C, a measured distance from 4. Then
we continue along line AC and drive another
stake, D, into the ground a measured distance
farther on. Now we construct a right angle CDE.
We drive in a stake at E so placed that it is in
line with the tree, 7, and the stake, C. Finally
we measure the distance DE.

As you can see in the figure, the triangles
TAC and EDC are similar because they have two
pairs of equal angles, the right angles T74C and
EDC and the vertical angles TCA and ECD.
Therefore the corresponding sides are in the same
ratio. In particular

AT _ AC
DE ~ DC

and the distance AT across the river is

AC
AT = DC X DE.
Since we have measured AC, DC, and DE, we

can now determine the distance AT across the
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3-2. When we have meosured the length of a base line ond
know the direction of an object from each end of the bose line,
we can find the distonce to the object.

river. For example, if we suppose that the
measured distances are AC = 60 m, DC = 2 m,
and DE = 6 m, then the width of the river is

AT = 82 X 6m = 180m.

We can simplify the procedure. All we need to
do is to construct the right angle TAC; measure
off a convenient distance, AC, called the base
line; and measure the angle 7CA. By making a
scale drawing we can get the answer.

An instrument can be constructed that will
measure the angles and work out the geometry
automatically. An example of such a triangulat-
ing instrument, for measuring distances by simple
sighting, is the range finder found in almost all
good cameras. The base line of the range finder
is no larger than the camera, and distant objects
will appear at almost the same angle from both
ends of it. Just where the sight lines cross is then
difficult to say. The camera range finder, there-
fore, measures only the distances to near-by
objects. You can make range finders with longer
base lines, and you will find that the bigger you
make the base line, the greater the distance you
can measure.

The big range finders on warships have base
lines limited by the size of the ship. To measure
the distances of planets, astronomers use base lines
extending over half the earth. The largest base
line we can use is the diameter of the earth’s orbit,
the distance from one point on its path around
the sun to the point reached a half year later.
This sets the limit for measuring big distances
geometrically.




To use a base line to find the distance to an
object, we must measure the direction of the
object from each end of the base line. (Fig. 3-2.)
To measure these two directions, an astronomer
who uses the diameter of the earth’s orbit as a
base line must have a way of establishing a refer-
ence direction when he takes his observation at
one end of the diameter and when he takes it at
the other end. To fix this reference direction, he
uses the most distant stars. He can pick them
out because they do not change their apparent
positions with respect to one another. Here he
is using something very familiar to you. As you
watch through a window of a rapidly moving
car, the objects near you apparently move rapidly
backward but the distant features of the landscape
do not scem to move at all. In the same way,
the most distant stars stand still relative to each
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3-3. In these photogrophs the two positions of the comero
were somewhat less than a meter opart. Note the opparent

shift of the ruler with respect to the more distant blockboard.

other and show little or no apparent motion even
over thousands of years. For this reason, we call
them the fixed stars and we can use them to give
us known directions from any point on the earth’s
orbit.

Unlike the extremely distant stars a near-by star
will appear to move relative to the distant ones
as we go from one point to another on the earth’s
orbit. This shift in the apparent direction of the
near-by star is just like the shifts you see looking
out the car window or the shift you see when you
hold out a finger before your eyes and look at it
first with one eye open and then with the other.
The finger appears to shift its position along a
distant wall; and the nearer it is to your face the
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3-5. The shift in position of o near star (Barnard’s Star) with
respect to the very distant “fixed" stars. Three pictures were
made at six-month intervols with the 24-in. telescope at Swarth-
more’s Sproul Observatory. In this illustration, the pictures have
been superimposed. The images of the two very distant fixed
stars in the upper right coincide, while the three images of
Barnord's Stor (lower left) show a horizontal and vertical
separation representing two motions of the stor. One, in-
dicated by the vertical separation of the three images, is the
star’s own “proper motion" in a straight line with respect to the
fixed stars. The other, the horizontal displacement, is the op-
parent shift of the star's position os viewed from the two ex-
tremes of the earth’s orbit. Notice that it goes to the right and
then back to the left in successive six-month intervals. It is this
displacement thot enables us to calculote the distance to the
star. The actual shift in the original photo waos about 0.03 mm,
giving a distance of about 6 X 10" km.

farther it shifts. Fig. 3-3 is another example of
such a shift.*

In Fig. 3-4 we see a simplified version of how
an astronomer can fix the distance to a near-by
star using the diameter of the earth’s orbit as a
base line. In order to get the fundamental idea,
we assume that the astronomer is lucky: at one
moment he finds the near-by star directly lined
up with a distant star. The astronomer then
waits for half a year so that the earth is now at
*This apparent shift of one object with respect to another

is called parallax. Only when two objects are both ex-
tremely far away or both at the same position do they

show no parallax. Only then is there no shifting with
respect to each other when we move. |




the other end of the base line. Then he takes a
picture, pointing his camera at the far star so as
to get the same direction again. Because the
earth has moved. the two stars are no longer in
line: and consequently he obtains two separate
images on his photographic plate. Because the
direction to the distant star is the same, the sepa-
ration of the images on the photographic plate
is related to the length of the earth’s orbit in just
the same way that the length of the path of light
in the camera is related to the distance to the
near-by star. You can see this from the similar
triangles in the figure. Of course, if no distant
star ever lines up with the near-by star (Fig. 3-5),
the job is a little bit harder, but the method is
essentially the same.

To make things clear in Fig. 3-4 we have used
a near “'star’” whose distance is only a few times
the diameter of the earth’s orbit. In fact, there
are no such stars. Even with the earth’s orbit as
the base line, the change in direction of the nearest
star is very small, for that star is about 135,000
orbital diameters (about 4 X 10'® meters) away.
The distances to only a few hundred stars are
small enough to be measured in this way. For
greater distances in the universe, we must use
other methods, one of which is discussed briefly
in Section 4-3.

The planets are close enough so that even a
small telescope will show most of them as round
discs. (Fig. 3-6.) This is clearly what you
would expect if they are really globes whose sizes
are of the same order of magnitude as our earth.
But not even the Palomar telescope shows up
any such clear discs for the stars. They are too
far away. Astronomers have special means of
measuring the sizes of stars. For the present we
want to stress that we have a consistent picture.
The stars are very far away, and hence they show
no parallax, no disc. Closer to us they would
be so many glowing suns.

Table 1 on page 28 shows the range of distances
from our own size to larger and smaller sizes that
can be measured with rulers, geometry, and light.
The large distances beyond those that can be
measured in this way are shown in Table 2 on
page 30. The methods by which the geometrical
measurement of distance has been extended
1o these distances beyond the reach of our best
base line and best angle measurements are many
and ingenious.
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3-6. Jupiter ond its moons. As we go to distonces beyond the
earth it is necessary to use telescopes to extend our senses.
The planet Jupiter is visible to the unoided eye, but looks like
a bright star. Hove you ever noticed in viewing it that it doesn't
seem to twinkle as much as a star? The illustration above
shows the planet as photographed at three different times with
a small telescope. The four satellites that show up are the ones
discovered by Golileo and are often referred ta as the Galilean
moons. {Courtesy: Clyde Fisher and Marian Lockwood,
“Astranomy,” John Wiley & Sons, Inc.) In the illustration below,
we see the planet as phatographed through Palomar’s 200-in.
telescope. Note how much more detail is visible. Even the
shadow of one of the moons can be seen. Jupiter has a diam-
eter of the order of 10® m and is at a distance of the order of
102 m from the earth.
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3-7. The globular star cluster in the
constellotion Hercules is so far from the
earth thot its distonce connot be measured
by geometric methads. This phatagraph,
made with the 200-in. Palomar telescope,
shaws one of the finest examples of
o globulor cluster in the narthern sky.
It is visible to the noked eye, under good
conditions, as o small hozy patch of light.
Its diameter subtends an angle af obout 18
minutes at the eye. Actuolly, as you can
see in the photogroph, it caonsists of thou-
sonds of stors, most of which are larger
Although
they seem to be crawding one onother,

and more brilliont than the sun.

in reclity they are seporated from eoch
other by an average distonce thot is about
50,000 times the distonce from the earth
ta the sun.
the cluster and the eorth makes the stors
appear close together. How could we go
about measuring how far from the earth
these stars are located?

The greot distance between

Table 1.

Orders of Magnitude of Lengths Found with Rulers, Geomerry, and Light

Distance

Length Length in
in Meters Associated Distance Meters Associated Distance
10% Greatest distance measurable by parallax 107 Air distance from Los Angeles to New
107 Distance to nearest star York
10t 108 Radius of the moon
10 10° Length of Lake Erie
101 10¢ Average width of Grand Canyon
10 Distance of Neptune from the sun 10° One mile
1012 Distance of Saturn from the sun 10? Length of football field
10t Distance of Earth from the sun 10* Height of shade tree
10* Distance of Mercury from the sun 10° One yard
10° Mean length of Earth’s shadow 10! Width of your hand
Radius of the sun 10-2 Diameter of a pencil
108 Mean distance from Earth to the moon 10-3 Thickness of windowpane
Diameter of Jupiter (Fig. 3-6) 10— Thickness of a piece of paper
107 Radius of Earth 10— Diameter of red blood corpuscle

A collection of a hundred billion distant suns
make up what is known as our galaxy. Our own
star, the sun, is probably a quite ordinary, though
rather elderly, family member. Beyond our
galaxy comes a great collection of other galaxies,
cousins of our own, dotting the heavens as far as
our greatest telescopes can reach. They spread
out in all directions, looking fainter and smaller
the greater their distance, but they are recognizably

similar to our own. The nearest of these is the
Great Nebula of Andromeda, which you can just
see with the naked eye on a dark, clear night.
(See Figs. 3-8 and 3-9.) Nearly a billion distant
galaxies are scattered throughout the universe,
according to estimates based on photographs of
the sky taken with the big Palomar telescope.
How many more there may be we are unable to
say.




3-8. The Great Nebula in the constellation Andromeda.
This enormous island universe of stars, which is similar to our
own galaxy, is visible to the unacided eye under favorable con-
ditions as a hazy patch of light, subtending an ongle of about
3 degrees. It is the most remote object thot is visible to the

3-9. Cluster of galaxies in the constello-
tion Coma Berenices. This photograph
was made with Palomar's 200-in. Hale
telescope. If we exomine closely the light
specks visible in this picture, we note thot
some of the images have a shape that re-
sembles that of the Andromeda Nebula or
one of its sotellite golaxies in Fig. 3-8.
These are indeed nebulae. They show
different shapes and orientations. From the
size of these images, this cluster of galaxies
can be estimated to be about 20 or 30
times farther away from us than the Greot
Nebula in Andromeda. To an observer
in one of these galaxies, the Andromeda
Nebula and our own golaxy, the Milky
Way, would appear as two neighboring
members of a distont cluster.
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unaided eye. It is of the same order of size as the Milky Way,
obout 100,000 light-years in diameter.
made with the 48-in. Schmidt telescope at Mt. Palomar in
California, also shows two satellite galaxies of the Great

This photograph,

Nebula (eenter right and center left).
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Table 2

Orders of Magnitude of Distances Too Large to
Measure by Geometric Means

Length

in Meters Associated Distance

10% Distance to farthest photographed object

(a galaxy)

102 Domain of the galaxies

102 Domain of the galaxies

1022 Distance to the Great Nebula in An-
dromeda (nearest galaxy)

10% Distance to the smaller Magellanic Cloud

10%° Distance of the sun from the center of our
galaxy

Distance to globular star cluster in
Hercules (Fig. 3-7)

10" Distance to the North Star (Polaris)

3-3. Small Distances

If we go in the other direction toward the very
small, we can still use straightforward geometrical
methods. It is not hard to measure the thickness
of a thin sheet of paper, if you have many of them.
Stack up a hundred sheets, use a ruler to measure
the stack; then you have marked off on the
ruler a hundred times the thickness. This ob-
vious indirect method is similar to what is often
done in physics. Of course if the sheets of paper
are very different in thickness, the result will refer
not to any real sheet, but to an average of the
thicknesses present. For many purposes this is
good enough. What we obtain is the thickness
of a sheet, assuming them all to be alike.

This page-thickness example shows how we can
extend the basic idea of counting or spacing off
to small distances. Another extension of count-
ing to small distances is found in the use of a
screw thread. If a screw is turned through one
revolution in a fixed nut, it advances only by the
distance between successive threads, the pitch of
the screw. By dividing the turn into say a hundred
parts, you can divide the advance of the screw
into a hundred equal parts as well. This is the
basis of the machinist’s micrometer (Fig. 3-10).
Other similar tricks will help a little, but to go
further toward the very small we need to use
amplifying devices, of which the most familiar

RULL I|'I |||'I|! gL UL TR hl"““"""l'" i eh
i N A  w

3-10. A micrometer caliper (abave). Very small lengths, such

as the thickness of a piece af paper, can be measured with this
instrument. The basic part of this device, as shawn in the simpli-
fied versian sketched belaw, is a screw. Nate the scale around
the barrel, carresponding to the disc belaw, which enables us
to measure a fraction af a turn. Haw daes a screw help us ta
measure a small distance accurately?

is the microscope. With it, we can see small
objects, and measure them by placing tiny
“rulers” right beside them (Fig. 3-11). Again,
the laying-off and counting method is at work.

The atom and its sub-units are so small that the
ordinary microscope is no longer of help, for
light itself is not a delicate enough probe. Newer
sorts of instruments, and again a set of still more
indirect but convincing methods, carry us down
to the smallest distances about which we have
any real knowledge. Some of the methods are
simple enough for you to carry out. See your
laboratory guide. Table 3 gives some idea (in
terms of orders of magnitude) of the amount by
which we can extend our everyday notions of
distance and size into the very small.
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3=11(a). The size af a human hair.

has been placed acrass a millimeter scale.

In this phatograph a hair
It is barely visible.
How many hairs wauld have ta be placed side by side to fill
the space between twa adjacent millimeter marks an the scale?

3-11(b). Here the hair has been photographed an a very small
ruler with the aid of a micrascape. Each of the smallest divisians
on the ruler is ane hundredth of a millimeter. The micrascape
has made it passible far us ta measure the diameter of the hair
more accurately. How accurate was yaur estimate from Fig,
3-11 (a) of the number of hairs that would be required to cover

a millimeter?

Table 3

Orders of Magnitude of Distances Too Small to
Measure by Geometric Means

Length
in Meters Associated Distance
(e Average distance between successive col-

lisions (mean free path) of molecules in
the air of a room

107 Thickness of thinnest soap bubble still
showing colors

10~® Average distance between molecules of
air in a room

10°° Size of molecule of oil

107 Average distance between atoms of a

crystalline solid

101

1072 Average distance between atoms packed
in center of densest stars

10—13

107**  Size of largest atomic nucleus

10-**  Diameter of proton

0 0l

1
1
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3-4. The Dimensions of Space

The fact that space has three dimensions is
usually demonstrated by pointing out that three
separate measurements are needed to locate an
object in space. In the room in which you are now
sitting, for example, you can locate any point by
specifying its distance from one wall, its distance
from a second adjacent wall, and its height from
the floor. We can say this with complete con-
fidence, even though we may not know the shape
of the room. We assume that it has at least two
straight walls that meet in a corner of some kind.
If walls and floor meet at right angles, they repre-
sent what are called rectangular or Cartesian
coordinates. If the corners are all right-angled,
the calculations may be simpler, but they are no
better or no worse than any other kind. If the
room is circular, three numbers will still do the
job, although the calculation is different.

In any case, three numbers — and the rules that
say what they mean — define any point, and only
that point. This is merely one way of expressing
the fact that space is three-dimensional. It is,
however, not always the most interesting or the
most informative way.



32 SPACE AND ITS MEASURES

N
=
.

v

NN

(b)

3-12. (a) Locating o point on a surface. (b) locating o point
in a volume.

We may approach the three dimensions of space
in another manner. If you take a point — the
point of your pencil is ideal —and move it, you
create a line. Any position on the line can then
be specified by stating its distance from the begin-
ning of the line. The line, in other words, has
one dimension.

If you now take the line, and move it, you
create a surface. A windshield wiper is an excel-
lent example of this: the line of its rubber edge,
on each sweep, marks out a surface on the wind-
shield of the car. To locate a point on this surface,
you need two numbers, one to give the position
of the wiper when it lies across the point, and the
other to state how far out along the wiper the
point is. The surface, in other words, is two-
dimensional. [See Fig. 3-12 (a).]

In the engine of your car there are cylinders and
pistons. The piston head is a surface. As it
moves up and down from one position to another

inside the cylinder, it sweeps out a volume. To
find a point in this volume, we need three figures —
two to define a point on the piston head, and a
third to tell how far the piston is from one end
of its stroke. [See Fig. 3-12 (b).)

Having now seen how a moving point generates
a line, how a moving line generates a surface, how
a moving surface generates a volume, what
happens if we take the next step? What if we
move a volume? The result is not what we might
expect. A volume only sweeps out another
volume, no different in kind from the volume
swept out by a surface. We have run out of
dimensions. Space, it seems, offers us only three
upon which to work. Space is apparently three-
dimensional, and no more.

There is still another way of looking at dimen-
sionality. In this view, the pertinent character-
istic of a line is that we can move along it from
point to point without interruption — without
lifting our pencil, as it were. But if one point is
removed, we can no longer move directly from a
point on the line to any other point beyond the
gap. In effect, the line now is cut.

Removing a point from a surface, such as the
floor of the room, does not hinder us. We can
move from any point on the floor to any other
point merely by going around the missing point.
But cut the floor along a line so that it now has
two disconnected areas. If we are on one side of
the cut, we cannot go directly to the points on the
other side of the boundary.

Finally, within the room as a whole, a full
surface —a wall — is needed to prevent crossing
from one point to another. But here again we
come to the end. Any closed volume can be
walled into two separate volumes, but we can go
no further (unless the mathematicians invent new
spaces, and they often do exactly that).

What we have just done can be stated in simple
form: a point (with zero dimension) cuts a line;
a line (with one dimension) cuts a surface; a sur-
face (with two dimensions) cuts a volume or
space. A volume (with three dimensions) merely
cuts another volume.

All this may appear unimportant, or at best
not important enough to warrant three repetitions.
As we go along, however, we shall find reasons
to use each of these aspects of dimensionality.
We will be working in physics with things of no
dimensions, of one dimension, and of two dimen-
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sions, as well as with physical space and its three
dimensions.

Time, for example, has one dimension. It is
specified by one number. We say, “Ten minutes
from now.” 1t is measured out by the passage of
zero-dimensional instants. And in passing through
time, we must pass through all the instants, one
after another. For example, there is no way of
getting from 8:30 a.m. to 8:32 a.m. without pass-
ing through 8:31 a.m. Each of these facts is
significant; each is a characteristic of something
having only one dimension.

3-5. Measuring Surfaces and Volumes

The clue for the measurement of surfaces and
volumes lies in the way we measured distance.
Lay off a convenient unit of area and simply
count how many times the unit fits into the surface
to be measured. By subdividing sufficiently, it is
possible to fit the unit, or its subdivisions, into all
the corners and curves of any surface with as
much accuracy as you wish. (Fig. 3-13.) The
process is similar to laying a tile floor.

The convenient unit always used for surfaces is
a square whose edge is a standard unit of length.
Since we use meters for length, we have as a unit
of surface the square meter (m?).

We can measure volume in the same way, fitting
little cubes into every portion of the volume to be
measured, until it is filled up. Here the unit we
shall use is the cubic meter (m?). Familiar divi-
sions of these basic units are the square centi-
meter (cm?) for area and the cubic centimeter
(cm?) for volume. How many square centimeters
are there in 3 m?? We know

1 m = 100cm;
s0 3m?=3x%x100cm X 100cm = 3 X 10 cm?

Of course, the fitting of these little squares or
cubes into irregular surfaces or volumes is not
the only way to measure area or volume. Stand-
ard containers of convenient shape are usually on
hand, and an odd-shaped volume, such as a milk
bottle, might be measured by filling it with water
and then pouring the water into a standard
container or two, eventually using subdivisions
made in some geometrical way on a container of
simple shape like the familiar graduated cylinder.

The area of an irregular surface can be found
by weighing a paper pattern cut to fit the surface
neatly. One then compares the weight of the cut
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3-13. Measurement of a surface. In measuring the area af

an irregular surface, such as the hand pictured abave, we use
the same methad that we used in measuring a distance. First
we lay aff aur units an the surface. To measure areas smaller

than our unit area, we subdivide our unit. In the illustratian,

the unit is being subdivided ta measure small irregularities.
As you can see, there are additional small areas that will nat
fit these subdivisians. In such cases, we can subdivide the units
as many times as we wish until we reach a paint beyond which
it is useless ta go because the subdivisions became toa small ta
see.

pattern with the weight of a measured square of
the same material to find the area.

3-6. On the Limitations of Measuring

We have founded all our measurements on one
simple scheme. To measure the size of some
physical quantity, length, or time, you first choose
a unit —any length or time you wish will do.
Then to measure an interval larger than the unit,
just “lay off” the unit as many times as it will go
into the required interval. This is what we natu-
rally do with a ruler. For anything left over after
the count, or for any amount we want to measure
which is smaller than the unit, we simply divide
the unit into smaller equal parts, sub-units you
may call them, and take as many of them as we
need to match the given magnitude. We measure
a box and find its length to be 20 cm and some-
thing left over. Dividing our centimeter unit into
tenths, we find that the part left over contains
three of these sub-units; so we say the box is
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20.3 cm long. It is not hard to see that this
method will work for any length that we want to
measure. For we can make the divisions finer
and finer until irregularities in the edge of the box
we measure, or in the markings on our ruler, limit
the fineness of our measurements of its length.

Some measurements are not subject to the proc-
ess of making smaller and smaller subdivisions
for greater and greater accuracy. The counting
of the number of people in a room, for example,
has a natural unit, the individual. Here the whole
question of smaller and smaller subdivisions is
irrelevant. Unlike time and space, matter does
have known natural units. This is the real essence
of modern physics. The natural units of matter
are its building blocks, atoms and their few parts,
which combine in so many ways to make up the
whole of the material world — stars and sea,
pencil and paper, skin and bone. We do not
know whether space and time do or do not have
such natural units, We only know that we have
not run into them. Until we find such units (if we
ever do) we will freely use any subdivision of our
arbitrary unit of measurement to represent time
and space.

We have just looked at the problems involved
in the basic method of measurement by counting.
In many real measurements a second type of
problem arises. A measurement that is made by
an indirect method is always based on special
assumptions. In measuring the thickness of a
piece of paper, for example, we made an assump-
tion that the paper was uniform. The measure-
ment of large distances by triangulation also
involves an assumption —one we are pretty
familiar with in everyday life. We assume that
the line of sight — which is the line that light
travels to get to the eye from the object —is a
straight line. Only if this is right will our method
of sight-triangulation work. Commonly we check
the straightness of a board by sighting along it.
We seem to accept the straightness of the path of
light. Of course, it can deceive us and often does.
The heat-shimmer you see above a hot radiator or
a sun-warmed surface tells you that here are sight-
paths which are not straight and are constantly
changing. If we wish a reliable answer when
measuring long distances by triangulation, we
must avoid looking through heated, disturbed air.
We cannot measure the distance to a star by this
means on a night when the star is twinkling very

much as a result of changing air currents from
the warm surface of the earth. We want a clear,
still night, with the star well up in the sky.

Another assumption involved in measuring by
triangulation is that the laws of geometry are
correct. They cannot be taken for granted, how-
ever. All assumptions that we make in measur-
ing must be tested. The results of geometry and
the straight path of lines of sight have been well
tested, largely by the success of the whole picture
we can build up. But we must always be on the
watch, especially when using indirect methods in
measuring things far from everyday experience, to
see if such traditional assumptions can still be
relied upon.

We noted earlier that we must do our best to
understand the limitations of our instruments, in-
cluding our senses. The problem of measuring
the sizes of planets and stars illustrates this point.
When we look through a telescope at various
planets, they have various sizes; they appear as
discs of various diameters. Stars seen in tele-
scopes also appear to have some diameter, but the
diameter does not change as we look from star
to star. Instead it depends on which telescope we
use and on which way we point it. The apparent
size of stars seen in telescopes arises from the be-
havior of telescopes, not from the real size of
stars. (See Fig. 3-14) We have run into a
limitation of our instrument, one which we can
later understand. and we must get the information
about the size of stars some other way. All in-
direct methods of measurement have limitations,
and no one method works for all cases.

Even the method of using standard lengths has
its problems. In very precise land surveys, for
example, the temperature of the steel tapes used
is measured meter by meter in order to correct
for expansion or contraction. Here, because we
employ physical objects, the direct method must
be carefully scrutinized.

3-7. Significant Figures

Numbers and their combinations by means of
arithmetic give us an exact way of speaking about
quantity. In physics, however, there are limits
to our accuracy of measurement, and they in
turn place limits on our use of numbers to record
our measurements.

We have learned that the use of a large string
of zeros on either side of the decimal point, to




express the order of magnitude of a quantity, is
unnecessary. Every quantity can be written as a
decimal number between one and ten multiplied
by the appropriate power of ten. Instead of
writing the radius of the earth as about 6,370,000
meters, therefore, we write it as 6.37 X 10° meters.
Likewise, the diameter of a hair is about 0.00003
meter, which we write as 3 X 10-5 meter.

Now, in this way of writing numbers, we show
the limited accuracy of our knowledge by omitting
all digits about which we have no information.
Thus, for the earth’s radius, when we write 6.37 X
10° m and not 6.374 X 10° m or 6.370 X 10° m,
we are saying that we are reasonably sure of the
third digit but have no idea of the value of the
fourth. The number of digits about which we do
feel reasonably sure is called the number of
significant figures. In the example of the hair,
we have indicated only one significant figure.
This means that we think three is a reasonable
value, but we are not at all sure of the next digit
(second significant figure).

A physicist who makes a measurement must
estimate its reliability, and the simplest way of
expressing that reliability is by writing the proper
number of significant figures. To write additional
figures that have no meaning is worse than a
waste of time. It may mislead people who use
those figures into believing them.

It is clear that the greater the accuracy of our
measurements, the larger the number of significant
figures we can use. When we write four signifi-
cant figures, we imply that a fifth digit would
have no meaning. If our accuracy were ten times
greater, we would use another significant figure.
The most careful physical measurements, using
the highest available accuracy of the primary
standards, still fall short of having twelve signifi-
cant figures.

Because the numbers used in physics reflect
the limitations of measurement, we modify our
ideas of arithmetic slightly so as to make sure
that we do not write meaningless digits in our
answers. Suppose we make the following time
measurements — 27.8 hr, 1.324 hr, and 0.66 hr —
and we want to find their sum. Paying no atten-
tion to significant figures, we might write

27.8 hr
1.324 hr
0.66 hr

29.784 hr
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3=-14. This illustratian, an enlargement af a small section af

Fig. 3—=7, shaws twa star images in detail. The images af the
twa brightest stars display faur rays, while the smaller stars
appear as small, irregular shapes. The faur neat rays an the
bright stars are due to the aut-of-facus image af a faur-armed
support within the telescape. Even the roundish shapes af the
images af the fainter stars da nat depend an the stars, but on
the nature af the telescape, the atmasphere, the phatagraphic
plate, and the light. These cause the light fram o distant star
ta blur rather than focus ta a sharp paint. The true star image
in each case would be cansiderably smaller than the blurry
spat. Far this reasan, the star images af Fig. 3-=7 appear much
more crawded than the stars which make them.
way, the stars that farm aur Milky Way cannat be separated

In the same

by the unaided eye.

What is the meaning of this result? In any num-
ber obtained by measurement all the digits follow-
ing the last significant one are unknown — for ex-
ample, the hundredths and thousandths place in
the first measurement above. These unknown
digits are not zero. Clearly if you add an un-
known quantity to a known quantity you get an
unknown answer. Consequently, the last two
digits in the sum above are in fact unknown. In
this case, then, we should round off all of our
measurements to the nearest tenth so that all
the digits in our answer will be significant. This
gives
27.8 hr
1.3 hr
0.7 hr
29.8 hr

Since the first measurement is known only to the
nearest tenth of an hour, we know the sum only
to the nearest tenth of an hour.

Subtraction of measured quantities works the
same way. It makes no sense to subtract known
and unknown quantities. Particular care must
be taken in subtracting two numbers of nearly
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equal magnitude. For example, suppose you
wish to find the difference in length of two pieces
of wire. One you have measured to be 1.55
meters long and the other 1.57 meters long.

1.57m—1.5m=002m =2 X 102 m.

Notice that we do not write the answer as
2.00 X 102 m, since we are somewhat uncertain
about each of the last digits in the original
measurements. The difference certainly has only
one significant figure, and we would not be too
surprised if the difference were either twice as
large or zero instead of 2 cm. Subtraction of
nearly equal quantities destroys accuracy. For
this reason, you sometimes need measurements
much more accurate than the answers you want.
To avoid the difficulty of making more accurate
measurements, we would put the two wires side
by side if possible and measure the difference
directly with a micrometer screw rather than use
the difference between two large numbers.

Now what about multiplication? How do we
modify it to take account of the limitations of
measurement? Suppose we wish to find the
area of a long strip of tin. With a meter stick
we measure its width to be 1.15 cm and its length
to be 2.002 m. Here we have three-significant-
figure accuracy in our width measurement and
four-significant-figure accuracy in our length
measurement. To get the area we multiply length
by width. Paying no attention to significant
figures, we get

A=2002m X 1.15% 102 m
= 2.30230 X 102 m2

But now think of the meaning of this answer.
When we measured the width we wrote 1.15 cm
because we were not sure that the real width
might not be a bit bigger or a bit smaller by per-
haps 0.01 cm. If in fact the width is that much
bigger, we have made a mistake in the area by
the product of this extra width times the length,
that is,

Error = 0.01 X 10-2m X 2.002 m
= 0.02 X 102 m2

Thus we see that we have an uncertain number in
the hundredths place, which means that our
original evaluation of the area may already be in

error in the third significant figure. All the figures
we write beyond the third have no significance.
The proper way to express the answer is
2.30 X 102 m?% for when two numbers are mul-
tiplied together, their product cannot have more
accuracy (or more significant figures) than the
less accurate of the two factors. Don't think
that your results are improved by carrying out
simple arithmetical operations to many figures.

What has been said about multiplication applies
equally well to division. Never carry a division
out beyond the number of significant figures in
the least accurate measurement you are using.

It should be noted that numbers that are not
the result of measurement may have unlimited
accuracy and may be taken to any degree of
accuracy required by the nature of the problem.
For example, if an area was measured and found
to be 3.76 m? twice that area would be
2 X376 m*=7.52 m*

We have seen how to handle numbers when
they represent physical quantities. But we have by
no means told the whole story of accuracy in
measurement. The use of significant figures
sometimes raises difficulties that would lead us
into a detailed study of the theory of errors.
However, the idea of significant figures helps us
avoid misleading numbers and unnecessary calcu-
lation.

Every physical quantity must have: a unit, to
tell what was counted; an order of magnitude;
and a statement about its reliability, which for
the present we can make in a rough way by writ-
ing only the correct number of significant figures.
There is no technique in physics more important
than the writing of physical quantities with all
these facts made clear.
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