CAPITULO 2

MOVIMIENTO
UNIDIMENSIONAL

La mecdnica, la mds antigua de las ciencias fisicas, es el estudio del moviniiento de los objetos.
El cdlculo de la trayectoria de una bola de béisbol o de una sonda espacial enviada a Marte
figuran entre los problemas de los que se ocupa, ast como el andlisis de la trayectoria de las
particulas elementales que se forman en las colisiones en nuestros grandes aceleradores.
Cuando desctibimos el movimiento, estamos tratando la parte de la mecdnica llamada
cinematica (del griego kinema, que significa movimiento, y de donde viene también “cinema”).
Cuando analizamos las causas del movimiento entramos en el terreno de la dindmica (de la
palabra griega dynamis, fuerza, como en “dinamita”). En este capitulo, trataremos iinicamente
de la cinemdtica en una dimension. Los dos capitulos siguientes extienden estos resultados a
dos y a tres dimensiones, y en el capitulo 5 iniciaremos el estudio de la dindmica.

2-1 CINEMATICA DE LA PARTICULA

Para iniciar nuestro estudio de la cinematica, elegimos un
caso simple: una particula que se mueve en linea recta.
Elegimos el movimiento en linea recta porque nos permite
introducir algunos de los conceptos basicos de la cinema-
tica, tales como velocidad y aceleracidn, sin la compleji-
dad matematica de los vectores, los cuales se usan con
frecuencia para analizar el movimiento bidimensional y
tridimensional. Sin embargo, dentro de esta limitacion,
podemos considerar una amplia gama de situaciones fisi-
cas: la caida de una piedra, la aceleracion de un tren, el
frenado de un automévil, el deslizamiento de un disco de
goma en el hockey sobre hielo, el traslado de una caja en
una rampa, el movimiento rapido de un electron dentro
de un tubo de rayos X, etc. El estado del movimiento
puede cambiar (el disco de goma usado en el hockey sobre
hielo debe ser golpeado antes de que se deslice) y su
direccion puede cambiar (la piedra puede ser arrojada
hacia arriba antes de que caiga), pero el movimiento debe
ser confinado a una simple linea.

También simplificaremos esta exposicién considerando
el movimiento de una particula unicamente. Esto es, trata-
remos a un objeto complejo como si fuera un simple punto
de masa. Esto nos permite despreciar todos los movimientos
internos posibles, por ejemplo, el movimiento de rotacién
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del objeto (el cual consideraremos en los capitulos 11 a 13)
o la vibracion de sus partes (capitulo 15). Para el caso que
10S ocupa, todas las partes del objeto se mueven exactamen-
te de la misma manera. El giro de una rueda no satisface esta
restriccién, porque un punto de la llanta se mueve de un
modo diferente a un punto del eje. (El deslizamiento de la
rueda, en cambio, si la satisface. Entonces la rueda, lo mismo
que otros objetos materiales, podria ser considerada como
una particula en ciertos calculos pero no en otros.) En
tanto que nos conciernan solamente las variables cinemati-
cas, no existe razén para no considerar sobre la misma base
la marcha de un tren que la de un electrén como ejemplos
del movimiento de una particula.

Dentro de estas limitaciones, consideraremos todas las
clases de movimiento posibles. Las particulas pueden
acelerar, decelerar, e incluso detener e invertir su movi-
miento. Buscaremos una descripcion del movimiento que
incluya cualquiera de estas posibilidades.

2-2 DESCRIPCIONES
DEL MOVIMIENTO

Describiremos el movimiento de una particula de dos
maneras: con ecuaciones matematicas y con graficas.
Cualquier manera es apropiada para el estudio de la cine-




Figural Una bola perforada se desliza libremente a lo
largo de un alambre en una dimension; la direccién del
movimiento es arbitraria y no necesariamente vertical. En
este caso la bola estd en reposo en el punto 4 de la
coordenada x, y su “movimiento™ se halla descrito por la
linea recta horizontal x = A.

mdtica, y comenzaremos usando ambos métodos. El en-
foque matematico es usualmente mejor para resolver pro-
blemas, porque permite mas precisién que el método
grafico. El método grafico esitil porque a menudo provee
mds introspeccién fisica que un grupo de ecuaciones
matematicas.

Puede obtenerse una descripcién completa del movi-
miento de una particula si conocemos la dependencia
matematica de su posicién x (relativa a un origen elegido
de un marco de r,eferencia en particular) en el tiempo ¢ en
todo momento. Esta es precisamente 1a funcién x(?). Aqui
presentamos algunas clases de movimiento posibles junto
con las funciones y las grificas que las describen:

1. Ningiin movimiento en absoluto. Aqui la particula
ocupa la posicién A en la coordenada en todo momento:

x(f) = A. ey

En la figura 1 se presenta una grifica de este “movimien-
to”. Para el objeto de estas ilustraciones, imaginemos la
particula descrita por la grafica como una bolita perforada
que se desliza sin friccién por un alambre largo. En este
caso la bolita estd en reposo en la ubicacion x = A. Nétese
que hemos trazado la grifica con x como la variable de-
pendiente (sobre el eje vertical) y ¢ como la variable
independiente (sobre el eje horizontal).

2. Movimiento a velocidad constante. La razén de mo-
vimiento de una particula se describe por su velocidad. En
el movimiento unidimensional, la velocidad puede ser o
bien positiva, si la particula se mueve en la direccién en
que x crece, o bien negativa, si se mueve en la direccién
opuesta. Otra medida de la razén de movimiento de una
particula es la magnitud de la velocidad de la particula. La
magnitud de la velocidad es siempre positiva y no conlle-
va una informacién direccional.

En el caso del movimiento a velocidad constante, la po-
sicion de trazado en la grafica contra el tiempo es una linea

Figura2 Una bola que se desliza a lo largo de un alambre
en una dimensién se mueve a velocidad constante B en la
direccion positiva x; comienza en el tiempo 0 en el punto A
sobre la coordenada x. Su movimiento estd descrito por la
lineax = A + Br.

recta con una pendiente constante. En célculo aprendimos
que la pendiente de cualquier funcidén nos habla de su
cantidad de cambio. Aqui la cantidad de cambio de la
posicién es la velocidad, y cuanto mds acentuada sea
la pendiente de la grafica, mayor sera la velocidad. Mate-
maticamente, tenemos que

x(f)=A+ Bt, 2)

que es la forma acostumbrada de la expresién de una linea
recta (mds cominmente expresada como y = mx + b) de
pendiente B.

La ilustracion grafica de la figura 2 muestra a la parti-
cula en la posicién x = A4 en el tiempo ¢ = 0. Se estd
moviendo con rapidez constante en la direccion creciente
de x. Su velocidad es, entonces, positiva, como lo indica
la pendiente positiva.

3. Movimiento acelerado. En este caso la velocidad esta
cambiando (la aceleracién se define como la razén de
cambio de la velocidad), y por lo tanto la pendiente
cambiara también. Estas graficas son, entonces lineas
curvas mas bien que rectas. Dos ejemplos son:

x(f)=A+ Bt + C¢?, 3)
x(f) = A4 cos wt. “4)

En el primer caso, suponiendo que C > 0, la pendiente
aumenta en forma continua al moverse la particula mis y
mas rapidamente (Fig. 3a). En el segundo caso, la parti-
cula oscila entre x = +4 y x = -A (Fig. 3b), y su velocidad
cambia de la posicion positiva a la negativa al cambiar de
signo la pendiente.

A menudo, las descripciones completas del movimien-
to son mas complejas que las ilustraciones sencillas que
hemos llevado a cabo. Aqui se citan algunos ejemplos:

4. Aceleraciény frenado en un automdvil. Un automo-
vil parte del reposo y acelera hasta determinada veloci-
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Figura 3 (a) Una bola deslizandose a lo largo de un
alambre unidimensionalmente se mueve en la direccién
positiva x a una velocidad constantemente creciente. La
velocidad es igual a la pendiente de la curva que describe el
movimiento de la particula; se puede ver como la pendiente
de la curva crece en forma continua. (b) Una bola

deslizandose a lo largo de un alambre unidimensionalmente
oscilaentre x = +A y x = -A.

dad. Luego se mueve durante un tiempo a velocidad
constante, después del cual se aplican los frenos, trayen-
do al automévil de nuevo al reposo. La figura 4 muestra
el movimiento. Ninguna ecuacién matematica unica des-
cribe el movimiento; podriamos usar expresiones de la
forma de la ecuacion 1 para las partes del movimiento en
reposo, y una expresion de la forma de la ecuacion 3 para
la parte de la aceleracion; una de la forma de la ecuacion
2 para la parte con velocidad constante y, finalmente,
otra, también de la forma de la ecuacion 3, para la parte
de frenado.

Nétese que la grafica tiene dos caracteristicas: (x) es
continua (la grafica no se rompe) y la pendiente es conti-
nua (no hay puntos agudos). Esperamos que x(f) sea
siempre continua, de otro modo el automévil desapare-
ceria en un punto y reapareceria en otro. Los picos de
la grifica, como veremos mas tarde, significan que la
velocidad cambia instantdneamente de un valor a otro.
Esto, por supuesto, no es una situacién completamente
fisica, pero a menudo es una buena aproximacion a tal

situacion.

5. Rebote de un disco de goma. Un disco de goma de los
que se usan en el hockey se desliza en el hieloa velocidad
constante, choca con la pared, y luego rebota en la direc-
cién opuesta con la misma velocidad. La figura 5 muestra
el movimiento donde se supone que el choque invierte
instantaneamente al movimiento. En realidad, si exami-
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Figura4 La curva desctibe a un automévil que esta en
teposo desde f = O hasta t = ¢, , en cuyo tiempo comienza a
aceletar. En ¢ = t, para de acelerar y comienza a moverse a
velocidad constante. Los frenos actian en el tiempo £ = 1,, ¥
la velocidad decrece gradualmente hasta que llega a O en el
tiempo ¢ = I,.

o] 2

Figura 5 Un disco de goma de hockey se mueve sobre el
hielo a velocidad constante cuando choca con una pared
tigida en x = P en el tiempo 2,, después de lo cual se aleja de
la pared a una velocidad igual en magnitud pero opuesta en
direccion. El movimiento del disco de goma se da
unidimensionalmente. Para un objeto en rebote real, el punto
agudo en x() estaria ligeramente redondeado.

namos con cuidado el “punto”, hallaremos que no es
agudo sino ligeramente redondeado, a consecuencia dela
elasticidad de la pared y del disco de goma.

6. Una bola pegajosa de arcilla. Un estudiante arroja
hacia arriba una bola de arcilla; el punto de liberacion esta
sobre la cabeza del estudiante. La bola se eleva a cierta
altura, luego cae y se pega al piso. La figura 6 describe el
movimiento. La pendiente en ¢ = O representa la velocidad
inicial con la cual fue arrojada la arcilla hacia arriba. La
velocidad pasa a través de cero en la parte superior de
la trayectoria (donde la pendiente es cero), y luego la
arcilla se mueve hacia abajo a velocidad creciente. Cuan-
do toca el suelo, subitamente llega al reposo y su veloci-
dad es cero.

Recuérdese que las graficas mostradas en esta seccion
son representaciones del movimiento, no trazos de las
trayectorias reales seguidas por las particulas. En la figu-
ra 6, por ejemplo, la particula se mueve hacia arriba y
hacia abajo a lo largo de la misma linea; no sigue la
trayectoria curva que se muestra en la figura.
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Figura 6. Una bola de arcilla es arrojada hacia arriba, se
eleva a cierta altura, y luego cae al suelo. Al chocar con el
suelo queda en reposo. La curva describe su movimiento. En
realidad, el punto abrupto en x(z) estaria ligeramente
redondeado.

2-3 VELOCIDAD PROMEDIO

Si el movimiento de una particula estuviera descrito por
graficas como las figuras 1 6 2, no tendriamos problema
en obtener la velocidad en cualquier intervalo de tiem-
po: es constante e igual a la pendiente de la linea. En casos
més complicados, tales como los de las figuras 3 a 6,
donde la velocidad cambia, es conveniente definir 1a ve-
locidad media o velocidad promedio . (Una barra sobre
el simbolo en cualquier cantidad fisica indica un valor
promedio de esa cantidad.)

Supongamos, como se indica en la figura 7, que la
particula estd en un punto x, en el tiempo 7, y luego se
mueve hasta el punto x, en el tiempo t,. La velocidad
promedio en el intervalo se define asi:

Xy — X, _AX

T T A )
donde
Ax=x,—x, (6)
y
Ar=1t,—1,. 7

Aqui Ax es el desplazamiento (esto es, el cambio de
posicion) que ocurre durante el intervalo de tiempo At. En
la figura 7 puede verse que v es simplemente la pendiente
de la linea recta que conecta a los puntos extremos del
intervalo.

La velocidad promedio nos proporciona el compor-
tamiento promedio durante el intervalo de tiempo At.
El comportamiento real entre X, Y X, no interesa para
el cdlculo de la velocidad promedio. Cualquier detalle del
movimiento particular entre x, y x, se pierde cuando
tomamos el promedio.

Si suponemos que nuestros relojes estan siempre mar-
chando hacia adelante (, > z,), entonces el signo de v estd
determinado por el signo de Ax = X, - X;. 81V es positiva,
entonces, en promedio, la particula se mueve de modo que
X aumenta con el tiempo. (Puede moverse hacia atrds un
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Figura7 La velocidad promedio en el intervalo Ar entre z,
¥ 1, se determina por el desplazamiento Ax durante el
intervalo; la forma real de la curva x(?) en el intervalo no es
de consecuencia en la determinacién de la velocidad
promedio.

tanto en el intervalo, pero acaba con una coordenada x m4s
grande que cuando comenzd.) Si Des negativa, entonces,
en promedio, la particula se mueve hacia atris. En par-
ticular, nétese que de acuerdo con esta definicién de v, la
velocidad promedio es cero en cualquier viaje en el que
se retorne al punto de partida, no importa qué tan rapido
se haya podido mover en cualquier segmento en particu-
lar, porque el desplazamiento sera cero. En el conteo
del tiempo desde la linea de arranque hasta la meta, la
velocidad promedio de un corredor de Indiandpolis 500
jes cero!

Problema muestra 1 Usted maneja su BMW por una carre-
tera recta durante 5.2 mi a 43 mi/h, en cuyo punto se queda sin
gasolina. Camina 1.2 millas hacia adelante, hasta la estacion
de gasolina mds préxima, durante 27 min. ¢ Cual fue la veloci-
dad promedio desde el momento en que arranco con su automao-
vil hasta el momento en que llegé a la estacién de gasolina?

Solucién. Se puede hallar la velocidad promedio por la ecua-
¢ién 5 si se conocen tanto Ax, la distancia neta que fue cubierta
(el desplazamiento), como Az, el tiempo transcurrido cotrespon-
diente. Estas cantidades son:

Ax=52mi+ 1.2 mi=6.4 mi

5.2mi
43 mi/h
= 7.3 min + 27 min = 34 min = 0.57 h.

+ 27 min

Entonces, segun la ecuacion 5 tendremos que

La grafica de x(r) de la figura 8 ayuda a visualizar el proble-
ma. Los puntos O y P definen el intervalo en el que queremos
hallar la velocidad promedio, siendo esta cantidad la pendiente
de la linea recta que une a estos puntos.

®”
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Figura 8 Problema muestra 1. Las ll'nez'ls de “conduce” y
“camina” muestran movimientos a velocidades constantes
diferentes en las dos porciones del viaje. La velocidad
promedio es la pendiente de la linea OP.

2-4 VELOCIDAD INSTANTANEA

La velocidad promedio puede ser util al consi.derar.el
comportamiento total de una particula durante le’“_" in-
tervalo, pero para describir los detalles de su m(?v_lmlent’o
la velocidad promedio no es particularmentfa'utll. Seria
mas apropiado obtener una funcion matematica v(f), l'a
cual da la velocidad en cualquier punto durante el movi-
miento. Esta es la velocidad instantdnea; de ahora en
adelante, cuando usemos el término “velocidad” entende-
remos que significa velocidad instantanea. .
Supongamos que tratamos de calcular la ve1001'dad pro-
medio, como se muestra en la figura 9, cuando el mtx‘arvalo
At se vuelve cada vez mas pequeiio. En este caso limite, en
que At —0, la linea que une a los puntos extremos del
intervalo se aproxima a la tangente de la curva x(7) en un
punto, y la velocidad promedio se aproxima a la pendiente
de x(?), 1a cual define la velocidad instantinea en ese punto:

p= lim A% ®)

TABLA 1 EL PROCESO LIMITE
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Figura 9 El intervalo Af crece menos en este caso ya que
mantenemos a ¢, fijo y nos movemos al otro punto extremo z,
mds cercano a t,. En el limite, el intervalo tiende a cero y la
cuerda se vuelve una tangente.

El lado derecho de la ecuacién 8 esti en la forma de la
derivada de x(t) con respecto a t, o sea dx/dt. Entonces

dt
La velocidad (instantanea) es precisamente la cantidad del
cambio de posicién con el tiempo.

La tabla 1 ofrece un ejemplo de cémo converge el
proceso limite hacia el valor instantaneo. Los datos de
la tabla 1 se calcularon usando x(#) = 3.000 + 1.000¢
+2.000¢%, estando ¢ en segundos y x en metros. He-
mos elegido mantener al punto (¢,, x,) fijo y mover el
punto (¢,, x,) gradualmente hacia (¢, x,) para simular
el proceso limite. El limite parece tender al va1.c>’r v =
5.0 m/s en t; = 1.0 s; diferenciando la expresion de
arriba para x(?), hallaremos la expresién de la velocidad
instantdnea:

d
v(t) = % = E(B.OOO + 1.000¢ + 2.000¢%)
= 0 + 1.000 + 2(2.000¢) = 1.000 + 4.000¢,

la cual verdaderamente da el valor de 5.000 m/s para
t = 1.000 s. Claramente, el valor promedio converge ?acm
el valor instantineo segin se vuelve mas pequefio el

intervalo.

Punto inicial Punto final Intervalos Velocidad promedio
x,(m) t,(s) x,(m) £,(s) Ax(m) At(s) (m/s)
6.000 1.000 13.000 2.008 ;lggg (1)(5)88 ggg
6.000 1.000 9.000 1.501 . . s.00

2.320 0.400 .
6.000 1.000 8.320 1.400 >80
1.375 0.250 .
6.000 1.000 7.375 1.250 220
1.080 0.200 .
6.000 1.000 7.080 1.200 340
0.520 0.100
.000 1.000 6.520 1.100 .
2000 1.000 6.255 1.050 0.255 Oggg g {
6.000 1.000 6.152 1.030 0.152 8.010 5.0
6.000 1.000 6.050 1.010 0.050 . )
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Figura 10 (a) La posicién y (b) la velocidad de una bola
perforada en reposo en un alambre en x = A.

Asi pues, dada cualquier x(z), podemos hallar v(?) dife-
renciando. Graficamente, podemos evaluar (punto por
punto) la pendiente de x(f) para trazar v(z). Revisemos
ahora los ejemplos de la seccién 2-2, de los cuales los
primeros tres tratan de una bola perforada que se desliza
a o largo de un alambre recto largo:

1. Ningiinmovimiento en absoluto. De laecuacion 1, x(f)
= A y entonces

dx
dt

porque la derivada de cualquier constante es cero. La
figura 10 muestra a x(f) junto con v(f).

v(t) =—-=0, (10)

2. Movimiento a velocidad constante. Con x(t) = A + Bt
de la ecuacién 2, hallamos que

dx d

t = e = =

v(t) 7 dt(A+Bt) 0+ B (11)
La velocidad instantanea (constante) es B, como se mues-
tra en la figura 11.

3. Movimiento acelerado. Usando la ecuacién 3, x(®) =
A + Bt + C*, tenemos que

dx _d
v(t)_E_E(A +Bt+C)=0+B+2Ct. (12)
La velocidad cambia con el tiempo; si C > 0, la velocidad
aumenta con el tiempo. La figura 12 muestra a x(¢) y a v(z).

4. Un automdvil que acelera y frena. Sin escribir x(z),
podemos trazar la grifica de v(f) estudiando la figura 4.
En el primer intervalo, el automévil est4 en reposo y v =
0. En el siguiente intervalo, el automévil estd acelerando
y ¥(¢) tiene la forma de la ecuacién 12. En el intervalo a
velocidad constante, v = constante (igual a su valor al final
del intervalo de aceleracion), y por lo tanto C = 0 en este

Figura 11 (a) La posicién y (b) la velocidad de una bola
perforada que se desliza unidimensionalmente a lo largo de
un alambre con velocidad constante. La velocidad es igual a
la pendiente B de la grafica de x(f). La grafica de v(f) esla
linea horizontal v = B.

=~ Pendiente = B

@ o
v
/
B Pendiente = 2C
® o ¢

Figura 12 (a) La posicion y (b) la velocidad de una bola
perforada acelerada que se desliza unidimensionalmente a lo
latgo de un alambre. La velocidad aumenta con el tiempo,
como se indica por la pendiente creciente de x(¢) y también
por el aumento lineal de v(z).

intervalo. Finalmente, en la fase de frenado, v(f) nueva-
mente tiene la forma de la ecuaciéon 12 pero ahora con
C < 0 (pendiente negativa). La figura 13 muestra un tra-
zado del movimiento.

En la realidad, no podemos saltar subitamente de un
estado de reposo a un estado de movimiento acelerado, o
de un estado de aceleracién a otro de velocidad constante.
En términos de la grifica de la figura 13, las esquinas
agudas en el trazo de v(f) estarian redondeadas para un
automovil real, y la ecuaciéon de movimiento seria mas
complicada que la ecuacidn 12. Para simplificar continua-
mos suponiendo el comportamiento idealizado que se
muestra en la figura 13.

5. El rebote de un disco de goma. Aqui tenemos una
velocidad constante antes del rebote y una velocidad igual
pero opuesta (negativa) después del rebote. La figura 14

En reposo

Velocidad
constante

En reposo

v constante

t4

0 t) t2 t3

Figura 13 (a) La posicion y (b) la velocidad de un
automovil que arranca del reposo, luego aumenta su
velocidad durante un tiempo, después se mueve por un
tiempo a velocidad constante, y finalmente disminuye su
velocidad hasta llegar nuevamente al reposo. La grafica
inferior muestra a v(z) correspondiendo exactamente con la
grifica x(z) de artiba y en la figura 4. Para un automévil real,
los cambios en la velocidad deben ser suaves en lugar de
stbitos, de modo que las puntas agudas de la grafica v(f)
estarian redondeadas.

muestra a v(t). Notese que la “punta” en la grafica x(¢)
produce una discontinuidad en la grafica v(z), nada de lo
cual ocurriria para objetos reales.

6. Una bola pegajosa de arcilla. Aqui, como se muestra
en la figura 15, la arcilla arranca de una posicion inicial v
(arbitrariamente elegimos que la direccién hacia arriba
sea positiva), pero su velocidad disminuye. Sumovimien-
to se describiria con una ecuacién similar a la ecuacion 12,
pero con C < 0. En la cima de su movimiento v = 0, de
modo que la linea v(f) debe cruzar al eje en ese punto.
Cuando la bola choca con el suelo, v llega instantanea-
mente a cero. (Una vez mas, una “punta” de la grafiea x(?)
produce una discontinuidad en v(?); enla realidad la punta
estaria redondeada y no habria discontinuidad.)

2-5 MOVIMIENTO ACELERADO

Como ya hemos visto (figuras 12, 13 y 15), la velocidad
de una particula puede cambiar con el tiempo segun
procede el movimiento. Este cambio de velocidad con el
tiempo se llama aceleracion. En analogia con la ecuacion
5, podemos calcular una aceleracion promedio por el
cambio en la velocidad Av= v, - v, en el intervalo At:

=—. (13)
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Figura 14 (a) La posicién y (b) la velocidad de un disco de
goma de hockey rebotando en una superficie dura. Enz = 1,
la velocidad cambia “instantdneamente” de signo en esta
grafica idealizada, aunque en la realidad la velocidad
cambiaria durante cierto intervalo pequefio (pero distinto de
cero) y la punta aguda en la grafica x() estaria
correspondientemente redondeada.

@ o r
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Figura 15 (a) La posicion y () la velocidad de la bola de
arcilla lanzada, como en la figura 6. En realidad, la velocidad
no puede cambiar instantdneamente de un valor distinto de
cero al valor cero, y la elevacion vertical en v(f) cuando la
bola golpea al suelo setia mas gradual.

La aceleracion tiene unidades de velocidad divididas entre
el tiempo, por ejemplo, metros por segundo por segundo,
escrito en m/s>.

Como fue el caso con la velocidad promedio v, la
aceleracion promedio a no nos dice nada acerca de la va-
riacidn de T(¢) con ¢ durante el intervalo Az. Depende solo
del cambio neto de la velocidad durante el intervalo. Si a
es evaluada como una constante (posiblemente cero) en
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tales intervalos, entonces podemos concluir que tenemos
una aceleracién constante. En este caso, el cambio en la
velocidad es el mismo en todos los intervalos de la misma
duracion. Por ejemplo, la aceleracién producida por la
gravedad de la Tierra es (como se discutira mas adelante
en este capitulo) casi constante cerca de la superficie de
la Tierra y tiene el valor 9.8 m/s? . La velocidad de un
objeto en su caida cambia en 9.8 m/s cada segundo,
aumentando 9.8 m/s en el primer segundo, luego otros
9.8 m/s en el siguiente segundo, y asi sucesivamente.

Si el cambio de la velocidad en intervalos de tiempo
sucesivos de igual longitud no es la misma, entonces
tenemos un caso de aceleracién variable. En tales casos
es util definir la aceleracidn instantanea:

. Av
a= lim —
ar—o At

O sea

_ v
= (14)

en analogia con la ecuacién 9 para la velocidad instan-
tanea.

Notese que la aceleracion puede ser positiva o negativa
independientemente de si v es positiva o negativa: por
ejemplo, podemos tener una a positiva con una v negativa.
Laaceleracion a da el cambio de velocidad; el cambio puede
ser un aumento o una disminucion para una velocidad ya sea
positiva o negativa. Por ejemplo, un elevador que se mueve
hacia arriba (lo cual hemos tomado como la direccién de la
velocidad positiva) puede acelerar hacia arriba a@a>0)y
moverse mas aprisa o acelerar hacia abajo (a < 0) y moverse
mas despacio (pero todavia en la direccién hacia arriba).
Cuando se mueve hacia abajo (v < 0), puede acelerar hacia
abajo (a < 0) y moversé mds aprisa, o acelerar hacia arriba
(a > 0) y moverse mas despacio. Cuando la aceleracidn yla
velocidad tienen signos opuestos, de modo que la rapidez
(la magnitud de la velocidad) esté decreciendo, nos referi-
mos a ello como una deceleracion.

La aceleracion definida por la ecuacion 14 es justamen-
te la pendiente de la grafica v(f). Si v(f) es constante,
entonces a = 0; si v(f) es una linea recta, entonces a es una
constante igual a la pendiente de la linea. Si u(t) es
una curva, entonces a sera alguna funcion de ¢, obtenida
hallando la derivada de v(?).

Podemos ahora incluir la aceleracion en las graficas de
las figuras 10 a 15. Como ejemplo, mostraremos el caso
de la aceleracion y el frenado de un automévil (Fig. 16).
Los restantes ejemplos se dejan al estudiante como ejer-
cicios.

Problema muestra 2 La figura 17a muestra seis “instanta-
neas” sucesivas de una patticula que se mueve a lo largo del

D e

Enreposo @ = W Rapidez - . - Enreposo
constante .

v-constante .

Figura 16 (a) La posicidn, (b) la velocidad, y (¢) la
aceleracion de un automévil que arranca del reposo, acelera
durante un intervalo, luego se mueve a velocidad constante, y
luego frena con una aceleracién negativa para llegar de
nuevo al reposo. En realidad, no podemos cambiar
instantdneamente la aceleracién de un automévil de un valor
a otro; tanto a(z) como w(¢) serian, en un automévil real,
suaves y continuas. Los segmentos planos af?) estatian
conectados por curvas suaves, y las puntas agudas de V(1)
estarfan redondeadas.

eje x. En £ = 0 esta en la posicion x = +1.00 m a la derecha
del origen; en t = 2.5 s ha llegado al reposo para x = +5.00 m;
enz=4.0sharegresadoax=1.4m. Lafigura 176 es un trazado
de la posicion x contra el tiempo 7 de este movimiento, y las
figuras 17¢ y 17d muestran la velocidad y la aceleracién cortes-
pondientes de la particula. (a) Halle la velocidad promedio para
los intetvalos AD y DF. (b) Calcule la pendiente de x(f) en los
puntos By F y compare con los puntos correspondientes de la
curva u(f). (¢) Halle la aceleracion promedio en los intervalos
AD y AF. (d) Calcule la pendiente de v(f) en el punto Dy
compare con el valor de a(z) correspondiente.

Selucién. (a) Segiin la ecuacion 5,

= AXAD=XD_XA=5.0m—l.0m

0T At tp—t,  255—00s
40m
=355 =+1.6 m/s,
5 =AXDF=XF_XD=1.4m~5.Om
PP Aoy tp—1, 40s—25s
—3.6m
T 5s 2.4 m/s.

t (S) | 3 4 4 -
0.0 At O+— I )
1.0 B— t t t :\/ t I
2.0 Ct t + t t :'\v |
25 D t t t t < {

k } t e ——
35 EF

<o + t + + 4
40 F

(o] 1 2 3 4 5 6

(@ x (m)

Pendiente =

®  o-

v
(m/s)

(©)

a
(m/s

0 | 1 2 3
(d) t(s)

Figura 17 Problema muestra 2. (a) Seis “instantaneas” ‘
consecutivas de una patticula que se mueve a lo largo (ilel eje
x. La flecha que atraviesa la particula muestra su velocidad
instantinea, y la flecha abajo de la particula muestra su
aceleracion instantdnea. (b) Una grafica de x(t) para el
movimiento de la particula. Los seis puntosde Aa F
corresponden a las seis instantaneas. (¢) Un trazado de v(z).

(d) Una pendiente de a(t).
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El signo positivo de v, nos dice que, en el promedio, l2 particula
se mueve en la direccién creciente de x (esto es, a la df:recha en
la figura 17a) durante el intervalo AD. El signo negativo dev,;
nos dice que la particula, en el promedio, se estd moviendo en
la diteccidn decreciente de x (a la izquierda de la figura 17a)
durante el intervalo DF.

(b) Por las tangentes a x(t) trazadas en los puntos By Fen la
figura 17b calculamos lo siguiente:

45m—28m_ L7m

punto B; pendiente = [5s—05s _ 10s =+1.7 m/s,

) _l4m—45m_-31m
punto F; pendiente = 40s—35s 05s

=—6.2 m/s.

De u(?) en los puntos B y F de la tigura 17¢ calculamos que
v, = +1.7 m/s y v, = -6.2 m/s, de acuerdo con las pendientes de

x(7). Como se esperaba, v(f) = dx/dt.
(c) De la ecuacion 13,

- _Avyp vp—v, 00m/s—4.0m/s

b= T 1, —1,  25s5—00s
_ZA0ms 6 mys
25s
= _Avye_ ve—v, —6.2m/s — 4.0 m/s
Y= A t—1, 40s—00s
—10.2 m/s ;
=————=-26m/s%
40s /

(d) De la linea tangente trazada para v(f)en D, calculamos lo
siguiente:
. —09m/s—0.9 m/s___—l.8 m/s=_1 8 m/s2.
pendiente =35 305 T0s 8 m/

En el punto D de la gréifica a(t) vemos que a, = -1.8 m/s’.
Entonces a = du/dt. Examinando la gréfica v(f) dela flgqra 17c,
vemos que su pendiente es negativa en todf)s los tiempos
cubiertos por la grifica, y entonces a(t) serfa negativa. La
figura 17d lo confirma.

2-6 MOVIMIENTO '
" CON ACELERACION CONSTANTE

Es bastante comtiin encontrar movimiento con aceleracion
constante (o casi constante): los ejemplos ya c?tados de
objetos que caen cerca de la superficie de la Tierra 0 ’el
frenado de un automévil son tipicos. En esta seccion
deducimos un grupo de resultados utiles para este caso
especial. Sin embargo, conviene tener en cuenta que esta
es una situacion especial y que los resultados no son
aplicables a los casos en los que a no sea cgnstante.
Ejemplos de casos con aceleracion no constante incluyen
la lenteja de un péndulo en movimiento, un cohe.te lanzado
hacia la érbita de la Tierra, y una gota de lluvia que cae
contra la resistencia del aire.
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Figura 18 (a) La aceleracion constante de una particula,
igual a la pendiente (constante) de v(r). (b) Su velocidad v(r)
dada en cada punto por la pendiente de la curva x(1). Se
indica la velocidad promedio v, que en el caso de la
aceleracion constante es igual al promedio de vy v,. (¢) La
posicion x(1) de una patticula que se mueve con aceleracion
constante. La curva estd trazada para la posicién inicial x, = 0.

>

Supongamos que a representa la aceleracion constante,
trazada en la figura 18a. (Si a es realmente constante, las
aceleraciones promedio e instantdnea son idénticas, y
podemos usar las férmulas derivadas previamente para
cada caso.) Un objeto arranca con velocidad v, en el
tiempo ¢ = 0, y en un tiempo ¢ posterior tiene una veloci-
dad v. La ecuacidén 13 resulta, para este intervalo de
tiempo,

a=dv_v=0
At (=0’
O sea
v=uy,+at. (15)

Este importante resultado nos permite hallar la velocidad
de todos los tiempos posteriores. La ecuacidn 15 da la
velocidad como una funcién del tiempo, lo que podria
escribirse como v(?), pero que usualmente escribimos
simplemente como v. Noétese que la ecuacion 15 estd en
la forma de y = mx + b, la cual describe la grifica de una
linea recta. Aqui a es la pendiente, como ya hemos expli-
cado, y v, es la interseccion (el valor de v en ¢ = 0). Esta
linea recta esta trazada en la figura 185.

Para completar el analisis de la cinemadtica de la acele-
racion constante, debemos hallar la dependencia de la
posicién x en el tiempo. Para esto necesitamos una expre-
sién para la velocidad promedio en el intervalo. Si la
grafica de v contra tes una linea recta (véase la figura 185),
entonces el promedio o valor medio de v ocurre a medio
camino a través del intervalo y es igual al promedio o
media de los dos puntos extremos en el tiempo O y en el
tiempo #:

v=1%(@+v,). (16)
Usando la ecuacion 15 para eliminar v, obtenemos
v=u,+ tat. 17

Usando ahora la ecuacion 5, que define la velocidad
promedio, y suponiendo que la particula se mueve de la
posicion x, en el tiempo O a la posicion x en el tiempo ¢,
la velocidad promedio puede escribirse

- Ax x—x,
VET ST "o (18)

At =0
Combinando las ecuaciones 17 y 18, obtenemos el resul-
tado deseado para x(¢):

x=Xxo+ vyt +4ar. (19)

Dados el valor de a y las condiciones iniciales x, y v, (esto
es, la posicidn y la velocidad en ¢ = 0), la ecuacion 19 nos
permite entonces hallar la posicién x de todos los tiempos
posteriores, lo cual es la meta de nuestro anlisis cinema-
tico. La distancia neta viajada desde el punto de partida,
X - X, , suele llamarse desplazamiento. Por conveniencia,
a menudo elegimos el origen de las coordenadas de ma-
nera que x, = 0. La figura 18c muestra el trazado de x
contra ¢ para este caso.

Notese que hay cuatro variables (x, v, a, f) y dos
condiciones iniciales (x,, v,). Las ecuaciones 15 a 19 estdn
escritas en la forma acostumbrada para el analisis de
cinematica como un problema de valor inicial: dada la
situacion fisica (esto es, la aceleracion a) y las condiciones
iniciales (x, y v,), podemos hallar v y x para todos los ¢.
Sin embargo, el problema puede plantearse, por lo gene-
ral, en una forma diferente. Por ejemplo, dada la acelera-
c.ién a, jatravés de queé distancia (en lugar de “por cuanto
tiempo”) debe moverse la particula para que su velocidad
cambie de v,a v? Aqui no entra el tiempo, y asi podemos
tratar las ecuaciones 15 y 19 como ecuaciones algebraicas
y eliminar la variable indeseable ¢ entre ellas:

¥ =05+ 2a(x — x,). (20)

Eliminando otras variables o parametros, podemos obte-
ner las ecuaciones 21 y 22, las cuales se muestran en la
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TABLA 2 ECUACIONES PARA EL MOVIMIENTO CON ACELERACION

CONSTANTE'

Niimero de Contenido

la ecuacion Ecuacion x Vo v a ¢
15 v=y,t+at X v v v v
19 X=X+ vt +4at? v v X v v
20 v2= v} + 2a(x — x;) v v v v X
21 X=X, + ¥(v, + v} v v v X v
22 x=Xx,+ vt —+at v X v v v

t Asegrirese de que la aceleracion es constante antes de usar las ecuaciones de esta tabla.

tabla 2 con el grupo completo de ecuaciones cinematicas
para la aceleracion constante.

Podemos verificar que la ecuacion 19 es el resultado
cinematico correcto por diferenciacion, lo cual nos dara
la velocidad v:

dx
dt
La cual nos da, en efecto, el resultado esperado.

Al usar las ecuaciones de la tabla 2 para resolver un
problema, puede elegirse el origen del sistema de coorde-
nadas en cualquier ubicacion conveniente. Las cuatro
ecuaciones de la tabla 2 que dependen de x dependen
también de x, y, de hecho, siempre dependen de la dife-
rencia x — x,. Usualmente el origen se elige para hacer a
x, = 0, de modo que las ecuaciones resulten un tanto
simplificadas. Puede también elegirse cualquier direccion
del eje de coordenadas como positiva. Una vez que ha
sido elegida una direccion en particular para designarla
como positiva, entonces todos los desplazamientos, las
velocidades y las aceleraciones en esa direccién seran
positivas, y las de la direccién opuesta serdn negativas. La
eleccion del origen y la direccion del eje de coordenadas
deben permanecer sin cambio durante la solucién de
cualquier problema en particular.

= %(x0 + gt +4at)=v,+at=vo.

Problema muestra3 Usted frena su Porsche desde la veloci-
dad de 85 km/h (unas 53 mi/h, por supuesto, bastante mas abajo
del limite de velocidad) hasta 45 km/h en una distancia de
105 m. (@) ;Cual es la aceleracion, suponiendo que sea cons-
tante en el intervalo? (b) ;Qué tanto tiempo transcurrié durante
el intervalo? (c) Si usted fuera a continuar frenando con la
misma aceleracion, ;jqué tanto tiempo le tomaria detenerse y
qué distancia adicional tendria que cubrit?

Solucién. (a) Seleccionemos primero que la direccion positi-
va serd la direccién de la velocidad, y elijamos el origen de
modo que x, = 0 cuando comienza a frenar. Hemos. dado la
velocidad inicial v, = 85 km/h en el tiempo ¢ = 0, y sabemos que
la velocidad final es v = +45 km/h en el tiempo ¢ (que no
conocemos) siendo el desplazamiento +0.105 km. Necesitamos
una ecuacion que incluya la aceleracion desconocida que bus-

camos, pero en la que no intervenga el tiempo. La ecuacion 20
es nuestra eleccion, y resolvemos para obtener a:
a= ¥ — vy _ (45 km/h)’ — (85 km/h)?
2(x — xo) 2(0.105 km)
=—2.48 X 10* km/h? = — 1.91 m/s%

La aceleracién resulta ser negativa, lo que significa que es
opuesta a la direccién que habiamos elegido como positiva.

(b) Necesitamos una ecuacién que no incluya ala aceleracion,
lo que nos permite hallar el tiempo a partir de los datos origi-
nales. En la tabla 2 vemos que la ecuacién 21 cumple, y
resolvemos para obtener I:

= 2(x — Xo) _ 2(0.105 km)
vot+v 85 km/h + 45 km/h

Hemos seleccionado para esta parte una ecuacion que no inclu-
ye a la aceleracion, porque de otro modo al resolver la patte (b)
se introduciria un error que pudiera haberse cometido al resolver
la parte (a). Cuando se resuelvan partes independientes de un
problema, es una buena practica retornar siempte a los datos
originales, de ser ello posible.

=1.62X1072h=58s.

(¢) Ahora que ya conocemos la aceleracion, buscaremos el
tiempo ¢ para que el automévil pase de v, =85 km/ha v=0.La
ecuacion 15 es la elegida para hallar z:

_v—b__ 0—85km/h

= e ok~ >3 X 107 =123

t

El automovil se detendra en 12.3 s después de haber comenzado
a frenat, 0o en 6.5 s (= 12.3 s - 5.8 s) después de haber alcanzado
la velocidad de 45 km/h.

Para hallar la distancia, podemos usar la ecuacion 20:

v?— v} 0 — (85 km/h)?

2a 2(—2.48 X 10° km/h2)=0'146km= 146 m.

X—Xo=

La distancia adicional viajada entre el punto en el cual v =
45 km/h y el punto en el cual v=0es 146 m - 105 m = 41 m.

Problema muestra 4 Una particula alfa (el micleo de un
atomo de helio) viaja a lo largo de un tubo hueco recto de 2.0 m
de longitud que forma patte de un acelerador de particulas. ()
Si suponemos una aceleracién uniforme, jcuél es la aceleracion
de la particula, si entra a una velocidad de 1.0 X 10* m/s y sale
a 5.0 x 10° m/s? (b) ;Qué tanto tiempo estuvo en el tubo?
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Solucién. (a) Elegimos un eje x paralelo al tubo, siendo la di-
reccion positiva aquella en la cual se estd moviendo la particula,
y hallandose su origen en la entrada del tubo. Hemos dado uv,
v, y x, y buscamos a. Reescribiendo la ecuacion 20, con x, = 0,
v?— v}
2x
_ (5.0 X 10° m/s)* — (1.0 X 10* m/s)?
220 m)
=+6.3 X 10" m/s?.
(&) Aqui usamos la ecuacion 21 resolviendo para ¢ con x, =
0, lo cual nos da
(= 2x  _ 2(2.0 m)
vtv 1.0XI10°m/s+ 5.0 X 10° m/s
=8.0X 10775 =0.80 us.

a=

2-7 CUERPOS EN CAIDA LIBRE

El ejemplo mas comiin del movimiento con (casi) acele-
racion constante es la de un cuerpo que cae hacia la Tierra.
Si permitimos que un cuerpo caiga en un vacio, de modo
que la resistencia del aire no afecte su movimiento, encon-
traremos un hecho notable: todos los cuerpos, indepen-
dientemente de su tamafio, forma, o composicion, caen
con la misma aceleracion en la misma regién vecina a la
superficie de la Tierra. Esta aceleracion, denotada por
el simbolo g, se llama aceleracion en caida libre (o, a
veces, aceleracidn debida a la gravedad). Aunque la
aceleracion depende de la distancia desde el centro de
la Tierra (como veremos en el capitulo 16), si la distancia
de la caida es pequena comparada con el radio de la Tierra
(6400 km) podemos considerar a la aceleracién como
constante durante la caida.

Cerca de la superficie de la Tierra la magnitud de g es
aproximadamente 9.8 m/s?, un valor que usaremos a tra-
Vvés del texto a no ser que se especifique otra cosa. La
direccion de la aceleracion en caida libre en un punto
determina lo que queremos significar con las palabras
“hacia abajo” en ese punto. .

Si bien hablamos de cuerpos en caida, los cuerpos con
movimiento hacia arriba experimentan la misma acelera-
cion en caida libre (en magnitud y en direccidn). Esto es, sin
importar que la velocidad de la particula sea hacia arriba o
hacia abajo, la direccion de su aceleracion bajo la influencia
de la gravedad de la Tierra es siempre hacia abajo.

El valor exacto de la aceleracién en caida libre varia
con la latitud y con la altitud. Hay también variaciones
significativas causadas por diferencias en la densidad
local de la corteza terrestre. Estudiaremos estas variacio-
nes en el capitulo 16.

Las ecuaciones de la tabla 2, que fueron derivadas para
el caso de una aceleracion constante, pueden ser aplicadas

a la caida libre. Con este fin, hacemos primero dos peque-
nios cambios: (1) Marcamos la direccién de la caida libre
como el eje y y tomamos como positiva la direccién hacia
arriba. Mas adelante, en el capitulo 4, consideraremos el
movimiento en dos dimensiones, y desearemos marcar
el movimiento horizontal como x. (2) Reemplazamos en
la tabla 2 a la aceleracién constante a por —g, puesto que
nuestra eleccion de la direccién positiva y como “hacia
arriba” significa que la aceleracién es negativa. A causa
de que decidimos que la aceleracién (hacia abajo) fuera
-£, £ s un numero positivo.

Con estos pequefios cambios, las ecuaciones de la tabla
2 resultan ser

v=1,— g, (23)
Y=ot vt — gt (24)
v=105—2800 — %), (25)
y=yo+ 4@, + o), (26)
y
y=y,+ vt +igr (27)

Problema muestra5 Un cuerpo se deja caer libremente desde
el reposo. Determine la posicién y la velocidad del cuerpo
después de que han transcurrido 1.0, 2.0, 3.0,y 4.0 s.

Solucién E}egimos al punto de partida como el origen. Cono-
cemos la rapidez inicial (cero) y la aceleracion, y se nos da el
tiempo. Para hallar la posicién, usamos la ecuacion 24 con Yo =
Oy v,=0:

y=—1g
Poniendo £ = 1.0 s, obtenemos
=—409.8 m/s?’)(1.0s)*=—4.9 m.

Para hallar la velocidad, usatemos la ecuacion 23, una vez mds
con y, = 0:

v=—gt=—(9.8 m/s?)(1.0s) =—9.8 m/s.

Después de caer durante 1.0 s, el cuerpo esta a 4.9 m abajo (y
es negativa) de su punto de arranque y se mueve hacia abajo
(v es negativa) a una velocidad de 9.8 m/s. Continuando de esta
manera, podemos hallar las posiciones y velocidades en ¢ = 2.0,
3.0,y 4.0 s, las cuales se muestran en la figura 19.

Problema muestra 6 Una pelota se lanza verticalmente ha-
cia arriba desde el suelo a una velocidad de 25.2 m/s. (a)
¢Cuénto tiempo tarda en llegar a su punto mis elevado? (b) (A
qué altura se eleva? (c) ; En cudnto tiempo estara a 27.0 m sobre
el suelo?

§ 444444 t y v a :
s m mis m/s?
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? ____________________
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Figura 19 Problema muestra 5. Se muestran la altura, la
velocidad y la aceleracién de un cuetpo en caida libre.

Soluciéon (@) En su punto mas elevado su velocidad pasa por
el valor cero. Dadas v, y v (= 0), deseamos hallar 7 y, por
lo tanto, elegimos la ecuacion 23, con la cual resolvemos para t:

_b—v_252m/s—0
g 9.8 m/s?

(b) Usemos solamente los datos originales en esta parte, para
evitar que se introduzca alguin error que pudiéramos haber
cometido en la parte (a). La ecuacion 25, con y, asignada como
0, nos permite tesolver para y cuando conocemos las otras
cantidades:

=2.57s.

_vh—v?_ (252 m/sf —0 _
Y=g 208 mys)  rAm

(¢) La ecuacion 24 es itil para este caso, porque ¢ es la tinica
incognita. Puesto que deseamos resolver para ¢, reescribamos la
ecuacion 24, con y, = 0, en la forma usual de una ecuacion
cuadratica:

1gt? — vt +y=0
1(9.8 m/s?)2 —(25.2 m/s)t +27.0 m = 0.

Usando la férmula cuadratica, hallamos que las soluciones son
t=152syt=3.62s.Ent=152s,la velocidad de la pelota es

v=uy,—gt =252 m/s— (9.8 m/s*}(1.52 5) =10.3 m/s.
Ent = 3.62 s, la velocidad es
v=1yp,—gt=252m/s — (9.8 m/s?)(3.62 s) = —10.3 m/s.
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Las dos velocidades tienen magnitudes idénticas pero direccio-
nes opuestas. Deberemos de convencernos de que, en ausencia
de la resistencia del aite, la pelota invierte el mismo tiempo para
elevarse a su maxima altura que para bajar la misma distan-
ciay que, en cada punto, tendrd la misma velocidad para ir hacia
arriba que para caer hacia abajo. Nétese que la respuesta a la
patte (a) para el tiempo que le toma llegar al punto mas elevado,
2.57 s, es exactamente el punto medio entre los dos tiempos
hallados en la parte (). jPuede usted explicar esto? ;Puede
usted predecir cualitativamente el efecto de la resistencia del
aire en los tiempos de subida y de caida?

Problema muestra 7 Un cohete es lanzado desde el reposo
en una base submarina situada a 125 m bajo la superficie de un
volumen de agua. Se mueve verticalmente hacia arriba con una
aceleracion desconocida pero que se supone constante (el efecto
combinado de sus motores, la gravedad de la Tierra, y la
flotabilidad y arrastre del agua), y llega a la superficie en un
tiempo de 2.15 s. Cuando traspasa la superficie sus motores se
apagan automaticamente (para hacer mas dificil su deteccion)
y continua elevandose. ;A qué altura mdxima llegara? (Despre-
cie cualquier efecto en la superficie).

Solucion Como con cualquier proyectil en caida libre, po-
driamos analizar el movimiento del cohete durante la porcién de
su movimiento en el aire si conociéramos la velocidad inicial
de esa parte del movimiento. El plan de ataque en este problema
es, por lo tanto, analizar la porcién del movimiento bajo el agua
para hallar la velocidad cuando el cohete llega a la superficie,
y luego tratar esta velocidad como la velocidad inicial de la
porcién en caida libre. Estas partes deben hacerse separadamen-
te, porque la aceleracion cambia en la supetficie del agua.
Para el movimiento bajo el agua, conocemos el desplaza-
miento, el tiempo, y la velocidad inicial (cero). La aceleracion
no es hecesaria, pero deseamos conocer la velocidad final; la
ecuacion 21 de la tabla 2 proporciona la relacion adecuada:

_2y—y) _2(125m) _
v= ; 5155 116 m/s.

La velocidad en la superficie es de 116 my/s hacia arriba. Ana-
lizamos ahora la porcidn de caida libre del movimiento hacia
arriba, considerando que esta velocidad es la velocidad inicial.
Usamos la ecuacion 25 para la caida libre y, como es usual,
hallamos la altura maxima buscando el punto en el cual la
velocidad llega a cero:

vi—v?_ (116 m/s)> —0

— = = =687 m.
REC 208 mje o8 m

Para verificar su comprension del problema, debera usted di-
bujar graficas de y(f) v(z), y a(t) de manera similar a la figura 16.
Asegiirese de tener en mente qué variables varian de manera
continua y suave, y cuales no lo hacen asi en este problema
idealizado. ;En qué diferiria un cohete real de este cuadro?

2-8 GALILEO Y LA CAIDA LIBRE
(Opcional)

La naturaleza del movimiento de un objeto al caer era en la
antigiiedad un tema de interés en la filosofia natural. Aristételes
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afirmaba que “el movimiento hacia abajo... de cualquier cuerpo
dotado de peso es mas rapido en proporcién a su tamafio”. Esto
es, los objetos mds pesados caen mds rdpidamente. Muchos
siglos mas tarde, Galileo Galilei (1564-1642) hizo la asevera-
cion correcta: “si pudiéramos eliminar totalmente la resistencia
del medio, todos los objetos caerian a igunal velocidad”. En los
ultimos afios de su vida, Galileo escribié el tratado titulado
Didlogos concernientes a dos nuevas ciencias en el cual deta-
llaba sus estudios sobre el movimiento.

La creencia de Aristételes de que un objeto mas pesado caeria
mas aptisa es un punto de vista ampliamente genetalizado. Ello
parece tecibir el apoyo de una bien conocida conferencia en la
cual se demostraba que cuando una pelota y una hoja de papel
se dejan caer en el mismo instante, la bola llega al suelo mucho
antes que el papel. Sin embatgo, si el conferencista arruga
primero fuertemente el papel y luego repite la demostracion,
tanto la pelota como el papel golpean el suelo esencialmente al
mismo tiempo. En el caso anterior, es el efecto de la mayor
resistencia del aire lo que hace que el papel caiga mds lentamen-
te que la pelota. En el nltimo caso, el efecto de la resistencia
sobre el papel se reduce y es casi el mismo para ambos cuerpos,
de modo que caen aproximadamente a la misma velocidad. Por
supuesto, que podemos hacer una prueba directa si dejamos caer
los cuerpos en el vacio. Aun en vacios parciales facilmente
obtenidos podemos demostrar que una pluma y una bola de
plomo miles de veces mas pesada caen a velocidades que son
practicamente indistinguibles entre si. En 1971, el astronauta
David Scott solt6 una pluma y un martillo de gedlogo en la Luna
(sin atmdsfera), observando que (dentro del error experimental
de su observacion) llegaban a la superficie lunar al mismo
tiempo.

Sin embargo, en tiempos de Galileo no habia una manera
eficaz de obtener un vacio parcial, ni existia el equipo para
medir el tiempo de cuerpos en caida libre con la precisién
suficiente para obtener datos numéricos confiables. (La cono-
cida historia acerca de que Galileo dejé caer dos objetos desde
la torre de Pisa y observo su caida comprobando que llegaban
al suelo al mismo tiempo es casi con seguridad sélo una leyenda.
Dada la altura de la torre y los objetos que se dice usé Galileo,
el objeto mas grande y mas pesado habria alcanzado el suelo
entre uno y varios metros antes que el objeto mas ligero, debido
a los efectos de la resistencia del aire. Asi pues, Galileo habria
parecido demostrar que Aristételes jtenia razén, después de
todo!) Sin embargo, Galileo comprobo su resultado usando una
bola que rodara hacia abajo en un plano inclinado. Demostré
primero que la cinematica de una bola que rodaba hacia abajo
en un plano inclinado era la misma que la de una bola en caida
libre. El plano inclinado sirvié unicamente para reducir el efecto
de aceleracion de la gravedad de la Tierra, haciendo por lo tanto
mas lento el movimiento, de manera que pudieran hacerse las
mediciones con mayor facilidad. Mas ain, a velocidades lentas
la resistencia del aire es mucho menos importante.

Galileo encontré con sus experimentos que las distancias
recortidas en intervalos de tiempo consecutivos eran proporcio-
nales a los mimero impares 1, 3, 5, 7, ... etc. Las distancias
totales para intervalos consecutivos eran entonces proporciona-
lesal, 1+3(=4),1+3+5(=9),1+3+5+7(=16), y asi
sucesivamente, esto es, a los cuadrados de los enteros 1,2,3 4,
y asi sucesivamente. Pero si la distancia cubierta es propotcio-
nal al cuadrado del tiempo transcurtido, entonces la ganancia
en velocidad es directamente proporcional al tiempo transcurri-
do, un resultado que se mantiene s6lo en el caso de la acelera-
cion constante. Finalmente, Galileo encontrd que se mantenian
los mismos resultados cualquiera que fuese la masa de la bola
¥, por lo tanto, en nuestra terminologia, la aceleracién en caida
libre es independiente de la masa del objeto. W

2-9 MEDICION DE LA ACELERACION
EN CAIDA LIBRE (Opcional)

La medicion de g es un ejercicio comun en los laboratorios de
fisica introductorios. Puede hacetse simplemente tomando el
tiempo de un objeto en caida libre que se suelta desde el reposo
a lo largo de una distancia medida. La ecuacion 24 da g direc-
tamente. Aun con el equipo relativamente tosco normalmente
encontrado en los laboratorios para estudiantes, es posible ob-
tenet una precision de alrededor del 1%. Un mejor método
consiste en el uso de un péndulo, cuya fuerza impulsora es la
atraccion de la Tierra sobre el peso suspendido. Como demos-
tramos en el capitulo 15, el valor de g puede ser hallado
midiendo el petiodo de oscilacién de un péndulo de longitud
conocida. Tomando el tiempo de muchas oscilaciones, puede
hallarse un valor preciso para el periodo, y aun usando el equipo
tipico de un laboratorio para estudiantes no es dificil de obtener
una precisién del 0.1 %. Este nivel de precision es suficiente para
observar la variacion de g entre el nivel del mar y una montaiia
elevada (de 3 km o 10,000 ft), o entre el ecuador y los polos de
la Tierra.

Durante varios siglos se utilizé el método del péndulo para
mediciones precisas de g, y la precision final fue de aproxima-
damente 1 parte en 10°, suficiente para detectar variaciones de g
desde un piso de un edificio al piso siguiente. Los métodos
del péndulo se limitan a esta precisién por la incertidumbre del
comportamiento real en el punto de pivoteo, lo cual hace dificil
determinar !a longitud con mayor precision. Recientemente, en
sus intentos para mejorar la precision de g, los investigadores
han retornado al método de la caida libre para la medicién de g,
la cual a través de las técnicas modernas del intetferdmetro de
ldser ha llegado a alrededor de 1 parte en 10°. Este método es
suficiente para observar el cambio de la gravedad de la Tierra
en una distancia vertical de 1 cm; en forma equivalente, tal
medicion de la gravedad jpuede detectar el cambio gravitatorio
provocado por un cientifico que se halle de pie a 1 m del aparato!

La obtencién de tal precisién constituye un tributo notable a
las técnicas experimentales mds cuidadosas. Por ejemplo, uno
podria suponer que para eliminar los efectos de la resistencia
del aire en la caida libre el objeto debe dejarse caer en el vacio.
Esto, en efecto, es asi, peto aun los mejores vacios actualmente
obtenibles en el laboratorio no son suficientemente buenos para
obtener un nivel de precision de 10° en la medicién de g. Para
teducir los efectos de la pequefiisima cantidad de gas residual
presente aun al alto vacio, el objeto en caida libre se coloca
dentro de una caja evacuada, la cual también se deja caer. La
pequeiia cantidad de gas residual es acarreada por la caja al caer,
y a causa de que el gas cae con el objeto no ofrece resistencia
alguna a la caida libre.

La figura 20 muestra una representacion del aparato de caida
libre desarrollado por el Dr. James E. Faller y sus colegas en el
Joint Institute for Laboratory Astrophysics, en Boulder, Colo-
rado. El objeto que cae es un prisma reflector, el cual es en
esencia un prisma de cristal que tiene una capa reflejante en las
tres caras perpendiculares. Este dispositivo tiene la atil propie-
dad de que la luz que incide en el prisma desde cualquier
direccion interior se refleja en la direccion exactamente opuesta.
(Un conjunto de tales reflectores fue colocado en la Luna por
los astronautas del Apolo; se han reflejado rayos laser de la Luna
a la Tierra para medir con precisién la distancia Tierra-Luna.)
Un rayo laser se refleja del objeto que cae y se hace que los
tayos incidente y reflejado interfieran entre si de modo que
continuamente se refuercen y luego se cancelen segin cae el
objeto. La distancia de la caida entre cancelaciones es la longi-
tud de onda de la luz, y la distancia total de la caida puede
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Figura 20 Diagrama del aparato de caida libre. El
osciloscopio registra el patron de cambio de las
cancelaciones y los refuerzos cuando el rayo laser reflejado
por el prisma de la caida se recombina con el rayo de la
arista del prisma de referencia. Un motor impulsa a la
camara de coaceleracion hacia abajo de modo que caiga
con el prisma. Para una descripcién de este aparato y un
estudio de las mediciones de g, véase “Ballistic Methods
of Measuring g” por J. E. Faller e I. Marson, Merrologia,

vol. 25 (1988), pag. 49.

medirse con una precision de una pequeia fraccion de la longi-
tud de onda de la luz, simplemente contando el mimero de
cancelaciones. Simultaneamente, el tiempo entre cancelaciones
se mide con un reloj atémico. Asi pues, la distancia y el tiempo
son medidos en forma simultinea, justo como lo podria usted
hacer en un laboratorio introductorio de fisica. En la figura 21
se muestra una fotografia de este notable aparato.
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Figura 21 Una fotografia del aparato de caida libre de la
figura 20. El aparato es facilmente portatil, de modo que g
pueda ser medida en lugares remotos.

La construccién de los medidores de la gravedad mas precisos
tiene importantes consecuencias practicas. Un mapa de la gra-
vedad de la Tietra puede ayudar en la bisqueda de petréleo o
de minerales (véase la figura 5 del capitulo 16). Los cambios en
la corteza de la tierra con el tiempo pueden ser observados por
su efecto sobre g, haciendo posible el monitoreo de los movi-
mientos de placas y de la actividad sismica. Tales vatiaciones
de la gravedad en la supetficie de la Tierra pueden afectar las
orbitas de los satélites y las trayectorias de los proyectiles
balisticos. Desde el punto de vista de la ciencia bdsica, las
mediciones precisas de g proporcionan pruebas detalladas de
nuestra comprension de la teorfa de la gravitacion, creada por
Isaac Newton hace mas de tres siglos. W
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PREGUNTAS

1. ;Puedela velocidad de una particula ser siempre negativa?
De ser asi, dé un ejemplo; si no, explique por qué.

2. Un conejo se mueve a cada segundo la mitad de la distan-
cia que media desde su nariz hasta una lechuga. ;Llegara
el conejo a la lechuga alguna vez? ;Cudl es el valor limite
de la velocidad promedio del conejo? Dibuje graficas que
muestren la velocidad y la posicion del conejo en el
transcurso del tiempo.

3. Lavelocidad promedio puede significar la magnitud de la
velocidad promedio. Otro significado, mds comin, que se
le da es que la velocidad promedio es la longitud total de la
trayectoria recorrida dividida por el tiempo transcurrido.
(Son diferentes estos significados? Dé un ejemplo que
respalde la respuesta.

4. Un automovil de carreras, en una prueba de dos vueltas
para calificar, recorre la primera vuelta a una velocidad
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10.

11.

12.

13.

14.

15.

16.
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promedio de 90 mi/h. El conductor quiere acelerar durante
la segunda vuelta de modo que la velocidad promedio de
las dos vueltas sea de 180 mi/h. Demuestre que no podra
hacerlo.

. Roberto le gana a Judith por 10 m en una cartera de los

100 metros. Roberto, queriendo darle a Judith una opor-
tunidad igual, acuerda correr con ella de nuevo pero
arrancar desde 10 m atras de la linea de arranque. Le da
esto a Judith, en realidad una oportunidad igual?

. Cuando la velocidad es constante, ;puede la velocidad

promedio en cualquier intetvalo de tiempo diferir de la
velocidad instantintea en cualquier instante? De ser asi,
dé un ejemplo; si no, explique por qué.

(Puede la velocidad promedio de una particula que se
mueve a lo largo del eje x ser alguna vez %(v0 +U)sila
aceleracién no es uniforme? Demuestre su respuesta me-
diante gréficas.

(Puede el velocimetro de un automévil registrar la velo-
cidad como la hemos definido?

. (a) {Puede un objeto tener velocidad cerc y aun asi acele-

rar? (b) ;Puede un objeto tener una velocidad constante al
mismo tiempo que una rapidez variable? En cada caso, dé
un ejemplo en caso de que la respuesta sea afirmativa;
explique por qué, si la respuesta es que no.

(Puede la velocidad de un objeto invertir la direccién
cuando su aceleracion es constante? De ser asi, dé un
ejemplo; si no, explique por qué.

La figara 30 muestra al coronel John P. Stapp en su trineo
cohete al frenar; véase el problema 34. (@) Su cuerpo es
un acelerometro, no un taquimetro (medidor de la veloci-
dad). Explique. (b) ;(Puede usted saber la direccién de la
aceleracion a partir de la figura?

(Puede un objeto aumentar su velocidad mientras su ace-
leracién decrece? De ser asi, dé un ejemplo; si no, explique
por qué.

De las siguientes situaciones, ;cual es imposible? (a) Un
cuerpo tiene velocidad este y aceleracién este; (b) un cuet-
po tiene velocidad este y aceleracion oeste; (c) un cuerpo
tiene velocidad cero, y la aceleracién distinta de cero; (d)
un cuerpo tiene aceleracion constante pero su velocidad
es vatiable: (e) un cuerpo tiene velocidad constante y
aceleracion variable.

¢Cudles serian algunos ejemplos de caidas de objetos en
los que no seria razonable despreciar la resistencia del
aire?

La figura 22 muestra una torre para la fabricacion de
perdigones en Baltimore, Maryland, en Estados Unidos.
Fue construida en 1829 y usada para fabricar perdigones
de plomo mediante el derramamiento del plomo fundido
a través de un cedazo desde la patte superior de la torre.
Los perdigones se solidifican al tiempo que caen en un
tanque de agua situado en el fondo de la torre a 230 ft de
profundidad. ;Cuales son las ventajas de fabricar perdigo-
nes de este modo?

Una persona de pie en el borde de un acantilado a cierta
altura sobre el nivel del suelo atroja una pelota hacia
arriba a una velocidad inicial v y luego arroja otra pelota
hacia abajo con la misma velocidad inicial. ;Cual de ellas,

22.

23.

24.

25.

(Cree usted que el tiempo durante el cual se eleva la pelota
es mas largo o mas corto que el tiempo durante el cual cae?
(Por qué?

Elabore una grafica cualitativa de la rapidez v versus el
tiempo ¢ pata la caida de un objeto (a) despreciando la
resistencia del aite, y (b) si la resistencia del aire no puede
despreciarse.

Una segunda bola se deja caer en el tiro de un elevador 1s
después de haberse dejado caer la ptimera. (a) ;Qué pasa
con la distancia entre una y otra a medida que pasa el
tiempo? (b) ; Cémo cambia la relacion v /v, de la velocidad
de la primera bola y la velocidad de la segunda con el paso
del tiempo? Desprecie la resistencia del aire, y dé respues-
tas cualitativas.

Repita la pregunta 23 tomando en cuenta la resistencia del
aire. Una vez mds, dé respuestas cualitativas.

Si m es una piedra ligera y M es una piedra pesada, segun
Aristételes M caerfa mas rapidamente que mi. Galileo intentd
demostrar que la creencia de Aristoteles era logicamente
inconsistente con el siguiente argumento. Atense m y M

26.

217.
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juntas formando una piedra doble. Asi, al caer, m deberia
retrasar la caida de M, puesto que tiende a caer mas lenta-
mente, y la combinacién caerfa mas rapido que m pero mas
lentamente que M; sin embargo, segun Aristételes el doble
cuerpo (M + m) es mas pesado que My, por lo tanto, deberia
caer mas rapido que M. Si aceptamos el razonamiento de
Galileo como cotrecto, ;podemos concluir que My m deben
caer a la misma velocidad? ;Qué experimento seria necesa-
rio en este caso? Si usted cree que el razonamiento de
Galileo es incorrecto, explique por-qué.

(Qué les pasaria a nuestras ecuaciones cinematicas (véase
la tabla 2) bajo la operacién de una inversion del tiempo,
es decir, reemplazando a ¢ por —1? Explique.

Esperamos que una relacion realmente general, tal como
las de la tabla 2, sea valida sin importar la eleccion del
sistema de coordenadas. Al exigir que las ecuaciones
generales sean dimensionalmente compatibles nos asegu-
ramos de que las ecuaciones sean validas cualquiera que
sea la eleccion de las unidades. ;Hay alguna necesidad,
entonces, de sistemas de unidades o de coordenadas?

Figura 22 Pregunta 15

17.

18.

19.

20.

21.

si hay alguna, tiene la velocidad mayor cuando llegue al
suelo? Desprecie la resistencia del aire.

(Cudl es la aceleracion hacia abajo de un proyectil que sea
disparado desde un cohete que acelera hacia arriba a razén
de 9.8 m/s*?

La ecuacion 19 para la aceleracion constante nos dice
que si una particula es lanzada desde el reposo (v, = 0) a
X,=0enel tiempo ¢ = 0 estd en la posicion x en dos tiempos
diferentes, digamos + Y2x/a y - ¥2x/a. ;Cual es el signi-
ficado de la raiz negativa de esta ecuacion cuadrética?
En otro planeta, el valor de g es la mitad del valor en
la Tierra. ;Cudnto es el tiempo que necesita un objeto
para caer al suelo partiendo del reposo en relacién con
el tiempo requerido para caer la misma distancia en la
Tierra?

(a) Una piedra es arrojada hacia atriba con una cierta
velocidad en un planeta en donde la aceleracion en caida
libre es el doble que en la Tierra. ;Qué tan alto se elevaria
en comparacion con la altura a la que lo haria en la Tierra?
(b) Si la velocidad inicial se duplicara, ;qué cambio sig-
nificarfa?

Consideremos una pelota que es arrojada verticalmente
hacia arriba. Tomando en cuenta la resistencia del aire.

PROBLEMAS

Seccion 2-3 Velocidad promedio

1. ;A qué distancia viaja hacia adelante un automévil que se

mueve a tazon de 55 mi/h (= 88 km/h) durante 1 s de
tiempo, que es lo que le toma ver un accidente al lado de la
carretera?

El lanzador de los Medias Rojas de Boston, Roger Cle-
mens, lanzd una bola rapida a una velocidad horizontal de
160 km/h, segiin fue verificado con una pistola de radar.
¢Qué tanto le tomo a la bola llegar a la base de meta, que
esta a una distancia de 18.4 m?

La figura 23 muestra la relacion entre la edad, en millones
de afos, del sedimento mas antiguo y la distancia, en
kilémetros, a la que fue hallado el sedimento desde un
arrecife en particular en el océano. El material del lecho
marino se desprende de este arrecife y se aleja de él a una
velocidad aproximadamente uniforme. Halle la velocidad,
en centimetros por afo, a la que este material se aleja del
arrecife.
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Figura 23 Problema 3.

. Carl Lewis corre los 100 metros planos en aproximada-

mente 10 s, y Bill Rodgers cotre el maraton (26 mi,
385 yd) en aproximadamente 2 h 10 min. (a) ;Cuales son
sus promedios de velocidad? (b) Si Catl Lewis pudiera
mantener la velocidad de su carrera durante un maratén,
[cuanto le tomaria llegar a la meta?

. Durante muchos meses un bien conocido fisico de alta

energia se trasladaba semanalmente entre Boston, Massa-
chusetts y Ginebra, Suiza, ciudades que estin separadas
por una distancia de 4000 mi. ;Cudl fue la velocidad
promedio del fisico durante esa época? ;Le sorprende que
no se necesite saber la velocidad del aeroplano para resol-
ver este problema?

. El limite legal de velocidad en una autopista se cambia de

55 mi/h (= 88.5 km/h) a 65 mi/h (= 104.6 km/h). ;Cudnto
tiempo ahotrard cualquiera viajando a velocidad mas alta
desde la entrada en Buffalo a la salida en la ciudad de
Nueva York de la autopista estatal de Nueva York en este
tramo de carretera de 435 mi (= 700 km)?

. Usted viaja en la catretera interestatal 10 de San Antonio

a Houston, la mitad del tiempo a 35 mifh (56.3 km/h) y la
otra mitad a 55 mi/h (= 88.5 kin/h). En el viaje de regreso
usted viaja la mitad de la distancia a 35 mi/h y la otra mitad
a 55 mi/h. ;Cual es la velocidad promedio (a) de San
Antonio a Houston, (b) de Houston a San Antonio, y (¢)
para todo el viaje?

. Un avion de propulsidn a chorro (jet) de alto desempeiio,

que realiza maniobras para evitar el radat, esta en vuelo
horizontal a 35 m sobre el nivel del terreno. Stibitamente,
el avion encuentra que el terreno sube cuesta arribaen 4.3°,
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una cantidad dificil de detectar; véase la figura 24. ;Cuan-
to tiempo tiene el piloto para hacer una correccion si ha
de evitar que el avién toque el terreno? La velocidad del
aire es de 1300 km/h.

Figura 24 Problema 8.

9.

10.

11.

12,

La posicién de un objeto que se mueve en linea recta esta
dada por x = 3t - 47 + %, donde x estd en metros y f esta
en segundos. (a) ;Cuadl es la posicion del objeto en ¢ =
0,1,2,3 y 4 s? (b) ;Cual es el desplazamiento del objeto
entret=0yt=2s? ;Yentret=0yz=4s? ;Cuédlesla
velocidad promedio en el intervalo de tiempo entre £ = 2
yt=4s?;Y desdet=0hastat=3s?

Un automdvil sube una pendiente a la velocidad constante
de 40 kin/h y retorna cuesta abajo a la velocidad de 60 km/h.
Calcule la velocidad promedio del viaje redondo.

Calcule la velocidad promedio en los dos casos siguientes:
(a) Usted camina 240 ft a razdn de 4 ft/s y luego corre
240 ft a razdn de 10 ft/s a lo largo de una pista recta. (b)
Usted camina durante 1.0 min a razén de 4 ft/s y luego
corre durante 1.0 min a razén de 10 ft/s a lo largo de una
pista recta.

Dos trenes, cada uno a una velocidad de 34 km/h, corren
uno hacia el otro en la misma via recta. Un péjaro que
puede volar a 58 km/h vuela saliendo del frente de un tren
cuando los trenes estan separados por una distancia de
102 km y va directamente hacia el otro tren. Al llegar al
otro tren vuela de regreso hasta el primer tren, y asf
sucesivamente. (a) ;Cudntos viajes podra hacer el pajaro
de un tren a otro antes de que los trenes choquen? () ; Cual
es la distancia total que recorre volando el pajaro?

Seccién 2-4 Velocidad instantdnea

13.

14.

La posicién de una particula que se mueve a lo largo
del eje x estd dada en centimetros por x = 9.75 + 1.507,
donde t esta en segundos. Considere el intervalo de tiempo
det=2at =3y calcule (@) la velocidad promedio; (b) la
velocidad instantidnea en ¢ = 2 s; (c) la velocidad instanta-
nea en f = 3 s; (d) la velocidad instantdneaent =2.5s;y
(e) la velocidad instantinea cuando la particula esta a
medio camino entre sus posicionesent=2yf=3s.

(Qué distancia recorte en 16 s el corredor cuya grifica
velocidad-tiempo se muestra en la figura 25?

Seccion 2-5 Movimiento acelerado

15.

Cual es la aceleracion en t = 11 s del corredor del proble-
ma 14?7

v (m/s)

———— —— — - —

0 4 8 12 16
t(s)

Figura 25 Problemas 14y 15.

16.

17.

Una particula tenia una velocidad de 18 m/s en direccion
+x, y 2.4 s mas tarde su velocidad era de 30 m/s en
direccién opuesta. ;Cual fue la aceleracion promedio de
la particula durante este intervalo de 2.4 s?

Un objeto se mueve en linea recta segitin se describe en la
gréfica velocidad-tiempo de la figura 26. Trace una grafica
que represente la aceleracion del objeto en funcion del
tiempo.
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Figura 26 Problema 17.

18.

19.

20.

21.

22.

La grafica de x contra ¢ de la figura 27a es de una particuia
que se mueve en linea recta. (@) Determine para cada
intervalo si la velocidad ves +, -, 6 0, y si la aceleracion
aes +, -, 0 0. Los intervalos son OA, AB, BC, y CD. (b)
Segiin la curva, jexiste un intervalo en el cual la acelera-
ci6én sea obviamente no constante? (Desprecie el compor-
tamiento en los extremos de los intervalos.)

Responda las preguntas anteriotes para el movimiento
descrito por la grifica de la figura 27b.

Una particula se mueve a lo largo del eje x con un despla-
zamiento contra tiempo como se muestra en la figura 28.
Esboce las curvas de velocidad contra tiempo y de acele-
racién contra tiempo para este movimiento.

Para cada una de las situaciones siguientes, trace una
grafica que sea una descripcién posible de la posicién en
funcién del tiempo de una patticula que se mueve a lo
largo del eje x. En 1 = 1 s, la particula tiene (a) velocidad
cero y aceleraci6n positiva; (b) velocidad cero y acelera-
cién negativa; (c) velocidad negativa y aceleracién posi-
tiva; (d) velocidad negativa y aceleracion negativa. (e)
(En cual de estas situaciones aumentard la velocidad de
esta particulaent=1s?

Si 1a posicién de un objeto estd dada por x = 2¢°, donde x
estd en metros y ¢ en segundos, halle (a) la velocidad

(a)

()

Figura 27 (a) Problema 18 y (b) problema 19.

Figura 28 Problema 20.

23.

24.

25.

promedio y la aceleracion promedioentre t = 1y =25,
y (b) las velocidades instantineas y las aceleraciones
instantdneasent =1yt = 2 s. (¢) Compare las cantidades
promedio e instantdniea y en cada caso explique por qué
la mayor es mayor.

Una particula se mueve a lo largo del eje x segun la
ecuacién x = 50r + 10£, donde x estd en metros y ¢ en
segundos. Calcule (a) la velocidad promedio de la parti-
cula durante los primeros 3 s de movimiento, (b) la velo-
cidad instantdnea de la particula en t = 3 5, y (¢) la
aceleracién instantdnea de la particulaenz =3 s.

Un hombre estd quieto desde ¢ = 0 hasta t = S5min; de z =
5 a t = 10 min camina vivamente en linea recta a una
velocidad constante de 2.2 m/s. ;Cuéles son su velocidad
promedio y su aceleracion promedio durante los intervalos
de tiempo (a) de 2 min a 8 min, y (b) de 3 min a 9 min?
Una particula qu_ se mueve a lo largo del eje x positivo
tiene las siguientes posiciones en tiempos diversos:

x(m) 0.080 0.050 0.040 0.050 0.080 0.13 0.20
ts) O 1 2 3 4 5 6

(a) Trace el desplazamiento (no la posicién) contra el
tiempo. (b) Halle la velocidad promedio de la particula en
los intervalosde 0a 1s,de0a2s,de0a3s,de0ads.
(c) Halle la pendiente de la curva trazada en la parte (a)
en los puntos £ =0, 1, 2, 3,4, y 5 s. (d) Trace la pendiente

26.

27.

28.

Problemas 35

(;en unidades?) contra el tiempo. (e) Partiendo de la curva
de la parte (d) determine la aceleracion de la particula en
los tiempos t = 2,3,y 4 s.

La posicion de una particula a lo largo del eje x depende
del tiempo de acuerdo con la ecuacion

x=Ar* — BP,

donde x esta en metros y ¢ en segundos. (@) ;Qué unidades
SI deberdn tener A y B? Para lo siguiente, haga que sus
valores numéricos en unidades SI sean 3 y 1, respectiva-
mente. (b) (En qué tiempo llegara la particula a su posi-
cién x positiva maxima? (c) ;Qué longitud de trayectotia
cubre la particula en los primeros 4 s? (d) ;Cuél es su
desplazamiento durante los primeros 4 s? (¢) Cuél es la
velocidad de la particula al final de cada uno de los
primetos cuatro segundos? (f') ;Cudl es la aceleracién de
la particula al final de cada uno de los primeros cuatro
segundos? (g) ;Cuil es la velocidad promedio en el inter-
valo de tiempoder=2at=4s?

Un electron que arranca desde el reposo tiene una acele-
racién que aumenta linealmente con el tiempo, esto es,
a = kt,donde k (1.50 m/s®)/s 0 1.50 m/s’. (a) Trace a contra
tdurante el primer intervalo de 10s. (b) A partir dela curva
de la parte (a) trace la curva v contra ¢ correspondiente y
calcule la velocidad del electrén S s después de haber
comenzado el movimiento. (c) A partir de la curva v contra
t de la parte (b) trace la curva x contra t correspondiente y
calcule qué tanto se ha movido el electron durante los
primeros 5 s de su movimiento.

En una galeria de juegos de video, un punto estd progta-
mado para moverse a través de la pantalla de acuetdo a
x =9.00z - 0.750¢, donde x es la distancia en centimetros
medida desde el borde izquierdo de la pantalla y ¢ es el
tiempo en segundos. Cuando el punto llega al borde de la
pantalla, yaseaenx=0o0enx= 15 cm, comienza de nuevo.
(a) (En qué tiempo después del arranque llega el punto
instantdneamente al reposo? (b) ;Cudndo ocurre esto? (c)
¢ Cual es su aceleracion cuando esto ocurre? (d) ;En qué
direccion se mueve en el siguiente instante después de
llegar al reposo? (e) ;Cudndo se sale de la pantalla?

Seccion 2-6 Movimiento con aceleracion constante

29.

30.

31.

32.

Un jumbo de propulsién a chorro necesita alcanzar una
velocidad de 360 km/h (= 224 mi/h) sobre la pista para
despegar. Suponiendo una aceleracion constante y una
pista de 1.8 km (= 1.1 mi) de longitud, ;qué aceleracion
minima se requiere partiendo del reposo?

Un vehiculo cohete se mueve en el espacio libtre con una
aceleracién constante igual a 9.8 m/s’. (@) Si arranca del
reposo, ;qué tanto le tomara adquirir una velocidad de un
décimo de la velocidad de la luz? () ; Qué tan lejos viajara
al hacerlo asi? (La velocidad de la luz es de 3.0 x 10°* m/s).
La cabeza de una serpiente de cascabel puede acelerar a
razén de 50 m/s? al atacar a su victima. Si un automoévil lo
hiciera también, jcudnto le tomaria llegar a una velocidad
de 100 km/h desde el reposo?

Un muon (una particula elemental) es disparado a una
velocidad inicial de 5.20 x 10° m/s a una region donde un
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33.

Capfltulo 2 Movimiento unidimensional

campo eléctrico produce una aceleracion de 1.30 x 10*
mys* en direccién contraria a la velocidad inicial. ;Qué
distancia recorrera el muon antes de llegar al reposo?

Un electrén con velocidad inicial v, = 1.5 x 10° m/s entra en
una regién de 1.2 cm de longitud donde es eléctricamente
acelerado (véase la figura 29). Sale con una velocidad v =
5.8 x 10°m/s. Cual fue su aceleracién, suponiendo que haya
sido constante? (Tal proceso ocutre en el canén de electro-
nes de un tubo de rayos catédicos, usado en receptores de
television y en terminales de video.)

Regién Region
sin aceleracion con aceleracion
L .
f \f -
g . 1.2 cm-
e - ......_._._.._’.
Travectoria de los o
electrones a
oo —5
Fuente de
alto voltaje

Figura 29 Problema 33.

34.

El coronel John P. Stapp estableci6 un record mundial de
velocidad cuando, el 19 de marzo de 1954, rodé un trineo
autopropulsado que se movié en los carriles a razén de
1020 km/h. El y su trineo llegaron a un alto total en 1.4 s;
véase la figura 30. ;Qué aceleracion expetiment6? Expre-
se la respuesta en términos de g (= 9.8 m/s?), la aceleracion
debida a la gravedad. (Ndtese que su cuerpo actiia como
un acelerémetro, y no como un velocimetro.)

Figura 30 Problema 34.

35.

Los frenos de su automovil son capaces de crear una
desaceleracion de 17 ft/s. Si usted va a 85 mi/h y de pronto
ve a un patrullero, ;cudl es el tiempo minimo en el cual

36.

37.

38.

39.

40.

41.

42.

43.

puede usted hacer que su automévil baje a la velocidad
limite de 55 mi/h?
En una carretera seca, un automodvil con buenas llan-
tas puede frenar con una deceleracion de 11.0 mifh - s
(4.92 m/s?. (@) ;Qué tanto tiempo le toma a tal automovil,
que inicialmente viajaba a 55 mi/h (= 24.6 m/s), llegar al
reposo? (b) ;Qué tan lejos viajo en ese tiempo?
Una flecha es disparada hacia arriba en el aire y a su
regreso golpea el suelo a 260 ft/s, enterrandose 9 in en el
terreno. Halle (a) la aceleracién (supuesta como constan-
te) requerida para detener la flecha, y () el tiempo nece-
sario para que el tetreno la detenga.
Supongamos que le piden a usted que asesote a un aboga-
do en relacion a la fisica implicada en uno de sus casos.
La pregunta es si un conductor se habia excedido del limite
de velocidad de 30 mi/h antes de hacer una parada de
emergencia, con los frenos accionados a fondo y las llantas
patinando. La longitud de las marcas del patinaje sobre la
carretera fue 19.2 ft. El oficial de la policia*supuso que
la deceleracion maxima del automévil no superaria la
aceleracién de un cuerpo en caida libre (= 32 ft/s?) y no
impuso una multa al conductor. ;Estaba excediéndose de
la velocidad permitida? Expliquelo.
Un tren partid del reposo y se movid con aceleracién cons-
tante. En un momento dado estaba viajando a 33.0 m/s, y
160 m mas adelante lo estaba haciendo a 54.0 m/s. Calcule
(@) la aceleracion, (b) el tiempo tequerido para recorrer
160 m, (c) el tiempo requerido para que alcance una
velocidad de 33.0 m/s, y (d) la distancia recorrida desde
el reposo hasta el momento en que el tren tuvo una
velocidad de 33.0 m/s.
Un autémovil que se mueve con aceleracion constante
cubre la distancia entte dos puntos que distan entre sf
58.0men 6.20s. Su velocidad cuando pasa por el segundo
punto es de 15.0 m/s. (a) ;Cual es la velocidad en el
primer punto? (b) ;Cual es su aceleracién? (c) A qué
distancia previa al primer punto estaba el autémovil en
reposo?
Un tren subterraneo acelera desde el reposo en una esta-
cion (a = +1.20 m/s?) durante la primera mitad de la
distancia a la siguiente estacion y luego decelera hasta el
reposo (a = -1.20m/s?) en la segunda mitad de la distancia.
La distancia entre las estaciones es de 1.10 km. Halle (a)
el tiempo de viaje entre estaciones y (b) la velocidad
maxima del tren.
La cabina de un elevador en el hotel Marquis Marriott, de
Nueva York (véase la figura 31) tiene un recorrido total
de 624 ft. Su velocidad méxima es de 1000 ft/min y su
aceleracion (constante) es de 4.00 ft/s. (a) ;Qué tan lejos
se mueve mientras acelera a toda velocidad desde el
reposo? (b) {Qué tiempo le toma hacer la carrera, comen-
zando y terminando en teposo?
Cuando un conductor detiene su automdvil lo mis siibita-
mente posible, la distancia de parada puede ser vista
como la suma de una “distancia de reaccion”, la cual es la
velocidad inicial multiplicada por el tiempo de reaccién,
y la “distancia de frenado”, la cual es la distancia cubies-
ta durante el frenado. La tabla siguiente da los valores
tipicos:

Figura 31 Problema 42.

4.

45.

46.

Velocidad Distancia Distancia Distancia

inicial de accion de frenado de tension
(m/s) (m) (m) (m)

10 7.5 5.0 12.5

20 15 20 35

30 22.5 45 67.5

(@) ;Qué tiempo de reaccion se supone que tiene el con-
ductor? (b) ;Cudl es la distancia de frenado del automovil
si la velocidad inicial es de 25 m/s?
En una trampa de velocidad, dos tiras activadas por pre-
si6n estin situadas a una distancia de 110 m cruzando una
carretera en la cual el limite de velocidad es 90 km/h.
Mientras viaja a 120 km/h, un conductor advierte una
patrulla justo cuando activa la primera tira y reduce su
marcha. ;Qué deceleracién es necesaria para que la velo-
cidad promedio del automévil esté dentro del limite de
velocidad cuando el automévil cruce la segunda tira?
En el instante en que un semaforo cambia a luz verde, un au-
tomévil arranca con una aceleracion constante de 2.2 m/s’.
En el mismo instante un camidn, que viaja a una velocidad
constante de 9.5 m/s, alcanza y pasa al automévil. (a) (A
qué distancia del punto de arranque el automovil alcanzaria
al camion? (b) ;A qué velocidad estd viajando el automévil
en ese instante? (Es instructivo trazar una grafica cualitativa
de x contra ¢ para cada vehiculo.)
El magquinista de un tren que se mueve a una velocidad v,
advierte la presencia de un tren de carga a una distancia d
adelante de é] que se mueve en la misma via y en la misma
direccion a una velocidad mas lenta v, . Acciona los frenos
e imptime en su tren una deceleracién constante a. De-

muestre que
. (v, - ’-’z)2 , ..
si d > ——— no habra una colision;

. (v, ‘avz)z , ...
sid< YR habra una colision.
a

- ITRUGHAY

47.

48.

49.

Problemas 3

(Es instructivo trazar una grafica cualitativa de x contra
para cada tren.)

Un automévil que viaja a 35 mi/h (= 56 km/h) estd a 110:
(= 34 m) de una bartera cuando el conductor pisa de golp
los frenos. Cuatro segundos mas tarde el automovil golpe
la barrera. (a) ;Cuél fue la deceleracion constante d
antomévil antes del impacto? (b) ;A qué velocidad viajat
el carro en el momento del impacto?

Un corredor, en una carrera de 100 m, acelera desde ¢
teposo hasta la velocidad méxima a razén de 2.80 m/s?
mantiene esa velocidad hasta el final de la pista. (a) ;Qu
tiempo transcurrio? (b) ;Qué distancia recorrié el correde
durante la fase de aceleracion si el tiempo total en la pis
fue de 12.2 s?

El manual del conductor establece que un automévil ec
buenos frenos que vaya a 50 mi/h puede parat en ur
distancia de 186 ft. La distancia correspondiente a 30 mi
es de 80 ft. Suponga que el tiempo de reaccion del co
ductor, durante el cual la aceleracién es de cero, y
aceleracién después de que acciond los frenos son igual:
para las dos velocidades. Calcule (a) el tiempo de reaccic
del conductor, y (b) la aceleracion.

Seccién 2-7 Cuerpos en caida libre

50.

51.

52.

53

.

54.

55.

56.

Caen gotas de lluvia desde una nube situada a 1700

sobre la supetficie del suelo. Si no fueran retenidas por
resistencia del aire, ja qué velocidad descenderfan 1
gotas cuando llegan al suelo? ;Seria seguro caminar en
exterior durante una tormenta?

Un cable que soporta a un elevador desocupado de u
construceidn se rompe cuando el elevador esta en repo
en la parte mds alta de un edificio de 120 m de altu
(a) (A qué velocidad golpeatia el elevador el terren
(b) ;Cudnto tiempo transcurrié en la caida? (c) (Cual ¢
su velocidad cuando pasé por el punto intermedio de

carrera hacia abajo? (d) ;Durante cuanto tiempo estu
cayendo cuando pasé por el punto intermedio?

En una obra en construccién una llave Stillson golpea
tetreno a una velocidad de 24.0 m/s. (a) ;Desde qué altv
cay6 inadvettidamente? (b) ;Cudnto tiempo estuvo en
aire?

(@) (A qué velocidad debe ser arrojada una pelota ves
calmente hacia arriba con objeto de que llegue a una alt
maxima de 53.7 m? (b) ;Cuénto tiempo estuvo en el ais
Una roca es arrojada desde un acantilado de 100 m
altura, ;Cudnto tiempo tarda en caer (a) los prime
50.0 m y (b) los segundos 50.0 m?

Unos explotadores del espacio “aterrizan” en un plas
ta de nuestro sistema solar. Ellos observan que una peq
fia roca lanzada verticalmente hacia arriba a razon
14.6 m/s tarda 7.72 s en regresar al suelo. ;En qué plan
aterrizaron? (Sugerencia: Véase el apéndice C.)

Una pelota es arrojada verticalmente a una velocic
inicial de 20.5 m/s desde una altura de 58.8 m. (a) ;C
setd su velocidad justo antes de que llegue al sue
(b) ;Qué tanto tiempo le tomo a la pelota llegar al s
107 (¢) ;Cuales serian las respuestas a (a) y a () si la pel
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fuera lanzada directamente hacia arriba desde la misma
altura y a la misma velocidad inicial?

57. La figura 32 muestra un aparato sencillo para medir el

tiempo de reaccion. Consta de una tira de cartulina mat-
cada con una escala y dos puntos grandes. Un amigo
sostiene la tira entre los dedos pulgar e indice en el punto
superior y usted coloca sus dedos pulgar e indice en el
punto inferior, teniendo cuidado de no tocar la tira. Su
amigo suelta la tira, y usted trata de pescarla tan pronto
como sea posible cuando ve que empieza a caer. La marca
situada en el lugar en que usted pesca la tira da el tiempo
de reaccion. ;A qué distancia del punto inferior se ponen
las marcas de 50-, 100-, 200-, y 250-ms?

Arriba

i

Tiempo de reaccion {ms)

A1 | o |

Figura 32 Problema 57.

58.

59.

60.

Una pelota arrojada hacia atriba tarda 2.25 s en llegar a
una altura de 36.8 m. (a) ;Cual fue su velocidad inicial?
() (Cuél es su velocidad a esta altura? (c) (Cuanta mds
altura alcanzard la pelota?

Mientras pensaba en Isaac Newton, una persona parada
en un puente sobre una carretera deja caer inadvertidamente
una manzana desde la barandilla justo cuando el extremo
frontal de un camién pasa directamente abajo de la baran-
dilla. Si el vehiculo se estd moviendo a 55 km/h (= 34 mi/h)
y tiene una longitud de 12 m (= 39 ft), ;qué tanto ms arriba
del camidn deberd estar la barandilla si la manzana no logra
golpear la parte trasera del camién?

Un cohete es disparado verticalmente y asciende con una
aceleracion vertical constante de 20 m/s? duranté 1.0 min.
Su combustible se agota entonces totalmente y continiia

61.

como una particula en caida libre. (a) ;Cual es la altitud
maxima alcanzada? (b) ;Cual es el tiempo total transcu-
rrido desde el despegue hasta que el cohete regresa a la
Tierra? (Desprecie las variaciones de g con la altitud).
Un jugador de baloncesto, a punto de “encestar” la pelota,
salta 76 cm verticalmente. jCudnto tiempo invierte el
Jjugador (a) en los 1iltimos 15 cm de su salto y (b) en los
primeros 15 cm de su salto? Ayuda esto a explicar el por
qué estos jugadores parecen quedar suspendidos en el aire
en la cima de sus saltos? Véase la figura 33.

Figura 33 Problema 61.

62.

63.

Una piedra es lanzada verticalmente hacia arriba. En su
trayecto pasa el punto 4 a una velocidad v, y el punto B,
3.00 m mds alto que 4, a velocidad v/2. Calcule (a) la
velocidad vy (b) 1a altura maxima alcanzada pot la piedra
arriba del punto B.

De la boca de una regadera gotea agua en el piso 200 cm
mis abajo. Las gotas caen a intervalos de tiempo regulares,
la primera gota golpea el piso en el instante en que la cuarta
gota comienza a caer. Hallar la ubicacién de cada una de las
otras gotas cuando una de ellas llega al suelo.

La instalacion para la investigacion de la gravedad cero
(the Zero Gravity Research Facility), en el Centro Lewis
de investigacion de 1a NASA, incluye una torre de cai-
da de 145 m. Esta es una torre vertical evacuada en la cual,

65.

66.

67.

68.

69.

entre otras posibilidades, puede dejarse caer una esfera de

1 m de diametro que contiene un paquete experimental.

(a) (Cudnto tiempo estd este paquete experimental en

caida libre? (b) ;Cual es su velocidad en la parte inferior
de la torre? (¢) En la parte inferior de la torre, la esfera
expetimenta una aceleracion promedio de 25g cuando su
velocidad se reduce a cero. ;Qué distancia ha recorrido al
llegar al reposo?

Una bola se deja caer desde una altura de 2.2 m y rebota
a una altura de 1.9 m sobre el suelo. Suponga que la bola
estd en contacto con el suelo durante 96 ms y determine
la aceleracion promedio (en magnitud y diteccion) de la
bola durante su contacto con el suelo.

Una mujer cayd 144 ft desde la cima de un edificio, “aterri-
zando” sobre una caja de ventilacion de metal, la cual se
hundié a una profundidad de 18 in. Ella sobrevivio sin dafios
serios. ;Qué aceleracion (se supone uniforme) experimento
durante la colisién? Exprese su respuesta en términos de g.
Si un objeto viaja la mitad de su trayectoria total en eliltimo
segundo de su caida desde el reposo, halle (a) el tiempo y
(b) la altura de su caida. Explique la solucion fisicamente
inaceptable de la ecuacion cuadratica del tiempo.

Dos objetos comienzan una caida libre desde el reposo
partiendo de la misma altura con 1.00 s de diferencia.
En cuanto tiempo después de que el primer objeto comen-
z0 a caer estaran los dos objetos separados a una distancia
de 10.0 m?

Como se ve en la figura 34, Clara salta desde un puente,
seguida de cerca por Jaime. ;Cudnto tiempo esper6 Jaime
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Problemas 3¢

después de que Clara salté? Suponga que Jaime tiene un:
altura de 170 cm y que el nivel desde el que saltaron est:
arriba de la fotografia. Haga mediciones escalares direc
tamente en la fotografia.

Un globo esta ascendiendo a tazdn de 12.4 m/s a una altur:
de 81.3 m sobre el nivel del suelo cuando se deja cae
desde €l un bulto. (@) ;A qué velocidad golpea el bulto e
suelo? (b) ;Cuanto tiempo le tomo llegar al suelo?

Una paracaidista, después de saltar, cae 52.0 m sin fric
cion. Cuando se abre el paracaidas, ella decelera a razoi
de 2.10 m/s? y llega al suelo a una velocidad de 2.90 m/s
(@) ;Cuénto tiempo estuvo la paracaidista en el aire? (b
(A qué altura comenzo la caida?

Una bola de plomo se deja caer en una alberca desde us
trampolin a 2.6 m sobre el agua. Golpea el agua con un:
cierta velocidad y luego se hunde hasta el fondo con est:
misma velocidad constante. Llega al fondo 0.97 s despué
de que se ha dejado caer. (@) ;{Qué profundidad tiene I:
alberca? (b) ;Supongamos que se deja drenar toda el agu:
de la alberca. La bola es arrojada de nuevo desde e
trampolin de modo que, otra vez, llega al fondo en 0.97 s
(Cudl es la velocidad inicial de 1a bola?

En el Laboratorio Nacional de Fisica de Inglatetra se hiz
una medicion de la aceleracion g arrojando una bola d
vidrio hacia arriba en un tubo evacuado y dejandola regresat
como en la figura 35. Sea A, el intervalo de tiempo entr
los dos pasos a través del nivel inferior, Az, el intervalo d
tiempo entre los dos pasos a través del nivel superior, y I
la distancia entre los dos niveles. Demuestre que
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Figura 34 Problema 69.

Figura 35 Problema 73.
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Una bola de acero se deja caer desde el techo de un edificic
(Ia velocidad inicial de la bola es cero). Un observado
parado enfrente de una ventana de 120 cm de altura nota qu
a la bola le toma 0.125 s caer desde la parte superior de I
ventana a la parte inferior. La bola continia cayendo, choc:
en forma completamente elstica con una acera horizontal
y reaparece en la parte baja de la ventana 2.0 s después d
haber pasado por alli en su ruta de caida. ;Cual es la altur.
del edificio? (La bola tendtia la misma velocidad en i
punto yendo hacia arriba que la que tenia yendo hacia abaj;
después de una colision completamente eldstica.)

Un perro ve una maceta de flores subir y luego bajar :
través de una ventana de 1.1 m de altura. Si el tiempo tota
en que la maceta esta a la vista es de 0.74 s, halle la altur:
por sobre el dintel de la ventana a la que se eleva la maceta




