MOTION ALONG A PATH

CHAPTER 5 S e e a0 L

A FREIGHT TRAIN is rolling down the track at
40 miles per hour. Around the bend a mile
behind, a fast express appears, going at 70 miles
per hour on the same track. The express engineer
slams on his brakes. With the brakes set he
needs two miles to stop. Will there be a crash?
What we are called upon to do here is to predict
where the two trains will be at subsequent times,
and to find in particular whether they are ever
at the same place at the same time. In a more
general sense, we are asking about the connections
between speeds, positions, and times.

The general subject of such relationships is
called kinematics. In studying kinematics we do
not concern ourselves with questions such as
“Why does the express train need two miles to
stop?” To answer such a question we would need
to study in detail how the brakes slow down the
train. Such questions as these will be considered
in Part III on Mechanics. Here, we just consider
the description of motion. We shall start with
the discussion of motion along a given path with-
out considering the position and direction of the
path in space. Then in the next chapter we shall
extend the discussion to describe the path.

In both of these chapters we shall draw on our
ability to measure time and distance, for all motion
is the changing of distance as time goes on.
Usually we shall not think consciously of the
time and distance measurements, but without
them we would in fact be talking words without
meaning.
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5-1. Speed and Distance

For a body moving with a constant speed, the
relationship of time, speed, and distance is
expressed simply. If we let d stand for the length
of the trip, v for the speed, and ¢ for the time
needed for the trip, the equation

vl =

relates these quantities for all cases of constant

speed.

It is often convenient to use a graph to repre-
sent motions. Fig. 5-1 shows a graph of the
speed versus time for a car which travels at
45 mi/hr. Taking some horizontal position on
the graph, such as that corresponding to 0.20 hr,
we find a reading on the vertical (or speed) axis
of 45 mi/hr. In fact, we find 45 mi/hr for any
time we select.
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5-1. The speed of a car moving steadily may be graphed as
a horizontal line.
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A more complicated motion is described in
Table 1. To compute the distance traveled
during the first time interval (0.10 hr long) we
use the equation d = »f. The result is 3 miles.
We can perform a similar calculation for each
succeeding interval, and add the results to find
that the total length of the trip is 53 miles.

Table 1
Motion of a Car at Variable Speed

Time Duration Speed Distance
interval of during in
number interval interval miles

A 0.10 hr 30 mi/hr 3
B 0.30 hr 50 mi/hr 15
€ 0.10 hr 25 mi/hr 2.5
D 0.50 hr 60 mi/hr 30
E 0.10 hr 25 mi/hr 2.5

This motion is represented in Fig. 5-2. Actu-
ally, a real object could not move exactly accord-
ing to this graph. Speed cannot increase in such
sudden “‘jumps.” However, a real car can make
its changes of speed relatively rapidly. In that
case, the graph of its motion will look very much
like Fig. 5-2. We shall ignore the impossi-
bility of sudden jumps in this discussion, so that
we can keep our graph simple.

5-2. The motion of o cor moving at different speeds during
different time intervals. The distance covered in ony interval
is measured by the area enclosed.

One great convenience of graphical presenta-
tion is that it enables us to see quickly when the
car is going fast and when it is going slowly.
Thus, the higher speeds occur “high” on the
graph of speed versus time. Can the graph also
tell us how far the car goes in each interval?
The answer is “‘yes.” Let us see how. During
any one of the five intervals the car travels a dis-
tance given by the equation d = ¢¢. In any inter-
val, the height of the graph tells us the speed
during the interval, and the horizontal length
gives us the time. Thus v times ¢ is the height
times the base, or the “area” of the rectangle.
This area is shaded for the first interval in Fig.
5-2. The units of these ‘“areas” are different
from the more common cm? or in? because one
side of the rectangle is measured in hours, and
the other is measured in mi/hr. The product in
this case has units of hours X mi/hr = miles
traveled.

The vertical axis of the graph represents the
speed in mi/hr. But taking a ruler and actually
measuring the vertical length in Fig. 5-2 to be
3.0 cm tells us nothing until we know that, for the
particular scale of this graph, 3.0 cm represents
30 mi/hr. It is helpful to remember that the
graph is a sort of scale drawing. Unlike a map
which simply *“scales down™ distances, the graph
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5-3. The speed-time groph for o cor which is chonging speed
during port of its trip. Does the shoded orea give the distance
traveled during the time interval from 0.000 to 0.020 hours?

has different scales in the horizontal and vertical
directions — scales which may differ not only
numerically, but also in the nature of the physical
quantities that they represent and therefore in
their units. When we talk about the “height”
being 30 mi/hr, we are using the graph in a way
that gives the same answer no matter what scale
we use in the actual drawing. For example, it
makes no difference whether we use 0.5 cm or 1.0
cm to represent 10 mi/hr, but we must know
which, and stick to it on any one graph.

Since heights and horizontal distances that we
plot on the speed and the time scales of our graph
are proportional to the actual speeds and times
involved, any two areas on the graph are ex-
actly proportional to actual distances the car
moves. This fact often allows us to decide at a
glance in which time interval the greatest distance
is covered. For example, we can see that the
area of the rectangle marked D in Fig. 5-2 is
greater than that of any of the other rectangles.
Therefore, we know without calculations that
the car travels farther in the interval D than in any
of the other intervals.

The total distance the car travels in 1.10 hr is
obtained by adding up the ‘“‘areas” of all the
intervals in Fig. 5-2.

5-2. Varying Speeds
For the case we have considered, the graph did
not give us any really new information because
we had a method of computing distances without
the aid of a graph. Now we shall use our graph-
ical ideas to help analyze a more difficult problem.
Fig. 5-3 gives a graph of the speed of a car

5-4. In this figure on imoginory car is olternately moving o
little faster ond then a little slower than the cor of Fig. 5—-3 so
that, eventually, it covers the same distance.

versus elapsed time. Can we tell how far the
car goes in the first 0.020 hr? We can try to
multiply the speed by the time, but we get into
trouble, for we must now choose from a whole
range of speeds. On the other hand, using the
area under the graph, which worked as an alter-
nate method for motion at constant speed, might
also serve here, allowing us to solve graphically
a problem that presents difficulties when tackled
algebraically. Using the area to find our distance
looks reasonable because we can approximate
the sloping graph of Fig. 5-3 closely by the one
in Fig. 5-4.

The graph of Fig. 5-4 represents the motion of
an imaginary car that changes speed in steps
(keeping constant speed during each step).
Each step brings it to a speed a little greater than
the speed of the real car at that instant. Then,
while the imaginary car’s speed remains constant,
the speed of the real car gains on it and passes it.
Next the imaginary car’s speed increases by an-
other step. The distance covered by the imaginary
car is given by the area shaded under the stepped
graph of Fig. 5-4. If we make the steps smaller,
and more frequent, the two cars would never
differ much in speed. Then the shaded area
which gives the distance covered by the imaginary
car would practically give the distance covered
by the real car. And that shaded area, for many
steps, is practically the shaded area under the
graph of Fig. 5-3 for the real car. If you want
to see another discussion which leads to a rigorous
proof that the area under this speed-time graph
gives the distance traveled, read the material in
the box on the next page.
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DISTANCE AS THE AREA UNDER THE SPEED-TIME GRAPH

Here is a more rigorous argument to prove
that the distance moved by the real car is the
area under the sloping graph in Fig. 5-3.
We can bracket the distance covered by the
real car between two limits by having two
imaginary cars that change their speeds in
steps, one of them A always traveling faster
than the real car and the other B always
slower. Then in a given time A must travel
a greater distance than the real car and B
must travel a shorter distance than the real
car. The distance traveled by the real car
lies between those traveled by 4 and B.
First imagine 4 and B each changing speed
in large steps as in Fig. 5-5. B starts with
the real car’s initial speed. For the first
0.010-hour period, it travels at 20 mi/hr while
the real car speeds up from 20 to 30 mi/hr,
and for the next 0.010 hour B travels at 30
mi/hr. Meanwhile, 4 runs at 30 mi/hr for
the first 0.010-hour period and then at 40
mi/hr. In a total time of 0.020 hr, B travels
0.20 mi + 0.30 mi or 0.50 mi; while 4
travels 0.30 mi + 0.40 mi, or 0.70 mi. The
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0.000
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Time (hours)

0.030

5-5. We con "bracket" the distance covered by the
cor in Fig. 5-3 by imagining two other cars, A and B, that
travel with different speeds os shown in this figure.

distance traveled by the real car must lie
somewhere between these two values since
it never moves faster than A or slower than
B. Thus we have bracketed the real car’s
travel between the limits 0.50 and 0.70 mi.

Now make the steps smaller and more
frequent, as in Fig. 5-6. If you calculate
the distances traveled by B and A in the first
0.20 hr (the area under the graphs) you will
find they are 0.55 mi and 0.65 mi. This gives
a smaller interval between the upper and
lower limits than we obtained before. We
can continue to decrease the interval between
the upper and lower limits for the distance
by making the cars change speed in shorter
and shorter time intervals. The area repre-
senting the upper limit of the distance and the
area representing the lower limit become
more and more nearly the same, and both
of these areas get nearer and nearer to the
area under the sloping curve. Mentally
continuing this process, we prove that the
“area” under the speed-time graph does give
the distance traveled by the original car.
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5=6. |If the two cars of Fig. 5=5 chonge their speeds
more frequently, it is cleor thot they opproximate the
motion of the real cor more closely.

(You get the same answer by breaking the trape-
zoid up into a rectangle and a triangle and adding
their areas.)

In general, even for more complicated speed-
time graphs, such as that of Fig. 5-7, the distance
is still given by the “area.” For example, for
the time interval 0.5 hr to 1.0 hr the distance is
given by the shaded area of Fig. 5-7. Even if
we are not able to compute the “‘area™ from a

Since the “‘area” under the slant line of Fig. 5-3
is that of a trapezoid with a base of 0.020 hr,
and the two heights, 20 mi/hr on the left and 40
mi/hr on the right, we can now say how far the
original car goes. The area of the trapezoid.gives
the distance

- = (20 i er et hr) % 0,020 hr = 0.60 mi.
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5-7. In general, the distance cavered is given by the areoc
under the speed-time graph, na matter haw the speed chonges.

formula, we can arrive at an approximate answer
in other ways. For instance, we can divide the
area into small squares and then multiply the
area of each square by the number of squares
counted, as suggested in Section 3-5.

5-3. Graphs of Distance versus Time

When we drive at a steady speed, the distance
we go is proportional to the time we travel:
d = vt. In other words, since v is constant, the
area under the v versus ¢ curve varies with . At
the speed of 60 mi/hr, for instance, in 0.10 hr we
go 6 miles; in 0.20 hr, 12 miles, and so on. We
can present this information in a table such as
Table 2. Or we can use a new graph, the graph
of distance d versus time #. The graph will make
it easy to find the distance even at a time that is
not included in the table.

Fig. 5-8 is the d versus ¢ graph for a speed of
60 mi/hr. Like all direct proportions (see Sec-
tion 4-1), it is a straight line.

What makes this line correspond to 60 mi/hr is
its steepness. How steeply the line rises depends
on the speed, which is the proportionality factor
between d and r. For example, if the speed were
greater, say 80 mi/hr, the straight line would be
steeper. It would rise the same distance in a
shorter time.

If your car breaks down and you phone the
garage, you will probably tell the repairman the
location of your car by telling him its distance
and direction along the road from some land-
mark. “It is 5 miles from the blinking light,
going toward California,” you might say. From
now on we shall measure d in a definite direction
from some place on which we agree. In this way
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we can use d to specify position. Motion will
still be described by the changes in d as time goes
on.

When you drive on a superhighway, you may
see a post every mile of the road. For example,
the Pennsylvania Turnpike has mileposts which
are numbered consecutively 1, 2, 3, etc., starting
at the Ohio state line. When we pass a post
labeled 176, we know we are 176 miles from the
Ohio state line, measured along the road. If at
that moment another car is opposite the post
labeled 186, it is 10 miles along the road from us,
in the direction away from Ohio.

We shall use this idea to help us make a graph
which shows the positions of rwo cars. We
describe the position of either car by giving its
distance d along the road from some reference
point like the state line or the place where a trip
begins. We can then make a graph of d for each
car at various times, as is done in Fig. 5-9 for one
example.

Table 2

Distance-Time Relations for Steady Speed

Elapsed time Distance covered
0.10 hr 6 mi
0.20 hr 12 mi
0.30 hr 18 mi
0.40 hr 24 mi
0.50 hr 30 mi
40P
3
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0.00 0.20 0.40 0.60
Time (hours)

5-8. The distonce-time graph for o steady speed is a stroight
line.
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5-9. At whot time will cor A overtake car B2

From the graph we can calculate the speeds of
the cars. In 0.1 hr, for example, car 4 goes from
the position d = 0 to d = 5. It moves 5 mi and
its speed is therefore 50 mi/hr. In the next 0.1 hr,
it again goes 5 mi from d =5 to d = 10; its
speed is still 50 mi/hr. Because the graph is a
straight line, the distance car 4 moves is the same
for every 0.1 hr; therefore the speed of 4 is 50
mi/hr all the time. Car B also has constant speed.
In each 0.1 hr it moves 2.5 mi, from d = 10 to
d = 12.5 in the first 0.1 hr, from 12.5 to 15 mi in
the second, and so on. Its speed is therefore
25 mi/hr.

In addition to the speeds, the graph tells us
more. It says that car B starts 10 mi ahead of A4,
but A catches up. After 0.1 hr 4 isatd = 5 and
Bis at d = 12.5. A is therefore only 7.5 mi be-
hind B. By the time 0.5 hr has passed we see that
A is ahead of B. Itis at d = 25, while B is only
atd = 22.5. Just by looking at the graph we can
tell how long it took 4 to catch up. At 0.4 hr
both cars are at the same position, actually at
d = 20; at 0.4 hr, therefore, A4 was just passing B.

In Section 5-1 we saw that on a graph of speed
versus time we could tell at a glance at what times
the speed was the greatest. The higher up the
line occurred on the graph the greater the speed
it represented. Now, however, we are dealing
with a quite different graph — that of distance
versus time. The speed is involved only indirectly
in such graphs and is not shown by the height
of the line above the time axis. For example, in
Fig. 5-9 the line for car B is above that for car
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5-10. Higher speeds give steeper graphs of distance vs. time.

A in the entire interval from 0.00 hr to 0.40 hr,
although car B is being overtaken during this
interval and is certainly the slower of the two.

How can we tell from Fig. 5-9 which caris going
faster? The answer is simple. One curve climbs
more steeply than the other. For a given time
interval, the steeper curve spans a greater interval
of distance. Since the car which travels the
greater distance in any given time is the faster, the
faster car must be the one with the most steeply
sloping graph. Car A is certainly going faster
than car B. (That is why it passed B.)

Fig. 5-10 again illustrates the relationship
between the steepness and the speed. The solid
line is drawn for a car traveling at 25 mi/hr. We
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5-11. Since the distance-time graphs for the two cars are
parallel, they represent the same speed even though the
positions of the graphs are different.

see that it has traveled a distance of 10 mi during
the first 0.40 hr. A car going 50 mi/hr travels 20
mi during the 0.40-hr interval, and is described
by the steeper dashed line of the graph.

On a d versus ¢ graph it is the steepness alone
that tells the speed. Position on the graph (or on
the road) does not matter. In Fig. 5-11 the
curves for cars C and D are equally steep. They
are parallel to each other; therefore they de-
scribe a situation in which car D neither catches
up to nor drops behind car C. It always keeps
10 miles behind C. The graphs will never cross
as they did when one car passed the other (Fig.
5-9). The graphs of car C and of car D are in
different positions, but they correspond to ex-
actly the same speed.

We shall now express the connection between
the speed and the steepness of the d versus ¢ graph
in mathematical language. To do so we shall
begin by restating the connection between speed,
time, and distance.

Imagine that while driving along a turnpike
you check your speedometer, using the mileposts
and a watch. The watch reads 3:25:00 at the
post labeled 247 miles, and 3:26:00 at 248 miles.
You have traveled one mile in one minute, and
your speed is a mile a minute, or 60 mi/hr. Let
d; stand for 247 miles and d, for 248 miles; also
let 7, stand for the time 3:25:00 and ¢, for the
time 3:26:00. In this language you can express
the speed v by the equation
d, — d,
n—= i
In general, if we pass from position d; at time

=

dl'—

Distance (d}

I
:‘_— ta—ty —_’l
I

t to

Time (1)

5-12. The slope of a straight line is found by dividing
d.=d; “up" by t> =t “over.”

t, to position d, at time #,, this equation gives the
average speed with which we move.

We can now give this equation for speed a pre-
cise geometrical meaning. In Fig. 5-12, if 4 and
B are any two points on the graph, then the
vertical interval between these points is obviously
d, — d; and the horizontal interval is 7, — 1,
These two intervals, (d, — d,) and (¢, — t,), com-
pletely define the steepness of the graph, for they
tell how far ““up” and how far “over” one point
on the line is from another. As we have already
discovered, the speed depends upon the steep-
ness of the distance-time graph; and the steep-
ness of the graph depends upon how far up the
graph goes in a certain interval over. The ratio
of “up” to “over” is such a useful measure of the
steepness that we give it a special name. We call
it the slope of the line. For the distance-time
graph, as Fig. 5-12 shows, the slope is d, — 4,

Distance (d)

Time (1)

5-13. A straight line has the same slope all along its length.
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5-14, The slopes of the two grophs are the some, although
their appearances differ. They will oppear the same only when
plotted to the same scale or on the same graph.

“up” divided by 1, — ¢, “over.” The slope of
the distance-time graph is the speed of the car as
we see from the last equation.

We determined the slope of the line in Fig.
5-12 from the ratio of “up” to “over” in going
between the two points 4 and B. If we take any
other two points such as 4" and B’ (Fig. 5-13), we
can see from the similar triangles dotted in the
figure that the ratio of “up” to “‘over” in the one
case is exactly equal to the ratio of ““up” to “over”
in the other. Therefore we can use any pair of
points on a straight line to compute its slope.

It is important to recognize that although the
slope is related to the ‘“‘steepness” of a graph,
the angle between the graphed line and the
horizontal has no particular significance since
we could change the angle by replotting the data
to different scale, as shown in Fig. 5-14. It is
only when we are comparing lines on the same
graph, as in Fig. 5-9, or on graphs plotted to the
same scale, that the angle between the line and
the horizontal axis helps us compare slopes. In
general we must measure the vertical and hori-
zontal intervals between two points on the graph
and compute their ratio in the appropriate units —
mi/hr, for instance — as in Fig. 5-14.

Our discussion of slope applies to other graphs;
nothing restricts us to the graph of distance versus
time. We shall shortly see the significance of the
slope of a graph of speed versus time. In fact,
we shall be dealing with slopes so often that it

will be worth while to introduce a shorthand
notation to indicate the process used in finding
them. For instance, the slope of the distance-
time graph is always equal to the ratio of an
interval of distance (d, — d,) to an interval of
time (f, —t,). Mathematicians and physicists
often use the Greek letter delta, written as A, as
an abbreviation for the phrase “an interval of.”
A'is a Greek capital D chosen to stand for “differ-
ence,” or ‘‘change of,” or “‘increase of,” or “an
interval of.” Thus, Ad means “an interval of
distance” and Ar means “an interval of time.”
We read them ‘“‘delta dee”” and “delta tee.”

We might compare the symbol “A” with some
other algebraic symbol, for instance with v/ ”
which means “take the square root of.” In the
expression Va, the symbol a stands for a number
(or physical quantity) and v/ tells us what to do
with @. In a similar manner, in the expression
At, ¢ stands for a physical quantity, and A tells
us what to do with . It says “take an interval”
of ¢ or “‘take the difference between two values”
of ¢.

When the ratio of two intervals is involved, as
it is in determining a speed, it is customary to
write the ratio as a fraction, with the understand-
ing that the interval in the numerator takes place
during the time interval of the denominator.
Thus

_Ad
Z)—At:

which is read ‘““vee equals delta dee over delta




tee,”” means “‘to find the speed, take the interval
of distance traveled in the time interval Ar and
divide that distance interval by that time interval.”
. Aa

In general, when we write ap Ve always mean
that we shall use the interval of a that corresponds
to a given interval of . After all, we are inter-
ested only in the ratios of related intervals.
Please note that there is no sense in separating
the A from the a or b. The whole symbol Aa
has a special meaning: an interval of a. It does
not mean A multiplied by a.

5-4. Speeds and Directions

We have learned that the speed v = %1 is given
by the slope of the distance-time graph. In Fig.
3-15 we have the distance-time graph of a com-
plete trip made by a car. Let us interpret it by
calculating the three slopes of the graph.

During the first 0.20 hr the car was traveling
at constant speed, as is indicated by the constant
slope. The speed may be found by taking the
ratio of the distance covered and the time elapsed
at any point within the interval, for example

Ad 6.0 mi — 0.0 mi q
%=X T020hr —0.00h S0 M/
What was the car doing from 0.20 hr until
0.50 hr? Here the slope of the graph is zero —
the car was stopped. From 0.50 hr until 0.80 hr
the slope is

Notice that the result is negative. The distance
(0.0 mi) at the later time (0.80 hr) is less than the
distance (6.0 mi) at the earlier time (0.50 hr).
The minus sign just tells us that the car was travel-
ing along the road in the opposite direction from
that taken at the start of the trip. In fact, the car
returned to its starting point, d = 0. arriving
there 0.80 hr after it left. The graph indicates
at a glance both the approximate speed and the
direction of travel. We have now derived from
it the information needed to plot the graph of
Fig. 5-16.

We have seen that the quantity ¢ can be either
positive or negative. The positive sign refers to
one direction of motion and the negative sign to
the opposite direction.
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5-15. Distance-time graph of a complete trip made by o cor.
Between which times was the cor going the fastest?
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5-16. Speed-time graph of the motion shown in Fig. 5-15.
The portion of the graph below the horizontal axis indicates
that the car is traveling opposite to its original direction. _

5-5. Instantaneous Speed — The Slope of
the Tangent Line

We have been thinking of trips in which the
speed is constant either throughout the trip or for
different portions of the trip. The distance-time
graphs were therefore made of straight lines.
Fig. 5-17 is a distance-time graph of a car with
continually changing speed. How can we find
the speed of the car at any particular time?
Here there are no straight lines, and it is not
obvious how to apply the methods we have been
discussing. On the other hand, if we were riding
in the car, the speedometer would be able to tell
us our speed. So let us think of the speedometer
reading at a definite time, for instance 0.50 hr
after we started our trip. How do we calculate
it from the graph of Fig. 5-17?































