MOVIMIENTO
EN DOS O EN TRES
DIMENSIONES

= Si un automovil
toma una curva con
rapidez constante,
{esta acelerando?
Si es asi, {en qué
direccién acelera?

uando un bate golpea una pelota de béisbol, ;qué determina dénde cae la pe-

lota? {Como describimos el movimiento de un carro de montafia rusa en una

curva o el vuelo de un halcén alrededor de un campo abierto? Si lanzamos un
globo lleno de agua horizontalmente desde una ventana, ¢tardard el mismo tiempo
en llegar al suelo que si s6lo lo dejamos caer?

No podemos contestar estas preguntas usando las técnicas del capitulo 2, donde
consideramos que las particulas se movian s6lo en linea recta. En vez de ello, necesi-
tamos extender nuestras descripciones del movimiento a situaciones en dos y en tres
dimensiones. Seguiremos empleando las cantidades vectoriales de desplazamiento,
velocidad y aceleracion; sin embargo, ahora no estardn todas en una misma linea.
Veremos que muchos movimientos importantes se dan sélo en dos dimensiones, es
decir, en un plano, y pueden describirse con dos componentes de posicion, velocidad
y aceleracion.

También necesitamos considerar como describen el movimiento de una particula
observadores diferentes que se mueven unos con respecto a otros. El concepto de
velocidad relativa desempefard un papel importante mds adelante en este libro, cuan-
do estudiemos colisiones, exploraremos los fenémenos electromagnéticos, y cuando
presentemos la teoria especial de la relatividad de Einstein.

En este capitulo se conjunta el lenguaje de vectores que vimos en el capitulo 1 con
el lenguaje de la cinematica del capitulo 2. Como antes, nos interesa describir el mo-
vimiento, no analizar sus causas. No obstante, el lenguaje que aprenderemos aqui re-
sultard indispensable mds adelante, al estudiar la relacién entre fuerza y movimiento.

METAS DE
APRENDIZAJE

Al estudiar este capitulo,
usted aprenderd:

Como representar la posicién
de un cuerpo en dos o en tres
dimensiones usando vectores.

Coémo determinar el vector
velocidad de un cuerpo
conociendo su trayectoria.

Cémo obtener el vector aceleracion
de un cuerpo, y por qué un cuerpo
puede tener una aceleracion aun
cuando su rapidez sea constante.

Coémo interpretar las componentes
de la aceleracion de un cuerpo
paralela y perpendicular a su
trayectoria.

Coémo describir la trayectoria curva
que sigue un proyectil.

Las ideas clave detras del
movimiento en una trayectoria
circular, con rapidez constante
o0 con rapidez variable.

Como relacionar la velocidad de
un cuerpo en movimiento visto
desde dos marcos de referencia
distintos.
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72 CAPITULO 3 Movimiento en dos o en tres dimensiones

3.1 El vector de posicién 7 del origen
al punto P tiene componentes x, y y z.
La trayectoria que la particula sigue en
el espacio es en general una curva
(figura 3.2).

y Laposicién P de una
particula en un tiempo
dado tiene las coordenadas

; =~V
El vector de posicién del punto P
tiene las componentes x, y, z:
F=xi+y+ zk.

3.2 La velocidad media U,,.4 entre los
puntos P, y P, tiene la misma direccién
que el desplazamiento A7.

La posicién de la particula
y en el tiempo 7,.

7
) P2 /’

g _AF
Uned = At

/

“"La posicién

de la particula

X
Trayectoria de la particula

3.3 Los vectores U, y U, son las
velocidades instantdneas en los puntos
P,y P,, como se muestra en la figura 3.2.

Uy
”
P,
El vector de la 2
velocidad instantdnea |\
\

U es tangente a la
trayectoria en
cada punto.

Trayectoria de la particula

en el tiempo 7;.

3.1 Vectores de posicion y velocidad

Para describir el movimiento de una particula en el espacio, primero tenemos que des-
cribir su posicion. Considere una particula que estd en el punto P en cierto instante. E1
vector de posicién 7 de la particula en ese instante es un vector que va del origen del
sistema de coordenadas al punto P (figura 3.1). Las coordenadas cartesianas x, y y z
de P son las componentes x, y y z de 7. Usando los vectores unitarios que presenta-
mos en la seccién 1.9, podemos escribir

F=xi+ v+ zlAc (vector de posicion) (3.1)

Durante un intervalo de tiempo At, la particula se mueve de P, donde su vector de
posicién es 7|, a P,, donde su vector de posicion es 7,. El cambio de posicién (el des-
plazamiento) durante este intervaloes A¥ = 7, — 7, = (x5, — x;)i + (3, — y)] +
(2 — z )I:T Definimos la velocidad media ¥,,., durante este intervalo igual que en el
capitulo 2 para movimiento rectilineo, como el desplazamiento dividido entre el in-
tervalo de tiempo:

- - -
- _r2_r1_Ar
Uned = -

(vector de velocidad media) (3.2)
h, — 1 At

Dividir un vector entre un escalar es realmente un caso especial de multiplicar
un vector por un escalar, que se describié en la seccién 1.7; la velocidad media
U,eq € igual al vector de desplazamiento A¥ multiplicado por 1/At, el reciproco
del intervalo de tiempo. Observe que la componente x de la ecuacion (3.2) es
Upear = (X0 — x,)[(t; — 1;) = Ax[Atr. Esto es precisamente la ecuacién (2.2), la
expresion para la velocidad media que dedujimos en la seccién 2.1 para el movi-
miento unidimensional.

Aqui definimos la velocidad instantanea igual que en el capitulo 2: como el 1imi-
te de la velocidad media cuando el intervalo de tiempo se aproxima a 0, y es la tasa
instantdnea de cambio de posicion con el tiempo. La diferencia clave es que tanto la
posicién 7 como la velocidad instantdnea ¥ ahora son vectores:

L . AF¥ _dF
v=lim—=—

= vector de velocidad instantanea 33
Ar—>0 A t dt ( ) ( )

La magnitud del vector ¥ en cualquier instante es la rapidez v de la particula en ese
instante. La direccién de U en cualquier instante es la direccién en que la particula
se mueve en ese instante.

Observe que conforme Az — 0, P, y P, de la figura 3.2 se acercan cada vez mds.
En el limite, A7 se vuelve tangente a la trayectoria. La direccién de A¥ en el limite
también es la direccién de la velocidad instantédnea U. Esto conduce a una conclusién
importante: en cualquier punto de la trayectoria, el vector de velocidad instantdnea
es tangente a la trayectoria en ese punto (figura 3.3).

A menudo es mds sencillo calcular el vector de velocidad instantdnea empleando
componentes. Durante cualquier desplazamiento A¥, los cambios Ax, Ay y Az en las
tres coordenadas de la particula son las componentes de A¥. Por lo tanto, las compo-
nentes v,, v, y v. de la velocidad instantdnea U son simplemente las derivadas en el
tiempo de x, y y z. Es decir,

o _d &

_ (componentes de la
v, = — B, = v, =
dt dt dt

. . . 3.4
velocidad instantdnea) 34
La componente x de U es v, = dx/dt, que es la ecuacién (2.3): la expresién para la
velocidad instantdnea en movimiento rectilineo que obtuvimos en la seccién 2.2.



Por lo tanto, la ecuacion (3.4) es una extension directa de la idea de velocidad ins-
tantanea al movimiento en tres dimensiones.

Podemos obtener este mismo resultado derivando la ecuacién (3.1). Los vectores
unitarios 7, J y k tienen magnitud y direccion constantes, asi que sus derivadas son
cero; entonces,

L dF¥ dx, dy, dz.
v=_r=_xl+_y]+_zk (3.5)
dr dr dr dr

Esto muestra otra vez que las componentes de U son dx/dt, dy/dt y dz/dt.
La magnitud del vector de velocidad instantdnea U, esto es, la rapidez, estd dada en
términos de las componentes v,, v, y v, aplicando el teorema de Pitdgoras

[6] =v=Vuv2+v]+0v]

La figura 3.4 muestra la situacion cuando la particula se mueve en el plano xy.
Aqui, z y v, son cero, y la rapidez (la magnitud de ¥) es

v="Vul+v}

y la direccién de la velocidad instantdnea U estd dada por el dngulo « de la figura.
Vemos que

(3.6)

v,
tana = —
v

(3.7)
x

(Siempre usamos letras griegas para los dngulos. Utilizamos « para la direccion del
vector de la velocidad instantdnea para evitar confusiones con la direccién 6 del vec-
tor de posicion de la particula.)

El vector de velocidad instantdnea suele ser mds interesante y util que el de la
velocidad media. De ahora en adelante, al usar el término “velocidad”, siempre nos
referiremos al vector de velocidad instantdnea ¥ (no al vector de velocidad media).
Usualmente ni nos molestaremos en llamar vector a U; el lector debe recordar que
la velocidad es una cantidad vectorial con magnitud y direccién.

SRR Calculo de velocidad media e instantanea

Se estd usando un vehiculo robot para explorar la superficie de Marte.
El médulo de descenso es el origen de coordenadas; en tanto que la su-
perficie marciana circundante estd en el plano xy. El vehiculo, que re-
presentamos como un punto, tiene coordenadas x y y que varian con el
tiempo:

problema.

x=2.0m— (0.25m/s?)7

3.1 Vectores de posicion y velocidad

73

3.4 Las dos componentes de velocidad
para movimiento en el plano xy.

El vector de velocidad instantdnea U
siempre es tangente a la trayectoria.

7} La trayectoria de
| la particula en el
[

| plano xy
==

s X
O| v}y v, son las componentes

xyydev.

locidad media y las ecuaciones (3.5) y (3.6) para la velocidad ins-
tantdnea y su direccion. Las incognitas se indican en el enunciado del

3.5 Ent = 0 el vehiculo tiene vector de posicién 7,y velocidad
instanténea ¥,. Asimismo, ¥,y U,, son los vectoresent = 1.0's;

¥,y U, son los vectores ent = 2.0 s.

y = (1.0m/s)r + (0.025 m[s*)7

a) Obtenga las coordenadas del vehiculo y su distancia con respecto al
modulo en ¢ = 2.0 s. b) Obtenga los vectores de desplazamiento y ve-
locidad media del vehiculo entre = 0.0 s y t = 2.0 s. ¢) Deduzca una
expresion general para el vector de velocidad instantdnea del vehiculo.
Exprese la velocidad instantdnea en ¢ = 2.0 s en forma de componen-
tes y ademds en términos de magnitud y direccion.

IPFNTI F.ICAR: Este Problema implica movimiento en una trayectoria 10 L t=10s Trayectoria

bidimensional (es decir, en un plano). Por lo tanto, deberemos usar las R ‘(" del vehiculo

expresiones para los vectores de desplazamiento, velocidad media y r s

velocidad instantdnea que obtuvimos en esta seccion. (En las expresio- 0.5 - | I — 00

nes mds sencillas de las secciones 2.1 y 2.2 no intervienen vectores, y 7 1= 00s

s6lo son vdlidas para movimiento rectilineo.) L L L x (m)
o 0.5 1.0 1.5

PLANTEAR: La trayectoria del vehiculo se muestra en la figura 3.5.
Usaremos la ecuacién (3.1) para la posicién 7, la expresion
A7 =7, — F, para el desplazamiento, la ecuacién (3.2) para la ve-

continiia



74 CAPITULO 3 Movimiento en dos o en tres dimensiones

EJECUTAR: a) En el instante ¢t = 2.0 s las coordenadas del vehiculo
son

x=2.0m— (0.25m/s?)(2.0s)>=1.0m
y=(1.0m/s)(2.0s) + (0.025m/s*)(2.0s)* =2.2m

La distancia del vehiculo al origen en este instante es

r=Ve +y¥=V(1.0m)2+ (22m)2=2.4m
b) Para obtener el desplazamiento y la velocidad media, expresa-
mos el vector de posicién 7 en funcién del tiempo ¢ De la ecuacion
(3.1):
F=xi+yj
=[2.0m — (0.25m/s?)~]:
+ [(1.0m[s)z + (0.025 m/s*)7]j
En el instante ¢ = 0.0 s el vector de posicién 7, es
Fo=(2.0m)Z + (0.0 m)j
Del inciso a) sabemos que, en t = 2.0 s, el vector de posicién 7, es
7, =(1.0m)I + (2.2m)j
Por lo tanto, el desplazamiento entre t = 0.0 sy t = 2.0 s es
AP =7 —F = (1.0m)i + (2.2m)j — (2.0m)i
=(—-1.0m); + (2.2m)j
Durante el intervalo entre t = 0.0 s y t = 2.0 s, el vehiculo se movid
1.0 m en la direccién —x 'y 2.2 m en la direccién +y. La velocidad me-

dia en este intervalo es el desplazamiento dividido entre el tiempo
transcurrido (ecuacién 3.2):

. A7 (—1.0m)i + (2.2m)j
Umed = A T T 205 — 0.0
= (—0.50m/s)i + (1.1 m/s)j

Las componentes de esta velocidad media son

Upeax = —0.50 m/s Upedy = 1.1 m/s

¢) Por la ecuacién (3.4), las componentes de la velocidad instantd-
nea son las derivadas de las coordenadas respecto a t:

v, = % = (—0.25m/[s?)(2r)

d
vy = Zj = 1.0m/s + (0.025 m/s*) (37°)

Evaltie su comprension de la seccion 3.1

Asi, podemos escribir el vector de velocidad instantdnea U como

¥=vi+0v,j=(-0.50m/s*)ri
+ [1.0m/[s + (0.075 m[s*)~]j

En el tiempo ¢ = 2.0 s, las componentes de la velocidad instantdnea
son

v, = (—-0.50m/[s?)(2.0s) = —1.0m/s
v, = 1.0m/s + (0.075m/s*)(2.0s)* = 1.3 mfs

La magnitud de la velocidad instantdnea (es decir, la rapidez) en
t=20ses

<
Il

Vo2 +0v2=V(-1.0m/s)> + (1.3 mfs)>
=1.6m/s

Su direccién con respecto al eje +x estd dada por el dngulo «, donde,
por la ecuacion (3.7),

Uy 1.3m/s
tang=—=—"—"-=

= a = 128°
vy —1.0m/s

-1.3 as{
Una calculadora mostraria que la tangente inversa de —1.3 es —52°.
No obstante, como vimos en la seccién 1.8, hay que examinar un dibu-
jo del vector para decidir su direccion. La figura 3.5 muestra que la
respuesta correcta para « es —52° + 180° = 128°.

EVALUAR: Témese un momento para comparar las componentes de
la velocidad media que obtuvimos en el inciso b) para el intervalo
det=00sar=2.05s Upea,= —0.50 m/s, U4, = 1.1 m/s) con las
componentes de la velocidad instantdnea en t = 2.0 s que obtuvimos
en el inciso ¢) (v, = —1.0 m/s, v, = 1.3 m/s). En general, la compa-
racién muestra que, igual que en una sola dimension, el vector de ve-
locidad media U,,.q durante un intervalo no es igual a la velocidad
instantdnea U al final del intervalo (véase el ejemplo 2-1).

Usted deberia calcular el vector de posicion, el vector de velocidad
instantdnea, la rapidez y direccién del movimiento en # = 0.0 s y
t = 1.0 s. Los vectores de posicién 7 y velocidad instantdnea ©
ent=0.0s,1.0sy2.0s se muestran en la figura 3.5. Observe que en
todos los puntos el vector de velocidad instantdnea U es tangente a la
trayectoria. La magnitud de U aumenta al avanzar el vehiculo, lo que
indica que la rapidez del vehiculo estd aumentando.

P

(En cual de las siguientes

situaciones el vector de velocidad media U,,.qen un intervalo seria igual a la velocidad
instantdnea U al final del intervalo? i) Un cuerpo que se mueve en una trayectoria curva

a rapidez constante; ii) un cuerpo que se mueve en una trayectoria curva y aumenta su rapidez;
iii) un cuerpo que se mueve en linea recta a rapidez constante; iv) un cuerpo que se mueve

en linea recta y aumenta su rapidez.

3.2 El vector de aceleracion

Consideremos ahora la aceleracion de una particula que se mueve en el espacio. Al
igual que en el movimiento rectilineo, la aceleracion describe el cambio en la veloci-
dad de la particula; no obstante, aqui la trataremos como un vector para describir los
cambios tanto en la magnitud de la velocidad (es decir, la rapidez) como en la direc-
cion de la velocidad (esto es, la direccion en que se mueve la particula).

En la figura 3.6a, un automovil (tratado como particula) se mueve en una trayecto-
ria curva. Los vectores U, y U, representan las velocidades instantdneas del auto en el
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3.6 a) Un automdvil se mueve por una curva de P; a P,. b) Se obtiene AU = U, — U, mediante resta de vectores. c) El vector

@,.q = AU/At representa la aceleracién media entre P, y P,.

a) b)

v,
P, —"'b

7" Este automévil acelera frenando

/7 .
7 mientras toma una curva. (Su
velocidad instantdnea cambia tanto
P, en magnitud como en direccion.)

-

Uy

1

Para determinar la aceleracion media del auto entre

P,y P,, primero obtenemos el cambio en la
velocidad AU restando ¥, de U,. (Observe que
v, + AU =10,)

instante #,, cuando el auto estd en el punto P, y en #, cuando estd en P,. Las dos velo-
cidades pueden diferir en magnitud y direccion. Durante el intervalo de ¢, a t,, el cam-
bio vectorial de velocidad es U, — U, = AU (figura 3.6b). Definimos la aceleracién
media a,,., del auto en este intervalo como el cambio de velocidad dividido entre el
intervalo t, — t, = Ar:

= =
U, — U, AU

(vector de aceleracion media) (3.8)

a ==
med T — 8 At

La aceleracién media es una cantidad vectorial en la misma direccién que el
vector AU (figura 3.6c). Observe que U, es la resultante de la velocidad original
U, y el cambio AU (figura 3.6b). La componente x de la ecuacién (3.8) es
Apear = (U2 — V)] (6, — 1,) = Av,[At, que no es sino la ecuacién (2.4) para la
aceleracion media en movimiento rectilineo.

Al igual que en el capitulo 2, definimos la aceleracién instantnea ¢ en el punto
P, como el limite de la aceleracién media cuando el punto P, se acerca a P,y AU y At
se acercan a cero. La aceleracion instantdnea también es igual a la tasa (variacion)
instantdnea de cambio de velocidad con el tiempo. Como no estamos limitados a mo-
vimiento rectilineo, la aceleracién instantdnea ahora es un vector:

L _ . AU _du

im — = (vector de aceleracion instantanea)
A0 At dt

(3.9)

El vector de velocidad ¥, como vimos, es tangente a la trayectoria de la particula.
No obstante, las figuras 3.6¢ y 3.7 muestran que si la trayectoria es curva, el vector de
aceleracion instantdnea @ siempre apunta hacia el lado céncavo de la trayectoria, es
decir, hacia el interior de cualquier curva descrita por la particula.

CUIDADO Cualquier particula que siga una trayectoria curva esta acelerando Si
una particula sigue una trayectoria curva, su aceleracion siempre es distinta de cero, aun si se
mueve con rapidez constante. Quizd le parezca que esta conclusion es contraria a su intuicion,
pero mds bien va contra el uso cotidiano de la palabra “aceleracién” para implicar que la velo-
cidad aumenta. La definicién mds precisa de la ecuacién (3.9) muestra que la aceleracién no
es cero cuando el vector de velocidad cambia de cualquier forma, ya sea en su magnitud, direc-
cién o ambas.

Para convencerse de que una particula no tiene aceleracién cero cuando se 7
mueve en una trayectoria curva con rapidez constante, piense en lo que siente *®
cuando viaja en automdvil. Si el auto acelera, usted tiende a moverse en direccion

9
U
2
———>
V
o/
4
4
4
N
Py AU Amed At
1

] v,

1 S

La aceleracion media tiene la misma direccion
que el cambio de velocidad, Av.

3.7 La aceleracion instantdnea d en el
punto P, de la figura 3.6.

Para obtener la aceleracion 32

instantdnea

aenPy .. P,
: >

MRS

-

—

... tomamos el limite de @4

P, cuando P, se aproxima a P ...
/
!
1
>
/’ -
-
U, e
e
i . e
+* ... lo que significa
’ .
Al que AvyArse }
aproximana 0.
P -
1 e A
/ @ = lim 2¥ «
[ A0 At

La aceleracion instantdnea apunta
hacia el lado céncavo de la trayectoria.
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3.8 Cuando el arquero dispara la flecha,
ésta acelera tanto hacia adelante como
hacia arriba. Por lo tanto, su vector de
aceleracion tiene una componente
horizontal (a,) y también una componente
vertical (a,).

.
a

opuesta a la aceleracion del vehiculo. (Veremos por qué en el capitulo 4.) Asi, tende-
mos a movernos hacia atrds cuando el auto acelera hacia adelante (aumenta su veloci-
dad), y hacia el frente cuando el auto desacelera (frena). Si el auto da vuelta en un
camino horizontal, tendemos a deslizamos hacia afuera de la curva; por lo tanto, el
auto tiene una aceleracién hacia adentro de la curva.

Normalmente nos interesara la aceleracion instantanea, no la media. Por ahora,
usaremos el término “aceleracion” para referirnos al vector de aceleracion instanta-
nea, .

Cada componente del vector de aceleracion es la derivada de la componente co-
rrespondiente de la velocidad:

a = dv, o = dv, o= dv, (componentes de la aceleracion 510
Todr Yoodt ®  dr instantdnea) :
En términos de vectores unitarios,
dv dv y dv. A~
— XA A <
a= 1+ —] + (3.01)
a' A T

La componente x de las ecuaciones (3.10) y (3.11), a, = dv./d1, es la expresion de la
seccién 2.3 para la aceleracion instantdnea en una dimension, ecuacién (2.5). La fi-
gura 3.8 muestra un ejemplo de vector de aceleracion que tiene componentes tanto x
como y.

Ademads, como cada componente de velocidad es la derivada de la coordenada co-
rrespondiente, expresamos las componentes a,, a, y a. del vector aceleracién @ como

dx &y d (3.12)
a, = — a, = —— a, = —— .
toar toar dr
y el vector de aceleracién @ como
d’x dy &’z -
a=—i+—]+—k (3.13)
at’ " ad! T ar

SEMEPAN Calculo de aceleracion media e instantanea

Veamos otra vez los movimientos del vehiculo robot del ejemplo 3.1.
Determinamos que las componentes de la velocidad instantdnea en

cualquier instante # son

ciso b) determinamos las componentes de la aceleracion instantdnea en
cualquier tiempo ¢ derivando respecto al tiempo las componentes de la
velocidad, como en la ecuacién (3.10).

_dx N EJECUTAR: a) Si sustituimos 7 = 0.0 s, o bien, = 2.0 s en las expre-
Us = E = (=0.25m/s?)(21) siones para v, y v,, veremos que al principio del intervalo ( = 0.0 s)
dy las componentes de velocidad son
=—=1.0 + (0.025 m/s*) (37
O m/s + ( m/s’) (37) v, = 0.0m/s v, =1.0m/s

y que el vector de velocidad es

=vi+0v,j=(-0.50m/s*)ri
+ [1.0m/s + (0.075 m/s*)£]j

y que al final del intervalo (r = 2.0 s) las componentes son
v, =—1.0m/s v,:1.3m/s

Los valores en # = 2.0 s son los mismos que obtuvimos en el ejemplo

a) Obtenga las componentes de la aceleracion media en el intervalo
de r = 0.0 sat = 2.0s.b) Determine la aceleracion instantinea en
t=20s.

IDENTIFICAR: Este ejemplo utiliza la relacion vectorial entre veloci-
dad, aceleracion media y aceleracién instantdnea.

PLANTEAR: En el inciso a), determinamos primero los valores de v, y
v, al principio y al final del intervalo, y después usamos la ecuacién
(3.8) para calcular las componentes de la aceleracién media. En el in-

3.1.) Asi, las componentes de la aceleracién media en el intervalo son

Av —1.0m/s — 0.0 m/[s
= =05 ;2
fmedx = "N 205 -0.0s m/s
Avy,  13mfs — 1.0m/[s
,=—=———=0(0.15 2
mety =7 2.05 —0.0s m/s
b) Con la ecuacién (3.10), obtenemos
dUX 5 dvv 3
=— = -0.50 ,=—=(0.075 2t
0= mfs 4= == (0.075m/5) (20)



Podemos escribir el vector de aceleracién instantdnea & como
d=ai+aj=(-0.50m/s?)i + (0.15m/s*)sj

En el instante # = 2.0 s, las componentes de la aceleracion instantdnea
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3.9 muestra la trayectoria y los vectores de velocidad y aceleracion en
t=0.0s,1.0sy2.0s. Observe que U y d@ no estdn en la misma direc-
cién en ningdn momento. El vector de velocidad T es tangente a la tra-
yectoria, y el de aceleracién @ apunta hacia el lado céncavo de ésta.

son

3.9 Trayectoria del vehiculo robot que muestra la velocidad y

a, = —0.50 m/s? a,= (0.15m/s*)(2.0s) = 0.30 m/s?

yt=20s (U,yd,).

El vector de aceleracién en este instante es

d@ = (—-0.50m/s?)i + (0.30 m/s?)j

aceleracionent = 0.0s (B,y d,),t=1.0s (¥, yd,)

a=128°

y (m)
La magnitud de la aceleracion en este instante es
25
a = \/axz-kay2 o
t=20s
=V/(—0.50 m/s?)? + (0.30 m/s?)? = 0.58 m/s> 20 \\
\
La direccién de @ con respecto al eje x positivo estd dada por el dngulo s
L5 AN
BB, donde a 1 .
Trayectoria
a4, 0.30m/s* 10 F B del vehiculo
tanB:—:—/: —0.60 ’_1'05\/robot
a,  —0.50 m/s’ T
U
B =180°— 31° = 149° 0.5 - \ 0
N t=00s
@
EVALUAR: Usted deberia utilizar los resultados del inciso b) para _ x (m)
o 0.5 1.0 1.5 2.0

calcular la aceleracién instantdnea en t = 0.0 s y t = 1.0 s. La figura

Componentes perpendicular y paralela de la aceleracion

El vector de aceleracién @ de una particula puede describir cambios en la rapidez de
ésta, en la direccién de su movimiento o en ambas. Resulta util destacar que la com-
ponente de la aceleracion paralela a la trayectoria de la particula —esto es, paralela a
la velocidad— nos indica acerca de los cambios en la rapidez de la particula; en tanto
que la componente de la aceleracioén perpendicular a la trayectoria —y por lo tanto,
perpendicular a la velocidad— nos indica los cambios en la direccion del movimiento
de la particula. La figura 3.10 muestra estas componentes, que se denotan como a; y
a, . Para ver por qué las componentes paralela y perpendicular de d tienen tales pro-
piedades, consideremos dos casos especiales.

En la figura 3.11a, el vector de aceleracion es paralelo a la velocidad U, de mane-
ra que d tiene s6lo una componente paralela a, (es decir, a, = 0). El cambio de velo-
cidad AU en un intervalo pequefio At tiene la misma direccién que & y, por lo tanto,
que U;. La velocidad U, al final de At, dada por U, = ¥, + AU, es un vector con la
misma direccién que ¥, pero de mayor magnitud. Es decir, durante el intervalo Az
la particula de la figura 3.11a se movié en linea recta con rapidez creciente.

En la figura 3.11b, la aceleracion es perpendicular a la velocidad, de manera que @
tiene s6lo una componente perpendicular @, (es decir, @y = 0). En un intervalo pe-
quefio At, el cambio de velocidad AT es un vector casi perpendicular a U,. Otra vez,
U, = U, + AU, pero aqui U, y U, tienen diferente direccién. Al aproximarse el intervalo

3.11 El efecto de la aceleracion con direccion a) paralela y b) perpendicular a la
velocidad de la particula.

a)

Aceleracién paralela a la
velocidad de la particula:
 La magnitud cambia, pero no
la direccion de la velocidad. _,
* La particula se mueve en
linea recta con rapidez
cambiante.

b)

Aceleracion perpendicular

a la velocidad de la particula:

e La direccion cambia, pero no
la magnitud de la velocidad.

* La particula se mueve en
una curva con rapidez
constante.

<

3.10 La aceleracién puede descomponerse
en una componente @, paralela a la
trayectoria (es decir, en la tangente a

la trayectoria), y una componente a |
perpendicular a la trayectoria

(es decir, en la normal a la trayectoria).

Tangente a la
trayectoria en P.

v
Componente de
,
a paralela a la .
. P . T _ ——~—=—"= Trayectoria de
rayectoria. . - B
Y ayy>< la particula
/38 ~
~N
~N
NS 5 a
A /
ER / .. Normal a la
: il .
1 H < trayectoria
Componente de @ en P,

perpendicular a la trayectoria.
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At a cero, el 4ngulo ¢ en la figura también se acerca a cero, AU se hace perpendicular
tanto a U, como a U,, U, Y U, tienen la misma magnitud. Dicho de otro modo, la rapi-
dez de la particula no cambia, pero la direccién del movimiento cambia y su trayecto-
ria se curva.

En general, la aceleracién d tiene componentes tanto paralela como perpendicular
a la velocidad U, como en la figura 3.10. Entonces, cambiardn fanto la rapidez de la
particula (descrita por la componente paralela a;) como su direccién (descrita por
la componente perpendicular a ), por lo que seguird una trayectoria curva.

La figura 3.12 muestra una particula que se mueve con trayectoria curva en tres si-
tuaciones distintas: rapidez constante, creciente y decreciente. Si la rapidez es cons-
tante, @ es perpendicular, o normal, a la trayectoria y a U y apunta hacia el lado
céncavo de la trayectoria (figura 3.12a). Si la rapidez aumenta, todavia hay una com-
ponente perpendicular de @, pero también una paralela con la misma direccién que U
(figura 3.12b). Entonces, @, apunta hacia adelante de la normal a la trayectoria (como
en el ejemplo 3.2). Si la rapidez disminuye, la componente paralela tiene direccién
opuesta a Uy d@, apunta hacia atrds de la normal a la trayectoria (figura 3.12c). Usare-
mos otra vez esas ideas en la seccién 3.4 al estudiar el caso especial de movimiento
en un circulo.

3.12 Vectores de velocidad y aceleracion para una particula que pasa por un punto P de una trayectoria curva con rapidez a) constante,

b) creciente y c) decreciente.

a) Cuando la rapidez es constante en una
trayectoria curva ...

N
v

... la aceleracion es
/ normal a la trayectoria.

Normal en P

¢) Cuando la rapidez disminuye en una
trayectoria curva ...

b) Cuando la rapidez se incrementa en una
trayectoria curva ...

S}
<

e
... la aceleracién apunta

hacia delante de la normal. .. la aceleracién apunta

hacia atrds de la normal.

4o N
a /
Normal en P

Normal en P

SEUMVEREE Calculo de las componentes paralela y perpendicular de la aceleracion

Para el vehiculo de los ejemplos 3.1 y 3.2, obtenga las componentes
paralela y perpendicular de la aceleracién en t = 2.0 s.

IDENTIFICAR: Queremos obtener las componentes del vector de ace-
leracién @ que sean paralela y perpendicular al vector de velocidad U.

PLANTEAR: Obtuvimos las direcciones de @ y U en los ejemplos 3.2 y
3.1, respectivamente, lo cual nos permite determinar el dngulo entre
los dos vectores y, por lo tanto, las componentes de .

EJECUTAR: En el ejemplo 3.2 vimos que en ¢ = 2.0 s la particula tiene
una aceleracién de magnitud 0.58 m/s* con un angulo de 149° con res-
pecto al eje +x. Por el ejemplo 3.1, sabemos que en ese instante el vec-
tor de velocidad tiene un dngulo de 128° con respecto al eje +x. Asi, la
figura 3.9 muestra que el dngulo entre @ y U es 149° — 128° = 21° (fi-
gura 3.13). Las componentes paralela y perpendicular de la aceleracién
son entonces

a, = acos21° = (0.58 m/s?)cos21° = 0.54 m/[s>
a, = asen21°= (0.58 m{s?)sen21° = 0.21 m/s>

3.13 Componentes paralela y perpendicular de la aceleracién del
vehiculoen t = 2.0s.

<

5108 _ Componente paralela
Z<\ ) x de la aceleracion.
Componente \\\
perpendicular 7%
de la aceleracion.

.\Posicién del vehiculoent = 2.0 s

AY . .
@, < Trayectoria del vehiculo

EVALUAR: La componente paralela a, tiene la misma direccién que U,
lo cual indica que la rapidez aumenta en este instante; el valor de a;, =
0.54 m/s” significa que la rapidez estd aumentando a una tasa de 0.54
m/s por segundo. Como la componente perpendicular @, no es cero, se
sigue que en este instante el vehiculo cambia de direccién y sigue una

trayectoria curva; en otras palabras, el vehiculo estd dando vuelta.
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Una esquiadora se mueve sobre una rampa de salto, como se muestraen ~ 3.14 a) La trayectoria de la esquiadora. b) Nuestra solucién.

la figura 3.14a. La rampa es recta entre A y C, y es curva a partir de C.
La rapidez de la esquiadora aumenta al moverse pendiente abajo de
A a E, donde su rapidez es mdxima, disminuyendo a partir de ahi. Di-
buje la direccién del vector de aceleracion en los puntos B, D, E'y F. A

La figura 3.14b muestra la solucién. En el punto B, la esquiadora se
mueve en linea recta con rapidez creciente, asi que su aceleracion
apunta cuesta abajo, en la misma direccién que su velocidad.

En D la esquiadora sigue una trayectoria curva, asi que su acelera-
ci6én tiene una componente perpendicular. También hay una compo-
nente en la direccion del movimiento porque su rapidez atin va en
aumento en este punto. Por lo tanto, el vector de aceleracién apunta b)
adelante de la normal a su trayectoria en el punto D.

La rapidez de la esquiadora no cambia instantdneamente en E; la \
rapidez es médxima en este punto, asi que su derivada es cero. Por lo N
tanto, no hay componente paralela de @, y la aceleracién es perpendicu- N
lar al movimiento. N

Por dltimo, en F la aceleracion tiene una componente perpendicu- \
lar (porque la trayectoria es curva aqui) y una componente paralela N
opuesta a la direccion de su movimiento (porque la rapidez estd dismi- BN\d
nuyendo). De manera que en este punto, el vector de aceleracion apun-
ta hacia atrds de la normal a la trayectoria.

En la siguiente seccién examinaremos la aceleracion de la esquia-
dora después de salir de la rampa.

a)

Evaliie su comprension de la seccion 3.2 Un trineo viaja por la cima de una @
montafia cubierta de nieve. El trineo disminuye su rapidez conforme asciende por un

lado de la montafia y la aumenta cuando desciende por el otro lado. ;Cudl de los vectores

(1 a9) en la figura muestra correctamente la direccién de la aceleracion del trineo en la cima?
(Considere el 9 como la aceleracion cero.)

3.3 Movimiento de proyectiles

Un proyectil es cualquier cuerpo que recibe una velocidad inicial y luego sigue una
trayectoria determinada totalmente por los efectos de la aceleracién gravitacional y
la resistencia del aire. Una pelota bateada, un balén lanzado, un paquete soltado des-
de un avion y una bala disparada de un rifle son todos proyectiles. El camino que
sigue un proyectil es su trayectoria.

Para analizar este tipo de movimiento tan comun, partiremos de un modelo idea-
lizado que representa el proyectil como una particula con aceleracién (debida a la
gravedad) constante tanto en magnitud como en direccién. Despreciaremos los efec-
tos de la resistencia del aire, asi como la curvatura y rotacién terrestres. Como todos
los modelos, éste tiene limitaciones. La curvatura de la Tierra debe considerarse en el
vuelo de misiles de largo alcance; en tanto que la resistencia del aire es de importan-
cia vital para un paracaidista. No obstante, podemos aprender mucho analizando este
modelo sencillo. En el resto del capitulo, la frase “movimiento de proyectil” impli-
card que se desprecia la resistencia del aire. En el capitulo 5 veremos qué sucede
cuando la resistencia no puede despreciarse.

El movimiento de un proyectil siempre estd limitado a un plano vertical determi-
nado por la direccién de la velocidad inicial (figura 3.15). La razon es que la acelera-
cion debida a la gravedad es exclusivamente vertical; la gravedad no puede mover un

Direccion

del movimiento

A

/2
E
Normal en E
“\ Normal en D Normal en F
AN \/ \/
N / \
N -
L) / \
O AN
D™ ~--—--""F
€
I
3
2 4
JE Sl Traye.ctorla
- =~ del trineo
- \\
-7 8 6 A
7

o bien, 9: aceleracién = 0

3.15 La trayectoria de un proyectil.

» Un proyectil se mueve en un plano vertical
que contiene el vector de velocidad inicial Uy,.
. P -
* Su trayectoria depende sélo de v y de la
aceleracion hacia abajo debida a la gravedad.

-

a

=

-

—
a
=0,

- -

lly:

~« _Trayectoria
<

~

-8 \
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3.16 Labola roja se deja caer desde el proyectil lateralmente. Por lo tanto, este movimiento es bidimensional. Llamaremos
reposo y la amarilla se proyecta horizontal-  al plano de movimiento, el plano de coordenadas xy, con el eje x horizontal y el eje y
mente al mismo tiempo; las imdgenes vertical hacia arriba.

sucesivas en esta fotografia estroboscopica

P . ) La clave del andlisis del movimiento de proyectiles es que podemos tratar por se-
estan separadas por intervalos de tiempo

iguales. En un instante dado, ambas bolas parado las coordenadas XYy La componentic x Qe la ac?leracién es cero, y la com-
tienen la misma posicién y, velocidad y ponente y es constante e igual a —g. (Por definicion, g siempre es positiva, pero por
y aceleracion y, a pesar de tener diferente las direcciones de coordenadas elegidas, a, es negativa.) Asi, podemos analizar el
posicién x y velocidad x. movimiento de un proyectil como una combinacion de movimiento horizontal con
velocidad constante y movimiento vertical con aceleracion constante. La figura 3.16
muestra dos proyectiles con diferente movimiento x, pero con idéntico movimiento
y: uno se deja caer desde el reposo y el otro se proyecta horizontalmente, aunque
ambos proyectiles caen la misma distancia en el mismo tiempo.

Podemos expresar todas las relaciones vectoriales de posicion, velocidad y acele-
racion del proyectil, con ecuaciones independientes para las componentes horizonta-
les y verticales. Las componentes de @ son

a, =0 a, = —g (movimiento de proyectil, sin resistencia del aire) ~ (3.14)

Dado que las aceleraciones x y y son constantes, podemos usar las ecuaciones (2.8),
(2.12), (2.13) y (2.14) directamente. Por ejemplo, suponga que en ¢ = 0 la particula
estd en el punto (x, yo) y que en este tiempo sus componentes de velocidad tienen los
valores iniciales vy, y v,. Las componentes de la aceleracién son a, = 0, a, = —g.
Considerando primero el movimiento x, sustituimos 0 por a, en las ecuaciones (2.8) y
(2.12). Obtenemos

U, = Vg, (3.15)
X = Xy T Vgt (3.16)
Para el movimiento y, sustituimos y por X, v, por U,, Ug, POr Ug, Y @, = —g POr a,:
U, = Vg, — &t (3.17)
i 1
Ag(r;ltl:l/E Yy =Ygt Uyt — —gt2 (3.18)
Physics T2
3.1 Resolucion de problemas de Por lo general, lo mds sencillo es tomar la posicién inicial (en # = 0) como origen;
movimiento de proyectiles asi, x, = yo = 0. Este punto podria ser la posicién de una pelota cuando sale de la
32 Dos pelotas que caen mano del lanzador, o la posicién de una bala cuando sale del cafién de un arma.
3.3 Cambio de la velocidad en x La figura 3.17 muestra la trayectoria de un proyectil que parte de (o pasa por) el
3.4 Aceleraciones x y y de proyectiles origen en el tiempo ¢ = 0. La posicion, la velocidad, las componentes de velocidad y
3.17 Si se desprecia la resistencia del aire, la trayectoria de un proyectil es una combinacién de movimiento horizontal con @;
velocidad constante y movimiento vertical con aceleracion constante. vs-)

En la cima de la trayectoria, el proyectil tiene velocidad

vertical cero (v, = 0), pero su aceleracion vertical aun es —g.
vertical ,=0),p 1 tical g
y o )
vy U
o G —— ~ ~ - = = = === === ==
- P . -~
- ~
v > e : S~<
ly ' ~ v y X X
a | S 3x Verticalmente, el proyectil
”””””” [ oo r e . .
7 i a muestra movimiento de
P Uty ! U3, v Y 14
L | ! 5y U3 aceleracion constante en
7 i : | AN respuesta al tirén gravitacional
i | N . . .
30 7 ! a, = —§g ' N de la Tierra. Asi, su velocidad
) ' N . . .
J ’ i ! AN vertical cambia en cantidades
Vo, i i | . .
Oy ' ' i AN iguales durante intervalos de
' ! . .
| ! ' N tiempo iguales.
i g
' ! ' \
@0 i | ' N
. .
> 0 - ; L S -
O Uox ! ' i '
: ‘ 1 | !
) | ! ' )
. Vox o Uy | Uy | Uz .
== — — = ——— — e —————— e — - — — — — — = — — = ——— -

Horizontalmente, el proyectil muestra movimiento de velocidad constante: su aceleracion
horizontal es cero, por lo que se mueve a distancias x iguales en intervalos de tiempo iguales.
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aceleracién se muestran en una serie de instantes equiespaciados. La componente x de  3.18 Las componentes de la velocidad
la aceleracion es 0, asi que v, es constante. La componente y de la aceleracion es inicial vo, y vy, de un proyectil (como un
constante pero no cero, asi que v, cambia en cantidades iguales a intervalos de tiempo balén de fiitbol) se relz}cionaq con la
iguales, justo igual que si el proyectil fuera lanzado verticalmente con la misma velo- ~ 'aPidez inicial v, y el dngulo inicial .
cidad y inicial. En el punto mds alto de la trayectoria, v, = 0. y

También podemos representar la velocidad inicial U, con su magnitud v, (la rapi-
dez inicial) y su dngulo «, con el eje +x (como se nuestra en la figura 3.18). En tér-
minos de estas cantidades, las componentes vy, y U, de la velocidad inicial son

Voy = UpCOS Vg, = Upsena (3.19)

Usando estas relaciones en las ecuaciones (3.15) a (3.18) y haciendo x, = y, = 0,
tenemos

= vjsen a
x = (vycosay)t (movimiento de proyectil) (3.20)
1 5 . .
y = (vosenay)t — 581 (movimiento de proyectil) (3.21)
U, = U(Ccosq, (movimiento de proyectil) (3.22)
v, = Upsena, — gt (movimiento de proyectil) (3.23) .
. Actly
ONLINE
Physics
Estas ecuaciones describen la posicion y velocidad del proyectil de la figura 3.17 en 5 5 Componentes de la velocidad inicial
cualquier instante 7. 3.6 Practica de tiro al blanco |

Podemos obtener mucha informacion de estas ecuaciones. Por ejemplo, en cual- 5
quier instante, la distancia r del proyectil al origen (la magnitud del vector de posi-
cién ) estd dada por

Préctica de tiro al blanco Il

3.19 Las trayectorias casi parabdlicas
a) de una pelota que rebota y b) de borbo-

— 2 2
r xty (3.24) tones de roca fundida expulsada de un
. . . . L volcan.
La rapidez del proyectil (la magnitud de su velocidad) en cualquier instante es ) .
a) Las imdgenes sucesivas de la pelota

estdn separadas por intervalos iguales.
- 2 2
v= ve F Uy (3.25) Los picos sucesivos
disminuyen en altura
La direccion de la velocidad, en términos del dngulo o que forma con el eje +x (véa- porque la pelota

se la figura 3.17), estd dada por pierde energia en
cada rebote.

v,
tana = — (3.26)

Uy

El vector de velocidad U es tangente a la trayectoria en todos los puntos.
Podemos deducir una ecuacion para la forma de la trayectoria en términos de x y y
eliminando 7. De las ecuaciones (3.20) y (3.21), que suponen x, = y, = 0, obtenemos

t = x[(vycosay) y

8 2
)= (tanag ) x — ————x~ 3.27
y = o) 2vicos’ay (6.27) Las trayector
son cas

. . rabélicas.
No se preocupe por los detalles de esta ecuacion; lo importante es su forma general. BATAERC s

Las cantidades v,, tan «y, cos o,y g son constantes, asi que la ecuacion tiene la forma
y = bx — cx?

donde b y ¢ son constantes. Esta es la ecuacién de una pardbola. En el movimiento de

proyectiles, con nuestro modelo simplificado, la trayectoria siempre es una pardbola

(figura 3.19).

Cuando la resistencia del aire no es insignificante y debe incluirse, calcular la tra-
yectoria se vuelve mucho mas complicado; los efectos de dicha resistencia dependen
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3.20 La resistencia del aire tiene un efecto  de la velocidad, por lo que la aceleracién ya no es constante. La figura 3.20 es una
acumulativo considerable sobre el movi- simulacion computarizada de la trayectoria de una pelota de béisbol tanto sin resis-
miento de una pelota de béisbol. En esta tencia del aire como con una resistencia proporcional al cuadrado de la rapidez de la
snpulacmn, permitimos que la pelota pelota. Vemos que el efecto de la resistencia es muy grande, la altura maxima y el
caiga por debajo de la altura desde la . 1 . .
p . . alcance se reducen, y la trayectoria ya no es parabdlica. (Si usted observa cuidadosa-
cual se lanz6 (por ejemplo, la pelota podria ; : )
mente la figura 3.19b, se dard cuenta de que las trayectorias de los borbotones volca-

haberse lanzado desde un acantilado). h - -
nicos se desvian de una manera similar de una forma parabdlica.)
Velocidad inicial de la pelota de

m
v (m béisbol: vy, = 50 mfs, @y = 53.1°

100

50

1 1 1 1 1 1
0 00\ 200 \ 300 * ™
-50
~100

Con resistencia  Sin resistencia
del aire del aire

UL NG Aceleracion de una esquiadora, continuacion

Consideremos de nuevo a la esquiadora del ejemplo conceptual 3.4.  apenas la esquiadora sale de la rampa, se convierte en un proyectil.
(Qué aceleracion tiene en los puntos G, H e I de la figura 3.21a des-  Asi, en los puntos G, H e 1, y de hecho en fodos los puntos después de

pués de que sale de la rampa? Desprecie la resistencia del aire. salir de la rampa, la aceleracion de la esquiadora apunta verticalmente

hacia abajo y tiene magnitud g. Por mds compleja que sea la acelera-
m ci6én de una particula antes de convertirse en proyectil, su aceleracion
La figura 3.21b muestra nuestra respuesta. La aceleracién de la es- ~ como proyectil estd dada por a, = 0, a, = —g.

quiadora cambié de un punto a otro mientras estaba en la rampa pero,

3.21 a) Trayectoria de la esquiadora durante el salto. b) Nuestra solucién.

a)
H
G __--- o ———__ 1
"a’ “~.\>
_-
F
b)
G __—- H—__\ I
- o -
- = a =
a a

SEICHEREICREITEEIGIITESAIE Movimiento de proyectil &;’

NOTA: Las estrategias que usamos en las secciones 2.4 y 2.5 para pro- PLANTEAR el problema con los siguientes pasos:

blemas de aceleracion constante en linea recta también sirven aqui. 1. Defina su sistema de coordenadas y dibuje sus ejes. Normalmente
lo mas sencillo es tomar el eje x como horizontal y el eje y hacia
arriba y colocar el origen en la posicion inicial (+ = 0), donde el
cuerpo se vuelve primero un proyectil (como donde la pelota sale
de la mano del lanzador). Asi, las componentes de la aceleracién
(constante) son a, = 0, a, = —g, y la posicién inicial es x, = 0y
Yo = 0.

IDENTIFICAR los conceptos importantes: El concepto clave que de-
bemos recordar es que durante todo el movimiento de un proyectil, la
aceleracion es hacia abajo y tiene magnitud constante g. Advierta que
las ecuaciones para el movimiento de proyectiles no son vdlidas duran-
te el lanzamiento de una pelota, porque ahi actian sobre la pelota tanto
la mano del lanzador como la gravedad. Las ecuaciones s6lo se aplican
una vez que la pelota sale de la mano del lanzador.



2. Haga una lista de las cantidades conocidas e incdgnitas, y decida
cudles incdgnitas son sus objetivos. Por ejemplo, en algunos pro-
blemas se da la velocidad inicial (ya sea las componentes, o la
magnitud y direccién) y se pide obtener las coordenadas y compo-
nentes de velocidad en un instante posterior. En todo caso, usara las
ecuaciones (3.20) a (3.23). (Algunas otras ecuaciones dadas en la
seccién 3.3 también podrian ser utiles.) Asegurese de tener tantas
ecuaciones como incégnitas por determinar.

3. Plantee el problema con palabras y luego tradizcalo a simbolos.
Por ejemplo, ;cudndo llega la particula a cierto punto? (Es decir,
;con qué valor de 1?) ;Donde esta la particula cuando la velocidad
tiene cierto valor? (Es decir, ;cuénto valen x y y cuando v, o v, tie-
ne ese valor?) Puesto que v, = 0 en el punto mads alto de la trayec-
toria, la pregunta ““;cudndo alcanza el proyectil su punto mds alto?”
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se traduce a “;cudnto vale ¢ cuando v, = 0?” Asimismo, *‘;cudndo
vuelve el proyectil a su altura inicial?” se traduce a “;cudnto vale ¢
cuando y = y,?”

EJECUTAR la solucion: Use las ecuaciones (3.20) a (3.23) para obte-
ner las incdgnitas. Resista la tentacion de dividir la trayectoria en seg-
mentos y analizarlos individualmente. {No hay que volver a comenzar
cuando el proyectil llega a su altura maxima! Lo més facil suele ser
usar los mismos ejes y escala de tiempo durante todo el problema. Uti-
lice el valor g = 9.8 m/s>.

EVALUAR la respuesta: Como siempre, examine sus resultados para
ver si son 16gicos y si los valores numéricos son razonables.

SEUEEI Cuerpo que se proyecta horizontalmente

Un acrébata en motocicleta se lanza del borde de un risco. Justo en el
borde, su velocidad es horizontal con magnitud de 9.0 m/s. Obtenga la
posicién, distancia desde el borde y velocidad de la motocicleta des-
pués de 0.50 s.

IDENTIFICAR: Una vez que el acrébata sale del risco, se mueve como
un proyectil. Por lo tanto, su velocidad en el borde del risco es su velo-
cidad inicial.

PLANTEAR: El esquema se muestra en la figura 3.22. Elegimos el ori-
gen de nuestro sistema de coordenadas en el borde del risco, donde la
motocicleta se convierte en proyectil, asi que x, = 0y y, = 0. La velo-
cidad inicial es puramente horizontal (es decir, o, = 0), asi que sus
componentes son vy, = U cos ap = 9.0 m/s y vy, = vysena, = 0. Para
determinar la posiciéon de la motocicleta en + = 0.50 s, usamos las
ecuaciones (3.20) y (3.21), que dan x y y en funcién del tiempo. Dados
estos valores, calcularemos la distancia del origen con la ecuacion
(3.24). Por dltimo, usaremos las ecuaciones (3.22) y (3.23) para deter-
minar las componentes de velocidad v, y v,ent = 0.50 s.

EJECUTAR: ;Dénde estd la motocicleta en r = 0.50 s? Por las ecuacio-
nes (3.20) y (3.21), las coordenadas x y y son

x=vpt = (9.0m/s)(0.50s) =4.5m

1 1
——gt* = —5(9.8 m/s?)(0.50s)> = —1.2m

rT=3

El valor negativo de y indica que en este instante la motocicleta estd
debajo de su punto inicial.

(A qué distancia estd ahora la motocicleta del origen? Por la ecua-
cién (3.24),

r=V2Z+y=V(45m)*+ (-12m)>=47m

(Qué velocidad tiene en r = 0.50 s? Por las ecuaciones (3.22) y
3.23), las componentes de la velocidad en ese momento son
p

v, = Vg, = 9.0 m/s
—gt = (—9.8m/s?)(0.50s) = —4.9m/s

Uy

I
3.22 Esquema para este problema.
9  En este punto, la motocicleta y el
conductor se vuelven un proyectil.
x”
X

La motocicleta tiene la misma velocidad horizontal v, que cuando salié
del risco en ¢ = 0 pero, ademds, hay una velocidad vertical v, hacia aba-
jo (negativa). Si usamos vectores unitarios, la velocidad en r = 0.50 s es

v=vi+v,j=(9.0m/s)i+ (—4.9m[s)j

También podemos expresar la velocidad en términos de magnitud y
direccion. Por la ecuacién (3.25), la rapidez (magnitud de la velocidad)
en este instante es

v=Vuv?+v’

=V(9.0m/s)> + (—4.9m/s)? = 10.2 m/s

Por la ecuacién (3.26), el dngulo « del vector de velocidad es

Uy (—4.9 m/s)
« = arctan— = arctan|———
Uy 9.0 m/s

= —29°

En este instante la velocidad esta dirigida 29° por debajo de la horizontal.

EVALUAR: Al igual que en la figura 3.17, el aspecto horizontal del
movimiento no cambia por la gravedad; la motocicleta se sigue mo-
viendo horizontalmente a 9.0 m/s, cubriendo 4.5 m en 0.50 s. Dado
que la motocicleta tiene cero velocidad inicial vertical, cae vertical-
mente igual que un objeto que se suelta desde el reposo y desciende
una distancia de g7 = 1.2 men 0.50 s.



84 CAPITULO 3 Movimiento en dos o en tres dimensiones

Altura y alcance de un proyectil I: Una pelota de béisbol

Un bateador golpea una pelota de béisbol de modo que ésta sale del
bate a una rapidez vy = 37.0 m/s con un dngulo «, = 53.1° en un
lugar donde g = 9.80 m/s>. a) Calcule la posicién de la pelota y la
magnitud y direccion de su velocidad cuando t = 2.00 s. b) Determine
cudndo la pelota alcanza el punto mds alto y su altura & en ese punto.
¢) Obtenga el alcance horizontal R, es decir, la distancia horizontal
desde el punto de partida hasta donde la pelota cae al suelo.

IDENTIFICAR: Como muestra la figura 3.20, los efectos de la resis-
tencia del aire sobre el movimiento de una pelota de béisbol no son in-
significantes; no obstante, por sencillez, los despreciaremos en este
ejemplo y usaremos las ecuaciones del movimiento de proyectiles para
describir el movimiento.

PLANTEAR: El esquema se muestra en la figura 3.23. Usaremos el
mismo sistema de coordenadas que en las figuras 3.17 o 3.18. Asi, po-
dremos usar las ecuaciones (3.20) a (3.23) sin modificaciones. Las in-
cognitas son 1. la posicién y velocidad de la pelota 2.00 s después de
perder contacto con el bate, 2. el tiempo transcurrido entre que la pelo-
ta sale del bate y alcanza su altura maxima (cuando v, = 0) y la coor-
denada y en ese momento, y 3. la coordenada x en el momento en que
la coordenada y es igual al valor inicial y,.

La pelota sale del bate mds o menos un metro sobre el suelo, pero
ignoraremos esta distancia y supondremos que parte del nivel del suelo
(yo = 0). La velocidad inicial de la pelota tiene componentes

Vor = Vpcosay = (37.0m/s)cos53.1° = 22.2 m/s
vosenagy = (37.0 mfs)sen53.1° = 29.6 m/s

Voy

EJECUTAR: @) Queremos obtener x, y, v, y v, en el instante = 2.00 s.
Por las ecuaciones (3.20) a (3.23),

x=vyt = (222mfs)(2.00s) = 444 m

1
Vol — 5 th

<
Il

= (29.6 m[s)(2.00s) — %(9.80 m/s?) (2.00s)?
=39.6m
v, = Vg, = 222m/s
v, = vg, — gt = 29.6m/s — (9.80 m/s?) (2.00s)
10.0 m/s

La componente y de la velocidad es positiva, lo cual significa que la
pelota todavia va en ascenso en este instante (figura 3.23). La magni-
tud y direccion de la velocidad se obtienen de las ecuaciones (3.25) y
(3.26):

v=\Vv2+ vl = V(222 m/s)* + (10.0m/s)?
=243 m/s
10.0 m/s

) = arctan0.450 = 24.2°
22.2mfs

a = arctan(
La direccion de la velocidad (es decir, la direccién del movimiento) es
24.2° sobre la horizontal.
b) En el punto mds alto, la velocidad vertical v, es cero. ;Cudndo
sucede esto? Sea ese instante #,; entonces,

Uy, = Uy — g = 0
Yoy 29.6mfs

= =3.025
g  9.80m/s

=

3.23 Esquema para este problema.

La altura / en este instante es el valor de y cuando t = t; = 3.02 s:

1
h = vy, = nglz

(29.6 mfs)(3.02s) — %(9.80 m/s?)(3.025)?

=447 m

¢) Obtendremos el alcance horizontal en dos pasos. Primero,
(cudndo cae la pelota al suelo? Esto ocurre cuando y = 0, digamos, en
t,; entonces,

I, 1
y=0=uv, — =gty = tz(on - _gtz)
2 2
Esta es una ecuacion cuadrética en t,. Con dos raices:

2vg,  2(29.6 mfs)
=20 y th=—=—"""=06.04s
g 9.80 m/s’

Hay dos instantes en los que y = 0; £, = 0 es cuando la pelota sale del
suelo y 1, = 2v,,/g = 6.04 s es cuando regresa. Esto es exactamente
el doble del tiempo que tarda en llegar al punto mds alto que encon-
tramos en el inciso b) t; = v, /g = 3.02 s, asi que el tiempo de bajada
es igual al tiempo de subida. Esto siempre sucede si los puntos inicial
y final estdn a la misma altura y se puede despreciar la resistencia
del aire.

El alcance horizontal R es el valor de x cuando la pelota vuelve al
suelo, es decir, en t = 6.04 s:

R = vt = (222m/[s)(6.04s) = 134 m

La componente vertical de la velocidad cuando la pelota toca el
suelo es

v, = g, — g = 29.6mfs — (9.80m/s?) (6.04's)

= —29.6m/s

Es decir, v, tiene la misma magnitud que la velocidad vertical inicial
vy, pero direccién opuesta (hacia abajo). Dado que v, es constante,
el dngulo @ = —53.1° (debajo de la horizontal) en este punto es el
negativo del angulo inicial a, = 53.1°.

EVALUAR: A menudo es ttil verificar los resultados obteniéndolos de
una forma distinta. Por ejemplo, podemos verificar nuestra respuesta
para la altura méxima del inciso b) aplicando la férmula de aceleracién
constante, ecuacion (2.13), al movimiento y:

vl = vy + 2a,(y = yo) = v, — 2¢(y — y)



En el punto mds alto, v, = 0y y = h. Al sustituirlos, junto con y, = 0,
obtenemos

0= v,? — 2gh

(29.6 mfs)?

vy,
©2¢ 2(9.80m/s?)

=447m

que es la misma altura que obtuvimos en el inciso b).

Es interesante destacar que 7 = 44.7 m del inciso b) es compara-
ble con la altura de 52.4 m del techo sobre el campo de juego en el
Metrodomo Hubert H. Humphrey en Minneapolis, y el alcance hori-

Ul X I Altura y alcance de un proyectil II:

Para un proyectil lanzado con rapidez v, y dngulo inicial «;, (entre 0° y
90°), deduzca expresiones generales para la altura mdxima i y el al-
cance horizontal R (figura 3.23). Para una v,, dada, ;qué valor de «, da
la altura maxima? ;Y qué valor da el alcance horizontal maximo?

IDENTIFICAR: Este es realmente el mismo ejercicio que los incisos
b) y c¢) del ejemplo 3.7. La diferencia es que buscamos expresiones
generales para 4 y R. También nos interesan los valores de «, que dan
los valores maximos de 4y R.

PLANTEAR: En el inciso b) del ejemplo 3.7 vimos que el proyectil
alcanza el punto médximo de su trayectoria (por lo que v, = 0) en el
tiempo #; = v,,/g y en el inciso ¢) del ejemplo 3.7 determinamos que
el proyectil regresa a su altura inicial (por lo que y = y,) en el tiempo
t, = 2v,,/g. (Como vimos en el ejemplo 3.7, 1, = 21,.) Para deter-
minar la altura & en el punto maximo de la trayectoria, usaremos la
ecuacion (3.21) para calcular la coordenada y en #,. Para determinar
R, sustituimos #, en la ecuacién (3.20) para calcular la coordenada x
en t,. Expresaremos nuestras respuestas en términos de la rapidez de
lanzamiento v, y el dngulo de disparo a usando la ecuacién (3.19).

EJECUTAR: Por la ecuacion (3.19), vy, = v, COS g Y Vg, = Uy Sen .
Por lo tanto, podemos escribir el tiempo #; en que v, = 0 como

Voy  vpsena
[1 = e— = —
g I
Luego, por la ecuacién (3.21), la altura en ese instante es

vysenay 1 [vesena)?
h = (vgsenay) - —g
g 2 g

v sen’a
2g

Para una rapidez de lanzamiento dada v,, el valor maximo de % se da
consen ay = 1y ay = 90°; es decir, cuando el proyectil se lanza verti-
calmente. Esto es lo que deberiamos esperar. Si se lanza horizontal-
mente, como en el ejemplo 3.6, o, = 0 jy la altura mdxima es cero!

El tiempo 1, en que el proyectil regresa al suelo es

vy, 2u,senay
tz = —

8 8
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zontal R = 134 m del inciso ¢) es mayor que la distancia de 99.7 m
entre home y la barda del jardin derecho en el Campo Safeco en Seatle.
(La altura de la pelota cuando cruza la barda es mds que suficiente para
librarla, asi que el batazo es un jonrén.)

En el mundo real, una pelota bateada con la rapidez y el angulo ini-
ciales que usamos aqui no alcanzard ni la altura ni la distancia que
calculamos. (Si lo hiciera, los jonrones serian mucho mds comunes y
el béisbol seria un juego mucho menos interesante.) El motivo es que
la resistencia del aire, que no se tomd en cuenta en este ejemplo, en
realidad es un factor importante a las velocidades que suelen tener las
pelotas lanzadas y bateadas (véase la figura 3.20).

Altura maxima, alcance maximo
El alcance horizontal R es el valor de x en el este instante. Por la ecua-
ci6n (3.20),
2v,senq,

R = (vocosay)t, = (vocosoz(,)M
Ahora podemos usar la identidad trigonométrica 2 sen «, cos oy =
sen 2, para rescribir esto como
v sen2a

8

El valor mdximo de sen 2q, es 1; esto ocurre cuando 2a, = 90° o
bien, o, = 45°. Este angulo da el alcance mdximo para una rapidez ini-
cial dada.

EVALUAR: La figura 3.24 se basa en una fotografia compuesta de tres
trayectorias de una pelota proyectada desde un candn de resorte con
angulos de 30, 45 y 60°. La rapidez inicial v, es aproximadamente
igual en los tres casos. Los alcances horizontales son casi iguales con
los dngulos de 30 y 60°, y el alcance de 45° es el mayor que ambos.
(Puede demostrar que para una v, dada el alcance es igual para un dn-
gulo inicial «, que para 90° — «,?

CUIDADO Altura y alcance de un proyectil No recomenda-
mos memorizar las expresiones anteriores para i 'y R; son aplicables
s6lo en las circunstancias especiales que describimos. En particular, la
expresion para el alcance R sélo puede utilizarse cuando las alturas de
lanzamiento y aterrizaje son iguales. En muchos de los problemas al fi-
nal de este capitulo no deben aplicarse estas ecuaciones.

3.24 Un angulo de disparo de 45° produce el alcance horizontal
maximo. El alcance es menor con dngulos de 30 y 60°.

Un dngulo de disparo de 45° produce el maximo
alcance; con otros dngulos se cae a menor distancia.

o......o

o _o0°%%e,
. o’e® coe .° ® o
Angulo de ::o. ’8. *,.i
disparo: RS
ay = 302 °
ay = 45°
ay = 60°
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Alturas inicial y final distintas

Usted lanza una pelota desde su ventana a 8.0 m del suelo. Cuando la
pelota sale de su mano, se mueve a 10.0 m/s con un dngulo de 20° de-
bajo de la horizontal. ;A qué distancia horizontal de su ventana la pe-
lota llegard al piso? Desprecie la resistencia del aire.

IDENTIFICAR: Al igual que en nuestro cdlculo del alcance horizontal
en los ejemplos 3.7 y 3.8, estamos tratando de hallar la coordenada ho-
rizontal de un proyectil cuando estd a un valor dado de y. La diferencia
en este caso es que este valor de y no es igual a la coordenada y inicial.

PLANTEAR: Una vez mas, elegimos el eje x como horizontal, y el eje
v, hacia arriba. Colocamos el origen de coordenadas en el punto don-
de la pelota sale de su mano (figura 3.25). Asf, tenemos v, = 10.0 m/s
y ap = —20°% el dngulo es negativo porque la velocidad inicial estd
debajo de la horizontal. Nuestra variable meta es el valor de x en el
punto donde la pelota llega al suelo; es decir, cuando y = —8.0 m.
Dado que las alturas inicial y final de la pelota son distintas, no pode-
mos usar la expresion para el alcance horizontal del ejemplo 3.8. En
vez de ello, usamos primero la ecuacion (3.21) para hallar el instante ¢
en que la pelotallegaay = —8.0 m y, después, calculamos el valor de
x en ese instante con la ecuacién (3.20).

3.25 Esquema para este problema.

9

0 | ~Ventana X =1 o

~ %= —20° H

2V, =100mfs

N 1

N 1

N 1

N 1

N 1

N i

N il

AN 1

N 1

N 1

N '

N :

\ 1

N\ 1

\ 1

N\
y = —80m \1Suelo

SR La cuidadora y el mono

Un mono escapa del zool6gico y sube a un drbol. Como no logra
atraerlo, la cuidadora apunta su rifle con un dardo sedante directamen-
te hacia el mono y dispara (figura 3.26). El astuto mono se suelta en el
instante en que el dardo sale del candn del rifle, intentando caer al sue-
lo y escapar. Demuestre que el dardo siempre golpea al mono, sea cual
fuere la velocidad inicial del dardo (siempre que dé en el mono antes
de que éste llegue al piso).

IDENTIFICAR: En este ejemplo, tenemos dos cuerpos que se mueven
como proyectiles, el dardo sedante y el mono. Ambos tienen posicién
y velocidad iniciales distintas; sin embargo, entran en movimiento de
proyectil al mismo tiempo. Para demostrar que el dardo golpea al mo-
no, debemos probar que hay un instante en que el mono y el dardo tie-
nen las mismas coordenadas x y y.

PLANTEAR: Elegimos las direcciones x y y acostumbradas, y coloca-
mos el origen en el extremo del cafién del rifle (figura 3.26). Primero
usaremos la ecuacion (3.20) para encontrar el tiempo ¢ en que las coor-

EJECUTAR: Para determinar ¢, rescribimos la ecuacién (3.21) en la
forma estandar de una ecuacidn cuadrdtica en #:

1
Egt2 — (vosenag)t +y =0

Las raices de esta ecuacion son

vysena, + \/(7vosena0)2 - 4(%g)y

 vesenag + Vougsen’ay — 2gy
8
(10.0 m/s) sen(—20°)
[ +V/(10.0 m/s)?sen?(—20°) — 2(9.80 m/s?) (8.0 m):|
9.80 m/s’

= —17s o 0.98 s

Podemos desechar la raiz negativa, ya que se refiere a un tiempo
previo al lanzamiento. La raiz positiva nos indica que la pelota
tarda 0.98 s en llegar al suelo. Por la ecuacién (3.20), la coordenada x
en ese instante es

x = (vycosay)t = (10.0 m/s)[cos(—20°)](0.98 s)
=92m

La pelota llega al suelo a una distancia horizontal de 9.2 m de la ven-
tana.

EVALUAR: La raiz t = —1.7 s es un ejemplo de solucién “ficticia” a
una ecuacion cuadrdtica. Ya vimos esto en el ejemplo 2.8 de la seccion
2.5; le recomendamos repasarlo.

Con el origen que elegimos, tenfamos alturas inicial y final y, = 0
y y = —8.0 m. ;jPuede demostrar, con las ecuaciones (3.16) y (3.18),
que se obtienen los mismos valores de 7 y x si se coloca el origen en
el suelo, inmediatamente abajo de donde la pelota sale de la mano?

denadas X000 Y Xaarao S€an iguales. Luego, usaremos la ecuacion (3.21)
para verificar si Yimono ¥ Yaarao también son iguales en ese instante; si lo
son, el dardo golpeard al mono.

EJECUTAR: EI mono cae verticalmente, asi que X,,on, = d en todo mo-
mento. En el caso del dardo, la ecuacién (3.20) nos indica que Xgyqo =
(v cos ap)t. Cuando las coordenadas x son iguales, d = (v, cos ap)t,
o bien,

d

V(o8 &gy

Para que el dardo golpee al mono, debe cumplirse que Y,ono = Yaardo €N
este instante. El mono estd en caida libre unidimensional; su posicién
en cualquier momento estd dada por la ecuacion (2.12) cambiando de-
bidamente los simbolos. La figura 3.26 muestra que la altura inicial del
mono es d tan « (el cateto opuesto de un tridngulo rectangulo con dn-
gulo a, y cateto adyacente d), y obtenemos

1
Vmono = dtanay — Egtz



3.26 El dardo con sedante golpea al mono que cae.
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Las flechas discontinuas muestran qué tanto han caido el mono y el
dardo en tiempos especificos, en relacion con el lugar donde estarian
si no hubiera gravedad. En cualquier instante, caen la misma distancia.

y Sin gravedad
» El mono permanece en su posicién inicial. _j/
* El dardo viaja directo hacia el mono. ., - Caida
« Por lo tanto, el dardo da en el mono. ™., el del mono
'.'.‘ Pid - I\
T ia del dard -~ (o
rayectoria del dardo - P
ray 1 dtan a $del dardo
sin gravedad ST
\ e : Caida
7 i del dardo
-7 00 H
- of : PR
A deeye-mm3 >
2 o T
BT .
N Trayectoria del dardo

- g

con gravedad

d

Con gravedad

* El mono cae directo hacia abajo."’

* En cualquier instante 7, el dardo cae lo mismo que el
mono en relacion con el lugar donde estarian si no
hubiera gravedad: Ay g4, = Ay,

— _ 1,2
mono — 2817

« Por lo tanto, el dardo siempre golpea al mono.

Para el dardo, usamos la ecuacién (3.21):

1
Ydardo = (Uosenao)t - Egtz

Vemos que si d tan ay = (v, sen a,)t cuando las dos coordenadas x
son iguales, entonces Yoo = Yaardo» Y €l dardo habra acertado. Para
demostrar que esto sucede, sustituimos 7 por d/(v, cos a), el instante
€n que Xpono = Xdardos an,

(vosenay)t = (vysenay) = dtana,

V(oS &y

Evaliie su comprension de la seccion 3.3  En el ejemplo 3.10, suponga que
el dardo sedante tiene una velocidad inicial relativamente baja, de modo que el dardo
alcanza su altura mdxima en un punto P antes de golpear al mono, como se indica en la
figura. Cuando el dardo estd en P, ;el mono estard en i) el punto A (mds alto que P), ii) en -

EVALUAR: Hemos demostrado que, cuando las coordenadas x son
iguales, las y también lo son; un dardo dirigido a la posicién inicial del
mono siempre lo golpeard, sin importar v,. Este resultado también es
independiente de g, la aceleracién debida a la gravedad. Sin gravedad
(g = 0), el mono no se moveria, y el dardo viajaria en linea recta para
golpearlo. Con gravedad, ambos “caen” la misma distancia (%gtz) por
debajo de sus posiciones con g = 0y el dardo de todos modos golpea
al mono (figura 3.26).

@

el punto B (a la misma altura que P) o iii) en el punto C (mds abajo que P)? Desprecie la - eA

resistencia del aire.

3.4 Movimiento en un circulo

Cuando una particula se mueve en una trayectoria curva, la direccién de su veloci-
dad cambia. Como vimos en la seccién 3.2, esto implica que la particula debe tener
una componente de aceleracién perpendicular a la trayectoria, incluso si la rapidez
es constante (véase la figura 3.11b). En esta seccion calcularemos la aceleracion para

el caso especial importante de movimiento en un circulo.

Adly
PRy

4.1 Magnitud de aceleracién centripeta
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3.27 Un automévil con movimiento circular uniforme. La rapidez es constante y la aceleracion se dirige hacia el centro de la

trayectoria circular.

El automdvil aumenta su rapidez en una
trayectoria circular

Componente de aceleracion paralela a la
velocidad: cambia la rapidez del auto.

o
o>

/
/ Componente de aceleracién perpendicular a
1 la velocidad: cambia la direccién del auto.

3.28 Determinacion del cambio de
velocidad AU, aceleracién media @,
y aceleracién instantdnea @,y de una
particula que se mueve en un circulo
con rapidez constante.

a) Un punto se mueve una distancia As a
rapidez constante en una trayectoria circular

b) El cambio correspondiente en velocidad y
aceleracién media H

Av Estos dos tridngulos

v, son similares.
DR
Ab/
Uy

¢) La aceleracion instantdnea

-->
/,—

En el movimiento circular
P uniforme, la aceleracion
< R instantdnea siempre apunta

1
1
1
1
1
1
\

hacia el centro del circulo.

Movimiento circular uniforme: rapidez
constante en una trayectoria circular

——>

El automévil disminuye su rapidez en una
trayectoria circular
s -—>
- -~

d .z
Componente de aceleracién
- perpendicular a la velocidad:

_.La aceleracion es
cambia la direccion del auto. g

exactamente perpendicular
N
4 a4 ala velocidad:

N
a / sin componente paralela.
N ,I N
,' Componente de aceleracion paralela a la ! r\\\
1

velocidad: cambia la rapidez del auto. Al centro del circulo

Movimiento circular uniforme

Cuando una particula se mueve en un circulo con rapidez constante, tiene un movi-
miento circular uniforme. Un automévil que da vuelta a una curva de radio constan-
te con rapidez constante, un satélite en drbita circular y un patinador que describe un
circulo con rapidez constante son ejemplos de este movimiento (figura 3.27; compa-
rela con la figura 3.12). No hay componente de aceleracion paralela (tangente) a la
trayectoria; si la hubiera, la rapidez cambiaria. El vector de aceleracion es perpen-
dicular (normal) a la trayectoria y, por lo tanto, se dirige hacia adentro (jnunca hacia
fuera!) al centro de la trayectoria circular. Esto causa el cambio en la direccién de la
velocidad, sin cambiar la rapidez. Nuestro siguiente trabajo consiste en demostrar que
la magnitud de la aceleracién en el movimiento circular uniforme se relaciona de ma-
nera sencilla con la rapidez de la particula y el radio del circulo.

La figura 3.28a muestra una particula que se mueve con rapidez constante en una
trayectoria circular de radio R con centro en O. La particula se mueve de P, a P, en un
tiempo Atr. El cambio vectorial en la velocidad AU durante este tienpo se muestra
en la figura 3.28b.

Los dngulos rotulados A¢ en las figuras 3.28a y 3.28b son iguales porque U, es
perpendicular a la linea OP, y U, es perpendicular a la linea OP,. Por lo tanto, los
tridngulos en las figuras 3.28a y 3.28b son semejantes. Los cocientes de lados corres-
pondientes de tridngulos semejantes son iguales, asi que

|A6‘ As v
— -2 |AB| = ZAs
v, R R
La magnitud a,,.q de la aceleracion media durante At es entonces

_ 188 v as
Umed =N TR At

La magnitud a de la aceleracion instantdnea d en el punto P, es el limite de esta ex-
presion conforme P, se acerca a P):

v As Uy I As

= iMRA T RADN

Sin embargo, el limite de As/At es la rapidez v, en el punto P,. Ademds, P, puede ser
cualquier punto de la trayectoria, asi que podemos omitir el subindice y con v repre-
sentar la rapidez en cualquier punto. Asi,

2

E (movimiento circular uniforme) (3.28)

Arad =

Agregamos el subindice “rad” para recordar que la direccién de la aceleracion instan-
tdnea siempre sigue un radio del circulo, hacia su centro. Como la rapidez es constan-



te, la aceleracion siempre es perpendicular a la velocidad instantdnea. Esto se muestra
en la figura 3.28c; comparela con la ilustracién derecha de la figura 3.27.

En conclusion, en el movimiento circular uniforme, la magnitud a de la acelera-
cion instantdnea es igual al cuadrado de la velocidad v dividido entre el radio R del
circulo; su direccion es perpendicular a U y hacia adentro sobre el radio.

Puesto que la aceleracion siempre apunta al centro del circulo, en ocasiones se le
llama aceleracion centripeta. La palabra “centripeta” significa “que busca el centro”
en griego. La figura 3.29a muestra las direcciones de los vectores de velocidad y ace-
leracion en varios puntos para una particula con movimiento circular uniforme.

CUIDADO Movimiento circular uniforme contra movimiento de proyectiles La ace-
leracion en el movimiento circular uniforme tiene algunas similitudes con la aceleracion en el
movimiento de proyectiles que no enfrenta resistencia del aire, pero también existen algunas
diferencias importantes entre ambas. Tanto en el movimiento circular uniforme (figura 3.29a)
como en el movimiento de proyectiles (figura 3.29b) la magnitud de la aceleracion siempre es
la misma. Sin embargo, en el movimiento circular uniforme la direccion de d cambia conti-
nuamente, de manera que siempre apunta hacia el centro del circulo. (En la parte superior del
circulo, la aceleracion apunta hacia abajo; en la parte inferior del circulo, la aceleracién apun-
ta hacia arriba.) En contraste, en el movimiento de proyectiles la direccién de @ es 1a misma en
todo momento.

También podemos expresar la magnitud de la aceleracién en un movimiento circu-
lar uniforme en términos del periodo 7 del movimiento, el tiempo de una revolucién
(una vuelta completa al circulo). En un tiempo 7, la particula recorre una distancia
igual a la circunferencia 277R asi que su rapidez es

v=—— (3.29)

Al sustituir esto en la ecuacion (3.28), obtenemos la expresion alterna

47’R L . .
At = — (movimiento circular uniforme) (3.30)
T2

FULIKAIEE Aceleracion centripeta en un camino curvo

3.4 Movimiento en un circulo 89

3.29 Aceleracion y velocidad a) para
una particula con movimiento circular
uniforma y b) para un proyectil sin
resistencia del aire.

a) Movimiento circular uniforme

v La aceleracién
- ; qoni
DT =) U tiene magnitud
7y Z constante, pero
rad direccién variable.
- fa CAR
v/l %ad \
| 1
S 1f,
‘\ Arad v
7 La velocidad
a 3 .
Jud Qg // .y la aceleracién
T\~ ~ -zl siempre son
v perpendiculares.

b) Movimiento del proyectil

La velocidad y la aceleracion son perpendiculares
s6lo en el punto mds alto de la trayectoria.

* La aceleracion
es constante en
magnitud y en direccion.

<l

-
a

Qy

Un automdvil deportivo Aston Martin V8 Vantage tiene una “acelera- EJECUTAR: Nos dan a,4 y v, asi que despejamos R de la ecuacién

cién lateral” de 0.96g, que es (0.96)(9.8 m/s?) = 9.4 m/s>. Estaes la  (3.28):
aceleracion centripeta maxima que puede lograr el auto sin salirse

de la trayectoria circular derrapando. Si el auto viaja a 40 m/s (cer- v? (40 m/s)?
ca de 89 mi/h o 144 km/h), ;cudl es el radio minimo de curva que = = 5~ = 170 m (aprox. 560 ft)
- Arad 9.4 m/S
puede describir? (Suponga que no hay peralte.)
m EVALUAR: Nuestro resultado muestra que el radio de giro requerido R

es proporcional al cuadrado de la rapidez. Por lo tanto, incluso una
IDENTIFICAR: Puesto que el coche se mueve en una curva —es decir,  reduccién pequeiia en la rapidez puede reducir R considerablemente.
un arco de circulo— con rapidez constante, podemos aplicar las ideas  por ejemplo, si v disminuye en un 20% (de 40 a 32 m/s), R disminuird
del movimiento circular uniforme. en un 36% (de 170 m a 109 m).

Otra forma de reducir el radio requerido es peraltar la curva. Inves-

PLANTEAR: Usamos la ecuacion (3.28) para obtener la incégnita R
(el radio de la curva) en términos de la aceleracion centripeta dada a,,q
y la rapidez v.

tigaremos esta opcion en el capitulo 5.
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SRV Aceleracion centripeta en un juego mecanico

En un juego mecdnico, los pasajeros viajan con rapidez constante en
un circulo de 5.0 m de radio, dando una vuelta completa cada 4.0 s.

(Qué aceleracion tienen?

IDENTIFICAR: La rapidez es constante, asi que es un problema de

movimiento circular uniforme.

PLANTEAR: Nos dan el radio R = 5.0 m y el periodo 7 = 4.0 s, as{
que podemos usar la ecuacién (3.30) para calcular la aceleracién.
Como alternativa, podriamos calcular primero la rapidez v con la ecua-

Verificaremos esta respuesta usando la ecuacién (3.28) después de
calcular la rapidez v. Por la ecuacién (3.29), la rapidez es la circun-
ferencia dividida entre el periodo T
7R 27(5.0m)
Sk N )
"Tr 40 m/s
La aceleracién centripeta es, entonces,
v (79mfs)’
TR T T 50m

Obtenemos el mismo valor de a,,, con ambas estrategias.

= 12'm/s’

cién (3.29) y luego obtener la aceleracion con la ecuacion (3.28).

EJECUTAR: Por la ecuacién (3.30),

47%(5.0 m)

Qg = —————— = 12 m/s?

(4.0)?

3.30 Particula que se mueve en un lazo
vertical, como un carrito de montafia rusa,
con rapidez variable.

Rapidez minima: aceleracién radial minima,

aceleracion tangencial cero.

’ Disminucién

de rapidez:

la aceleracion
tangencial

Aumento de
rapidez: aceleracion

tangencial en N :
. v v ) »
la misma -.,, Coe 3 OBUCSIA
: .z . - ~ .
direccién % - i@l ~ av.
= s d =a .
quev. @/ rad
H Arad Arad
[
=70
3
v l a
a =a
‘\ Arad |al rad _a,
Aan\,
., tan
B T =
N a
~ Pid
DT S AN,
e =
1 B v
v H

Rapidez médxima: aceleracion radial
mdxima, aceleracion tangencial cero.

EVALUAR: Al igual que en el ejemplo anterior, la direccién de @ siem-
pre es hacia el centro del circulo. La magnitud de @ es mayor que g, la
aceleracion debida a la gravedad, asi que este juego mecdnico sé6lo es
para los audaces. (Algunas montafias rusas someten a sus pasajeros a
aceleraciones de hasta 4g.)

Movimiento circular no uniforme

En esta seccion, hemos supuesto que la rapidez de la particula es constante. Si la rapi-
dez varia, tenemos un movimiento circular no uniforme. Un ejemplo es un carro de
montafia rusa que frena y se acelera al moverse en un lazo vertical. En el movimiento
circular no uniforme, la ecuacion (3.28) nos sigue dando la componente radial de la
aceleracion a,,q = v°/R, que siempre es perpendicular ala velocidad instantdnea y di-
rigida al centro del circulo. Sin embargo, dado que la rapidez v tiene diferentes valo-
res en diferentes puntos del movimiento, a4 no es constante. La aceleracion radial
(centripeta) es mayor donde la rapidez es mayor.

En el movimiento circular no uniforme también hay una componente de acelera-
cién paralela a la velocidad instantdnea. Esta es la componente @, que vimos en la
seccién 3.2, y aqui la llamamos a,,, para destacar que es fangente al circulo. Por lo di-
cho al final de la seccién 3.2, sabemos que la componente de aceleracion tangencial
ag,, s igual a la tasa de cambio de la rapidez. Entonces,

v? d|g|

y Ay = a (movimiento circular no uniforme) (3.31)

Arad = E
El vector de aceleracion de una particula que se mueve con rapidez variable en un circu-
lo es la suma vectorial de las componentes de aceleracion radial y tangencial. Esta ul-
tima tiene la direccién de la velocidad si la particula estd acelerando, y la direccién
opuesta si estd frenando (figura 3.30).

En el movimiento circular uniforme, la aceleracion no tiene componente tangen-
cial; no obstante, la componente radial es la magnitud de du/d.

CUIDADO Movimiento circular uniforme contra no uniforme Observe que las dos
cantidades
d||
dt

d_i;’
dt

no son iguales. La primera, al igual que la aceleracion tangencial, es la tasa de cambio de la ra-
pidez; es igual a cero siempre que una particula se mueve con rapidez constante, incluso cuan-
do cambia la direccién de su movimiento (como en el movimiento circular uniforme). La
segunda es la magnitud de la aceleracién vectorial; es igual a cero cuando el vector de acelera-
cion de la particula es cero, es decir, cuando la particula se mueve en linea recta con rapidez
constante. En el movimiento circular uniforme \dﬁ/ dt| = a, = v?[r; en el movimiento circu-
lar no uniforme también existe una componente tangencial de la aceleracién, de manera que
|d3/dt| = ara\d2 + alanz'



Evaliie su comprension de la seccion 3.4  Suponga que, en la parte inferior @
del lazo, la particula de la figura 3.30 experimenta una aceleracion cuatro veces mayor

que en la parte superior del mismo. En comparacién con la parte superior del lazo, la rapidez
de la particula en la parte inferior es 1) V2 veces mayor; ii) 2 veces mayor; iii) 2V/2 veces
mayor; iv) 4 veces mayor; o v) 16 veces mayor.

3.5 Velocidad relativa

Sin duda usted ha observado que un automovil que avanza lentamente parece mover-
se hacia atrds cuando usted lo rebasa. En general, si dos observadores miden la velo-
cidad de un cuerpo, obtienen diferentes resultados si un observador se mueve en
relacion con el otro. La velocidad que un observador dado percibe es la velocidad re-
lativa a €1, o simplemente velocidad relativa. La figura 3.31 muestra una situacién en
la que se entiende que la velocidad relativa es muy importante.

Primero consideraremos la velocidad relativa en linea recta, y luego la generaliza-
remos a un plano.

Velocidad relativa en una dimension

Una mujer camina con una velocidad de 1.0 m/s por el pasillo de un vagén de ferro-
carril que se mueve a 3.0 m/s (figura 3.32a). ;Qué velocidad tiene la mujer? Es una
pregunta sencilla, pero no tiene una sola respuesta. Para un pasajero sentado en el
tren, la mujer se mueve a 1.0 m/s. Para un ciclista parado junto al tren, la mujer se
mueve a 1.0 m/s + 3.0 m/s = 4.0 m/s. Un observador en otro tren que va en la direc-
cién opuesta darfa otra respuesta. Debemos especificar quién es el observador y dar la
velocidad relativa a él. La velocidad de la mujer relativa al tren es 1.0 m/s, relativa al
ciclista es 4.0 m/s, etcétera. Cada observador, equipado en principio con un metro y
un crondémetro, constituye lo que llamamos un marco de referencia. Asi, un marco
de referencia es un sistema de coordenadas mds una escala de tiempo.

Llamemos A al marco de referencia del ciclista (en reposo con respecto al suelo) y
B al marco de referencia del tren en movimiento. En el movimiento rectilineo, la po-
sicién de un punto P relativa al marco de referencia A estd dada por xp, (Ia posicién
de P con respecto a A), y la posicién de P con respecto al marco B estd dada por xp 5
(v€ase la figura 3.32b). La distancia del origen de A al origen de B es xp,. La figura
3.32b muestra que

Xpja = Xpjp + Xpj (3.32)
Esto nos dice que la distancia total del origen de A al punto P es la distancia del ori-
gen de B al punto P mds la distancia del origen de A al origen de B.

La velocidad de P relativa al marco A, denotada con vp .., €s la derivada de xp,
con respecto al tiempo. Las otras velocidades se obtienen de igual manera, asi que la
derivada con respecto al tiempo de la ecuacién (3.32) nos da la relacion entre las ve-
locidades:

de/A _ de/B N de/A

dt dt dt

Upjax = Upjpx + Upjay (velocidad relativa en una linea) (3.33)

Volviendo a la mujer en el tren de la figura 3.32, vemos que A es el marco de refe-
rencia del ciclista, B es el marco de referencia del tren, y el punto P representa a la
mujer. Usando la notacién anterior, tenemos

Upjpx = +1.0 m/s Upjax = +3.0 m/s
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3.31 Los pilotos de acrobacias aéreas
enfrentan un complicado problema de
velocidades relativas. Deben estar
pendientes de su movimiento relativo al
aire (para mantener un flujo de aire sobre
las alas suficiente para la sustentacion),
su movimiento relativo a los otros aviones
(para mantener una formacion cerrada
sin chocar) y su movimiento relativo al
publico (para que los espectadores no

los pierdan de vista).

3.32 a) Una mujer camina dentro
de un tren. b) La posicién de la mujer

o)
(particula P) relativa al marco de referen-

cia del ciclista y al marco de referencia
del tren.

a)

P (muj«\er) ]i? (tren)

b)

Ya g .Velocidad del tren
Marco del vg /‘/; relativa al ciclista.
ciclista. |

PR ’ Marco Posicion de la mujer
del tren. en ambos marcos.
e “'uP XA
OA | 03 B
| X ! X ]
| B/A | P/B |
I Xp/a 1
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Por la ecuacion (3.33), la velocidad v/, de la mujer relativa al ciclista es

lo cual ya sabiamos.

Uppar = +1.0 m/s + 3.0m/s = +4.0 m/s

En este ejemplo, ambas velocidades son a la derecha, e implicitamente toma-
mos esta direccién como positiva. Si la mujer camina a la izquierda relativa al tren,

entonces, Up., = —1.0 m/s, y su velocidad relativa al ciclista es Upja =

—1.0 m/s

+ 3.0 m/s = +2.0 m/s. La suma de la ecuacién (3.33) siempre es algebraica, y cual-
quiera o todas las velocidades pueden ser negativas.

Si la mujer se asoma por la ventana, le parecerd que el ciclista estacionario se
mueve hacia atrds; llamamos v, p., a la velocidad del ciclista relativa a ella. Es evi-
dente que ésta es el negativo de vps.,. En general, si Ay B son dos puntos o marcos de
referencia cualesquiera,

EED RN E NG ER I Velocidad relativa

IDENTIFICAR los conceptos importantes: ~ Siempre que lea la frase
“velocidad relativa a” o “velocidad con respecto a”, seguramente le
resultardn ttiles los conceptos de velocidad relativa.

PLANTEAR el problema: Rotule todos los marcos de referencia del
problema. Cada cuerpo en movimiento tiene su propio marco de refe-
rencia; ademds, casi siempre serd preciso incluir el marco de referencia
de la superficie terrestre. (Frases como “el automévil viaja al norte
a 90 km/h” se refieren implicitamente a la velocidad del auto relativa a
la superficie terrestre.) Use los rétulos para identificar la incognita.
Por ejemplo, si quiere obtener la velocidad de un auto (C) con respecto
a un autobus (B), €sta €s U¢yp.,

EJECUTAR la solucion: Despeje la incognita empleando la ecuacion
(3.33). (Si las velocidades no tienen la misma direccion, serd preciso
usar la forma vectorial de esta ecuacion, que deduciremos mas ade-
lante en esta misma seccion.) Es importante observar el orden de los

Ualpx = ~Upjax (3.34)

®
dobles subindices en la ecuacién (3.33): v, 5., siempre significa “velo-
cidad de A relativa a B”. Estos subindices obedecen un tipo interesante
de dlgebra, como muestra la ecuacion (3.33). Si los consideramos cada
uno como una fraccion, la fraccion del miembro izquierdo es el pro-
ducto de las fracciones del miembro derecho: P/A = (P/B)(B/A).
Puede usar esta util regla al aplicar la ecuacién (3.33) a cualquier can-
tidad de marcos de referencia. Por ejemplo, si hay tres marcos de
referencia distintos A, B 'y C, podemos escribir de inmediato

Upjax = Upjcx T Ucjpr T Upjas

EVALUAR la respuesta: Esté pendiente de los signos menos en su
respuesta. Si la incognita es la velocidad de un automovil relativa a
un autobds (vs.,), aseglirese de no haber calculado por equivocacién
la velocidad del autobiis relativa al automoévil (vgc.,). Si cometio este
error, la ecuacion (3.34) le dard la respuesta correcta.

SRR Velocidad relativa en un camino recto

Imagine que viaja al norte en un camino recto de dos carriles a
88 km/h constantes. Un camién que viaja a 104 km/h constantes se
acerca a usted (en el otro carril, por fortuna). a) ;Qué velocidad tie-
ne el camion relativa a usted? b) ;Y la de usted relativa al camién?
¢) (Cémo cambian las velocidades relativas una vez que los dos
vehiculos se han pasado?

IDENTIFICAR: Este ejemplo es sobre velocidades relativas en una
recta.

PLANTEAR: Sea usted Y, el camién T y la superficie de la Tierra E,
y sea el norte la direccién positiva (figura 3.33). Entonces, su veloci-
dad relativa a la Tierra es Uy, = +88 km/h. En un principio, el ca-
midn se acerca a usted, asi que debe ir hacia el sur, es decir, que su
velocidad relativa a la Tierra es Uz, = — 104 km/h. La incégnita del
inciso a) es Uryy.,; la incénita del inciso b) es vyr.,. Obtendremos
ambas respuestas utilizando la ecuacién (3.33) para velocidad relativa.

3.33 Marcos de referencia para usted y el camion.
N

ol
S

Cami6n (T) ]\

N
UyE

Tierra (E) l 1

U
Usted (Y)



EJECUTAR: a) Para obtener vy ., primero escribimos la ecuacién
(3.33) para los tres marcos, Y, Ty E, y luego reacomodamos:
Urfex = Urjyr T Uyjex
Utjyx = UtjEx — UyjEx
= —104 km/h — 88 km/h = —192 km/h

El cami6n se mueve a 192 km/h en la direccién negativa (al sur) relati-
vo a usted.
b) Por la ecuacion (3.34),

Uyt = —Uny. = —(—192km/h) = +192 km/h

Usted se mueve a 192 km/h en la direccién positiva (al norte) relativo
al camion.
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¢) Las velocidades relativas no cambian después de que los vehicu-
los se pasan. Las posiciones relativas de los cuerpos no importan. La
velocidad del camidn relativa a usted sigue siendo 192 km/h, pero
ahora se aleja en vez de acercarse.

EVALUAR: Para comprobar su respuesta del inciso b), use la ecuacion
(3.33) directamente en la forma Uyt = Uyjer T Vg (Recuerde que
la velocidad de la Tierra relativa al camién es opuesta a la velocidad
del cami6n con respecto a la Tierra: vy, = *UT/E,X.) (Obtiene el
mismo resultado?

Velocidad relativa en dos o tres dimensiones

Podemos extender el concepto de velocidad relativa al movimiento en un plano o en
el espacio, usando suma vectorial para combinar velocidades. Suponga que la mujer
de la figura 3.32a camina no por el pasillo del vagén sino de un costado al otro, con
rapidez de 1.0 m/s (figura 3.34a). También podemos describir su posicién P en dos
marcos de referencia distintos: A para el observador terrestre estacionario y B para el
tren en movimiento; pero en vez de coordenadas x usamos vectores de posicion
[&*Icacc* { ~bfit~r~normal~} {|Ararr|}&] porque el problema es bidimensional. En-
tonces, como muestra la figura 3.34b,

7P/A = ?P/B + ?B/A (3.35)

Igual que antes, derivamos con respecto al tiempo para obtener una relacion entre las
velocidades; la velocidad de P relativa a A es ﬁP/A = d?P/A/dt, e igual para las de-
mads velocidades. Obtenemos

Upia = Upjp + Uppa (velocidad relativa en el espacio) (3.36)

La ecuacion (3.36) se conoce como transformcion galileana de la velocidad y
muestra que la velocidad de un cuerpo P con respecto al marco A y su velocidad con
respecto al marco B (6P/A y 3P/B, respectivamente) estdn relacionadas con la velocidad
del marco B con respecto al marco A (33/A ). Si las tres velocidades estdn en la misma
linea, la ecuacién (3.36) se reduce a la ecuacion (3.33) para las componentes de las
velocidades en esa linea.

Si la velocidad del tren relativa al suelo tiene magnitud v, = 3.0 m/s y la veloci-
dad de la mujer relativa al vagén tiene magnitud v,/5= 1.0 m/s, su vector de velocidad

3.34 a) Mujer que camina a lo ancho de un vagén de ferrocarril. b) Posicion de la mujer relativa al marco de referencia del ciclista y
al marco del tren. ¢) Diagrama vectorial para la velocidad de la mujer relativa al suelo (el marco del ciclista), i)’P/A.

a) b)

A (ciclista)

. ciclista
P (mujer)

2A

Marco del

) Velocidades relativas
(vistas desde arriba)

.~ Velocidad del tren

B ; ; o
_ ¥ relativa al ciclista.
Up/a b = 18°
Marco <
Py. s . z
del tren T+ Posicién de la mujer >
7 = ambos ms . Il
Tp/a Fpjp ©n ambos marcos. -
Xp o w
Op 3 2
=1 2.
f Thsy A s %/T
Oy \
iB

vpg = 1.0mfs
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3P/A relativo al suelo es como se muestra en la figura 3.34c. El teorema de Pitdgoras
nos da

Upa = V(3.0m/s)2 + (1.0m/s)2 = V10 m*/s> = 32 ms

La figura 3.34c también indica que la direccion del vector de velocidad de la mu-
jer relativo al suelo forma un dngulo ¢ con el vector de velocidad del tren 3B/A, donde

Ve 1.0 m/s

Vga  3.0mfs

tangp = y ¢ = 18°

Como en el caso del movimiento rectilineo, tenemos la regla general de que si A

y B son dos puntos o marcos de referencia cualesquiera,

6A/B = _BB/A (3.37)
La velocidad de la mujer con respecto al tren es el negativo de la velocidad del tren
con respecto a la mujer, etcétera.

A principios del siglo xx, en su teorfa especial de la relatividad Albert Einstein de-
mostré que la relacién de suma de velocidades dada en la ecuacion (3.36) se modifica
cuando la rapidez se aproxima a la rapidez de la luz, que se denota con c¢. Resulté que
si la mujer de la figura 3.32a pudiera caminar por el pasillo a 0.30c y el tren pudiera
viajar a 0.90c, entonces la rapidez de la mujer relativa al suelo no seria de 1.20c¢ sino
de 0.94c. jNada puede viajar mds rdpido que la luz! Regresaremos a la teorfa espe-
cial de la relatividad en el capitulo 37.

SRRV Vuelo con viento cruzado

La brijula de un avién indica que va al norte, y su velocimetro indica
que vuela a 240 km/h. Si hay un viento de 100 km/h de oeste a este,
(cudl es la velocidad del avion relativa a la Tierra?

IDENTIFICAR: Se trata de un problema de velocidad en dos dimen-
siones (hacia el norte y hacia el este), asi que tenemos un problema de
velocidad relativa usando vectores.

PLANTEAR: Nos dan la magnitud y direccién de la velocidad del
avion (P) relativa al aire (A), asi como la magnitud y direccién de la
velocidad del viento, que es la velocidad del aire (A) con respecto a
la Tierra (E):

al norte

240 km/h
100 km/h

N
Upja

al este

6A/E
Nuestras incognitas son la magnitud y direccién de la velocidad del

avion (P) relativa a la Tierra (E), BP/E. Asi, que las calcularemos usan-
do la ecuacion (3.36).

EJECUTAR: Usando la ecuacién (3.36), tenemos
6P/E = 6P/A + i;A/E

Las tres velocidades relativas y su relacién se muestran en la figura
3.35; las incognitas son la rapidez vp/g y el dngulo a. Del diagrama ob-
tenemos

Uppg = V(240 km/h)? + (100 km/h)2 = 260 km/h
100 km/h

) = 23°Edel N
240 km/h

a = arctan(

EVALUAR: El viento lateral aumenta la rapidez del avién relativa al
suelo, pero al precio de desviarlo de su curso.

3.35 El avion apunta al norte, pero el viento sopla al este, dando
la velocidad resultante i)},E relativa a la Tierra.

Uyk = 100 kmjh,
este

Upya =
240 km/h,
norte




FEUNREE Correccion por viento cruzado

En el ejemplo 3.14, ;qué rumbo deberfa tomar el piloto para viajar al
norte? (Cudl serd su velocidad relativa a la tierra? (Suponga que su
rapidez con respecto al aire y la velocidad del viento son las del ejem-
plo 3.14.)

IDENTIFICAR: Al igual que en el ejemplo 3.14, éste es un problema
de velocidad relativa con vectores.

PLANTEAR: La figura 3.36 ilustra la situacién. Ahi, los vectores se
acomodaron segtn la ecuacién vectorial de velocidad relativa, ecua-
cion (3.36):

oo -
Upg = Upja + Usr

Como muestra la figura 3.36, el piloto apunta la nariz del avién con un
dngulo 3 hacia el viento para compensar su efecto. Este dngulo, que
nos da la direccion del vector 3,,/ A (1a velocidad del avion relativa al ai-
re), es una de nuestras incégnitas. La otra es la rapidez del avién sobre
el suelo, que es la magnitud del vector 61:/5 (la velocidad del avién re-
lativa a la Tierra). Veamos las cantidades que conocemos y las que des-
conocemos:

Upe = magnitud desconocida  al norte
Dpja = 240 km/h

Ua = 100 km/h

direccién desconocida
al este

Podemos calcular las incégnitas empleando la figura 3.36 y trigono-
metria.

EJECUTAR: Por el diagrama, la rapidez vp; y el dngulo 8 estdn dados
por

V(240 km/h)? — (100 km/h)? = 218 km/h?
100 km/h)
240 km/h

Uple

— o

B = arcsen(

Evaliie su comprension de la seccion 3.5 Suponga que la nariz del avion
se apunta al este y que el avién tiene una velocidad de vuelo de 150 km/h. Debido al
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3.36 El piloto debe apuntar el avién en la direccién del vector
3,)/ A para viajar al norte relativo a la Tierra.

Uy = 100 km/h,
este

Upja =
240 km/h,
en angulo B

.
< Up/E,
norte

El piloto deberia dirigirse 25° al oeste del norte, y su rapidez con res-
pecto al suelo serd entonces de 218 km/h.

EVALUAR: Observe que habia dos incégnitas —la magnitud de un
vector y la direccién de un vector— tanto en este ejemplo como en el
ejemplo 3.14. La diferencia es que, en el ejemplo 3.14, la magnitud y
direccién se referfan al mismo vector (Upg), mientras que en este
ejemplo se refieren a vectores distintos (Tpje Y Upja ).

No es sorpresa que un viento de frente reduzca la rapidez de un
avion relativa al suelo. Lo que este ejemplo demuestra es que un vien-
to cruzado también frena los aviones: es una triste realidad de la in-
dustria aerondutica.

@

viento, el avién se mueve al norte relativo al suelo y su rapidez relativa al suelo es de

150 km/h. ;Cudl es la velocidad del aire relativa a la Tierra? i) 150 km/h de este a oeste;

ii) 150 km/h de sur a norte; iii) 150 km/h de sureste a noroeste; iv) 212 km/h de este a oeste;
v) 212 km/h de sur a norte; vi) 212 km/h de sureste a noroeste; vii) no hay velocidad del aire

posible que cause esto.



CAPITULO 3 RESUMEN

Vectores de posicion, velocidad y aceleracion: El vector
de posicién 7 de un punto P en el espacio es el vector del
origen a P. Sus componentes son las coordenadas x, y y z.

El vector de velocidad media ¥,,.q durante el intervalo
At es el desplazamiento A7 (el cambio del vector de
posicion 7) dividido entre At. El vector de velocidad
instantdnea U es la derivada de 7, con respecto al tiempo, y
sus componentes son las derivadas de x, y y z con respecto
al tiempo. La rapidez instantdnea es la magnitud de ©.

La velocidad & de una particula siempre es tangente a la
trayectoria de la particula. (Véase el ejemplo 3.1.)

El vector de aceleracién media @,,.q durante el intervalo
de tiempo At es igual a AT (el cambio en el vector de
velocidad ¥) dividido entre At. El vector de aceleracién
instantdnea d es la derivada de U, con respecto al tiempo,
y sus componentes son las derivadas de v,, v, y v, con
respecto al tiempo. (Véase el ejemplo 3.2.)

La componente de aceleracion paralela a la direccion
de la velocidad instantdnea afecta la rapidez; en tanto que
la componente de @ perpendicular a U afecta la direccién
del movimiento. (Véanse los ejemplos 3.3y 3.4.)

Movimiento de proyectiles: En el movimiento de
proyectiles sin resistencia del aire, a, = 0y a, = —g.

Las coordenadas y componentes de la velocidad son
funciones sencillas del tiempo, y la forma de la trayectoria
siempre es una pardbola. Por convencion, colocamos el
origen en la posicion inicial del proyectil. (Véanse los
ejemplos 3.5 a 3.10.)

Movimiento circular uniforme y no uniforme: Cuando una

particula se mueve en una trayectoria circular de radio R
con rapidez constante v (movimiento circular uniforme),
su aceleracion d estd dirigida hacia el centro del circulo y
es perpendicular a U. La magnitud a,,q de la aceleracién se
puede expresar en términos de v y R, o en términos de R
y el periodo T (el tiempo que tarda en dar una vuelta),
donde v = 27R|T. (Véanse los ejemplos 3.11 y 3.12.)
Aunque la rapidez en un movimiento circular no
sea constante (movimiento circular no uniforme), habra

una componente radial de @ dada por la ecuacién (3.28) o la

ecuacion (3.30), pero también habrd una componente de @
paralela (tangencial) a la trayectoria; esta componente tan-
gencial es igual a la tasa de cambio de la rapidez, dv/dt.

Velocidad relativa: Cuando un cuerpo P se mueve relativo
a un cuerpo (o marco de referencia) B, y B se mueve
relativo a A, denotamos la velocidad de P relativa a B con
Upyp, la velocidad de P relativa a A con Tpyy, y la velocidad
de B relativa a A con 3B/A. Si todas estas velocidades

estdn en la misma linea, sus componentes sobre la

linea estdn relacionadas por la ecuacién (3.33). De forma
mads general, estas velocidades estdn relacionadas por

la ecuacion (3.36). (Véanse los ejemplos 3.13 a 3.15.)

96

F=xi+yj+k

- -
r,—r A7

<l

med T At
N _A¥  dF
v=lim—=—
A=0 At dt
dx dy dz
v,=— v, =— v, =—
; dr dt ° dt
= U, — U, AP
Apeg = =
t,— 4 At
. AU dvu
a=lim—=—
A=0 At dt
dv,
a,=—
dt
dv,
a. =
Yodt
dv,
o

x = (vocosay)t
1
y = (vosenay)t — Egt2

v, = Vycosa,

v, = vgsenay — gt

v2
Arag = R
o= 47°R
rad T2

Upjax = Upjpx T Upja

(velocidad relativa en una linea)

= = -
Upja = Upjp + Up)y

(velocidad relativa en el espacio)

(3.10)

(3.20)
(3.21)

(3.22)
(3.23)

(3.28)

(3.30)

(3.33)

(3.36)

y
N
l W‘ Al
Yif---- .
=2 \ Ar
LW AN
) N
1 \\
Ip|pe/ fommmmmast = -=>
, = !
r, |
0] X1 X2
— Ax—
N
U
y
1 v
I 1 AU
1
\
— \\
U e s
=
v,
o

-5 ~
,/ Arad =
rad
Y AN
v Arad 1
1 =
1 - 1f'v
\ Arad
7,
Arad a
\~ - rad .7
v - -
v
Up/a
Upjp = Upp + U
R =
Upa\ VP8
h P (avion)
= B (aire en
movimiento)

A_’iiO—A (observador

en el suelo)



Términos clave

vector de posicién, 72
velocidad media, 72
aceleracion instantdnea, 72
aceleracion media, 75
velocidad instantdnea, 75

proyectil, 79
trayectoria, 79

periodo, 89

?

Respuesta a la pregunta de inicio de capitulo £

Un automévil que va por una curva a rapidez constante tiene una ace-
leracion dirigida hacia el interior de la curva (véase la seccién 3.2, en
especial la figura 3.12a).

Respuestas a las preguntas de
Evaliie su comprension

3.1 Respuesta: iii) Si la velocidad instantdnea U es constante durante
un intervalo, su valor en cualquier punto (incluyendo el final del inter-
valo) es igual a la velocidad media U,,.q durante el intervalo. En i) y ii)
la direccion de U al final del intervalo es tangente a la trayectoria en
ese punto; mientras que la direccién de T,,.q apunta desde el inicio de
la trayectoria hasta el final (en la direccion del desplazamiento neto).
En iv) Uy U4 s€ encuentran a lo largo de la linea recta, aunque U tie-
ne una magnitud mayor porque la rapidez ha ido en aumento.

3.2 Respuesta: vector 7 En el punto mas alto de la trayectoria del
trineo, la rapidez es minima. En ese punto, la rapidez no aumenta ni
disminuye, y la componente paralela de la aceleracion (es decir, la
componente horizontal) es cero. La aceleracion sdlo tiene una com-
ponente perpendicular hacia el interior de la trayectoria curva del
trineo. Dicho de otro modo, la aceleracién es hacia abajo.

PROBLEMAS

Preguntas para analisis

P3.1. Un péndulo simple (una masa que oscila en el extremo de un cor-
del) oscila en un arco circular. {Qué direccién tiene su aceleracién en
los extremos del arco? ;Y en el punto medio? En cada caso, explique
c6mo obtuvo su respuesta.

P3.2. Vuelva a dibujar la figura 3.11a como si @ fuera antiparalela a
U,. ;La particula se mueve en linea recta? ;Qué pasa con la rapidez?
P3.3. Un proyectil se mueve en una trayectoria parabdlica sin resisten-
cia del aire. ;Hay un punto donde d@ sea paralela a ¥? ;Y perpendicular
a U? Explique su respuesta.

P3.4. Cuando se dispara un rifle a un blanco lejano, el caién no se
apunta exactamente al blanco. ;Por qué? ;El dngulo de correccion de-
pende de la distancia al blanco?

P3.5. En el instante que usted dispara una bala horizontalmente de una
arma, suelta una bala desde la altura del cafion. Si no hay resistencia
del aire, (qué bala llegara primero al suelo? Explique su respuesta.
P3.6. Un paquete se deja caer desde un avién que vuela en linea recta
con altitud y rapidez constantes. Si se desprecia la resistencia del aire,
;qué trayectoria del paquete observaria el piloto? ;Y una persona si-
tuada en el suelo?

P3.7. Dibuje las seis gréficas de las componentes x y y de posicion, ve-
locidad y aceleracién contra el tiempo, para un movimiento de proyec-
tilconxy =y, =0y 0 < oy < 90°.

P3.8. Se lanza un objeto directo hacia arriba sin que sufra resistencia
del aire. ;Como es posible que el objeto tenga aceleracién cuando se
detiene al llegar a su punto mds alto?

movimiento circular uniforme, 88
aceleracién centripeta, 89

Preguntas para anélisis 97

movimiento circular no uniforme, 90
velocidad relativa, 91
marco de referencia, 9/

3.3 Respuesta: i) Si no hubiera gravedad (g = 0), el mono no caeria y
el dardo seguirfa una trayectoria recta (que se indica como linea dis-
continua). El efecto de la gravedad es hacer que tanto el mono como el
dardo caigan la misma distancia 1 g* abajo de sus posiciones con g =
0. El punto A estd a la misma distancia abajo de la posicién inicial del
mono de la que el punto P estd abajo de la recta discontinua, asi que
el punto A es donde encontrariamos al mono en el instante en cuestion.
3.4 Respuesta: ii) Tanto en la parte alta como en la baja del lazo, la
aceleracion es puramente radial y estd dada por la ecuacién (3.28). El
radio R es el mismo en ambos puntos, asi que la diferencia de acelera-
cion se debe exclusivamente a diferencias de rapidez. Puesto que a,,q
es proporcional al cuadrado de v, la rapidez debera ser dos vece mayor
en la parte baja del lazo que en su parte alta.

3.5 Respuesta: vi) El efecto del viento es anular el movimiento hacia
el este del avién e imprimirle un movimiento hacia el norte. Asi que
la velocidad del aire en relacion con el suelo (la velocidad del viento)
debe tener una componente de 150 km/h hacia el oeste y una compo-
nente de 150 km/h hacia el norte. La combinacién de ambas es un vec-
tor con magnitud V(150 km/h)2 + (150 km/h)? = 212 km/h que
apunta hacia el noroeste.

Para la tarea asignada por el profesor, visite www.masteringphysics.com ‘MP’

P3.9. Si una rana puede saltar con la misma rapidez inicial sin impor-
tar la direccion (hacia adelante o hacia arriba), ;qué relacion hay entre
la altura vertical mdxima y el alcance horizontal mdximo de su salto,
Rugx = vglg?

P3.10. Se dispara un proyectil hacia arriba con un dngulo 6 por encima de
la horizontal con una rapidez inicial v,. Al llegar a su maxima altura,
¢;cudles son su vector de velocidad, su rapidez y su vector de aceleracién?
P3.11. En el movimiento circular uniforme, ;cudles son la velocidad
media y la aceleracion media durante una revolucion? Explique su
respuesta.

P3.12. En el movimiento circular uniforme, ;como cambia la acelera-
cién cuando la rapidez aumenta al triple? ;Y cuando el radio se reduce
a la mitad?

P3.13. En el movimiento circular uniforme, la aceleracion es perpen-
dicular a la velocidad en todo instante. ;Sigue siendo vélido esto cuan-
do el movimiento no es uniforme, es decir, cuando la rapidez no es
constante?

P3.14. Incluso sin viento, las gotas de lluvia suelen dejar rayas diagona-
les en las ventanas laterales de un automévil en movimiento. ;Por qué?
(Es la misma explicacion para las rayas diagonales en el parabrisas?
P3.15. En una tormenta con viento fuerte, ;qué determina la orienta-
cién 6ptima de un paraguas?

P3.16. Imagine que estd en la ribera oeste de un rio que fluye al norte a
1.2 m/s. Usted nada con rapidez de 1.5 m/s relativa al agua, y el rio
tiene 60 m de ancho. ;Qué trayectoria relativa a tierra le permitird cru-
zar el rio en el menor tiempo? Explique su razonamiento.
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P3.17. Cuando usted deja caer un objeto desde cierta altura, éste tarda
un tiempo T en llegar al piso si no hay resistencia del aire. Si usted lo
dejara caer desde una altura tres veces mayor, jcudnto tiempo tardaria
el objeto (en términos de 7) en llegar al suelo?

P3.18. Se lanza una piedra hacia el aire con un dngulo por encima de la
horizontal, y se desprecia la resistencia del aire. ;Cudl de las graficas
en la figura 3.37 describe mejor la rapidez v de la piedra en funcién del
tiempo 7 mientras estd en el aire?

Figura 3.37 Pregunta P3.18.

a) b)
v v
t t
o o
9} d)
v 1%
t t
o o
e)
v
t
o
Ejercicios

Seccion 3.1 Vectores de posicion y velocidad

3.1. Una ardilla tiene coordenadas x y y (1.1 m, 34 m)ent, =0y
coordenadas (5.3 m, —0.5 m) en #, = 3.0 s. Para este intervalo, obten-
ga a) las componentes de la velocidad media, y b) la magnitud y direc-
cién de esta velocidad.

3.2. Un rinoceronte estd en el origen de las coordenadas en ¢, = 0.
Para el intervalo de t, = 0 a1, = 12.0 s, la velocidad media del ani-
mal tiene componente x de —3.8 m/s y componente y de 4.9 m/s.
En 1, = 12.0's, a) {qué coordenadas x y y tiene el rinoceronte? b) ;Qué
tan lejos estd del origen?

3.3. Un disefiador de paginas Web crea una animacién en la que un
punto en una pantalla de computadora tiene una posicién F =
[4.0 cm + (2.5 cm/s?) ) + (5.0 cm/s)#j. a) Determine la magnitud

y direccién de la velocidad media del punto entre t = 0y t = 2.0 s.
b) Calcule la magnitud y direcciéon de la velocidad instantinea en
t=0,ent=1.0syent = 2.0s.c) Dibuje la trayectoria del punto de ¢
=0at=20s,ymuestre las velocidades calculadas en el inciso b).
3.4. Si ¥ = bt¥i + ct%, donde b y ¢ son constantes positivas, ;cudn-
do el vector de velocidad forma un dngulo de 45° con los ejes x y y?

Seccion 3.2 El vector de aceleracion

3.5. Un jet vuela a altitud constante. En el instante ¢, = 0, tiene com-
ponentes de velocidad v, = 90 m/s, v, = 110 m/s. Ent, = 30.0 s, las
componentes son v, = —170 m/s, v, = 40 m/s. a) Dibuje los vectores
de velocidad en 1, y t,. (En qué difieren? Para este intervalo, calcule
b) las componentes de la aceleraciéon media, y ¢) la magnitud y direc-
cién de esta aceleracion.

3.6. Un perro que corre en un campo tiene componentes de velocidad
v,=2.6m/syv,= —1.8m/sent, = 10.0s. Para el intervalo de 7, =
10.0 s a t, = 20.0 s, la aceleracién media del perro tiene magnitud de
0.45 m/s” y direccién de 31.0° medida del eje +x al eje +y. En t, =
20.0 s, a) ;qué componentes x y y tiene la velocidad del perro? b) ;Qué
magnitud y direccién tiene esa velocidad? ¢) Dibuje los vectores de
velocidad en t, y #,. ;En qué difieren?

3.7. Las coordenadas de un ave que vuela en el plano xy estdn da-
das por x(t) =ar y y(t) =3.0m — B~ donde @ =24mfs y
B = 1.2m/s. a) Dibuje la trayectoria del ave entre t = 0y t = 2.0 s.
b) Calcule los vectores de velocidad y aceleraciéon en funcién de 7.
¢) Obtenga la magnitud y direccién de la velocidad y aceleracion del
ave en t = 2.0 s. d) Dibuje los vectores de velocidad y aceleracion en
t = 2.0 s. En este instante, jel ave estd acelerando, frenando o su ra-
pidez no estd cambiando instantineamente? ;jEstd dando vuelta? Si
asi es, ¢en qué direccion?

3.8. Una particula sigue una trayectoria como se muestra en la figura
3.38. Entre B y D, la trayectoria es recta. Dibuje los vectores de acele-
racién en A, C'y E si a) la particula se mueve con rapidez constante,
b) la particula aumenta de rapidez continuamente; c) la rapidez de la
particula disminuye continuamente.

Figura 3.38 Ejercicio 3.8.

a) b) )
- v .
v v
E £ E
D %D 3vD
v _*C C C
B v,/ B B
A A A

Seccién 3.3 Movimiento de proyectiles

3.9. Un libro de fisica que se desliza sobre una mesa horizontal a 1.10
m/s cae al piso en 0.350 s. Ignore la resistencia del aire. Calcule a) la
altura de la mesa; b) la distancia horizontal del borde de la mesa al
punto donde cae el libro; ¢) las componentes horizontal y vertical, y la
magnitud y direccién, de la velocidad del libro justo antes de tocar el
piso. d) Dibuje grificas x-t, y-t, v,-t y v,-t para el movimiento.

3.10. Un helicoptero militar estd en una misién de entrenamiento y
vuela horizontalmente con una rapidez de 60.0 m/s y accidentalmen-
te suelta una bomba (desactivada, por suerte) a una altitud de 300 m.
Puede despreciarse la resistencia del aire. a) ;Qué tiempo tarda la



bomba en llegar al suelo? b) ;Qué distancia horizontal viaja mientras
cae? ¢) Obtenga las componentes horizontal y vertical de su veloci-
dad justo antes de llegar al suelo. d) Dibuje gréficas x-t, y-t, v,-t y
v,-t para el movimiento de la bomba. e) ;Ddnde esté el helicéptero
cuando la bomba toca tierra, si la rapidez del helicéptero se mantuvo
constante?

3.11. Dos grillos, Chirpy y Milada, saltan desde lo alto de un acantila-
do vertical. Chirpy simplemente se deja caer y llega al suelo en 3.50 s;
en tanto que Milada salta horizontalmente con una rapidez inicial de
95.0 ecm/s. (A qué distancia de la base del acantilado tocard Milada
el suelo?

3.12. Una osada nadadora de 510 N
se lanza desde un risco con un im-
pulso horizontal, como se muestra
en la figura 3.39. ;Qué rapidez mi-
nima debe tener al saltar de lo alto
del risco para no chocar con la sa-
liente en la base, que tiene una an-
chura de 1.75 m y estd 9.00 m
abajo del borde superior del risco?

3.13. Salto del rio I. Un automévil
llega a un puente durante una tormenta y el conductor descubre que las
aguas se lo han llevado. El conductor debe llegar al otro lado, asi que
decide intentar saltar la brecha con su auto. La orilla en la que se en-
cuentra estd 21.3 m arriba del rio, mientras que la orilla opuesta estd a
s6lo 1.8 m sobre las aguas. El rio es un torrente embravecido con una
anchura de 61.0 m. a) (Qué tan rapido deberd ir el auto cuando llegue
a la orilla para librar el rio y llegar a salvo al otro lado? b) ;Qué rapi-
dez tendrd el auto justo antes de que aterrice en la orilla opuesta?

3.14. Una pequeia ca-
nica rueda horizontal-
mente con una rapi-
dez v, y cae desde la
parte superior de una
plataforma de 2.75 m
de alto, sin que sufra
resistencia del aire.
A nivel del piso, a
2.00 m de la base de
la plataforma, hay una
cavidad (figura 3.40).
(En qué intervalo de
rapideces v, la canica
caerd dentro de la cavidad?

3.15. Dentro de una nave espacial en reposo sobre la Tierra, una pelota
rueda desde la parte superior de una mesa horizontal y cae al piso a
una distancia D de la pata de la mesa. Esta nave espacial ahora des-
ciende en el inexplorado Planeta X. El comandante, el Capitan Curio-
s0, hace rodar la misma pelota desde la misma mesa con la misma
rapidez inicial que en la Tierra, y se da cuenta de que la pelota cae al
piso a una distancia 2.76D de la pata de la mesa. ;Cuadl es la acelera-
ci6én debida a la gravedad en el Planeta X?

3.16. Un mariscal de campo novato lanza un balén con una componen-
te de velocidad inicial hacia arriba de 16.0 m/s y una componente de
velocidad horizontal de 20.0 m/s. Ignore de la resistencia del aire.
a) {Cuanto tiempo tardard el balén en llegar al punto mds alto de la tra-
yectoria? b) (A qué altura estd este punto? ¢) ;Cudnto tiempo pasa
desde que se lanza el balén hasta que vuelve a su nivel original?
(Qué relacién hay entre este tiempo y el calculado en el inciso a)?
d) (Qué distancia horizontal viaja el balén en este tiempo? ¢) Dibuje
gréficas x-t, y-t, v,-t y v, para el movimiento.

3.17. Se dispara un proyectil desde el nivel del suelo con una velocidad
inicial de 80.0 m/s a 60.0° por encima de la horizontal sin que sufra re-
sistencia del aire. a) Determine las componentes horizontal y vertical
de la velocidad inicial del proyectil. b);Cudnto tarda el proyectil en al-

Figura 3.39 Ejercicio 3.12.

Figura 3.40 Ejercicio 3.14.
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canzar su punto mds alto? ¢) Calcule su altura mdxima por encima del
suelo. d) (Qué tan lejos del punto de lanzamiento cae el proyectil
al suelo? ¢) Determine las componentes horizontal y vertical de su
aceleracién y velocidad en el punto de su médxima altura.

3.18. Una pistola que dispara una luz bengala le imprime una veloci-
dad inicial de 125 m/s en un dngulo de 55.0° sobre la horizontal. Igno-
re la resistencia del aire. Si la bengala se dispara, obtenga su altura
maxima y la distancia del punto de disparo al punto de caida, a) en los
salares planos de Utah y b) en el Mar de la Tranquilidad en la Luna,
donde g = 1.67 m/s>.

3.19. Un pelotero de grandes ligas batea una pelota de modo que sale
del bate con una rapidez de 30.0 m/s y un dngulo de 36.9° sobre la
horizontal. Ignore la resistencia del aire. a) (En cudles dos instantes
la pelota estuvo a 10.0 m sobre el punto en que se sali¢ del bate?
b) Obtenga las componentes horizontal y vertical de la velocidad de
la pelota en cada uno de los dos instantes calculados en el inciso a).
¢) (Qué magnitud y direccién tenia la velocidad de la pelota al regre-
sar al nivel en el que se bate6?

3.20. Un atleta lanza la bala a cierta distancia sobre el suelo plano con
velocidad de 12.0 m/s, 51.0° sobre la horizontal. La bola golpea el
suelo 2.08 s después. Ignore la resistencia del aire. a) ;Cudles son las
componentes de la aceleracion de la bala en vuelo? b) ;Cudles son
las componentes de la velocidad de la bala al principio y el final de su
trayectoria? ¢) A qué distancia horizontal llegé la bala? d) ;Por qué
la expresion para R del ejemplo 3.8 no da la respuesta correcta para
el inciso ¢)? e) ;A qué altura sobre el suelo se lanzé la bala? f) Dibuje
las gréficas x-t, y-t, v,-t y v,-t para el movimiento.

3.21. Gane el premio. En una feria, se gana una jirafa de peluche
lanzando una moneda a un platito, el cual estd sobre una repisa mas
arriba del punto en que la moneda sale de la mano y a una distancia
horizontal de 2.1 m desde ese punto (figura 3.41). Si lanza la moneda
con velocidad de 6.4 m/s, a un dngulo de 60° sobre la horizontal, la
moneda caerd en el platito. Ignore la resistencia del aire. a) (A qué al-
tura estd la repisa sobre el punto donde se lanza la moneda? b) ;Qué
componente vertical tiene la velocidad de la moneda justo antes de
caer en el platito?

Figura 3.41 Ejercicio 3.21.

3.22. Suponga que el dngulo inicial «, de la figura 3.26 es de 42.0° y
la distancia d es de 3.00 m. ; Dénde se encontraran el dardo y el mono,
si la rapidez inicial del dardo es a) 12.0 m/s? b) (8.0 m/s? ¢) ;Qué su-
cederd si la rapidez inicial del dardo es de 4.0 m/s? Dibuje la trayec-
toria en cada caso.

3.23. Un hombre estd parado en la azotea de un edificio de 15.0 m y
lanza una piedra con velocidad de 30.0 m/s en un dngulo de 33.0° so-
bre la horizontal. Puede despreciarse la resistencia del aire. Calcule
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a) la altura maxima que alcanza la piedra sobre la azotea; b) la magni-
tud de la velocidad de la piedra justo antes de golpear el suelo; y ¢) la
distancia horizontal desde la base del edificio hasta el punto donde
la roca golpea el suelo. d) Dibuje las gréficas x-t, y-t, v~ y vt para el
movimiento.

3.24. Los bomberos estdn lanzando un chorro de agua a un edificio en
Ilamas, utilizando una manguera de alta presiéon que imprime al agua
una rapidez de 25.0 m/s al salir por la boquilla. Una vez que sale de
la manguera, el agua se mueve con movimiento de proyectil. Los
bomberos ajustan el dngulo de elevacién . de la manguera hasta que
el agua tarda 3.00 s en llegar a un edificio que estd a 45.0 m de dis-
tancia. Ignore la resistencia del aire y suponga que la boquilla de la
manguera estd a nivel del suelo. @) Calcule el angulo de elevacion de «.
b) Determine la rapidez y aceleracion del agua en el punto mads alto de
su trayectoria. ¢) ;A qué altura sobre el suelo incide el agua sobre el
edificio, y con qué rapidez lo hace?

3.25. Un globo de 124 kg que lleva una canastilla de 22 kg desciende
con rapidez constante hacia abajo de 20.0 m/s. Una piedra de 1.0 kg
se lanza desde la canastilla con una velocidad inicial de 15.0 m/s
perpendicular a la trayectoria del globo en descenso, medida relativa
a una persona en reposo en la canasta. Esa persona ve que la piedra
choca contra el suelo 6.00 s después de lanzarse. Suponga que el glo-
bo continda su descenso a los 20.0 m/s constantes. a) ;A qué altura
estaba el globo cuando se lanzé la piedra? b) ;Y cuando chocé contra
el suelo? ¢) En el instante en que la piedra tocé el suelo, ;a qué dis-
tancia estaba de la canastilla? d) Determine las componentes hori-
zontal y vertical de la velocidad de la piedra justo antes de chocar
contra el suelo, relativas a un observador i) en reposo en la canastilla;
ii) en reposo en el suelo.

3.26. Un canon, situado a 60.0 m de la base de un risco vertical de
25.0 m de altura, dispara un obus de 15 kg con un dngulo de 43.0° so-
bre la horizontal, hacia el risco. a) ;Qué velocidad inicial minima debe
tener el obus para librar el borde superior del risco? b) El suelo en la
parte superior del risco es plano, con una altura constante de 25.0 m
sobre el caidon. En las condiciones del inciso a), ja qué distancia del
borde del risco cae el obus?

3.27. Un avién vuela con una velocidad de 90.0 m/s a un dngulo de
23.0° arriba de la horizontal. Cuando estd 114 m directamente arriba
de un perro parado en suelo plano, se cae una maleta del comparti-
miento de equipaje. ;A qué distancia del perro caerd la maleta? Ignore
la resistencia del aire.

Seccion 3.4 Movimiento en un circulo

3.28. Imagine que, en su primer dia de trabajo para un fabricante
de electrodomésticos, le piden que averigiie qué hacerle al periodo de
rotacion de una lavadora para triplicar la aceleracion centripeta, y
usted impresiona a su jefa contestando inmediatamente. ;Qué le
contesta?

3.29. La Tierra tiene 6380 km de radio y gira una vez sobre su eje en
24 h. a) {Qué aceleracion radial tiene un objeto en el ecuador? Dé su
respuesta en m/s2 y como fraccion de g. b) Si a,,4 en el ecuador fuera
mayor que g, los objetos saldrian volando hacia el espacio. (Veremos
por qué en el capitulo 5.) ;Cuadl tendria que ser el periodo de rotacién
para que esto sucediera?

3.30. Un modelo de rotor de helicéptero tiene cuatro aspas, cada una
de 3.40 m de longitud desde el eje central hasta la punta. El modelo se
gira en un tinel de viento a 550 rpm. a) ;Qué rapidez lineal tiene la
punta del aspa en m/s? b) ;Qué aceleracion radial tiene la punta del as-
pa, expresada como un miltiplo de la aceleracion debida a la grave-
dad, es decir, g?

3.31. En una prueba de un “traje g”, un voluntario se gira en un circulo
horizontal de 7.0 m de radio. ;Con qué periodo de rotacion la acelera-
cién centripeta tiene magnitud de a) 3.0g? b) ;10g?

3.32. El radio de la drbita terrestre alrededor del Sol (suponiendo que
fuera circular) es de 1.50 X 10% km, y la Tierra la recorre en 365 dias.
a) Calcule la magnitud de la velocidad orbital de la Tierra en m/s.
b) Calcule la aceleracién radial de la Tierra hacia el Sol en m/s”.
¢) Repita los incisos @) y b) para el movimiento del planeta Mercurio
(radio orbital = 5.79 X 10" km, periodo orbital = 88.0 dias).

3.33. Una rueda de la fortuna de
14.0 m de radio gira sobre un eje
horizontal en el centro (figura
3.42). La rapidez lineal de un pasa-
jero en el borde es constante e
igual a 7.00 m/s. ;Qué magnitud y
direccion tiene la aceleracion del
pasajero al pasar a) por el punto
mads bajo de su movimiento circu-
lar? b) ;Por el punto mds alto de su
movimiento circular? ¢) ;Cuédnto
tarda una revolucién de la rueda? 2
3.34. La rueda de la figura 3.42,
que gira en sentido antihorario, se
acaba de poner en movimiento. En
un instante dado, un pasajero en el borde de la rueda que estd pasando
por el punto mas bajo de su movimiento circular tiene una rapidez de
3.00 m/s, la cual estd aumentando a razén de 0.500 m/s”. a) Calcule la
magnitud y la direccién de la aceleracién del pasajero en este instante.
b) Dibuje la rueda de la fortuna y el pasajero mostrando sus vectores
de velocidad y aceleracion.

3.35. Hipergravedad. En el Centro de Investigacion Ames de la NA-
SA, se utiliza el enorme centrifugador “20-G” para probar los efectos de
aceleraciones muy elevadas (“hipergravedad™) sobre los pilotos y los
astronautas. En este dispositivo, un brazo de 8.84 m de largo gira uno de
sus extremos en un plano horizontal, mientras el astronauta se encuentra
sujeto con una banda en el otro extremo. Suponga que el astronauta estd
alineado en el brazo con su cabeza del extremo exterior. La aceleracién
mdxima sostenida a la que los seres humanos se han sometido en esta
mdquina cominmente es de 12.5 g. a) ;Qué tan rdpido debe moverse
la cabeza del astronauta para experimentar esta aceleracién mdxima?
b) ;Cudl es la diferencia entre la aceleracion de su cabeza y pies, si el
astronauta mide 2.00 m de altura? ¢) ;Qué tan rdpido, en rpm (rev/min),
gira el brazo para producir la aceleracién sostenida mdxima?

Figura 3.42 Ejercicios 3.33
y3.34.

Seccion 3.5 Velocidad relativa

3.36. Un vagén abierto de ferrocarril viaja a la derecha con rapidez
de 13.0 m/s relativa a un observador que estd parado en tierra. Alguien
se mueve en motoneta sobre el vagén abierto (figura 3.43). ;Qué ve-
locidad (magnitud y direccion) tiene la motoneta relativa al vagén
abierto si su velocidad relativa al observador en el suelo es a) 18.0 m/s
ala derecha? b) (3.0 m/s a la izquierda? ¢) ;Cero?

Figura 3.43 Ejercicio 3.36.
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3.37. Una “banda mévil” de un aeropuerto se mueve a 1.0 m/s y tiene
35.0 m de largo. Si una mujer entra en un extremo y camina a 1.5 m/s
relativa a la banda mévil, jcudnto tardard en llegar al otro extremo si
camina a) en la misma direccién en que se mueve la banda? b) ;Y en
la direccion opuesta?

3.38. Dos muelles, A y B, estdn situados en un rio; B estd 1500 m rio
abajo de A (figura 3.44). Dos amigos deben ir de A a B y regresar. Uno
rema un bote con rapidez constante de 4.00 km/h relativa al agua;
el otro camina en tierra a 4.00 km/h constantes. La velocidad del rio
es 2.80 km/h en la direccién de A a B. ;Cudnto tardard cada persona
en hacer el viaje redondo?

Figura 3.44 Ejercicio 3.38.
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3.39. Una canoa tiene una velocidad de 0.40 m/s al sureste, relativa a
la Tierra. La canoa estd en un rio que fluye al este a 0.50 m/s relativa
a la Tierra. Calcule la velocidad (magnitud y direccién) de la canoa
relativa al rfo.

3.40. Un piloto desea volar al oeste. Un viento de 80.0 km/h (aprox.
50 mi/h) sopla al sur. a) Si la rapidez (en aire estacionario) del avién es
de 320.0 km/h (aprox. 200 mi/h), ;qué rumbo debe tomar el piloto?
b) (Cudl es la rapidez del avion sobre el suelo? Ilustre con un diagrama
vectorial.

3.41. Cruce del rio I.  Un rio fluye al sur con rapidez de 2.0 m/s. Un
hombre cruza el rfo en una lancha de motor con velocidad relativa al
agua de 4.2 m/s al este. El rio tiene 800 m de ancho. a) ;Qué velocidad
(magnitud y direccion) tiene la lancha relativa a la Tierra? b) (Cudnto
tiempo tarda en cruzar el rio? ¢) ;A qué distancia al sur de su punto
de partida llegard a la otra orilla?

3.42. Cruce del rio II. a) ;Qué direccion deberia tomar la lancha
del ejercicio 3.41, para llegar a un punto en la orilla opuesta directa-
mente al este de su punto de partida? (La rapidez de la lancha relativa
al agua sigue siendo 4.2 m/s.) b) ;Qué velocidad tendria la lancha rela-
tiva a la Tierra? c) (Cudnto tardaria en cruzar el rio?

3.43. La nariz de un avién ultraligero apunta al sur, y el velocimetro
indica 35 m/s. Hay un viento de 10 m/s que sopla al suroeste relativo a
la Tierra. a) Dibuje un diagrama de suma vectorial que muestre la rela-
cién de BP/E (velocidad del avién relativa a la Tierra) con los dos vecto-
res dados. b) Si x es al este y y al norte, obtenga las componentes de
Upjg. ¢) Obtenga la magnitud y direccion de Upe.

Problemas

3.44. Un cohete de modelo defectuoso se mueve en el plano xy (la
direccion +y es vertical hacia arriba). La aceleracion del cohete
tiene componentes dadas por a,(1) = ar* y a,(1) = B — yt, donde
a=250m/s*, B=9.00m/s>y y=140m/s’. En t = 0 el cohe-
te estd en el origen y tiene velocidad inicial ¥y = vy,Z + v,,j con
Vo, = 1.00 m/s y vy, = 7.00 m/s. a) Calcule los vectores de velocidad
y posicién en funcién del tiempo. b) (Qué altura mdxima alcanza el
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cohete? ¢) Dibuje el camino que sigue el cohete. d) ;{Qué desplaza-
miento horizontal tiene el cohete al volver ay = 0?

3.45. Se realiza un lanzamiento en dngulo de un cohete desde la par-
te superior de una torre, cuya altura es /1, = 50.0 m. A causa del disefio
de los motores, sus coordenadas de posicién tienen la forma x(f) =
A + Bf y y(1) = C + Dr’, donde A, B, C'y D son constantes. Ade-
mds, la aceleracion del cohete 1.00 s después del lanzamiento es
@ = (4.00i + 3.007) m/s%. Considere que la base de la torre es el
origen de las coordenadas. @) Determine las constantes A, B, Cy D, in-
cluyendo sus unidades en el SI. b) En el instante posterior al lanzamien-
to del cohete, ;cudles son sus vectores de aceleracion y velocidad?
¢) (Cudles son las componentes x y y de la velocidad del cohete 10.0 s
después del lanzamiento, y qué tan rdpido se mueve el cohete? d) ;Cudl
es el vector de posicion del cohete 10.0 s después del lanzamiento?
3.46. Un ave vuela en el plano xy con un vector de velocidad dado
por O = (a— BA)i + ytj, donde a =24mfs, B=1.6m[s’ y
v = 4.0 m/s%. La direccién +y es vertical hacia arriba. En ¢ = 0, el ave
estd en el origen. @) Calcule los vectores de posicién y aceleracion del
ave en funcién del tiempo. b) (Qué altura (coordenada y) tiene el ave
al volar sobre x = 0 por primera vez después de t = 0?

3.47. Un cohete de prueba se
lanza acelerandolo a 1.25 m/s’
por un plano inclinado de
200.0 m, partiendo del reposo en
el punto A (figura 3.45). El pla-
no inclinado se eleva a 35.0° por
encima de la horizontal, y en el
instante en que el cohete sale del
plano, sus motores se apagan y
queda sujeto solamente a la gravedad (se puede ignorar la resistencia del
aire). Determine a) la altura maxima sobre el suelo a la que llega el co-
hete, y b) el alcance maximo horizontal del cohete mds alld del punto A.
3.48. Atletismo en Marte. En el salto de longitud, una atleta se lan-
za en angulo por encima del suelo y cae a la misma altura, tratando de
alcanzar la mdxima distancia horizontal. Suponga que en la Tierra, ella
se encuentra en el aire durante un tiempo 7, alcanza una altura maxima
h 'y una distancia horizontal D. Si ella saltara exactamente de la misma
forma durante una competencia en Marte, donde gy, €s 0.379 del va-
lor de g en la Tierra, determine su tiempo en el aire, su altura maxima y
la distancia horizontal alcanzada. Exprese cada una de estas tres canti-
dades en términos de su valor en la Tierra. Ignore la resistencia del aire
en ambos planetas.

3.49. ;Dinamita! Una cuadrilla de demolicién usa dinamita para de-
rribar un edificio viejo. Los fragmentos del edificio salen disparados en
todas direcciones, y después se encuentran a distancias de hasta 50 m
de la explosion. Estime la rapidez médxima con que salieron disparados
los fragmentos. Describa todas las suposiciones que haga.

3.50. Espiral ascendente. Es comiin ver a las aves de presa ascen-
der en corrientes calientes de aire, por lo general describiendo una tra-
yectoria espiral. Se puede modelar un movimiento espiral como
movimiento circular uniforme combinado con una velocidad constante
hacia arriba. Suponga que un ave describe un circulo completo con ra-
dio de 8.00 m cada 5.00 s y asciende verticalmente a razén de 3.00 m/s.
Determine lo siguiente: a) la rapidez del ave relativa al suelo; b) la
aceleracion del ave (magnitud y direccion); y ¢) el dngulo entre el vec-
tor de velocidad del ave y la horizontal.

3.51. Un veterinario de la selva provisto de una cerbatana cargada con
un dardo sedante y un mono astuto de 1.5 kg estdn a 25 m arriba del
suelo en drboles separados 90 m. En el momento justo en que el veteri-
nario dispara el dardo horizontalmente al mono, éste se deja caer del
arbol en un vano intento por escapar del dardo. ;Qué velocidad de sali-
da minima debe tener el dardo para golpear al mono antes de que éste
llegue al suelo?

3.52. Una doble de cine se deja caer desde un helicéptero que estd
a 30.0 m sobre el suelo y se mueve con velocidad constante, cuyas

Figura 3.45 Problema 3.47.




