
3
METAS DE 
APRENDIZAJE
Al estudiar este capítulo, 
usted aprenderá:

• Cómo representar la posición 
de un cuerpo en dos o en tres 
dimensiones usando vectores.

• Cómo determinar el vector 
velocidad de un cuerpo 
conociendo su trayectoria.

• Cómo obtener el vector aceleración
de un cuerpo, y por qué un cuerpo
puede tener una aceleración aun
cuando su rapidez sea constante. 

• Cómo interpretar las componentes
de la aceleración de un cuerpo
paralela y perpendicular a su
trayectoria.

• Cómo describir la trayectoria curva
que sigue un proyectil.

• Las ideas clave detrás del
movimiento en una trayectoria 
circular, con rapidez constante 
o con rapidez variable.

• Cómo relacionar la velocidad de 
un cuerpo en movimiento visto
desde dos marcos de referencia
distintos.
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MOVIMIENTO 
EN DOS O EN TRES 

DIMENSIONES

Cuando un bate golpea una pelota de béisbol, ¿qué determina dónde cae la pe-
lota? ¿Cómo describimos el movimiento de un carro de montaña rusa en una
curva o el vuelo de un halcón alrededor de un campo abierto? Si lanzamos un

globo lleno de agua horizontalmente desde una ventana, ¿tardará el mismo tiempo 
en llegar al suelo que si sólo lo dejamos caer?

No podemos contestar estas preguntas usando las técnicas del capítulo 2, donde
consideramos que las partículas se movían sólo en línea recta. En vez de ello, necesi-
tamos extender nuestras descripciones del movimiento a situaciones en dos y en tres
dimensiones. Seguiremos empleando las cantidades vectoriales de desplazamiento,
velocidad y aceleración; sin embargo, ahora no estarán todas en una misma línea. 
Veremos que muchos movimientos importantes se dan sólo en dos dimensiones, es
decir, en un plano, y pueden describirse con dos componentes de posición, velocidad
y aceleración.

También necesitamos considerar cómo describen el movimiento de una partícula
observadores diferentes que se mueven unos con respecto a otros. El concepto de 
velocidad relativa desempeñará un papel importante más adelante en este libro, cuan-
do estudiemos colisiones, exploraremos los fenómenos electromagnéticos, y cuando
presentemos la teoría especial de la relatividad de Einstein.

En este capítulo se conjunta el lenguaje de vectores que vimos en el capítulo 1 con
el lenguaje de la cinemática del capítulo 2. Como antes, nos interesa describir el mo-
vimiento, no analizar sus causas. No obstante, el lenguaje que aprenderemos aquí re-
sultará indispensable más adelante, al estudiar la relación entre fuerza y movimiento.

?Si un automóvil 
toma una curva con 
rapidez constante, 
¿está acelerando? 
Si es así, ¿en qué 
dirección acelera?
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La posición P de una
partícula en un tiempo
dado tiene las coordenadas
x, y, z.

z

y

x
x

y

x

zk
P

O

y

z

rr

r

j

î
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El vector de posición del punto P
tiene las componentes x, y, z:
r 5 x i 1 y j 1 zk.

3.1 El vector de posición del origen 
al punto P tiene componentes x, y y z. 
La trayectoria que la partícula sigue en 
el espacio es en general una curva 
(gura 3.2).

rS

La posición
de la partícula
en el tiempo t1.

La posición de la partícula
en el tiempo t2.
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3.2 La velocidad media entre los 
puntos P1 y P2 tiene la misma dirección
que el desplazamiento D rS.

vSmed

3.3 Los vectores y son las 
velocidades instantáneas en los puntos 
P1 y P2, como se muestra en la gura 3.2.

vS2vS1

3.1 Vectores de posición y velocidad
Para describir el movimiento de una partícula en el espacio, primero tenemos que des-
cribir su posición. Considere una partícula que está en el punto P en cierto instante. El
vector de posición de la partícula en ese instante es un vector que va del origen del
sistema de coordenadas al punto P (gura 3.1). Las coordenadas cartesianas x, y y z
de P son las componentes x, y y z de Usando los vectores unitarios que presenta-
mos en la sección 1.9, podemos escribir

(vector de posición) (3.1)

Durante un intervalo de tiempo Dt, la partícula se mueve de Pl, donde su vector de
posición es a P2, donde su vector de posición es El cambio de posición (el des-
plazamiento) durante este intervalo es 

Denimos la velocidad media durante este intervalo igual que en el
capítulo 2 para movimiento rectilíneo, como el desplazamiento dividido entre el in-
tervalo de tiempo:

(vector de velocidad media) (3.2)

Dividir un vector entre un escalar es realmente un caso especial de multiplicar 
un vector por un escalar, que se describió en la sección 1.7; la velocidad media 

es igual al vector de desplazamiento multiplicado por 1>Dt, el recíproco 
del intervalo de tiempo. Observe que la componente x de la ecuación (3.2) es

Esto es precisamente la ecuación (2.2), la
expresión para la velocidad media que dedujimos en la sección 2.1 para el movi-
miento unidimensional.

Aquí denimos la velocidad instantánea igual que en el capítulo 2: como el lími-
te de la velocidad media cuando el intervalo de tiempo se aproxima a 0, y es la tasa
instantánea de cambio de posición con el tiempo. La diferencia clave es que tanto la
posición como la velocidad instantánea ahora son vectores:

(vector de velocidad instantánea) (3.3)

La magnitud del vector en cualquier instante es la rapidez v de la partícula en ese
instante. La dirección de en cualquier instante es la dirección en que la partícula 
se mueve en ese instante.

Observe que conforme P1 y P2 de la gura 3.2 se acercan cada vez más.
En el límite, se vuelve tangente a la trayectoria. La dirección de en el límite
también es la dirección de la velocidad instantánea Esto conduce a una conclusión
importante: en cualquier punto de la trayectoria, el vector de velocidad instantánea
es tangente a la trayectoria en ese punto (gura 3.3).

A menudo es más sencillo calcular el vector de velocidad instantánea empleando
componentes. Durante cualquier desplazamiento los cambios Dx, Dy y Dz en las
tres coordenadas de la partícula son las componentes de Por lo tanto, las compo-
nentes vx, vy y vz de la velocidad instantánea son simplemente las derivadas en el
tiempo de x, y y z. Es decir,

(componentes de la
velocidad instantánea)

(3.4)

La componente x de es vx 5 dx>dt, que es la ecuación (2.3): la expresión para la 
velocidad instantánea en movimiento rectilíneo que obtuvimos en la sección 2.2. 
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3.4 Las dos componentes de velocidad
para movimiento en el plano xy.
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3.5 En t 5 0 el vehículo tiene vector de posición y velocidad
instantánea Asimismo, y , son los vectores en t 5 1.0 s;

y son los vectores en t 5 2.0 s.vS2rS2

vS1rS1vS0 .
rS0

Por lo tanto, la ecuación (3.4) es una extensión directa de la idea de velocidad ins-
tantánea al movimiento en tres dimensiones.

Podemos obtener este mismo resultado derivando la ecuación (3.1). Los vectores
unitarios y tienen magnitud y dirección constantes, así que sus derivadas son 
cero; entonces,

(3.5)

Esto muestra otra vez que las componentes de son dx>dt, dy>dt y dz>dt.
La magnitud del vector de velocidad instantánea , esto es, la rapidez, está dada en

términos de las componentes vx, vy y vz aplicando el teorema de Pitágoras

(3.6)

La gura 3.4 muestra la situación cuando la partícula se mueve en el plano xy.
Aquí, z y vz son cero, y la rapidez (la magnitud de es

y la dirección de la velocidad instantánea está dada por el ángulo a de la gura. 
Vemos que

(3.7)

(Siempre usamos letras griegas para los ángulos. Utilizamos a para la dirección del
vector de la velocidad instantánea para evitar confusiones con la dirección u del vec-
tor de posición de la partícula.)

El vector de velocidad instantánea suele ser más interesante y útil que el de la 
velocidad media. De ahora en adelante, al usar el término “velocidad”, siempre nos
referiremos al vector de velocidad instantánea (no al vector de velocidad media).
Usualmente ni nos molestaremos en llamar vector a ; el lector debe recordar que 
la velocidad es una cantidad vectorial con magnitud y dirección.
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Ejemplo 3.1 Cálculo de velocidad media e instantánea

Se está usando un vehículo robot para explorar la supercie de Marte.
El módulo de descenso es el origen de coordenadas; en tanto que la su-
percie marciana circundante está en el plano xy. El vehículo, que re-
presentamos como un punto, tiene coordenadas x y y que varían con el
tiempo:

a) Obtenga las coordenadas del vehículo y su distancia con respecto al
módulo en t 5 2.0 s. b) Obtenga los vectores de desplazamiento y ve-
locidad media del vehículo entre t 5 0.0 s y t 5 2.0 s. c) Deduzca una
expresión general para el vector de velocidad instantánea del vehículo.
Exprese la velocidad instantánea en t 5 2.0 s en forma de componen-
tes y además en términos de magnitud y dirección.

SOLUCIÓN

IDENTIFICAR: Este problema implica movimiento en una trayectoria
bidimensional (es decir, en un plano). Por lo tanto, deberemos usar las
expresiones para los vectores de desplazamiento, velocidad media y
velocidad instantánea que obtuvimos en esta sección. (En las expresio-
nes más sencillas de las secciones 2.1 y 2.2 no intervienen vectores, y
sólo son válidas para movimiento rectilíneo.)

PLANTEAR: La trayectoria del vehículo se muestra en la gura 3.5.
Usaremos la ecuación (3.1) para la posición la expresión

para el desplazamiento, la ecuación (3.2) para la ve-D rS 5 rS2 2 rS1

rS,

 y 5 1 1.0 m/s 2 t 1 1 0.025 m/s3 2 t3

 x 5 2.0 m 2 1 0.25 m/s2 2 t2

locidad media y las ecuaciones (3.5) y (3.6) para la velocidad ins-
tantánea y su dirección. Las incógnitas se indican en el enunciado del
problema.

continúa



Evalúe su comprensión de la sección 3.1 ¿En cual de las siguientes
situaciones el vector de velocidad media en un intervalo sería igual a la velocidad
instantánea al nal del intervalo? i) Un cuerpo que se mueve en una trayectoria curva
a rapidez constante; ii) un cuerpo que se mueve en una trayectoria curva y aumenta su rapidez;
iii) un cuerpo que se mueve en línea recta a rapidez constante; iv) un cuerpo que se mueve 
en línea recta y aumenta su rapidez.

❚

vS
vSmed
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EJECUTAR: a) En el instante t 5 2.0 s las coordenadas del vehículo
son

La distancia del vehículo al origen en este instante es

b) Para obtener el desplazamiento y la velocidad media, expresa-
mos el vector de posición en función del tiempo t. De la ecuación
(3.1):

En el instante t 5 0.0 s el vector de posición es

Del inciso a) sabemos que, en t 5 2.0 s, el vector de posición es

Por lo tanto, el desplazamiento entre t 5 0.0 s y t 5 2.0 s es

Durante el intervalo entre t 5 0.0 s y t 5 2.0 s, el vehículo se movió
1.0 m en la dirección 2x y 2.2 m en la dirección 1y. La velocidad me-
dia en este intervalo es el desplazamiento dividido entre el tiempo
transcurrido (ecuación 3.2):

Las componentes de esta velocidad media son

c) Por la ecuación (3.4), las componentes de la velocidad instantá-
nea son las derivadas de las coordenadas respecto a t:

 vy 5
dy

dt
5 1.0 m/s 1 1 0.025 m/s3 2 1 3t2 2 vx 5

dx

dt
5 120.25 m/s2 2 1 2t 2

vmed-x 5 20.50 m/s  vmed-y 5 1.1 m/s

 5 120.50 m/s 2 d̂ 1 1 1.1 m/s 2  ê

 vSmed 5
D rS

Dt
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121.0 m 2 d̂ 1 1 2.2 m 2ê

2.0 s 2 0.0 s

 5 121.0 m 2 d̂ 1 1 2.2 m 2ê D rS 5 rS2 2 rS0 5 1 1.0 m 2 d̂ 1 1 2.2 m 2ê 2 1 2.0 m 2 d̂rS2 5 1 1.0 m 2 d̂ 1 1 2.2 m 2ê rS2

rS0 5 1 2.0 m 2 d̂ 1 1 0.0 m 2êrS0

   1 3 1 1.0 m/s 2 t 1 1 0.025 m/s3 2 t3 4 ê 5  32.0 m 2 1 0.25 m/s2 2 t2 4  d̂ rS 5  x d̂ 1 y ê

rS

r 5 "x2 1 y2 5 "1 1.0 m 2 2 1 1 2.2 m 2 2 5 2.4 m

 y 5 1 1.0 m/s 2 1 2.0 s 2 1 1 0.025 m/s3 2 1 2.0 s 2 3 5 2.2 m

 x 5 2.0 m 2 1 0.25 m/s2 2 1 2.0 s 2 2 5 1.0 m

Así, podemos escribir el vector de velocidad instantánea como

En el tiempo t 5 2.0 s, las componentes de la velocidad instantánea
son

La magnitud de la velocidad instantánea (es decir, la rapidez) en 
t 5 2.0 s es

Su dirección con respecto al eje 1x está dada por el ángulo a, donde,
por la ecuación (3.7),

Una calculadora mostraría que la tangente inversa de 21.3 es 2528.
No obstante, como vimos en la sección 1.8, hay que examinar un dibu-
jo del vector para decidir su dirección. La gura 3.5 muestra que la
respuesta correcta para a es 2528 1 1808 5 1288.

EVALUAR: Tómese un momento para comparar las componentes de 
la velocidad media que obtuvimos en el inciso b) para el intervalo 
de t 5 0.0 s a t 5 2.0 s (vmed-x5 20.50 m>s, vmed-y 5 1.1 m>s) con las
componentes de la velocidad instantánea en t 5 2.0 s que obtuvimos
en el inciso c) (vx 5 21.0 m>s, vy 5 1.3 m>s). En general, la compa-
ración muestra que, igual que en una sola dimensión, el vector de ve-
locidad media durante un intervalo no es igual a la velocidad 
instantánea al nal del intervalo (véase el ejemplo 2-1).

Usted debería calcular el vector de posición, el vector de velocidad
instantánea, la rapidez y dirección del movimiento en t 5 0.0 s y
t 5 1.0 s. Los vectores de posición y velocidad instantánea
en t 5 0.0 s, 1.0 s y 2.0 s se muestran en la gura 3.5. Observe que en
todos los puntos el vector de velocidad instantánea es tangente a la
trayectoria. La magnitud de aumenta al avanzar el vehículo, lo que
indica que la rapidez del vehículo está aumentando.
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3.2 El vector de aceleración
Consideremos ahora la aceleración de una partícula que se mueve en el espacio. Al
igual que en el movimiento rectilíneo, la aceleración describe el cambio en la veloci-
dad de la partícula; no obstante, aquí la trataremos como un vector para describir los
cambios tanto en la magnitud de la velocidad (es decir, la rapidez) como en la direc-
ción de la velocidad (esto es, la dirección en que se mueve la partícula).

En la gura 3.6a, un automóvil (tratado como partícula) se mueve en una trayecto-
ria curva. Los vectores y representan las velocidades instantáneas del auto en elvS2vS1



                Este automóvil acelera frenando
           mientras toma una curva. (Su
        velocidad instantánea cambia tanto
    en magnitud como en dirección.)

a)
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Para determinar la aceleración media del auto entre 
P1 y P2, primero obtenemos el cambio en la 
velocidad Dv restando v1 de v2. (Observe que 
v1 1 Dv 5 v2.)

S S S

S S S
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P1

Sv1

Dv 
S

Sv2

c)

La aceleración media tiene la misma dirección
que el cambio de velocidad, Dv.S

amed 5 
S DvS

D t

3.6 a) Un automóvil se mueve por una curva de P1 a P2. b) Se obtiene mediante resta de vectores. c) El vector
representa la aceleración media entre P1 y P2.aSmed 5 DvS/Dt

DvS 5 vS2 2 vS1

instante t1, cuando el auto está en el punto P1, y en t2 cuando está en P2. Las dos velo-
cidades pueden diferir en magnitud y dirección. Durante el intervalo de t1 a t2, el cam-
bio vectorial de velocidad es (gura 3.6b). Denimos la aceleración
media del auto en este intervalo como el cambio de velocidad dividido entre el
intervalo t2 2 t1 5 Dt:

(vector de aceleración media) (3.8)

La aceleración media es una cantidad vectorial en la misma dirección que el 
vector (gura 3.6c). Observe que es la resultante de la velocidad original 

y el cambio (gura 3.6b). La componente x de la ecuación (3.8) es
que no es sino la ecuación (2.4) para la

aceleración media en movimiento rectilíneo.
Al igual que en el capítulo 2, denimos la aceleración instantánea en el punto

P1 como el límite de la aceleración media cuando el punto P2 se acerca a Pl y y Dt
se acercan a cero. La aceleración instantánea también es igual a la tasa (variación)
instantánea de cambio de velocidad con el tiempo. Como no estamos limitados a mo-
vimiento rectilíneo, la aceleración instantánea ahora es un vector:

(vector de aceleración instantánea) (3.9)

El vector de velocidad como vimos, es tangente a la trayectoria de la partícula.
No obstante, las guras 3.6c y 3.7 muestran que si la trayectoria es curva, el vector de
aceleración instantánea siempre apunta hacia el lado cóncavo de la trayectoria, es
decir, hacia el interior de cualquier curva descrita por la partícula.

CUIDADO Cualquier partícula que siga una trayectoria curva está acelerando Si
una partícula sigue una trayectoria curva, su aceleración siempre es distinta de cero, aun si se
mueve con rapidez constante. Quizá le parezca que esta conclusión es contraria a su intuición, 
pero más bien va contra el uso cotidiano de la palabra “aceleración” para implicar que la velo-
cidad aumenta. La denición más precisa de la ecuación (3.9) muestra que la aceleración no 
es cero cuando el vector de velocidad cambia de cualquier forma, ya sea en su magnitud, direc-
ción o ambas. ❚

Para convencerse de que una partícula no tiene aceleración cero cuando se
mueve en una trayectoria curva con rapidez constante, piense en lo que siente
cuando viaja en automóvil. Si el auto acelera, usted tiende a moverse en dirección
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... tomamos el límite de  amed
cuando P2 se aproxima a P1 ... 

La aceleración instantánea apunta
hacia el lado cóncavo de la trayectoria.

S

... lo que significa
que Dv y D t  se
aproximan a 0. 

S

Para obtener la aceleración
instantánea 
a en P1 ... S

Sv1

Sv1

Sv2

3.7 La aceleración instantánea en el
punto P1 de la gura 3.6.
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ax

ay
aS

3.8 Cuando el arquero dispara la echa,
ésta acelera tanto hacia adelante como
hacia arriba. Por lo tanto, su vector de 
aceleración tiene una componente 
horizontal (ax) y también una componente
vertical (ay).

Ejemplo 3.2 Cálculo de aceleración media e instantánea

Veamos otra vez los movimientos del vehículo robot del ejemplo 3.1.
Determinamos que las componentes de la velocidad instantánea en
cualquier instante t son

y que el vector de velocidad es

a) Obtenga las componentes de la aceleración media en el intervalo 
de t 5 0.0 s a t 5 2.0 s. b) Determine la aceleración instantánea en 
t 5 2.0 s.

SOLUCIÓN

IDENTIFICAR: Este ejemplo utiliza la relación vectorial entre veloci-
dad, aceleración media y aceleración instantánea.

PLANTEAR: En el inciso a), determinamos primero los valores de vx y
vy al principio y al nal del intervalo, y después usamos la ecuación
(3.8) para calcular las componentes de la aceleración media. En el in-

 1 31.0 m/s 1 1 0.075 m/s3 2 t2 4 ê vS 5 vx  d̂ 1 vy  ê 5 120.50 m/s2 2 t d̂

 vy 5
dy

dt
5 1.0 m/s 1 1 0.025 m/s3 2 1 3t2 2 vx 5

dx

dt
5 120.25 m/s2 2 1 2t 2

ciso b) determinamos las componentes de la aceleración instantánea en
cualquier tiempo t derivando respecto al tiempo las componentes de la
velocidad, como en la ecuación (3.10).

EJECUTAR: a) Si sustituimos t 5 0.0 s, o bien, t 5 2.0 s en las expre-
siones para vx y vy, veremos que al principio del intervalo (t 5 0.0 s)
las componentes de velocidad son

y que al nal del intervalo (t 5 2.0 s) las componentes son

Los valores en t 5 2.0 s son los mismos que obtuvimos en el ejemplo
3.1.) Así, las componentes de la aceleración media en el intervalo son

b) Con la ecuación (3.10), obtenemos

ax 5
dvx

dt
5 20.50 m/s2  ay 5

dvy

dt
5 1 0.075 m/s3 2 1 2t 2

 amed-y 5
Dvy

Dt
5

1.3 m/s 2 1.0 m/s

2.0 s 2 0.0 s
5 0.15 m/s2

 amed-x 5
Dvx

Dt
5

21.0 m/s 2 0.0 m/s

2.0 s 2 0.0 s
5 20.5 m/s2

vx 5 21.0 m/s  vy 5 1.3 m/s

vx 5 0.0 m/s  vy 5 1.0 m/s

opuesta a la aceleración del vehículo. (Veremos por qué en el capítulo 4.) Así, tende-
mos a movernos hacia atrás cuando el auto acelera hacia adelante (aumenta su veloci-
dad), y hacia el frente cuando el auto desacelera (frena). Si el auto da vuelta en un
camino horizontal, tendemos a deslizamos hacia afuera de la curva; por lo tanto, el
auto tiene una aceleración hacia adentro de la curva.

Normalmente nos interesará la aceleración instantánea, no la media. Por ahora,
usaremos el término “aceleración” para referirnos al vector de aceleración instantá-
nea, 

Cada componente del vector de aceleración es la derivada de la componente co-
rrespondiente de la velocidad:

(componentes de la aceleración
instantánea)

(3.10)

En términos de vectores unitarios,

(3.11)

La componente x de las ecuaciones (3.10) y (3.11), ax5 dvx>dt, es la expresión de la
sección 2.3 para la aceleración instantánea en una dimensión, ecuación (2.5). La fi-
gura 3.8 muestra un ejemplo de vector de aceleración que tiene componentes tanto x 
como y.

Además, como cada componente de velocidad es la derivada de la coordenada co-
rrespondiente, expresamos las componentes ax, ay y az del vector aceleración como

(3.12)

y el vector de aceleración como

(3.13)aS 5
d2x

dt2
 d̂ 1 d2y

dt2
 ê 1 d2z

dt2
 k̂

aS

ax 5
d2x

dt2
  ay 5

d2y

dt2
  az 5

d2z

dt2

aS

aS 5
dvx

dt
 d̂ 1

dvy

dt
 ê 1

dvz

dt
 k̂

ax 5
dvx

dt
  ay 5

dvy

dt
  az 5

dvz

dt

aS.
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Componentes perpendicular y paralela de la aceleración
El vector de aceleración de una partícula puede describir cambios en la rapidez de
ésta, en la dirección de su movimiento o en ambas. Resulta útil destacar que la com-
ponente de la aceleración paralela a la trayectoria de la partícula —esto es, paralela a
la velocidad— nos indica acerca de los cambios en la rapidez de la partícula; en tanto
que la componente de la aceleración perpendicular a la trayectoria —y por lo tanto,
perpendicular a la velocidad— nos indica los cambios en la dirección del movimiento
de la partícula. La gura 3.10 muestra estas componentes, que se denotan como y

Para ver por qué las componentes paralela y perpendicular de tienen tales pro-
piedades, consideremos dos casos especiales.

En la gura 3.11a, el vector de aceleración es paralelo a la velocidad de mane-
ra que tiene sólo una componente paralela (es decir, El cambio de velo-
cidad en un intervalo pequeño Dt tiene la misma dirección que y, por lo tanto,
que La velocidad al nal de Dt, dada por es un vector con la
misma dirección que pero de mayor magnitud. Es decir, durante el intervalo Dt
la partícula de la gura 3.11a se movió en línea recta con rapidez creciente.

En la gura 3.11b, la aceleración es perpendicular a la velocidad, de manera que 
tiene sólo una componente perpendicular (es decir, En un intervalo pe-
queño Dt, el cambio de velocidad es un vector casi perpendicular a Otra vez,

pero aquí y tienen diferente dirección. Al aproximarse el intervalovS2vS1vS2 5 vS1 1 DvS,
vS1 .DvS

ai 5 0).a'

aS

vS1

vS2 5 vS1 1 DvS,vS2vS1 .
aSDvS

a' 5 0).aiaS
vS1 ,

aSa'.
ai  

aS

a = 1288

b = 1498
y (m)

x (m)
O

0.5

1.0

1.5

2.0

0.5 1.0 1.5

Trayectoria
del vehículo
robot

t  0.0 s

2.0

2.5

t  1.0 s

t  2.0 s

v2
S

v0
S

v1
S

a2
S

a1
S

a0
S

3.9 Trayectoria del vehículo robot que muestra la velocidad y
aceleración en t 5 0.0 s y t 5 1.0 s y 
y t 5 2.0 s y aS2 2 .1vS2

aS1 21vS1aS0 2 ,1vS0

P

a

a ||

aS

vS

S

Trayectoria de
la partícula

Componente de a
perpendicular a la trayectoria.

Normal a la
trayectoria
en P.

Tangente a la
trayectoria en P.

Componente de
a paralela a la
trayectoria.

S

3.10 La aceleración puede descomponerse
en una componente paralela a la 
trayectoria (es decir, en la tangente a 
la trayectoria), y una componente 
perpendicular a la trayectoria 
(es decir, en la normal a la trayectoria).

a'

ai

Podemos escribir el vector de aceleración instantánea como

En el instante t 5 2.0 s, las componentes de la aceleración instantánea
son

El vector de aceleración en este instante es

La magnitud de la aceleración en este instante es

La dirección de con respecto al eje x positivo está dada por el ángulo
b, donde

EVALUAR: Usted debería utilizar los resultados del inciso b) para 
calcular la aceleración instantánea en t 5 0.0 s y t 5 1.0 s. La gura

 b 5 180° 2 31° 5 149°

 tan b 5
ay

ax

5
0.30 m/s2

20.50 m/s2
5 20.60

aS

 5 " 120.50 m/s2 2 2 1 1 0.30 m/s2 2 2 5 0.58 m/s2

 a 5 "ax 

2 1 ay 

2

aS 5 120.50 m/s2 2 d̂ 1 1 0.30 m/s2 2  ê

ax 5 20.50 m/s2  ay 5 1 0.15 m/s3 2 1 2.0 s 2 5 0.30 m/s2

aS 5 ax  d̂ 1 ay  ê 5 120.50 m/s2 2 d̂ 1 1 0.15 m/s3 2 t ê

aS 3.9 muestra la trayectoria y los vectores de velocidad y aceleración en
t 5 0.0 s, 1.0 s y 2.0 s. Observe que y no están en la misma direc-
ción en ningún momento. El vector de velocidad es tangente a la tra-
yectoria, y el de aceleración apunta hacia el lado cóncavo de ésta.aS

vS
aSvS

v2v1
S

S

S
S

Aceleración paralela a la
velocidad de la partícula:
• La magnitud cambia, pero no
   la dirección de la velocidad. 
• La partícula se mueve en
  línea recta con rapidez
  cambiante. 

a)

a

Dv

a

v1

v2

DvS S

S

S

Aceleración perpendicular
a la velocidad de la partícula:
• La dirección cambia, pero no
   la magnitud de la velocidad. 
• La partícula se mueve en
   una curva con rapidez
   constante.

b)

f

3.11 El efecto de la aceleración con dirección a) paralela y b) perpendicular a la 
velocidad de la partícula.
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Componente paralela
de la aceleración.

Componente
perpendicular
de la aceleración.

Posición del vehículo en t 5 2.0 s

Trayectoria del vehículo

218 a ||

a

aS

vS

3.13 Componentes paralela y perpendicular de la aceleración del
vehículo en t 5 2.0 s.

... la aceleración es
normal a la trayectoria.

a) Cuando la rapidez es constante en una
trayectoria curva ...

P

Normal en    P

aS

vS

... la aceleración apunta
hacia delante de la normal.

b) Cuando la rapidez se incrementa en una
trayectoria curva ...

P

Normal en     P

aS

vS

... la aceleración apunta
hacia atrás de la normal.

c) Cuando la rapidez disminuye en una
trayectoria curva ...

P

Normal en P
aS

vS

3.12 Vectores de velocidad y aceleración para una partícula que pasa por un punto P de una trayectoria curva con rapidez a) constante,
b) creciente y c) decreciente.

Ejemplo 3.3 Cálculo de las componentes paralela y perpendicular de la aceleración

Para el vehículo de los ejemplos 3.1 y 3.2, obtenga las componentes
paralela y perpendicular de la aceleración en t 5 2.0 s.

SOLUCIÓN

IDENTIFICAR: Queremos obtener las componentes del vector de ace-
leración que sean paralela y perpendicular al vector de velocidad 

PLANTEAR: Obtuvimos las direcciones de y en los ejemplos 3.2 y
3.1, respectivamente, lo cual nos permite determinar el ángulo entre
los dos vectores y, por lo tanto, las componentes de 

EJECUTAR: En el ejemplo 3.2 vimos que en t5 2.0 s la partícula tiene
una aceleración de magnitud 0.58 m>s2 con un ángulo de 1498 con res-
pecto al eje 1x. Por el ejemplo 3.1, sabemos que en ese instante el vec-
tor de velocidad tiene un ángulo de 128° con respecto al eje 1x. Así, la
gura 3.9 muestra que el ángulo entre y es 1498 2 1288 5 218 (-
gura 3.13). Las componentes paralela y perpendicular de la aceleración
son entonces

 a' 5 a sen 21° 5 1 0.58 m/s2 2  sen 21° 5 0.21 m/s2

 ai 5 a cos 21° 5 1 0.58 m/s2 2  cos 21° 5 0.54 m/s2

vSaS

aS.

vSaS
vS.aS

EVALUAR: La componente paralela tiene la misma dirección que 
lo cual indica que la rapidez aumenta en este instante; el valor de 5

0.54 m>s2 signica que la rapidez está aumentando a una tasa de 0.54
m>s por segundo. Como la componente perpendicular no es cero, se
sigue que en este instante el vehículo cambia de dirección y sigue una
trayectoria curva; en otras palabras, el vehículo está dando vuelta.

a'

ai
vS,ai

Dt a cero, el ángulo f en la gura también se acerca a cero, se hace perpendicular
tanto a como a y tienen la misma magnitud. Dicho de otro modo, la rapi-
dez de la partícula no cambia, pero la dirección del movimiento cambia y su trayecto-
ria se curva.

En general, la aceleración tiene componentes tanto paralela como perpendicular
a la velocidad como en la gura 3.10. Entonces, cambiarán tanto la rapidez de la
partícula (descrita por la componente paralela como su dirección (descrita por 
la componente perpendicular , por lo que seguirá una trayectoria curva.

La gura 3.12 muestra una partícula que se mueve con trayectoria curva en tres si-
tuaciones distintas: rapidez constante, creciente y decreciente. Si la rapidez es cons-
tante, es perpendicular, o normal, a la trayectoria y a y apunta hacia el lado
cóncavo de la trayectoria (gura 3.12a). Si la rapidez aumenta, todavía hay una com-
ponente perpendicular de , pero también una paralela con la misma dirección que 
(gura 3.12b). Entonces, apunta hacia adelante de la normal a la trayectoria (como
en el ejemplo 3.2). Si la rapidez disminuye, la componente paralela tiene dirección
opuesta a  y apunta hacia atrás de la normal a la trayectoria (gura 3.12c). Usare-
mos otra vez esas ideas en la sección 3.4 al estudiar el caso especial de movimiento
en un círculo.

aS,vS

aS,
vSaS

vSaS

a')
ai)

vS,
aS

vS2vS1vS2 ,vS1

DvS
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Ejemplo conceptual 3.4 Aceleración de una esquiadora

Una esquiadora se mueve sobre una rampa de salto, como se muestra en
la gura 3.14a. La rampa es recta entre A y C, y es curva a partir de C.
La rapidez de la esquiadora aumenta al moverse pendiente abajo de 
A a E, donde su rapidez es máxima, disminuyendo a partir de ahí. Di-
buje la dirección del vector de aceleración en los puntos B, D, E y F.

SOLUCIÓN

La gura 3.14b muestra la solución. En el punto B, la esquiadora se
mueve en línea recta con rapidez creciente, así que su aceleración
apunta cuesta abajo, en la misma dirección que su velocidad.

En D la esquiadora sigue una trayectoria curva, así que su acelera-
ción tiene una componente perpendicular. También hay una compo-
nente en la dirección del movimiento porque su rapidez aún va en
aumento en este punto. Por lo tanto, el vector de aceleración apunta
adelante de la normal a su trayectoria en el punto D.

La rapidez de la esquiadora no cambia instantáneamente en E; la
rapidez es máxima en este punto, así que su derivada es cero. Por lo
tanto, no hay componente paralela de y la aceleración es perpendicu-
lar al movimiento.

Por último, en F la aceleración tiene una componente perpendicu-
lar (porque la trayectoria es curva aquí) y una componente paralela
opuesta a la dirección de su movimiento (porque la rapidez está dismi-
nuyendo). De manera que en este punto, el vector de aceleración apun-
ta hacia atrás de la normal a la trayectoria.

En la siguiente sección examinaremos la aceleración de la esquia-
dora después de salir de la rampa.

aS,

A

Dirección
del movimiento

B

C

D
E

F

a)

b)

Normal en E
Normal en D Normal en F

3.14 a) La trayectoria de la esquiadora. b) Nuestra solución.

Evalúe su comprensión de la sección 3.2 Un trineo viaja por la cima de una
montaña cubierta de nieve. El trineo disminuye su rapidez conforme asciende por un 
lado de la montaña y la aumenta cuando desciende por el otro lado. ¿Cuál de los vectores 
(1 a 9) en la gura muestra correctamente la dirección de la aceleración del trineo en la cima?
(Considere el 9 como la aceleración cero.)

❚

3.3 Movimiento de proyectiles
Un proyectil es cualquier cuerpo que recibe una velocidad inicial y luego sigue una
trayectoria determinada totalmente por los efectos de la aceleración gravitacional y 
la resistencia del aire. Una pelota bateada, un balón lanzado, un paquete soltado des-
de un avión y una bala disparada de un rie son todos proyectiles. El camino que 
sigue un proyectil es su trayectoria.

Para analizar este tipo de movimiento tan común, partiremos de un modelo idea-
lizado que representa el proyectil como una partícula con aceleración (debida a la
gravedad) constante tanto en magnitud como en dirección. Despreciaremos los efec-
tos de la resistencia del aire, así como la curvatura y rotación terrestres. Como todos
los modelos, éste tiene limitaciones. La curvatura de la Tierra debe considerarse en el
vuelo de misiles de largo alcance; en tanto que la resistencia del aire es de importan-
cia vital para un paracaidista. No obstante, podemos aprender mucho analizando este
modelo sencillo. En el resto del capítulo, la frase “movimiento de proyectil” impli-
cará que se desprecia la resistencia del aire. En el capítulo 5 veremos qué sucede
cuando la resistencia no puede despreciarse.

El movimiento de un proyectil siempre está limitado a un plano vertical determi-
nado por la dirección de la velocidad inicial (gura 3.15). La razón es que la acelera-
ción debida a la gravedad es exclusivamente vertical; la gravedad no puede mover un

o bien, 9: aceleración 5 0

Trayectoria
del trineo

1 5

2 4

8 6

3

7

Trayectoria

ax 5 0, ay 5 2g

a
v0
S

S

• Un proyectil se mueve en un plano vertical
 que contiene el vector de velocidad inicial v0.
• Su trayectoria depende sólo de v0 y de la
 aceleración hacia abajo debida a la gravedad.

S

S

y

O
x

3.15 La trayectoria de un proyectil.
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3.16 La bola roja se deja caer desde el 
reposo y la amarilla se proyecta horizontal-
mente al mismo tiempo; las imágenes 
sucesivas en esta fotografía estroboscópica
están separadas por intervalos de tiempo
iguales. En un instante dado, ambas bolas
tienen la misma posición y, velocidad y
y aceleración y, a pesar de tener diferente
posición x y velocidad x.

proyectil lateralmente. Por lo tanto, este movimiento es bidimensional. Llamaremos
al plano de movimiento, el plano de coordenadas xy, con el eje x horizontal y el eje y
vertical hacia arriba.

La clave del análisis del movimiento de proyectiles es que podemos tratar por se-
parado las coordenadas x y y. La componente x de la aceleración es cero, y la com-
ponente y es constante e igual a 2g. (Por denición, g siempre es positiva, pero por
las direcciones de coordenadas elegidas, ay es negativa.) Así, podemos analizar el
movimiento de un proyectil como una combinación de movimiento horizontal con
velocidad constante y movimiento vertical con aceleración constante. La gura 3.16
muestra dos proyectiles con diferente movimiento x, pero con idéntico movimiento
y: uno se deja caer desde el reposo y el otro se proyecta horizontalmente, aunque
ambos proyectiles caen la misma distancia en el mismo tiempo.

Podemos expresar todas las relaciones vectoriales de posición, velocidad y acele-
ración del proyectil, con ecuaciones independientes para las componentes horizonta-
les y verticales. Las componentes de son

(movimiento de proyectil, sin resistencia del aire) (3.14)

Dado que las aceleraciones x y y son constantes, podemos usar las ecuaciones (2.8),
(2.12), (2.13) y (2.14) directamente. Por ejemplo, suponga que en t 5 0 la partícula
está en el punto (x0, y0) y que en este tiempo sus componentes de velocidad tienen los
valores iniciales v0x y v0y. Las componentes de la aceleración son ax 5 0, ay 5 2g.
Considerando primero el movimiento x, sustituimos 0 por ax en las ecuaciones (2.8) y
(2.12). Obtenemos

(3.15)

(3.16)

Para el movimiento y, sustituimos y por x, vy por vx, v0y por v0x y ay 5 2g por ax:

(3.17)

(3.18)

Por lo general, lo más sencillo es tomar la posición inicial (en t5 0) como origen;
así, x0 5 y0 5 0. Este punto podría ser la posición de una pelota cuando sale de la 
mano del lanzador, o la posición de una bala cuando sale del cañón de un arma.

La gura 3.17 muestra la trayectoria de un proyectil que parte de (o pasa por) el
origen en el tiempo t 5 0. La posición, la velocidad, las componentes de velocidad y

y 5 y0 1 v0y t 2
1

2
 gt2

vy 5 v0y 2 gt

x 5 x0 1 v0x t

vx 5 v0x

ax 5 0  ay 5 2g

aS

a

a

a0

En la cima de la trayectoria, el proyectil tiene velocidad
vertical cero  (vy 5 0), pero su aceleración vertical aun es 2g.

Verticalmente, el proyectil
muestra movimiento de
aceleración constante en
respuesta al tirón gravitacional
de la Tierra. Así, su velocidad
vertical cambia en cantidades
iguales durante intervalos de
tiempo iguales.

Horizontalmente, el proyectil muestra movimiento de velocidad constante: su aceleración
horizontal es cero, por lo que se mueve a distancias x iguales en intervalos de tiempo iguales.

y

O
x

Sv1

Sv0

Sv2

Sv3

v2xv1xv0x

v0x

v3x

v1x

ay 5 2g

v1y v1y

v3yv3y

v3x

v0y v0y

3.17 Si se desprecia la resistencia del aire, la trayectoria de un proyectil es una combinación de movimiento horizontal con 
velocidad constante y movimiento vertical con aceleración constante.

3.1 Resolución de problemas de 
movimiento de proyectiles

3.2 Dos pelotas que caen

3.3 Cambio de la velocidad en x

3.4 Aceleraciones x y y de proyectiles

O N L I N E
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aceleración se muestran en una serie de instantes equiespaciados. La componente x de
la aceleración es 0, así que vx es constante. La componente y de la aceleración es
constante pero no cero, así que vy cambia en cantidades iguales a intervalos de tiempo
iguales, justo igual que si el proyectil fuera lanzado verticalmente con la misma velo-
cidad y inicial. En el punto más alto de la trayectoria, vy 5 0.

También podemos representar la velocidad inicial con su magnitud v0 (la rapi-
dez inicial) y su ángulo con el eje 1x (como se nuestra en la gura 3.18). En tér-
minos de estas cantidades, las componentes v0x y v0y de la velocidad inicial son

(3.19)

Usando estas relaciones en las ecuaciones (3.15) a (3.18) y haciendo x0 5 y0  5 0,
tenemos

(movimiento de proyectil) (3.20)

(movimiento de proyectil) (3.21)

(movimiento de proyectil) (3.22)

(movimiento de proyectil) (3.23)

Estas ecuaciones describen la posición y velocidad del proyectil de la gura 3.17 en
cualquier instante t.

Podemos obtener mucha información de estas ecuaciones. Por ejemplo, en cual-
quier instante, la distancia r del proyectil al origen (la magnitud del vector de posi-
ción está dada por

(3.24)

La rapidez del proyectil (la magnitud de su velocidad) en cualquier instante es

(3.25)

La dirección de la velocidad, en términos del ángulo a que forma con el eje 1x (véa-
se la gura 3.17), está dada por

(3.26)

El vector de velocidad es tangente a la trayectoria en todos los puntos.
Podemos deducir una ecuación para la forma de la trayectoria en términos de x y y

eliminando t. De las ecuaciones (3.20) y (3.21), que suponen x0 5 y0 5 0, obtenemos
y

(3.27)

No se preocupe por los detalles de esta ecuación; lo importante es su forma general.
Las cantidades v0, tan a0, cos a0 y g son constantes, así que la ecuación tiene la forma

donde b y c son constantes. Ésta es la ecuación de una parábola. En el movimiento de
proyectiles, con nuestro modelo simplicado, la trayectoria siempre es una parábola
(gura 3.19).

Cuando la resistencia del aire no es insignicante y debe incluirse, calcular la tra-
yectoria se vuelve mucho más complicado; los efectos de dicha resistencia dependen

y 5 bx 2 cx2

y 5 1 tan a0 2 x 2
g

2v0 

2
 cos2

 a0

 x2

t 5 x/ 1v0 cos a0 2 vS

tan a 5
vy

vx

v 5 "vx 

2 1 vy 

2

r 5 "x2 1 y2

rS )

vy 5 v0 sen a0 2 gt

vx 5 v0 cos a0

y 5 1v0 sen a0 2 t 2
1

2
 gt2

x 5 1v0 cos a0 2 t
v0x 5 v0 cos a0  v0y 5 v0 sen a0

a0

vS0

y

O
x

v0
S

y

x

v0
S

v0y 5 v0 sen a0

v0x 5 v0 cos a0

a0

3.18 Las componentes de la velocidad 
inicial v0x y v0y de un proyectil (como un
balón de fútbol) se relacionan con la 
rapidez inicial v0 y el ángulo inicial a0.

Las imágenes sucesivas de la pelota
están separadas por intervalos iguales.

Los picos sucesivos
disminuyen en altura

porque la pelota
pierde energía en

cada rebote.

Las trayectorias
son casi
parabólicas.

a)

b)

3.19 Las trayectorias casi parabólicas 
a) de una pelota que rebota y b) de borbo-
tones de roca fundida expulsada de un 
volcán.

3.5 Componentes de la velocidad inicial

3.6 Práctica de tiro al blanco I

3.7 Práctica de tiro al blanco II

O N L I N E
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100

50

O

2100

250

x (m)
100 200 300

Con resistencia
del aire

Velocidad inicial de la pelota de
béisbol: v0 5 50 m/s, a0 5 53.18

Sin resistencia
del aire

y (m)

3.20 La resistencia del aire tiene un efecto
acumulativo considerable sobre el movi-
miento de una pelota de béisbol. En esta
simulación, permitimos que la pelota 
caiga por debajo de la altura desde la 
cual se lanzó (por ejemplo, la pelota podría 
haberse lanzado desde un acantilado).

Ejemplo conceptual 3.5 Aceleración de una esquiadora, continuación

Consideremos de nuevo a la esquiadora del ejemplo conceptual 3.4.
¿Qué aceleración tiene en los puntos G, H e I de la gura 3.21a des-
pués de que sale de la rampa? Desprecie la resistencia del aire.

SOLUCIÓN

La figura 3.21b muestra nuestra respuesta. La aceleración de la es-
quiadora cambió de un punto a otro mientras estaba en la rampa pero,

apenas la esquiadora sale de la rampa, se convierte en un proyectil.
Así, en los puntos G, H e I, y de hecho en todos los puntos después de
salir de la rampa, la aceleración de la esquiadora apunta verticalmente
hacia abajo y tiene magnitud g. Por más compleja que sea la acelera-
ción de una partícula antes de convertirse en proyectil, su aceleración
como proyectil está dada por ax 5 0, ay 5 2g.

de la velocidad, por lo que la aceleración ya no es constante. La gura 3.20 es una 
simulación computarizada de la trayectoria de una pelota de béisbol tanto sin resis-
tencia del aire como con una resistencia proporcional al cuadrado de la rapidez de la
pelota. Vemos que el efecto de la resistencia es muy grande, la altura máxima y el 
alcance se reducen, y la trayectoria ya no es parabólica. (Si usted observa cuidadosa-
mente la gura 3.19b, se dará cuenta de que las trayectorias de los borbotones volcá-
nicos se desvían de una manera similar de una forma parabólica.)

a)

b)

F

G
H

I

3.21 a) Trayectoria de la esquiadora durante el salto. b) Nuestra solución.

Estrategia para resolver problemas 3.1 Movimiento de proyectil

NOTA: Las estrategias que usamos en las secciones 2.4 y 2.5 para pro-
blemas de aceleración constante en línea recta también sirven aquí.

IDENTIFICAR los conceptos importantes: El concepto clave que de-
bemos recordar es que durante todo el movimiento de un proyectil, la
aceleración es hacia abajo y tiene magnitud constante g. Advierta que
las ecuaciones para el movimiento de proyectiles no son válidas duran-
te el lanzamiento de una pelota, porque ahí actúan sobre la pelota tanto
la mano del lanzador como la gravedad. Las ecuaciones sólo se aplican
una vez que la pelota sale de la mano del lanzador.

PLANTEAR el problema con los siguientes pasos:
1. Dena su sistema de coordenadas y dibuje sus ejes. Normalmente

lo más sencillo es tomar el eje x como horizontal y el eje y hacia
arriba y colocar el origen en la posición inicial (t 5 0), donde el
cuerpo se vuelve primero un proyectil (como donde la pelota sale
de la mano del lanzador). Así, las componentes de la aceleración
(constante) son ax 5 0, ay 5 2g, y la posición inicial es x0 5 0 y 
y0 5 0.
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2. Haga una lista de las cantidades conocidas e incógnitas, y decida
cuáles incógnitas son sus objetivos. Por ejemplo, en algunos pro-
blemas se da la velocidad inicial (ya sea las componentes, o la
magnitud y dirección) y se pide obtener las coordenadas y compo-
nentes de velocidad en un instante posterior. En todo caso, usará las
ecuaciones (3.20) a (3.23). (Algunas otras ecuaciones dadas en la
sección 3.3 también podrían ser útiles.) Asegúrese de tener tantas
ecuaciones como incógnitas por determinar.

3. Plantee el problema con palabras y luego tradúzcalo a símbolos.
Por ejemplo, ¿cuándo llega la partícula a cierto punto? (Es decir,
¿con qué valor de t?) ¿Dónde está la partícula cuando la velocidad
tiene cierto valor? (Es decir, ¿cuánto valen x y y cuando vx o vy tie-
ne ese valor?) Puesto que vy 5 0 en el punto más alto de la trayec-
toria, la pregunta “¿cuándo alcanza el proyectil su punto más alto?”

se traduce a “¿cuánto vale t cuando vy 5 0?” Asimismo, “¿cuándo
vuelve el proyectil a su altura inicial?” se traduce a “¿cuánto vale t
cuando y 5 y0?”

EJECUTAR la solución: Use las ecuaciones (3.20) a (3.23) para obte-
ner las incógnitas. Resista la tentación de dividir la trayectoria en seg-
mentos y analizarlos individualmente. ¡No hay que volver a comenzar
cuando el proyectil llega a su altura máxima! Lo más fácil suele ser
usar los mismos ejes y escala de tiempo durante todo el problema. Uti-
lice el valor g 5 9.8 m>s2.

EVALUAR la respuesta: Como siempre, examine sus resultados para
ver si son lógicos y si los valores numéricos son razonables.

Ejemplo 3.6 Cuerpo que se proyecta horizontalmente

Un acróbata en motocicleta se lanza del borde de un risco. Justo en el
borde, su velocidad es horizontal con magnitud de 9.0 m>s. Obtenga la
posición, distancia desde el borde y velocidad de la motocicleta des-
pués de 0.50 s.

SOLUCIÓN

IDENTIFICAR: Una vez que el acróbata sale del risco, se mueve como
un proyectil. Por lo tanto, su velocidad en el borde del risco es su velo-
cidad inicial.

PLANTEAR: El esquema se muestra en la gura 3.22. Elegimos el ori-
gen de nuestro sistema de coordenadas en el borde del risco, donde la
motocicleta se convierte en proyectil, así que x0 5 0 y y0 5 0. La velo-
cidad inicial es puramente horizontal (es decir, a0 5 0), así que sus
componentes son v0x 5 v0 cosa0 5 9.0 m>s y v0y 5 v0 sena0 5 0. Para
determinar la posición de la motocicleta en t 5 0.50 s, usamos las
ecuaciones (3.20) y (3.21), que dan x y y en función del tiempo. Dados
estos valores, calcularemos la distancia del origen con la ecuación
(3.24). Por último, usaremos las ecuaciones (3.22) y (3.23) para deter-
minar las componentes de velocidad vx y vy en t 5 0.50 s.

EJECUTAR: ¿Dónde está la motocicleta en t5 0.50 s? Por las ecuacio-
nes (3.20) y (3.21), las coordenadas x y y son

El valor negativo de y indica que en este instante la motocicleta está
debajo de su punto inicial.

¿A qué distancia está ahora la motocicleta del origen? Por la ecua-
ción (3.24),

¿Qué velocidad tiene en t 5 0.50 s? Por las ecuaciones (3.22) y
(3.23), las componentes de la velocidad en ese momento son

 vy 5 2gt 5 129.8 m/s2 2 1 0.50 s 2 5 24.9 m/s

 vx 5 v0x 5 9.0 m/s

r 5 "x2 1 y2 5 " 1 4.5 m 2 2 1 121.2 m 2 2 5 4.7 m

 y 5 2 

1

2
 gt2 5 2 

1

2
 1 9.8 m/s2 2 1 0.50 s 2 2 5 21.2 m

 x 5 v0x t 5 1 9.0 m/s 2 1 0.50 s 2 5 4.5 m

La motocicleta tiene la misma velocidad horizontal vx que cuando salió
del risco en t5 0 pero, además, hay una velocidad vertical vy hacia aba-
jo (negativa). Si usamos vectores unitarios, la velocidad en t5 0.50 s es

También podemos expresar la velocidad en términos de magnitud y
dirección. Por la ecuación (3.25), la rapidez (magnitud de la velocidad)
en este instante es

Por la ecuación (3.26), el ángulo a del vector de velocidad es

En este instante la velocidad está dirigida 298 por debajo de la horizontal.

EVALUAR: Al igual que en la gura 3.17, el aspecto horizontal del
movimiento no cambia por la gravedad; la motocicleta se sigue mo-
viendo horizontalmente a 9.0 m>s, cubriendo 4.5 m en 0.50 s. Dado
que la motocicleta tiene cero velocidad inicial vertical, cae vertical-
mente igual que un objeto que se suelta desde el reposo y desciende
una distancia de en 0.50 s.1

2 gt2 5 1.2 m

a 5 arctan 

vy

vx

5 arctan 124.9 m/s

9.0 m/s
2 5 229°

 5 " 1 9.0 m/s 2 2 1 124.9 m/s 2 2 5 10.2 m/s
 v 5 "vx 

2 1 vy 

2

vS 5 vx  d̂ 1 vy  ê 5 1 9.0 m/s 2 d̂ 1 124.9 m/s 2  ê

En este punto, la motocicleta y el
conductor se vuelven un proyectil.

3.22 Esquema para este problema.
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Ejemplo 3.7 Altura y alcance de un proyectil I: Una pelota de béisbol

Un bateador golpea una pelota de béisbol de modo que ésta sale del
bate a una rapidez v0 5 37.0 m>s con un ángulo a0 5 53.18, en un 
lugar donde g 5 9.80 m>s2. a) Calcule la posición de la pelota y la
magnitud y dirección de su velocidad cuando t 5 2.00 s. b) Determine
cuándo la pelota alcanza el punto más alto y su altura h en ese punto. 
c) Obtenga el alcance horizontal R, es decir, la distancia horizontal
desde el punto de partida hasta donde la pelota cae al suelo.

SOLUCIÓN

IDENTIFICAR: Como muestra la gura 3.20, los efectos de la resis-
tencia del aire sobre el movimiento de una pelota de béisbol no son in-
signicantes; no obstante, por sencillez, los despreciaremos en este
ejemplo y usaremos las ecuaciones del movimiento de proyectiles para
describir el movimiento.

PLANTEAR: El esquema se muestra en la gura 3.23. Usaremos el
mismo sistema de coordenadas que en las guras 3.17 o 3.18. Así, po-
dremos usar las ecuaciones (3.20) a (3.23) sin modicaciones. Las in-
cógnitas son 1. la posición y velocidad de la pelota 2.00 s después de
perder contacto con el bate, 2. el tiempo transcurrido entre que la pelo-
ta sale del bate y alcanza su altura máxima (cuando vy 5 0) y la coor-
denada y en ese momento, y 3. la coordenada x en el momento en que
la coordenada y es igual al valor inicial y0.

La pelota sale del bate más o menos un metro sobre el suelo, pero
ignoraremos esta distancia y supondremos que parte del nivel del suelo
(y0 5 0). La velocidad inicial de la pelota tiene componentes

EJECUTAR: a) Queremos obtener x, y, vx y vy en el instante t5 2.00 s.
Por las ecuaciones (3.20) a (3.23),

La componente y de la velocidad es positiva, lo cual signica que la
pelota todavía va en ascenso en este instante (gura 3.23). La magni-
tud y dirección de la velocidad se obtienen de las ecuaciones (3.25) y
(3.26):

La dirección de la velocidad (es decir, la dirección del movimiento) es
24.28 sobre la horizontal.

b) En el punto más alto, la velocidad vertical vy es cero. ¿Cuándo
sucede esto? Sea ese instante t1; entonces,

 t1 5
v0y

g
5

29.6 m/s
9.80 m/s2

5 3.02 s

 vy 5 v0y 2 gt1 5 0

 a 5 arctan 1 10.0 m/s
22.2 m/s 2 5 arctan 0.450 5 24.2°

 5 24.3 m/s
 v 5 "vx 

2 1 vy 

2 5 " 1 22.2 m/s 2 2 1 1 10.0 m/s 2 2

 5 10.0 m/s
 vy 5 v0y 2 gt 5 29.6 m/s 2 1 9.80 m/s2 2 1 2.00 s 2 vx 5 v0x 5 22.2 m/s

 5 39.6 m

 5 1 29.6 m/s 2 1 2.00 s 2 2
1

2
 1 9.80 m/s2 2 1 2.00 s 2 2

 y 5 v0y t 2
1

2
 gt2

 x 5 v0x t 5 1 22.2 m/s 2 1 2.00 s 2 5 44.4 m

 v0y 5 v0 sen a0 5 1 37.0 m/s 2  sen53.1° 5 29.6 m/s
 v0x 5 v0 cos a0 5 1 37.0 m/s 2  cos53.1° 5 22.2 m/s

La altura h en este instante es el valor de y cuando t 5 t1 5 3.02 s:

c) Obtendremos el alcance horizontal en dos pasos. Primero,
¿cuándo cae la pelota al suelo? Esto ocurre cuando y 5 0, digamos, en
t2; entonces,

Ésta es una ecuación cuadrática en t2. Con dos raíces:

Hay dos instantes en los que y5 0; t2 5 0 es cuando la pelota sale del
suelo y t2 5 2v0y>g 5 6.04 s es cuando regresa. Esto es exactamente
el doble del tiempo que tarda en llegar al punto más alto que encon-
tramos en el inciso b) t1 5 v0y>g 5 3.02 s, así que el tiempo de bajada
es igual al tiempo de subida. Esto siempre sucede si los puntos inicial
y final están a la misma altura y se puede despreciar la resistencia 
del aire.

El alcance horizontal R es el valor de x cuando la pelota vuelve al
suelo, es decir, en t 5 6.04 s:

La componente vertical de la velocidad cuando la pelota toca el
suelo es

Es decir, vy tiene la misma magnitud que la velocidad vertical inicial
v0y pero dirección opuesta (hacia abajo). Dado que vx es constante, 
el ángulo a 5 253.18 (debajo de la horizontal) en este punto es el 
negativo del ángulo inicial a0 5 53.18.

EVALUAR: A menudo es útil vericar los resultados obteniéndolos de
una forma distinta. Por ejemplo, podemos vericar nuestra respuesta
para la altura máxima del inciso b) aplicando la fórmula de aceleración
constante, ecuación (2.13), al movimiento y:

vy 

2 5 v0y 

2 1 2ay 1 y 2 y0 2 5 v0y 

2 2 2g 1 y 2 y0 2

 5 229.6 m/s
 vy 5 v0y 2 gt2 5 29.6 m/s 2 1 9.80 m/s2 2 1 6.04 s 2

R 5 v0x t2 5 1 22.2 m/s 2 1 6.04 s 2 5 134 m

t2 5 0  y  t2 5
2v0y

g
5

2 1 29.6 m/s 2
9.80 m/s2

5 6.04 s

y 5 0 5 v0y t2 2
1

2
 gt2 

2 5 t2 Av0y 2
1

2
 gt2B

 5 44.7 m

 5 1 29.6 m/s 2 1 3.02 s 2 2
1

2
 1 9.80 m/s2 2 1 3.02 s 2 2

 h 5 v0y t1 2
1

2
 gt1 

2

3.23 Esquema para este problema.
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Ejemplo 3.8 Altura y alcance de un proyectil II: Altura máxima, alcance máximo

Para un proyectil lanzado con rapidez v0 y ángulo inicial a0 (entre 0° y
90°), deduzca expresiones generales para la altura máxima h y el al-
cance horizontal R (gura 3.23). Para una v0, dada, ¿qué valor de a0 da
la altura máxima? ¿Y qué valor da el alcance horizontal máximo?

SOLUCIÓN

IDENTIFICAR: Éste es realmente el mismo ejercicio que los incisos 
b) y c) del ejemplo 3.7. La diferencia es que buscamos expresiones 
generales para h y R. También nos interesan los valores de a0 que dan
los valores máximos de h y R.

PLANTEAR: En el inciso b) del ejemplo 3.7 vimos que el proyectil
alcanza el punto máximo de su trayectoria (por lo que vy 5 0) en el
tiempo t1 5 v0y>g y en el inciso c) del ejemplo 3.7 determinamos que
el proyectil regresa a su altura inicial (por lo que y 5 y0) en el tiempo
t2 5 2v0y>g. (Como vimos en el ejemplo 3.7, t2 5 2t1.) Para deter-
minar la altura h en el punto máximo de la trayectoria, usaremos la
ecuación (3.21) para calcular la coordenada y en t1. Para determinar
R, sustituimos t2 en la ecuación (3.20) para calcular la coordenada x
en t2. Expresaremos nuestras respuestas en términos de la rapidez de
lanzamiento v0 y el ángulo de disparo usando la ecuación (3.19).

EJECUTAR: Por la ecuación (3.19), v0x 5 v0 cos a0 y v0x 5 v0 sen a0.
Por lo tanto, podemos escribir el tiempo t1 en que vy 5 0 como

Luego, por la ecuación (3.21), la altura en ese instante es

Para una rapidez de lanzamiento dada v0, el valor máximo de h se da
con sen a0 5 1 y a0 5 908; es decir, cuando el proyectil se lanza verti-
calmente. Esto es lo que deberíamos esperar. Si se lanza horizontal-
mente, como en el ejemplo 3.6, a0 5 0 ¡y la altura máxima es cero!

El tiempo t2 en que el proyectil regresa al suelo es

t2 5
2v0y

g
5

2v0 sen a0

g

 5
v0 

2
 sen2

 a0

2g

 h 5 1v0 sen a0 2 1v0 sen a0

g 2 2
1

2
 g 1v0 sen a0

g 2 2t1 5
v0y

g
5

v0 sen a0

g

a0

El alcance horizontal R es el valor de x en el este instante. Por la ecua-
ción (3.20),

Ahora podemos usar la identidad trigonométrica 2 sen a0 cos a0 5

sen 2a0 para rescribir esto como

El valor máximo de sen 2a0 es 1; esto ocurre cuando 2a0 5 908, o
bien, a0 5 458. Este ángulo da el alcance máximo para una rapidez ini-
cial dada.

EVALUAR: La gura 3.24 se basa en una fotografía compuesta de tres
trayectorias de una pelota proyectada desde un cañón de resorte con
ángulos de 30, 45 y 608. La rapidez inicial v0 es aproximadamente
igual en los tres casos. Los alcances horizontales son casi iguales con
los ángulos de 30 y 608, y el alcance de 458 es el mayor que ambos.
¿Puede demostrar que para una v0 dada el alcance es igual para un án-
gulo inicial a0 que para 908 2 a0?

CUIDADO Altura y alcance de un proyectil No recomenda-
mos memorizar las expresiones anteriores para h y R; son aplicables
sólo en las circunstancias especiales que describimos. En particular, la
expresión para el alcance R sólo puede utilizarse cuando las alturas de
lanzamiento y aterrizaje son iguales. En muchos de los problemas al -
nal de este capítulo no deben aplicarse estas ecuaciones. ❚

R 5
v0 

2
 sen 2a0

g

R 5 1v0 cos a0 2 t2 5 1v0 cos a0 2  

2v0 sen a0

g

3.24 Un ángulo de disparo de 45° produce el alcance horizontal
máximo. El alcance es menor con ángulos de 30 y 60°.

En el punto más alto, vy 5 0 y y 5 h. Al sustituirlos, junto con y0 5 0,
obtenemos

que es la misma altura que obtuvimos en el inciso b).
Es interesante destacar que h 5 44.7 m del inciso b) es compara-

ble con la altura de 52.4 m del techo sobre el campo de juego en el 
Metrodomo Hubert H. Humphrey en Minneapolis, y el alcance hori-

 h 5
v0y 

2

2g
5

1 29.6 m/s 2 2

2 1 9.80 m/s2 2 5 44.7 m

 0 5 v0y
2 2 2gh

zontal R 5 134 m del inciso c) es mayor que la distancia de 99.7 m 
entre home y la barda del jardín derecho en el Campo Safeco en Seatle. 
(La altura de la pelota cuando cruza la barda es más que suciente para
librarla, así que el batazo es un jonrón.)

En el mundo real, una pelota bateada con la rapidez y el ángulo ini-
ciales que usamos aquí no alcanzará ni la altura ni la distancia que 
calculamos. (Si lo hiciera, los jonrones serían mucho más comunes y
el béisbol sería un juego mucho menos interesante.) El motivo es que
la resistencia del aire, que no se tomó en cuenta en este ejemplo, en
realidad es un factor importante a las velocidades que suelen tener las
pelotas lanzadas y bateadas (véase la gura 3.20).
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Ejemplo 3.9 Alturas inicial y final distintas

Usted lanza una pelota desde su ventana a 8.0 m del suelo. Cuando la
pelota sale de su mano, se mueve a 10.0 m>s con un ángulo de 208 de-
bajo de la horizontal. ¿A qué distancia horizontal de su ventana la pe-
lota llegará al piso? Desprecie la resistencia del aire.

SOLUCIÓN

IDENTIFICAR: Al igual que en nuestro cálculo del alcance horizontal
en los ejemplos 3.7 y 3.8, estamos tratando de hallar la coordenada ho-
rizontal de un proyectil cuando está a un valor dado de y. La diferencia
en este caso es que este valor de y no es igual a la coordenada y inicial.

PLANTEAR: Una vez más, elegimos el eje x como horizontal, y el eje
y, hacia arriba. Colocamos el origen de coordenadas en el punto don-
de la pelota sale de su mano (gura 3.25). Así, tenemos v0 5 10.0 m>s
y a0 5 2208; el ángulo es negativo porque la velocidad inicial está
debajo de la horizontal. Nuestra variable meta es el valor de x en el
punto donde la pelota llega al suelo; es decir, cuando y 5 28.0 m.
Dado que las alturas inicial y nal de la pelota son distintas, no pode-
mos usar la expresión para el alcance horizontal del ejemplo 3.8. En
vez de ello, usamos primero la ecuación (3.21) para hallar el instante t
en que la pelota llega a y528.0 m y, después, calculamos el valor de
x en ese instante con la ecuación (3.20).

EJECUTAR: Para determinar t, rescribimos la ecuación (3.21) en la
forma estándar de una ecuación cuadrática en t:

Las raíces de esta ecuación son

Podemos desechar la raíz negativa, ya que se reere a un tiempo 
previo al lanzamiento. La raíz positiva nos indica que la pelota 
tarda 0.98 s en llegar al suelo. Por la ecuación (3.20), la coordenada x
en ese instante es

La pelota llega al suelo a una distancia horizontal de 9.2 m de la ven-
tana.

EVALUAR: La raíz t 5 21.7 s es un ejemplo de solución “cticia” a
una ecuación cuadrática. Ya vimos esto en el ejemplo 2.8 de la sección
2.5; le recomendamos repasarlo.

Con el origen que elegimos, teníamos alturas inicial y nal y0 5 0
y y 5 28.0 m. ¿Puede demostrar, con las ecuaciones (3.16) y (3.18),
que se obtienen los mismos valores de t y x si se coloca el origen en 
el suelo, inmediatamente abajo de donde la pelota sale de la mano?

 5 9.2 m

 x 5 1v0 cos a0 2 t 5 1 10.0 m/s 2 3cos 1220° 2 4 1 0.98 s 2
 5  21.7 s  o  0.98 s

 5

B1 10.0 m/s 2  sen 1220° 2
6"1 10.0 m/s 2 2

 sen2 1220° 2 2 2 1 9.80 m/s2 2 128.0 m 2 R
9.80 m/s2

 5
v0 sen a0 6 "v0 

2
 sen2

 a0 2 2gy

g

 t 5

v0 sen a0 6 Ä 12v0 sen a0 2 2 2 4 1 12 g 2y
2 1 12 g 21

2
 gt2 2 1v0 sen a0 2 t 1 y 5 0

Ejemplo 3.10 La cuidadora y el mono

Un mono escapa del zoológico y sube a un árbol. Como no logra
atraerlo, la cuidadora apunta su rie con un dardo sedante directamen-
te hacia el mono y dispara (gura 3.26). El astuto mono se suelta en el
instante en que el dardo sale del cañón del rie, intentando caer al sue-
lo y escapar. Demuestre que el dardo siempre golpea al mono, sea cual
fuere la velocidad inicial del dardo (siempre que dé en el mono antes
de que éste llegue al piso).

SOLUCIÓN

IDENTIFICAR: En este ejemplo, tenemos dos cuerpos que se mueven
como proyectiles, el dardo sedante y el mono. Ambos tienen posición
y velocidad iniciales distintas; sin embargo, entran en movimiento de
proyectil al mismo tiempo. Para demostrar que el dardo golpea al mo-
no, debemos probar que hay un instante en que el mono y el dardo tie-
nen las mismas coordenadas x y y.

PLANTEAR: Elegimos las direcciones x y y acostumbradas, y coloca-
mos el origen en el extremo del cañón del rie (gura 3.26). Primero
usaremos la ecuación (3.20) para encontrar el tiempo t en que las coor-

denadas xmono y xdardo sean iguales. Luego, usaremos la ecuación (3.21)
para vericar si ymono y ydardo también son iguales en ese instante; si lo
son, el dardo golpeará al mono.

EJECUTAR: El mono cae verticalmente, así que xmono 5 d en todo mo-
mento. En el caso del dardo, la ecuación (3.20) nos indica que xdardo 5

(v0 cos a0)t. Cuando las coordenadas x son iguales, d 5 (v0 cos a0)t, 
o bien,

Para que el dardo golpee al mono, debe cumplirse que ymono 5 ydardo en
este instante. El mono está en caída libre unidimensional; su posición
en cualquier momento está dada por la ecuación (2.12) cambiando de-
bidamente los símbolos. La gura 3.26 muestra que la altura inicial del
mono es d tan a0 (el cateto opuesto de un triángulo rectángulo con án-
gulo a0 y cateto adyacente d), y obtenemos

ymono 5 d tan a0 2
1

2
 gt2

t 5
d

v0 cos a0

Ventana

Suelo

3.25 Esquema para este problema.
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Evalúe su comprensión de la sección 3.3 En el ejemplo 3.10, suponga que 
el dardo sedante tiene una velocidad inicial relativamente baja, de modo que el dardo
alcanza su altura máxima en un punto P antes de golpear al mono, como se indica en la
gura. Cuando el dardo está en P, ¿el mono estará en i) el punto A (más alto que P), ii) en 
el punto B (a la misma altura que P) o iii) en el punto C (más abajo que P)? Desprecie la 
resistencia del aire.

Para el dardo, usamos la ecuación (3.21):

Vemos que si d tan a0 5 (v0 sen a0)t cuando las dos coordenadas x
son iguales, entonces ymono 5 ydardo, y el dardo habrá acertado. Para 
demostrar que esto sucede, sustituimos t por d>(v0 cos a0), el instante
en que xmono 5 xdardo; así,1v0 sen a0 2 t 5 1v0 sen a0 2  

d

v0 cos a0
5 d tan a0

ydardo 5 1v0 sen a0 2 t 2
1

2
 gt2

EVALUAR: Hemos demostrado que, cuando las coordenadas x son
iguales, las y también lo son; un dardo dirigido a la posición inicial del
mono siempre lo golpeará, sin importar v0. Este resultado también es
independiente de g, la aceleración debida a la gravedad. Sin gravedad
(g 5 0), el mono no se movería, y el dardo viajaría en línea recta para
golpearlo. Con gravedad, ambos “caen” la misma distancia por
debajo de sus posiciones con g 5 0 y el dardo de todos modos golpea
al mono (gura 3.26).

A12gt2B

d tan a0

y

xO

v0

a0

d

Trayectoria del dardo
con gravedad

Trayectoria del dardo
sin gravedad

Caída
del mono

Caída
del dardo

Caída
del dardo

Caída del dardo

Sin gravedad
• El mono permanece en su posición inicial.
• El dardo viaja directo hacia el mono.
• Por lo tanto, el dardo da en el mono.

Las flechas discontinuas muestran qué tanto han caído el mono y el
dardo en tiempos específicos, en relación con el lugar donde estarían
si no hubiera gravedad. En cualquier instante, caen la misma distancia.

Con gravedad
• El mono cae directo hacia abajo.
• En cualquier instante t, el dardo cae lo mismo que el
  mono en relación con el lugar donde estarían si no
  hubiera gravedad:  Dydardo 5 Dymono 5 2   gt2. 
• Por lo tanto, el dardo siempre golpea al mono.

1
2

3.26 El dardo con sedante golpea al mono que cae.

3.4 Movimiento en un círculo
Cuando una partícula se mueve en una trayectoria curva, la dirección de su veloci-
dad cambia. Como vimos en la sección 3.2, esto implica que la partícula debe tener
una componente de aceleración perpendicular a la trayectoria, incluso si la rapidez 
es constante (véase la gura 3.11b). En esta sección calcularemos la aceleración para
el caso especial importante de movimiento en un círculo.

P B
C

A

❚

4.1 Magnitud de aceleración centrípeta

O N L I N E
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3.27 Un automóvil con movimiento circular uniforme. La rapidez es constante y la aceleración se dirige hacia el centro de la 
trayectoria circular.

Estos dos triángulos
son similares.

En el movimiento circular
   uniforme, la aceleración
      instantánea siempre apunta
         hacia el centro del círculo.

R

P2

P1

R

O

a) Un punto se mueve una distancia Ds a
rapidez constante en una trayectoria circular

v1
S

v2
S

Df

Ds

O

b) El cambio correspondiente en velocidad y
aceleración media

v1
S

v2
SDf

DvS

c) La aceleración instantánea

R

O

vS

arad
S

3.28 Determinación del cambio de 
velocidad aceleración media 
y aceleración instantánea de una 
partícula que se mueve en un círculo 
con rapidez constante.

aSrad

aSmed,DvS,

Movimiento circular uniforme
Cuando una partícula se mueve en un círculo con rapidez constante, tiene un movi-
miento circular uniforme. Un automóvil que da vuelta a una curva de radio constan-
te con rapidez constante, un satélite en órbita circular y un patinador que describe un
círculo con rapidez constante son ejemplos de este movimiento (gura 3.27; compá-
rela con la gura 3.12). No hay componente de aceleración paralela (tangente) a la
trayectoria; si la hubiera, la rapidez cambiaría. El vector de aceleración es perpen-
dicular (normal) a la trayectoria y, por lo tanto, se dirige hacia adentro (¡nunca hacia
fuera!) al centro de la trayectoria circular. Esto causa el cambio en la dirección de la
velocidad, sin cambiar la rapidez. Nuestro siguiente trabajo consiste en demostrar que
la magnitud de la aceleración en el movimiento circular uniforme se relaciona de ma-
nera sencilla con la rapidez de la partícula y el radio del círculo.

La gura 3.28a muestra una partícula que se mueve con rapidez constante en una
trayectoria circular de radio R con centro en O. La partícula se mueve de P1 a P2 en un
tiempo Dt. El cambio vectorial en la velocidad durante este tienpo se muestra 
en la gura 3.28b.

Los ángulos rotulados Df en las guras 3.28a y 3.28b son iguales porque es
perpendicular a la línea OP1 y es perpendicular a la línea OP2. Por lo tanto, los
triángulos en  las guras 3.28a y 3.28b son semejantes. Los cocientes de lados corres-
pondientes de triángulos semejantes son iguales, así que

La magnitud amed de la aceleración media durante Dt es entonces

La magnitud a de la aceleración instantánea en el punto Pl es el límite de esta ex-
presión conforme P2 se acerca a P1:

Sin embargo, el límite de Ds>Dt es la rapidez vl en el punto P1. Además, Pl puede ser
cualquier punto de la trayectoria, así que podemos omitir el subíndice y con v repre-
sentar la rapidez en cualquier punto. Así,

(movimiento circular uniforme) (3.28)

Agregamos el subíndice “rad” para recordar que la dirección de la aceleración instan-
tánea siempre sigue un radio del círculo, hacia su centro. Como la rapidez es constan-

arad 5
v2

R

a 5 lím
DtS0

 
v1

R
 
Ds

Dt
5

v1

R
 lím
DtS0

 
Ds

Dt

aS

amed 5
0DvS 0
Dt

5
v1

R
 
Ds

Dt

0DvS 0
v1

5
Ds

R
  o  0DvS 0 5

v1

R
 Ds

vS2

vS1

DvS

El automóvil aumenta su rapidez en una
trayectoria circular

Componente de aceleración perpendicular a
la velocidad: cambia la dirección del auto.

Componente de aceleración paralela a la
velocidad: cambia la rapidez del auto.

aS

vS

El automóvil disminuye su rapidez en una
trayectoria circular

Componente de aceleración paralela a la
velocidad: cambia la rapidez del auto.

Componente de aceleración
perpendicular a la velocidad:
cambia la dirección del auto.

aS

vS

Movimiento circular uniforme: rapidez
constante en una trayectoria circular

Al centro del círculo

La aceleración es
exactamente perpendicular
a la velocidad:
sin componente paralela.

aS

vS
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te, la aceleración siempre es perpendicular a la velocidad instantánea. Esto se muestra
en la gura 3.28c; compárela con la ilustración derecha de la gura 3.27.

En conclusión, en el movimiento circular uniforme, la magnitud a de la acelera-
ción instantánea es igual al cuadrado de la velocidad v dividido entre el radio R del
círculo; su dirección es perpendicular a y hacia adentro sobre el radio.

Puesto que la aceleración siempre apunta al centro del círculo, en ocasiones se le
llama aceleración centrípeta. La palabra “centrípeta” signica “que busca el centro”
en griego. La gura 3.29a muestra las direcciones de los vectores de velocidad y ace-
leración en varios puntos para una partícula con movimiento circular uniforme.

CUIDADO Movimiento circular uniforme contra movimiento de proyectiles La ace-
leración en el movimiento circular uniforme tiene algunas similitudes con la aceleración en el
movimiento de proyectiles que no enfrenta resistencia del aire, pero también existen algunas
diferencias importantes entre ambas. Tanto en el movimiento circular uniforme (gura 3.29a)
como en el movimiento de proyectiles (gura 3.29b) la magnitud de la aceleración siempre es
la misma. Sin embargo, en el movimiento circular uniforme la dirección de cambia conti-
nuamente, de manera que siempre apunta hacia el centro del círculo. (En la parte superior del
círculo, la aceleración apunta hacia abajo; en la parte inferior del círculo, la aceleración apun-
ta hacia arriba.) En contraste, en el movimiento de proyectiles la dirección de es la misma en
todo momento. ❚

También podemos expresar la magnitud de la aceleración en un movimiento circu-
lar uniforme en términos del periodo T del movimiento, el tiempo de una revolución
(una vuelta completa al círculo). En un tiempo T, la partícula recorre una distancia
igual a la circunferencia 2pR así que su rapidez es

(3.29)

Al sustituir esto en la ecuación (3.28), obtenemos la expresión alterna

(movimiento circular uniforme) (3.30)arad 5
4p2R

T2

v 5
2pR

T

aS

aS

vS

vr

vr vr

vr

vr
ar

ar ar
ar

ar

La aceleración
es constante en

magnitud y en dirección.

La velocidad y la aceleración son perpendiculares
sólo en el punto más alto de la trayectoria.

b) Movimiento del proyectil

La aceleración
tiene magnitud
constante, pero
dirección variable.

La velocidad
y la aceleración
siempre son
perpendiculares.

a) Movimiento circular uniforme

vS

vS

vS
vS

vS arad
S

arad
S

arad
S

arad
S

arad
Sarad

S

vS

3.29 Aceleración y velocidad a) para 
una partícula con movimiento circular 
uniforma y b) para un proyectil sin 
resistencia del aire.

Ejemplo 3.11 Aceleración centrípeta en un camino curvo

Un automóvil deportivo Aston Martin V8 Vantage tiene una “acelera-
ción lateral” de 0.96g, que es (0.96)(9.8 m>s2) 5 9.4 m>s2. Ésta es la
aceleración centrípeta máxima que puede lograr el auto sin salirse 
de la trayectoria circular derrapando. Si el auto viaja a 40 m>s (cer-
ca de 89 mi>h o 144 km>h), ¿cuál es el radio mínimo de curva que 
puede describir? (Suponga que no hay peralte.)

SOLUCIÓN

IDENTIFICAR: Puesto que el coche se mueve en una curva —es decir,
un arco de círculo— con rapidez constante, podemos aplicar las ideas
del movimiento circular uniforme.

PLANTEAR: Usamos la ecuación (3.28) para obtener la incógnita R 
(el radio de la curva) en términos de la aceleración centrípeta dada arad

y la rapidez v.

EJECUTAR: Nos dan arad y v, así que despejamos R de la ecuación
(3.28):

(aprox. 560 ft)

EVALUAR: Nuestro resultado muestra que el radio de giro requerido R
es proporcional al cuadrado de la rapidez. Por lo tanto, incluso una 
reducción pequeña en la rapidez puede reducir R considerablemente.
Por ejemplo, si v disminuye en un 20% (de 40 a 32 m>s), R disminuirá
en un 36% (de 170 m a 109 m).

Otra forma de reducir el radio requerido es peraltar la curva. Inves-
tigaremos esta opción en el capítulo 5.

R 5
v2

arad
5
1 40 m/s 2 2

9.4 m/s2
5 170 m
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Movimiento circular no uniforme
En esta sección, hemos supuesto que la rapidez de la partícula es constante. Si la rapi-
dez varía, tenemos un movimiento circular no uniforme. Un ejemplo es un carro de
montaña rusa que frena y se acelera al moverse en un lazo vertical. En el movimiento
circular no uniforme, la ecuación (3.28) nos sigue dando la componente radial de la
aceleración arad 5 v2>R, que siempre es perpendicular a la velocidad instantánea y di-
rigida al centro del círculo. Sin embargo, dado que la rapidez v tiene diferentes valo-
res en diferentes puntos del movimiento, arad no es constante. La aceleración radial
(centrípeta) es mayor donde la rapidez es mayor.

En el movimiento circular no uniforme también hay una componente de acelera-
ción paralela a la velocidad instantánea. Ésta es la componente que vimos en la
sección 3.2, y aquí la llamamos atan para destacar que es tangente al círculo. Por lo di-
cho al nal de la sección 3.2, sabemos que la componente de aceleración tangencial
atan es igual a la tasa de cambio de la rapidez. Entonces,

(movimiento circular no uniforme) (3.31)

El vector de aceleración de una partícula que se mueve con rapidez variable en un círcu-
lo es la suma vectorial de las componentes de aceleración radial y tangencial. Esta úl-
tima tiene la dirección de la velocidad si la partícula está acelerando, y la dirección
opuesta si está frenando (gura 3.30).

En el movimiento circular uniforme, la aceleración no tiene componente tangen-
cial; no obstante, la componente radial es la magnitud de

CUIDADO Movimiento circular uniforme contra no uniforme Observe que las dos
cantidades

no son iguales. La primera, al igual que la aceleración tangencial, es la tasa de cambio de la ra-
pidez; es igual a cero siempre que una partícula se mueve con rapidez constante, incluso cuan-
do cambia la dirección de su movimiento (como en el movimiento circular uniforme). La
segunda es la magnitud de la aceleración vectorial; es igual a cero cuando el vector de acelera-
ción de la partícula es cero, es decir, cuando la partícula se mueve en línea recta con rapidez
constante. En el movimiento circular uniforme en el movimiento circu-
lar no uniforme también existe una componente tangencial de la aceleración, de manera que

❚0 dvS/dt 0 5 "arad 

2 1 atan 

2
 .

0 dvS/dt 0 5 arad 5 v2/r;

d 0 vS 0
dt

  y  P dvS

dt
P

dvS/dt.

arad 5
v2

R
  y  atan 5

d 0 vS 0
dt

ai

atan

arad

atanarad

arad

arad

atan

atan

uau 5 arad

vS

vS

Disminución
de rapidez:
la aceleración
        tangencial
        es opuesta
           a v.

S

Aumento de
rapidez: aceleración
tangencial en
la misma
dirección
que v.

S

Rapidez mínima: aceleración radial mínima,
aceleración tangencial cero.

Rapidez máxima: aceleración radial
máxima, aceleración tangencial cero.

vS
vS

vS

vS

aS

a
S

aS

aS

r

uau 5 arad
S

3.30 Partícula que se mueve en un lazo
vertical, como un carrito de montaña rusa,
con rapidez variable.

Ejemplo 3.12 Aceleración centrípeta en un juego mecánico

En un juego mecánico, los pasajeros viajan con rapidez constante en
un círculo de 5.0 m de radio, dando una vuelta completa cada 4.0 s.
¿Qué aceleración tienen?

SOLUCIÓN

IDENTIFICAR: La rapidez es constante, así que es un problema de
movimiento circular uniforme.

PLANTEAR: Nos dan el radio R 5 5.0 m y el periodo T 5 4.0 s, así
que podemos usar la ecuación (3.30) para calcular la aceleración. 
Como alternativa, podríamos calcular primero la rapidez v con la ecua-
ción (3.29) y luego obtener la aceleración con la ecuación (3.28).

EJECUTAR: Por la ecuación (3.30),

arad 5
4p2 1 5.0 m 21 4.0 s 2 2

5 12 m/s2

Vericaremos esta respuesta usando la ecuación (3.28) después de 
calcular la rapidez v. Por la ecuación (3.29), la rapidez es la circun-
ferencia dividida entre el periodo T:

La aceleración centrípeta es, entonces,

Obtenemos el mismo valor de arad con ambas estrategias.

EVALUAR: Al igual que en el ejemplo anterior, la dirección de siem-
pre es hacia el centro del círculo. La magnitud de es mayor que g, la
aceleración debida a la gravedad, así que este juego mecánico sólo es
para los audaces. (Algunas montañas rusas someten a sus pasajeros a
aceleraciones de hasta 4g.)

aS
aS

arad 5
v2

R
5
1 7.9 m/s 2 2

5.0 m
5 12 m/s2

v 5
2pR

T
5

2p 1 5.0 m 2
4.0 s

5 7.9 m/s
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3.5 Velocidad relativa
Sin duda usted ha observado que un automóvil que avanza lentamente parece mover-
se hacia atrás cuando usted lo rebasa. En general, si dos observadores miden la velo-
cidad de un cuerpo, obtienen diferentes resultados si un observador se mueve en
relación con el otro. La velocidad que un observador dado percibe es la velocidad re-
lativa a él, o simplemente velocidad relativa. La gura 3.31 muestra una situación en
la que se entiende que la velocidad relativa es muy importante.

Primero consideraremos la velocidad relativa en línea recta, y luego la generaliza-
remos a un plano.

Velocidad relativa en una dimensión
Una mujer camina con una velocidad de 1.0 m>s por el pasillo de un vagón de ferro-
carril que se mueve a 3.0 m>s (gura 3.32a). ¿Qué velocidad tiene la mujer? Es una
pregunta sencilla, pero no tiene una sola respuesta. Para un pasajero sentado en el
tren, la mujer se mueve a 1.0 m>s. Para un ciclista parado junto al tren, la mujer se
mueve a 1.0 m>s 1 3.0 m>s 5 4.0 m>s. Un observador en otro tren que va en la direc-
ción opuesta daría otra respuesta. Debemos especicar quién es el observador y dar la
velocidad relativa a él. La velocidad de la mujer relativa al tren es 1.0 m>s, relativa al
ciclista es 4.0 m>s, etcétera. Cada observador, equipado en principio con un metro y
un cronómetro, constituye lo que llamamos un marco de referencia. Así, un marco
de referencia es un sistema de coordenadas más una escala de tiempo.

Llamemos A al marco de referencia del ciclista (en reposo con respecto al suelo) y
B al marco de referencia del tren en movimiento. En el movimiento rectilíneo, la po-
sición de un punto P relativa al marco de referencia A está dada por xP>A (la posición
de P con respecto a A), y la posición de P con respecto al marco B está dada por xP>B
(véase la gura 3.32b). La distancia del origen de A al origen de B es xB>A. La gura
3.32b muestra que

(3.32)

Esto nos dice que la distancia total del origen de A al punto P es la distancia del ori-
gen de B al punto P más la distancia del origen de A al origen de B.

La velocidad de P relativa al marco A, denotada con vP>A-x, es la derivada de xP>A
con respecto al tiempo. Las otras velocidades se obtienen de igual manera, así que la
derivada con respecto al tiempo de la ecuación (3.32) nos da la relación entre las ve-
locidades:

(velocidad relativa en una línea) (3.33)

Volviendo a la mujer en el tren de la gura 3.32, vemos que A es el marco de refe-
rencia del ciclista, B es el marco de referencia del tren, y el punto P representa a la
mujer. Usando la notación anterior, tenemos

vP/B-x 5 11.0 m/s  vB/A-x 5 13.0 m/s

vP/A-x 5 vP/B-x 1 vB/A-x

dxP/A

dt
5

dxP/B

dt
1

dxB/A

dt
  o

xP/A 5 xP/B 1 xB/A

Evalúe su comprensión de la sección 3.4 Suponga que, en la parte inferior
del lazo, la partícula de la gura 3.30 experimenta una aceleración cuatro veces mayor
que en la parte superior del mismo. En comparación con la parte superior del lazo, la rapidez
de la partícula en la parte inferior es i) veces mayor; ii) 2 veces mayor; iii) veces 
mayor; iv) 4 veces mayor; o v) 16 veces mayor.

❚

2 "2"2

3.31 Los pilotos de acrobacias aéreas 
enfrentan un complicado problema de 
velocidades relativas. Deben estar 
pendientes de su movimiento relativo al 
aire (para mantener un ujo de aire sobre
las alas suciente para la sustentación), 
su movimiento relativo a los otros aviones
(para mantener una formación cerrada 
sin chocar) y su movimiento relativo al 
público (para que los espectadores no 
los pierdan de vista).

Marco del
ciclista.

Marco
del tren.

Velocidad del tren
relativa al ciclista.

Posición de la mujer
en ambos marcos.

a)

A (ciclista)

B

P (mujer) B (tren)

yA yB

P

OBOA

xA,
xB

xP/A

xP/BxB/A

vB/A

b)

3.32 a) Una mujer camina dentro 
de un tren. b) La posición de la mujer
(partícula P) relativa al marco de referen-
cia del ciclista y al marco de referencia 
del tren.
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Ejemplo 3.13 Velocidad relativa en un camino recto

Imagine que viaja al norte en un camino recto de dos carriles a 
88 km>h constantes. Un camión que viaja a 104 km>h constantes se
acerca a usted (en el otro carril, por fortuna). a) ¿Qué velocidad tie-
ne el camión relativa a usted? b) ¿Y la de usted relativa al camión? 
c) ¿Cómo cambian las velocidades relativas una vez que los dos 
vehículos se han pasado?

SOLUCIÓN

IDENTIFICAR: Este ejemplo es sobre velocidades relativas en una
recta.

PLANTEAR: Sea usted Y, el camión T y la supercie de la Tierra E, 
y sea el norte la dirección positiva (gura 3.33). Entonces, su veloci-
dad relativa a la Tierra es vY>E-x 5 188 km>h. En un principio, el ca-
mión se acerca a usted, así que debe ir hacia el sur, es decir, que su
velocidad relativa a la Tierra es vT>E-x 5 2104 km>h. La incógnita del
inciso a) es vT>Y-x; la incónita del inciso b) es vY>T-x. Obtendremos 
ambas respuestas utilizando la ecuación (3.33) para velocidad relativa.

Por la ecuación (3.33), la velocidad vP>A de la mujer relativa al ciclista es

lo cual ya sabíamos.
En este ejemplo, ambas velocidades son a la derecha, e implícitamente toma-

mos esta dirección como positiva. Si la mujer camina a la izquierda relativa al tren,
entonces, vP>B-x 5 21.0 m>s, y su velocidad relativa al ciclista es vP>A-x 5 21.0 m>s
1 3.0 m>s 5 12.0 m>s. La suma de la ecuación (3.33) siempre es algebraica, y cual-
quiera o todas las velocidades pueden ser negativas.

Si la mujer se asoma por la ventana, le parecerá que el ciclista estacionario se
mueve hacia atrás; llamamos vA>P-x a la velocidad del ciclista relativa a ella. Es evi-
dente que ésta es el negativo de vP>A-x. En general, si A y B son dos puntos o marcos de
referencia cualesquiera,

(3.34)vA/B-x 5 2vB/A-x

vP/A-x 5 11.0 m/s 1 3.0 m/s 5 14.0 m/s

Estrategia para resolver problemas 3.2 Velocidad relativa

IDENTIFICAR los conceptos importantes: Siempre que lea la frase
“velocidad relativa a” o “velocidad con respecto a”, seguramente le 
resultarán útiles los conceptos de velocidad relativa.

PLANTEAR el problema: Rotule todos los marcos de referencia del
problema. Cada cuerpo en movimiento tiene su propio marco de refe-
rencia; además, casi siempre será preciso incluir el marco de referencia
de la supercie terrestre. (Frases como “el automóvil viaja al norte 
a 90 km>h” se reeren implícitamente a la velocidad del auto relativa a
la supercie terrestre.) Use los rótulos para identicar la incógnita. 
Por ejemplo, si quiere obtener la velocidad de un auto (C) con respecto
a un autobús (B), ésta es vC>B-x.

EJECUTAR la solución: Despeje la incógnita empleando la ecuación
(3.33). (Si las velocidades no tienen la misma dirección, será preciso
usar la forma vectorial de esta ecuación, que deduciremos más ade-
lante en esta misma sección.) Es importante observar el orden de los

dobles subíndices en la ecuación (3.33): vA>B-x siempre signica “velo-
cidad de A relativa a B”. Estos subíndices obedecen un tipo interesante
de álgebra, como muestra la ecuación (3.33). Si los consideramos cada
uno como una fracción, la fracción del miembro izquierdo es el pro-
ducto de las fracciones del miembro derecho: P>A 5 (P>B)(B>A). 
Puede usar esta útil regla al aplicar la ecuación (3.33) a cualquier can-
tidad de marcos de referencia. Por ejemplo, si hay tres marcos de 
referencia distintos A, B y C, podemos escribir de inmediato

EVALUAR la respuesta: Esté pendiente de los signos menos en su
respuesta. Si la incógnita es la velocidad de un automóvil relativa a 
un autobús (vC>B-x), asegúrese de no haber calculado por equivocación
la velocidad del autobús relativa al automóvil (vB>C-x). Si cometió este
error, la ecuación (3.34) le dará la respuesta correcta.

vP/A-x 5 vP/C-x 1 vC/B-x 1 vB/A-x

N

EO

S

x

Tierra (E)

Camión (T)

Usted (Y)

vY/E
S

vT/E
S

3.33 Marcos de referencia para usted y el camión.
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Velocidad relativa en dos o tres dimensiones
Podemos extender el concepto de velocidad relativa al movimiento en un plano o en
el espacio, usando suma vectorial para combinar velocidades. Suponga que la mujer
de la gura 3.32a camina no por el pasillo del vagón sino de un costado al otro, con
rapidez de 1.0 m>s (gura 3.34a). También podemos describir su posición P en dos
marcos de referencia distintos: A para el observador terrestre estacionario y B para el
tren en movimiento; pero en vez de coordenadas x usamos vectores de posición
[&*lcacc*{~bt~r~normal~}{|Ararr|}&] porque el problema es bidimensional. En-
tonces, como muestra la gura 3.34b,

(3.35)

Igual que antes, derivamos con respecto al tiempo para obtener una relación entre las
velocidades; la velocidad de P relativa a A es , e igual para las de-
más velocidades. Obtenemos

(velocidad relativa en el espacio) (3.36)

La ecuación (3.36) se conoce como transformción galileana de la velocidad y
muestra que la velocidad de un cuerpo P con respecto al marco A y su velocidad con
respecto al marco B y respectivamente) están relacionadas con la velocidad
del marco B con respecto al marco A Si las tres velocidades están en la misma
línea, la ecuación (3.36) se reduce a la ecuación (3.33) para las componentes de las
velocidades en esa línea.

Si la velocidad del tren relativa al suelo tiene magnitud vB>A 5 3.0 m>s y la veloci-
dad de la mujer relativa al vagón tiene magnitud vP>B5 1.0 m>s, su vector de velocidad

1vSB/A 2 .vSP/B ,(vSP/A

vSP/A 5 vSP/B 1 vSB/A

vSP/A 5 d rSP/A/dt

rSP/A 5 rSP/B 1 rSB/A

EJECUTAR: a) Para obtener vY>T-x, primero escribimos la ecuación
(3.33) para los tres marcos, Y, T y E, y luego reacomodamos:

El camión se mueve a 192 km>h en la dirección negativa (al sur) relati-
vo a usted.

b) Por la ecuación (3.34),

Usted se mueve a 192 km>h en la dirección positiva (al norte) relativo
al camión.

vY/T-x 5 2vT/Y-x 5 2 12192 km/h 2 5 1192 km/h

 5 2104 km/h 2 88 km/h 5 2192 km/h
 vT/Y-x 5 vT/E-x 2 vY/E-x

 vT/E-x 5 vT/Y-x 1 vY/E-x

c) Las velocidades relativas no cambian después de que los vehícu-
los se pasan. Las posiciones relativas de los cuerpos no importan. La
velocidad del camión relativa a usted sigue siendo 192 km>h, pero
ahora se aleja en vez de acercarse.

EVALUAR: Para comprobar su respuesta del inciso b), use la ecuación
(3.33) directamente en la forma (Recuerde que
la velocidad de la Tierra relativa al camión es opuesta a la velocidad
del camión con respecto a la Tierra: ¿Obtiene el
mismo resultado?

vE/T-x 5 2vT/E-x . 2vY/T-x 5 vY/E-x 1 vE/T-x .

b)

yA

zA

xAOA

yB

zB

xBOB

P

vB/A
S

rP/B
SrP/A

S

rB/A
S

Velocidad del tren
relativa al ciclista.

Posición de la mujer
en ambos marcos.

f 5 188

v
P

/A  5
 3.2 m/ s

vP/B 5 1.0 m/s

v
B

/A  5
 3.0 m/ s

a) c) Velocidades relativas
(vistas desde arriba)

1.0 m/s

B (tren)

B

A (ciclista)

P (mujer)

Marco
del tren

Marco del
ciclista

3.0 m/s

3.34 a) Mujer que camina a lo ancho de un vagón de ferrocarril. b) Posición de la mujer relativa al marco de referencia del ciclista y 
al marco del tren. c) Diagrama vectorial para la velocidad de la mujer relativa al suelo (el marco del ciclista), vSP/A .
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relativo al suelo es como se muestra en la gura 3.34c. El teorema de Pitágoras
nos da

La gura 3.34c también indica que la dirección del vector de velocidad de la mu-
jer relativo al suelo forma un ángulo f con el vector de velocidad del tren donde

Como en el caso del movimiento rectilíneo, tenemos la regla general de que si A
y B son dos puntos o marcos de referencia cualesquiera,

(3.37)

La velocidad de la mujer con respecto al tren es el negativo de la velocidad del tren
con respecto a la mujer, etcétera.

A principios del siglo XX, en su teoría especial de la relatividad Albert Einstein de-
mostró que la relación de suma de velocidades dada en la ecuación (3.36) se modica
cuando la rapidez se aproxima a la rapidez de la luz, que se denota con c. Resultó que
si la mujer de la gura 3.32a pudiera caminar por el pasillo a 0.30c y el tren pudiera
viajar a 0.90c, entonces la rapidez de la mujer relativa al suelo no sería de 1.20c sino
de 0.94c. ¡Nada puede viajar más rápido que la luz! Regresaremos a la teoría espe-
cial de la relatividad en el capítulo 37.

vSA/B 5 2vSB/A

tan f 5
vP/B

vB/A
5

1.0 m/s
3.0 m/s

  y  f 5 18°

vSB/A ,

vP/A 5 " 1 3.0 m/s 2 2 1 1 1.0 m/s 2 2 5 "10 m2/s2 5 3.2 m/s

vSP/A

 
240 km/h,

norte

este

N

EO

S

a

vP/E
SvP/A 5S

vA/E 5 100 km/h,S

3.35 El avión apunta al norte, pero el viento sopla al este, dando
la velocidad resultante relativa a la Tierra.vSP/E

Ejemplo 3.14 Vuelo con viento cruzado

La brújula de un avión indica que va al norte, y su velocímetro indica
que vuela a 240 km>h. Si hay un viento de 100 km>h de oeste a este,
¿cuál es la velocidad del avión relativa a la Tierra?

SOLUCIÓN

IDENTIFICAR: Se trata de un problema de velocidad en dos dimen-
siones (hacia el norte y hacia el este), así que tenemos un problema de
velocidad relativa usando vectores.

PLANTEAR: Nos dan la magnitud y dirección de la velocidad del
avión (P) relativa al aire (A), así como la magnitud y dirección de la
velocidad del viento, que es la velocidad del aire (A) con respecto a 
la Tierra (E):

Nuestras incógnitas son la magnitud y dirección de la velocidad del
avión (P) relativa a la Tierra (E), Así, que las calcularemos usan-
do la ecuación (3.36).

EJECUTAR: Usando la ecuación (3.36), tenemos

Las tres velocidades relativas y su relación se muestran en la gura
3.35; las incógnitas son la rapidez vP>E y el ángulo a. Del diagrama ob-
tenemos

 a 5 arctan 1 100 km/h
240 km/h 2 5 23° E del N

 vP/E 5 " 1 240 km/h 2 2 1 1 100 km/h 2 2 5 260 km/h

vSP/E 5 vSP/A 1 vSA/E

vSP/E .

 vSA/E 5 100 km/h  al este

 vSP/A 5 240 km/h   al norte

EVALUAR: El viento lateral aumenta la rapidez del avión relativa al
suelo, pero al precio de desviarlo de su curso.
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240 km/h,
en ángulo b

este

N

EO

S

vA/E 5 100 km/h,S

vP/A 5S
vP/E,
norte

S

b

3.36 El piloto debe apuntar el avión en la dirección del vector
para viajar al norte relativo a la Tierra.vSP/A

Ejemplo 3.15 Corrección por viento cruzado

En el ejemplo 3.14, ¿qué rumbo debería tomar el piloto para viajar al
norte? ¿Cuál será su velocidad relativa a la tierra? (Suponga que su
rapidez con respecto al aire y la velocidad del viento son las del ejem-
plo 3.14.)

SOLUCIÓN

IDENTIFICAR: Al igual que en el ejemplo 3.14, éste es un problema
de velocidad relativa con vectores.

PLANTEAR: La gura 3.36 ilustra la situación. Ahí, los vectores se
acomodaron según la ecuación vectorial de velocidad relativa, ecua-
ción (3.36):

Como muestra la gura 3.36, el piloto apunta la nariz del avión con un
ángulo hacia el viento para compensar su efecto. Este ángulo, que
nos da la dirección del vector (la velocidad del avión relativa al ai-
re), es una de nuestras incógnitas. La otra es la rapidez del avión sobre
el suelo, que es la magnitud del vector (la velocidad del avión re-
lativa a la Tierra). Veamos las cantidades que conocemos y las que des-
conocemos:

al norte

dirección desconocida

al este

Podemos calcular las incógnitas empleando la gura 3.36 y trigono-
metría.

EJECUTAR: Por el diagrama, la rapidez vP>E y el ángulo b están dados
por

 b 5 arcsen 1 100 km/h
240 km/h 2 5 25°

 vP/E 5 " 1 240 km/h 2 2 2 1 100 km/h 2 2 5 218 km/h2

 vSA/E 5 100 km/h 

 vSP/A 5 240 km/h 

 vSP/E 5 magnitud desconocida 

vSP/E

vSP/A

b

vSP/E 5 vSP/A 1 vSA/E

El piloto debería dirigirse 25° al oeste del norte, y su rapidez con res-
pecto al suelo será entonces de 218 km>h.

EVALUAR: Observe que había dos incógnitas —la magnitud de un
vector y la dirección de un vector— tanto en este ejemplo como en el
ejemplo 3.14. La diferencia es que, en el ejemplo 3.14, la magnitud y
dirección se referían al mismo vector mientras que en este
ejemplo se reeren a vectores distintos y 

No es sorpresa que un viento de frente reduzca la rapidez de un
avión relativa al suelo. Lo que este ejemplo demuestra es que un vien-
to cruzado también frena los aviones: es una triste realidad de la in-
dustria aeronáutica.

vSP/A 2 .1vSP/E

1vSP/E 2 ,

Evalúe su comprensión de la sección 3.5 Suponga que la nariz del avión 
se apunta al este y que el avión tiene una velocidad de vuelo de 150 km>h. Debido al
viento, el avión se mueve al norte relativo al suelo y su rapidez relativa al suelo es de 
150 km>h. ¿Cuál es la velocidad del aire relativa a la Tierra? i) 150 km>h de este a oeste; 
ii) 150 km>h de sur a norte; iii) 150 km>h de sureste a noroeste; iv) 212 km>h de este a oeste; 
v) 212 km>h de sur a norte; vi) 212 km>h de sureste a noroeste; vii) no hay velocidad del aire
posible que cause esto.

❚
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Vectores de posición, velocidad y aceleración: El vector
de posición de un punto P en el espacio es el vector del
origen a P. Sus componentes son las coordenadas x, y y z.

El vector de velocidad media durante el intervalo
Dt es el desplazamiento (el cambio del vector de 
posición dividido entre Dt. El vector de velocidad
instantánea es la derivada de con respecto al tiempo, y
sus componentes son las derivadas de x, y y z con respecto
al tiempo. La rapidez instantánea es la magnitud de 
La velocidad de una partícula siempre es tangente a la
trayectoria de la partícula. (Véase el ejemplo 3.1.)

El vector de aceleración media durante el intervalo
de tiempo Dt es igual a (el cambio en el vector de
velocidad dividido entre Dt. El vector de aceleración
instantánea es la derivada de con respecto al tiempo, 
y sus componentes son las derivadas de vx, vy y vz con
respecto al tiempo. (Véase el ejemplo 3.2.)

La componente de aceleración paralela a la dirección 
de la velocidad instantánea afecta la rapidez; en tanto que 
la componente de perpendicular a afecta la dirección
del movimiento. (Véanse los ejemplos 3.3 y 3.4.)

vSaS

vS,aS
vS )

DvS
aSmed

vS
vS.

rS,vS
rS)

D rS
vSmed

rS

Dx

Dy

y1
Sr1

S
Dr

DvS

Sr2

v2
S

v2
S

v1
S

v1
S

x1 x2

y2

y

O
x

y

O
x

S

amed 5 
S Dv

D t

S

vmed 5 
S Dr

D t

Movimiento de proyectiles: En el movimiento de 
proyectiles sin resistencia del aire, ax 5 0 y ay 5 2g. 
Las coordenadas y componentes de la velocidad son 
funciones sencillas del tiempo, y la forma de la trayectoria
siempre es una parábola. Por convención, colocamos el 
origen en la posición inicial del proyectil. (Véanse los 
ejemplos 3.5 a 3.10.)

y

O
x

Sv
Sv

Sv
Sv

vx

vx

ay 5 2g
vy

vy

vx
vy

Movimiento circular uniforme y no uniforme: Cuando una
partícula se mueve en una trayectoria circular de radio R
con rapidez constante v (movimiento circular uniforme),
su aceleración está dirigida hacia el centro del círculo y
es perpendicular a La magnitud arad de la aceleración se
puede expresar en términos de v y R, o en términos de R 
y el periodo T (el tiempo que tarda en dar una vuelta), 
donde (Véanse los ejemplos 3.11 y 3.12.)

Aunque la rapidez en un movimiento circular no 
sea constante (movimiento circular no uniforme), habrá 
una componente radial de dada por la ecuación (3.28) o la
ecuación (3.30), pero también habrá una componente de 
paralela (tangencial) a la trayectoria; esta componente tan-
gencial es igual a la tasa de cambio de la rapidez, dv>dt.

aS
aS

v 5 2pR/T.

vS.
aS

vS

vS

vS
vS

vS arad
S

arad
S

arad
S

arad
S

arad
Sarad

S

vS

(3.20)

(3.21)

(3.22)

(3.23)vy 5 v0 sen a0 2 gt

vx 5 v0 cos a0

y 5 1v0 sen a0 2 t 2
1

2
gt2

x 5 1v0 cos a0 2 t

(3.1)

(3.2)

(3.3)

(3.4)

(3.8)

(3.9)

(3.10)

az 5
dvz

dt

ay 5
dvy

dt

ax 5
dvx

dt

aS 5 lím
DtS0

 
DvS

Dt
5

dvS

dt

aSmed 5
vS2 2 vS1

t2 2 t1
5

DvS

Dt

vx 5
dx

dt
 vy 5

dy

dt
 vz 5

dz

dt

vS 5 lím
DtS0

 
D rS

Dt
5

d rS

dt

vSmed 5
rS2 2 rS1

t2 2 t1
5

D rS

Dt

rS 5 x d̂ 1 y ê 1 z k̂

(3.30)arad 5
4p2R

T2

Velocidad relativa: Cuando un cuerpo P se mueve relativo
a un cuerpo (o marco de referencia) B, y B se mueve
relativo a A, denotamos la velocidad de P relativa a B con

la velocidad de P relativa a A con y la velocidad
de B relativa a A con Si todas estas velocidades 
están en la misma línea, sus componentes sobre la 
línea están relacionadas por la ecuación (3.33). De forma
más general, estas velocidades están relacionadas por 
la ecuación (3.36). (Véanse los ejemplos 3.13 a 3.15.)

vSB/A .
vSP/A ,vSP/B ,

A (observador
en el suelo)

B (aire en
movimiento)

P (avión)

SvP/B
SvP/A

SvB/A
vP/A 5 vP/B 1 vB /A
S S S(3.33)

(velocidad relativa en una línea)

(3.36)
(velocidad relativa en el espacio) 
vSP/A 5 vSP/B 1 vSB/A

vP/A-x 5 vP/B-x 1 vB/A-x

CAPÍTULO 3 RESUMEN

(3.28)arad 5
v2

R
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Términos clave
vector de posición, 72
velocidad media, 72
aceleración instantánea, 72
aceleración media, 75
velocidad instantánea, 75

proyectil, 79
trayectoria, 79
movimiento circular uniforme, 88
aceleración centrípeta, 89
periodo, 89

movimiento circular no uniforme, 90
velocidad relativa, 91
marco de referencia, 91

Respuesta a la pregunta de inicio de capítulo ?
Un automóvil que va por una curva a rapidez constante tiene una ace-
leración dirigida hacia el interior de la curva (véase la sección 3.2, en
especial la gura 3.12a).

Respuestas a las preguntas de 
Evalúe su comprensión
3.1 Respuesta: iii) Si la velocidad instantánea es constante durante
un intervalo, su valor en cualquier punto (incluyendo el nal del inter-
valo) es igual a la velocidad media durante el intervalo. En i) y ii)
la dirección de al nal del intervalo es tangente a la trayectoria en
ese punto; mientras que la dirección de apunta desde el inicio de
la trayectoria hasta el nal (en la dirección del desplazamiento neto).
En iv) y se encuentran a lo largo de la línea recta, aunque tie-
ne una magnitud mayor porque la rapidez ha ido en aumento.
3.2 Respuesta: vector 7 En el punto más alto de la trayectoria del 
trineo, la rapidez es mínima. En ese punto, la rapidez no aumenta ni
disminuye, y la componente paralela de la aceleración (es decir, la
componente horizontal) es cero. La aceleración sólo tiene una com-
ponente perpendicular hacia el interior de la trayectoria curva del 
trineo. Dicho de otro modo, la aceleración es hacia abajo.

vSvSmedvS

vSmed

vS
vSmed

vS

3.3 Respuesta: i) Si no hubiera gravedad (g 5 0), el mono no caería y
el dardo seguiría una trayectoria recta (que se indica como línea dis-
continua). El efecto de la gravedad es hacer que tanto el mono como el
dardo caigan la misma distancia abajo de sus posiciones con g 5
0. El punto A está a la misma distancia abajo de la posición inicial del
mono de la que el punto P está abajo de la recta discontinua, así que 
el punto A es donde encontraríamos al mono en el instante en cuestión.
3.4 Respuesta: ii) Tanto en la parte alta como en la baja del lazo, la
aceleración es puramente radial y está dada por la ecuación (3.28). El
radio R es el mismo en ambos puntos, así que la diferencia de acelera-
ción se debe exclusivamente a diferencias de rapidez. Puesto que arad

es proporcional al cuadrado de v, la rapidez deberá ser dos vece mayor
en la parte baja del lazo que en su parte alta.
3.5 Respuesta: vi) El efecto del viento es anular el movimiento hacia 
el este del avión e imprimirle un movimiento hacia el norte. Así que 
la velocidad del aire en relación con el suelo (la velocidad del viento)
debe tener una componente de 150 km>h hacia el oeste y una compo-
nente de 150 km>h hacia el norte. La combinación de ambas es un vec-
tor con magnitud que
apunta hacia el noroeste.

" 1 150 km/h 2 2 1 1 150 km/h 2 2 5 212 km/h

1
2 gt2

PROBLEMAS Para la tarea asignada por el profesor, visite www.masteringphysics.com

Preguntas para análisis
P3.1. Un péndulo simple (una masa que oscila en el extremo de un cor-
del) oscila en un arco circular. ¿Qué dirección tiene su aceleración en
los extremos del arco? ¿Y en el punto medio? En cada caso, explique
cómo obtuvo su respuesta.
P3.2. Vuelva a dibujar la gura 3.11a como si fuera antiparalela a

¿La partícula se mueve en línea recta? ¿Qué pasa con la rapidez?
P3.3. Un proyectil se mueve en una trayectoria parabólica sin resisten-
cia del aire. ¿Hay un punto donde sea paralela a ¿Y perpendicular
a Explique su respuesta.
P3.4. Cuando se dispara un rie a un blanco lejano, el cañón no se
apunta exactamente al blanco. ¿Por qué? ¿El ángulo de corrección de-
pende de la distancia al blanco?
P3.5. En el instante que usted dispara una bala horizontalmente de una
arma, suelta una bala desde la altura del cañón. Si no hay resistencia
del aire, ¿qué bala llegará primero al suelo? Explique su respuesta.
P3.6. Un paquete se deja caer desde un avión que vuela en línea recta
con altitud y rapidez constantes. Si se desprecia la resistencia del aire,
¿qué trayectoria del paquete observaría el piloto? ¿Y una persona si-
tuada en el suelo?
P3.7. Dibuje las seis grácas de las componentes x y y de posición, ve-
locidad y aceleración contra el tiempo, para un movimiento de proyec-
til con x0 5 y0 5 0 y
P3.8. Se lanza un objeto directo hacia arriba sin que sufra resistencia
del aire. ¿Cómo es posible que el objeto tenga aceleración cuando se
detiene al llegar a su punto más alto?

0 , a0 , 90°.

vS?
vS?aS

vS1 .
aS

P3.9. Si una rana puede saltar con la misma rapidez inicial sin impor-
tar la dirección (hacia adelante o hacia arriba), ¿qué relación hay entre
la altura vertical máxima y el alcance horizontal máximo de su salto,

P3.10. Se dispara un proyectil hacia arriba con un ángulo u por encima de
la horizontal con una rapidez inicial v0. Al llegar a su máxima altura,
¿cuáles son su vector de velocidad, su rapidez y su vector de aceleración?
P3.11. En el movimiento circular uniforme, ¿cuáles son la velocidad
media y la aceleración media durante una revolución? Explique su 
respuesta.
P3.12. En el movimiento circular uniforme, ¿cómo cambia la acelera-
ción cuando la rapidez aumenta al triple? ¿Y cuando el radio se reduce
a la mitad?
P3.13. En el movimiento circular uniforme, la aceleración es perpen-
dicular a la velocidad en todo instante. ¿Sigue siendo válido esto cuan-
do el movimiento no es uniforme, es decir, cuando la rapidez no es
constante?
P3.14. Incluso sin viento, las gotas de lluvia suelen dejar rayas diagona-
les en las ventanas laterales de un automóvil en movimiento. ¿Por qué?
¿Es la misma explicación para las rayas diagonales en el parabrisas?
P3.15. En una tormenta con viento fuerte, ¿qué determina la orienta-
ción óptima de un paraguas?
P3.16. Imagine que está en la ribera oeste de un río que uye al norte a
1.2 m>s. Usted nada con rapidez de 1.5 m>s relativa al agua, y el río
tiene 60 m de ancho. ¿Qué trayectoria relativa a tierra le permitirá cru-
zar el río en el menor tiempo? Explique su razonamiento.

Rmáx 5 v0 

2/g?
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Figura 3.37 Pregunta P3.18.

P3.17. Cuando usted deja caer un objeto desde cierta altura, éste tarda
un tiempo T en llegar al piso si no hay resistencia del aire. Si usted lo
dejara caer desde una altura tres veces mayor, ¿cuánto tiempo tardaría
el objeto (en términos de T) en llegar al suelo?
P3.18. Se lanza una piedra hacia el aire con un ángulo por encima de la
horizontal, y se desprecia la resistencia del aire. ¿Cuál de las grácas
en la gura 3.37 describe mejor la rapidez v de la piedra en función del
tiempo t mientras está en el aire?

Ejercicios
Sección 3.1 Vectores de posición y velocidad
3.1. Una ardilla tiene coordenadas x y y (1.1 m, 3.4 m) en t1 5 0 y
coordenadas (5.3 m, 20.5 m) en t2 5 3.0 s. Para este intervalo, obten-
ga a) las componentes de la velocidad media, y b) la magnitud y direc-
ción de esta velocidad.
3.2. Un rinoceronte está en el origen de las coordenadas en t1 5 0. 
Para el intervalo de t1 5 0 a t2 5 12.0 s, la velocidad media del ani-
mal tiene componente x de 23.8 m>s y componente y de 4.9 m>s. 
En t2 5 12.0 s, a) ¿qué coordenadas x y y tiene el rinoceronte? b) ¿Qué
tan lejos está del origen?
3.3. Un diseñador de páginas Web crea una animación en la que un
punto en una pantalla de computadora tiene una posición 

a) Determine la magnitud1 2.5 cm/s2 2 t2 4d̂ 1 1 5.0 cm/s 2 tê.34.0 cm 1
rS 5

y dirección de la velocidad media del punto entre t 5 0 y t 5 2.0 s. 
b) Calcule la magnitud y dirección de la velocidad instantánea en 
t5 0, en t 5 1.0 s y en t5 2.0 s. c) Dibuje la trayectoria del punto de t
5 0 a t 5 2.0 s, y muestre las velocidades calculadas en el inciso b).
3.4. Si donde b y c son constantes positivas, ¿cuán-
do el vector de velocidad forma un ángulo de 45° con los ejes x y y?

Sección 3.2 El vector de aceleración
3.5. Un jet vuela a altitud constante. En el instante t1 5 0, tiene com-
ponentes de velocidad vx 5 90 m>s, vy 5 110 m>s. En t2 5 30.0 s, las
componentes son vx 5 2170 m>s, vy 5 40 m>s. a) Dibuje los vectores
de velocidad en tl y t2. ¿En qué dieren? Para este intervalo, calcule 
b) las componentes de la aceleración media, y c) la magnitud y direc-
ción de esta aceleración.
3.6. Un perro que corre en un campo tiene componentes de velocidad
vx 5 2.6 m>s y vy 5 21.8 m>s en t1 5 10.0 s. Para el intervalo de t1 5

10.0 s a t2 5 20.0 s, la aceleración media del perro tiene magnitud de
0.45 m>s2 y dirección de 31.0° medida del eje 1x al eje 1y. En t2 5

20.0 s, a) ¿qué componentes x y y tiene la velocidad del perro? b) ¿Qué
magnitud y dirección tiene esa velocidad? c) Dibuje los vectores de
velocidad en t1 y t2. ¿En qué dieren?
3.7. Las coordenadas de un ave que vuela en el plano xy están da-
das por y donde y

a) Dibuje la trayectoria del ave entre t 5 0 y t 5 2.0 s.
b) Calcule los vectores de velocidad y aceleración en función de t. 
c) Obtenga la magnitud y dirección de la velocidad y aceleración del
ave en t 5 2.0 s. d) Dibuje los vectores de velocidad y aceleración en 
t 5 2.0 s. En este instante, ¿el ave está acelerando, frenando o su ra-
pidez no está cambiando instantáneamente? ¿Está dando vuelta? Si 
así es, ¿en qué dirección?
3.8. Una partícula sigue una trayectoria como se muestra en la gura
3.38. Entre B y D, la trayectoria es recta. Dibuje los vectores de acele-
ración en A, C y E si a) la partícula se mueve con rapidez constante, 
b) la partícula aumenta de rapidez continuamente; c) la rapidez de la
partícula disminuye continuamente.

b 5 1.2 m/s2.
a 5 2.4 m/sy 1 t 2 5 3.0 m 2 bt2,x 1 t 2 5 at

rS 5 bt 2d̂ 1 ct 3ê,
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Figura 3.38 Ejercicio 3.8.

Sección 3.3 Movimiento de proyectiles
3.9. Un libro de física que se desliza sobre una mesa horizontal a 1.10
m>s cae al piso en 0.350 s. Ignore la resistencia del aire. Calcule a) la
altura de la mesa; b) la distancia horizontal del borde de la mesa al
punto donde cae el libro; c) las componentes horizontal y vertical, y la
magnitud y dirección, de la velocidad del libro justo antes de tocar el
piso. d) Dibuje grácas x-t, y-t, vx-t y vy-t para el movimiento.
3.10. Un helicóptero militar está en una misión de entrenamiento y
vuela horizontalmente con una rapidez de 60.0 m>s y accidentalmen-
te suelta una bomba (desactivada, por suerte) a una altitud de 300 m.
Puede despreciarse la resistencia del aire. a) ¿Qué tiempo tarda la
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bomba en llegar al suelo? b) ¿Qué distancia horizontal viaja mientras
cae? c) Obtenga las componentes horizontal y vertical de su veloci-
dad justo antes de llegar al suelo. d) Dibuje gráficas x-t, y-t, vx-t y 
vy-t para el movimiento de la bomba. e) ¿Dónde está el helicóptero
cuando la bomba toca tierra, si la rapidez del helicóptero se mantuvo
constante?
3.11. Dos grillos, Chirpy y Milada, saltan desde lo alto de un acantila-
do vertical. Chirpy simplemente se deja caer y llega al suelo en 3.50 s;
en tanto que Milada salta horizontalmente con una rapidez inicial de
95.0 cm>s. ¿A qué distancia de la base del acantilado tocará Milada 
el suelo?
3.12. Una osada nadadora de 510 N
se lanza desde un risco con un im-
pulso horizontal, como se muestra
en la gura 3.39. ¿Qué rapidez mí-
nima debe tener al saltar de lo alto
del risco para no chocar con la sa-
liente en la base, que tiene una an-
chura de 1.75 m y está 9.00 m
abajo del borde superior del risco?
3.13. Salto del río I. Un automóvil
llega a un puente durante una tormenta y el conductor descubre que las
aguas se lo han llevado. El conductor debe llegar al otro lado, así que
decide intentar saltar la brecha con su auto. La orilla en la que se en-
cuentra está 21.3 m arriba del río, mientras que la orilla opuesta está a
sólo 1.8 m sobre las aguas. El río es un torrente embravecido con una
anchura de 61.0 m. a) ¿Qué tan rápido deberá ir el auto cuando llegue
a la orilla para librar el río y llegar a salvo al otro lado? b) ¿Qué rapi-
dez tendrá el auto justo antes de que aterrice en la orilla opuesta?
3.14. Una pequeña ca-
nica rueda horizontal-
mente con una rapi-
dez v0 y cae desde la
parte superior de una
plataforma de 2.75 m
de alto, sin que sufra
resistencia del aire. 
A nivel del piso, a
2.00 m de la base de
la plataforma, hay una
cavidad (figura 3.40).
¿En qué intervalo de
rapideces v0 la canica
caerá dentro de la cavidad?
3.15. Dentro de una nave espacial en reposo sobre la Tierra, una pelota
rueda desde la parte superior de una mesa horizontal y cae al piso a
una distancia D de la pata de la mesa. Esta nave espacial ahora des-
ciende en el inexplorado Planeta X. El comandante, el Capitán Curio-
so, hace rodar la misma pelota desde la misma mesa con la misma
rapidez inicial que en la Tierra, y se da cuenta de que la pelota cae al
piso a una distancia 2.76D de la pata de la mesa. ¿Cuál es la acelera-
ción debida a la gravedad en el Planeta X?
3.16. Un mariscal de campo novato lanza un balón con una componen-
te de velocidad inicial hacia arriba de 16.0 m>s y una componente de
velocidad horizontal de 20.0 m>s. Ignore de la resistencia del aire. 
a) ¿Cuánto tiempo tardará el balón en llegar al punto más alto de la tra-
yectoria? b) ¿A qué altura está este punto? c) ¿Cuánto tiempo pasa 
desde que se lanza el balón hasta que vuelve a su nivel original? 
¿Qué relación hay entre este tiempo y el calculado en el inciso a)? 
d) ¿Qué distancia horizontal viaja el balón en este tiempo? e) Dibuje
grácas x-t, y-t, vx-t y vy-t para el movimiento.
3.17. Se dispara un proyectil desde el nivel del suelo con una velocidad
inicial de 80.0 m>s a 60.0° por encima de la horizontal sin que sufra re-
sistencia del aire. a) Determine las componentes horizontal y vertical
de la velocidad inicial del proyectil. b)¿Cuánto tarda el proyectil en al-

v 5 6.4 m/s

608

2.1 m

?

Figura 3.41 Ejercicio 3.21.

canzar su punto más alto? c) Calcule su altura máxima por encima del
suelo. d) ¿Qué tan lejos del punto de lanzamiento cae el proyectil 
al suelo? e) Determine las componentes horizontal y vertical de su 
aceleración y velocidad en el punto de su máxima altura. 
3.18. Una pistola que dispara una luz bengala le imprime una veloci-
dad inicial de 125 m>s en un ángulo de 55.0° sobre la horizontal. Igno-
re la resistencia del aire. Si la bengala se dispara, obtenga su altura
máxima y la distancia del punto de disparo al punto de caída, a) en los
salares planos de Utah y b) en el Mar de la Tranquilidad en la Luna,
donde g 5 1.67 m>s2.
3.19. Un pelotero de grandes ligas batea una pelota de modo que sale
del bate con una rapidez de 30.0 m>s y un ángulo de 36.9° sobre la
horizontal. Ignore la resistencia del aire. a) ¿En cuáles dos instantes
la pelota estuvo a 10.0 m sobre el punto en que se salió del bate? 
b) Obtenga las componentes horizontal y vertical de la velocidad de
la pelota en cada uno de los dos instantes calculados en el inciso a).
c) ¿Qué magnitud y dirección tenía la velocidad de la pelota al regre-
sar al nivel en el que se bateó?
3.20. Un atleta lanza la bala a cierta distancia sobre el suelo plano con
velocidad de 12.0 m>s, 51.0° sobre la horizontal. La bola golpea el
suelo 2.08 s después. Ignore la resistencia del aire. a) ¿Cuáles son las
componentes de la aceleración de la bala en vuelo? b) ¿Cuáles son 
las componentes de la velocidad de la bala al principio y el nal de su
trayectoria? c) A qué distancia horizontal llegó la bala? d) ¿Por qué 
la expresión para R del ejemplo 3.8 no da la respuesta correcta para 
el inciso c)? e) ¿A qué altura sobre el suelo se lanzó la bala? f) Dibuje
las grácas x-t, y-t, vx-t y vy-t para el movimiento.
3.21. Gane el premio. En una feria, se gana una jirafa de peluche
lanzando una moneda a un platito, el cual está sobre una repisa más
arriba del punto en que la moneda sale de la mano y a una distancia
horizontal de 2.1 m desde ese punto (gura 3.41). Si lanza la moneda
con velocidad de 6.4 m>s, a un ángulo de 60° sobre la horizontal, la
moneda caerá en el platito. Ignore la resistencia del aire. a) ¿A qué al-
tura está la repisa sobre el punto donde se lanza la moneda? b) ¿Qué
componente vertical tiene la velocidad de la moneda justo antes de
caer en el platito?

v0

Saliente

1.75 m
9.00 m

Figura 3.39 Ejercicio 3.12.

2.75 m

v0 5 ?

1.50 m
2.00 m

Figura 3.40 Ejercicio 3.14.

3.22. Suponga que el ángulo inicial a0 de la gura 3.26 es de 42.08 y 
la distancia d es de 3.00 m. ¿Dónde se encontrarán el dardo y el mono,
si la rapidez inicial del dardo es a) 12.0 m>s? b) ¿8.0 m>s? c) ¿Qué su-
cederá si la rapidez inicial del dardo es de 4.0 m>s? Dibuje la trayec-
toria en cada caso.
3.23. Un hombre está parado en la azotea de un edicio de 15.0 m y
lanza una piedra con velocidad de 30.0 m>s en un ángulo de 33.08 so-
bre la horizontal. Puede despreciarse la resistencia del aire. Calcule 
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a) la altura máxima que alcanza la piedra sobre la azotea; b) la magni-
tud de la velocidad de la piedra justo antes de golpear el suelo; y c) la
distancia horizontal desde la base del edicio hasta el punto donde 
la roca golpea el suelo. d) Dibuje las grácas x-t, y-t, vx-t y vy-t para el
movimiento.
3.24. Los bomberos están lanzando un chorro de agua a un edicio en
llamas, utilizando una manguera de alta presión que imprime al agua
una rapidez de 25.0 m>s al salir por la boquilla. Una vez que sale de 
la manguera, el agua se mueve con movimiento de proyectil. Los
bomberos ajustan el ángulo de elevación de la manguera hasta que
el agua tarda 3.00 s en llegar a un edicio que está a 45.0 m de dis-
tancia. Ignore la resistencia del aire y suponga que la boquilla de la
manguera está a nivel del suelo. a) Calcule el ángulo de elevación de a.
b) Determine la rapidez y aceleración del agua en el punto más alto de
su trayectoria. c) ¿A qué altura sobre el suelo incide el agua sobre el
edicio, y con qué rapidez lo hace?
3.25. Un globo de 124 kg que lleva una canastilla de 22 kg desciende
con rapidez constante hacia abajo de 20.0 m>s. Una piedra de 1.0 kg
se lanza desde la canastilla con una velocidad inicial de 15.0 m>s
perpendicular a la trayectoria del globo en descenso, medida relativa
a una persona en reposo en la canasta. Esa persona ve que la piedra
choca contra el suelo 6.00 s después de lanzarse. Suponga que el glo-
bo continúa su descenso a los 20.0 m>s constantes. a) ¿A qué altura
estaba el globo cuando se lanzó la piedra? b) ¿Y cuando chocó contra
el suelo? c) En el instante en que la piedra tocó el suelo, ¿a qué dis-
tancia estaba de la canastilla? d) Determine las componentes hori-
zontal y vertical de la velocidad de la piedra justo antes de chocar
contra el suelo, relativas a un observador i) en reposo en la canastilla;
ii) en reposo en el suelo.
3.26. Un cañón, situado a 60.0 m de la base de un risco vertical de
25.0 m de altura, dispara un obús de 15 kg con un ángulo de 43.08 so-
bre la horizontal, hacia el risco. a) ¿Qué velocidad inicial mínima debe
tener el obús para librar el borde superior del risco? b) El suelo en la
parte superior del risco es plano, con una altura constante de 25.0 m
sobre el cañón. En las condiciones del inciso a), ¿a qué distancia del
borde del risco cae el obús?
3.27. Un avión vuela con una velocidad de 90.0 m>s a un ángulo de
23.0° arriba de la horizontal. Cuando está 114 m directamente arriba
de un perro parado en suelo plano, se cae una maleta del comparti-
miento de equipaje. ¿A qué distancia del perro caerá la maleta? Ignore
la resistencia del aire.

Sección 3.4 Movimiento en un círculo
3.28. Imagine que, en su primer día de trabajo para un fabricante 
de electrodomésticos, le piden que averigüe qué hacerle al periodo de
rotación de una lavadora para triplicar la aceleración centrípeta, y 
usted impresiona a su jefa contestando inmediatamente. ¿Qué le 
contesta?
3.29. La Tierra tiene 6380 km de radio y gira una vez sobre su eje en
24 h. a) ¿Qué aceleración radial tiene un objeto en el ecuador? Dé su
respuesta en m>s2 y como fracción de g. b) Si arad en el ecuador fuera
mayor que g, los objetos saldrían volando hacia el espacio. (Veremos
por qué en el capítulo 5.) ¿Cuál tendría que ser el periodo de rotación
para que esto sucediera?
3.30. Un modelo de rotor de helicóptero tiene cuatro aspas, cada una
de 3.40 m de longitud desde el eje central hasta la punta. El modelo se
gira en un túnel de viento a 550 rpm. a) ¿Qué rapidez lineal tiene la
punta del aspa en m>s? b) ¿Qué aceleración radial tiene la punta del as-
pa, expresada como un múltiplo de la aceleración debida a la grave-
dad, es decir, g?
3.31. En una prueba de un “traje g”, un voluntario se gira en un círculo
horizontal de 7.0 m de radio. ¿Con qué periodo de rotación la acelera-
ción centrípeta tiene magnitud de a) 3.0g? b) ¿10g?

a.

3.32. El radio de la órbita terrestre alrededor del Sol (suponiendo que
fuera circular) es de y la Tierra la recorre en 365 días.
a) Calcule la magnitud de la velocidad orbital de la Tierra en m>s. 
b) Calcule la aceleración radial de la Tierra hacia el Sol en m>s2. 
c) Repita los incisos a) y b) para el movimiento del planeta Mercurio
(radio orbital 5 5.79 3 107 km, periodo orbital 5 88.0 días).
3.33. Una rueda de la fortuna de
14.0 m de radio gira sobre un eje
horizontal en el centro (gura
3.42). La rapidez lineal de un pasa-
jero en el borde es constante e
igual a 7.00 m>s. ¿Qué magnitud y
dirección tiene la aceleración del
pasajero al pasar a) por el punto
más bajo de su movimiento circu-
lar? b) ¿Por el punto más alto de su
movimiento circular? c) ¿Cuánto
tarda una revolución de la rueda?
3.34. La rueda de la gura 3.42,
que gira en sentido antihorario, se
acaba de poner en movimiento. En
un instante dado, un pasajero en el borde de la rueda que está pasando
por el punto más bajo de su movimiento circular tiene una rapidez de
3.00 m>s, la cual está aumentando a razón de 0.500 m>s2. a) Calcule la
magnitud y la dirección de la aceleración del pasajero en este instante.
b) Dibuje la rueda de la fortuna y el pasajero mostrando sus vectores
de velocidad y aceleración.
3.35. Hipergravedad. En el Centro de Investigación Ames de la NA-
SA, se utiliza el enorme centrifugador “20-G” para probar los efectos de
aceleraciones muy elevadas (“hipergravedad”) sobre los pilotos y los
astronautas. En este dispositivo, un brazo de 8.84 m de largo gira uno de
sus extremos en un plano horizontal, mientras el astronauta se encuentra
sujeto con una banda en el otro extremo. Suponga que el astronauta está
alineado en el brazo con su cabeza del extremo exterior. La aceleración
máxima sostenida a la que los seres humanos se han sometido en esta
máquina comúnmente es de 12.5 g. a) ¿Qué tan rápido debe moverse 
la cabeza del astronauta para experimentar esta aceleración máxima? 
b) ¿Cuál es la diferencia entre la aceleración de su cabeza y pies, si el
astronauta mide 2.00 m de altura? c) ¿Qué tan rápido, en rpm (rev>min),
gira el brazo para producir la aceleración sostenida máxima?

Sección 3.5 Velocidad relativa
3.36. Un vagón abierto de ferrocarril viaja a la derecha con rapidez 
de 13.0 m>s relativa a un observador que está parado en tierra. Alguien
se mueve en motoneta sobre el vagón abierto (gura 3.43). ¿Qué ve-
locidad (magnitud y dirección) tiene la motoneta relativa al vagón
abierto si su velocidad relativa al observador en el suelo es a) 18.0 m>s
a la derecha? b) ¿3.0 m>s a la izquierda? c) ¿Cero?

1.50 3 108 km,

14.0 m

Figura 3.42 Ejercicios 3.33 
y 3.34.

v 5 13.0 m/s

Figura 3.43 Ejercicio 3.36.
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Figura 3.44 Ejercicio 3.38.

3.39. Una canoa tiene una velocidad de 0.40 m>s al sureste, relativa a
la Tierra. La canoa está en un río que uye al este a 0.50 m>s relativa 
a la Tierra. Calcule la velocidad (magnitud y dirección) de la canoa 
relativa al río.
3.40. Un piloto desea volar al oeste. Un viento de 80.0 km>h (aprox.
50 mi>h) sopla al sur. a) Si la rapidez (en aire estacionario) del avión es
de 320.0 km>h (aprox. 200 mi>h), ¿qué rumbo debe tomar el piloto? 
b) ¿Cuál es la rapidez del avión sobre el suelo? Ilustre con un diagrama
vectorial.
3.41. Cruce del río I. Un río uye al sur con rapidez de 2.0 m>s. Un
hombre cruza el río en una lancha de motor con velocidad relativa al
agua de 4.2 m>s al este. El río tiene 800 m de ancho. a) ¿Qué velocidad
(magnitud y dirección) tiene la lancha relativa a la Tierra? b) ¿Cuánto
tiempo tarda en cruzar el río? c) ¿A qué distancia al sur de su punto
de partida llegará a la otra orilla?
3.42. Cruce del río II. a) ¿Qué dirección debería tomar la lancha
del ejercicio 3.41, para llegar a un punto en la orilla opuesta directa-
mente al este de su punto de partida? (La rapidez de la lancha relativa
al agua sigue siendo 4.2 m>s.) b) ¿Qué velocidad tendría la lancha rela-
tiva a la Tierra? c) ¿Cuánto tardaría en cruzar el río?
3.43. La nariz de un avión ultraligero apunta al sur, y el velocímetro
indica 35 m>s. Hay un viento de 10 m>s que sopla al suroeste relativo a
la Tierra. a) Dibuje un diagrama de suma vectorial que muestre la rela-
ción de (velocidad del avión relativa a la Tierra) con los dos vecto-
res dados. b) Si x es al este y y al norte, obtenga las componentes de

c) Obtenga la magnitud y dirección de

Problemas
3.44. Un cohete de modelo defectuoso se mueve en el plano xy (la 
dirección 1y es vertical hacia arriba). La aceleración del cohete 
tiene componentes dadas por y donde 

y En t 5 0 el cohe-
te está en el origen y tiene velocidad inicial con 
v0x5 1.00 m>s y v0y 5 7.00 m>s. a) Calcule los vectores de velocidad
y posición en función del tiempo. b) ¿Qué altura máxima alcanza el

vS0 5 v0x d̂ 1 v0yê
g 5 1.40 m/s3.b 5 9.00 m/s2a 5 2.50 m/s4,

ay 1 t 2 5 b 2 gt,ax 1 t 2 5 at2

vSP/E .vSP/E .

vSP/E

cohete? c) Dibuje el camino que sigue el cohete. d) ¿Qué desplaza-
miento horizontal tiene el cohete al volver a y 5 0?
3.45. Se realiza un lanzamiento en ángulo de un cohete desde la par-
te superior de una torre, cuya altura es h0 5 50.0 m. A causa del diseño
de los motores, sus coordenadas de posición tienen la forma x(t) 5
A 1 Bt2 y y(t) 5 C 1 Dt3, donde A, B, C y D son constantes. Ade-
más, la aceleración del cohete 1.00 s después del lanzamiento es

Considere que la base de la torre es el 
origen de las coordenadas. a) Determine las constantes A, B, C y D, in-
cluyendo sus unidades en el SI. b) En el instante posterior al lanzamien-
to del cohete, ¿cuáles son sus vectores de aceleración y velocidad? 
c) ¿Cuáles son las componentes x y y de la velocidad del cohete 10.0 s
después del lanzamiento, y qué tan rápido se mueve el cohete? d) ¿Cuál
es el vector de posición del cohete 10.0 s después del lanzamiento?
3.46. Un ave vuela en el plano xy con un vector de velocidad dado 
por donde y

La dirección 1y es vertical hacia arriba. En t 5 0, el ave
está en el origen. a) Calcule los vectores de posición y aceleración del
ave en función del tiempo. b) ¿Qué altura (coordenada y) tiene el ave
al volar sobre x 5 0 por primera vez después de t 5 0?
3.47. Un cohete de prueba se
lanza acelerándolo a 1.25 m>s2

por un plano inclinado de 
200.0 m, partiendo del reposo en
el punto A (gura 3.45). El pla-
no inclinado se eleva a 35.08 por
encima de la horizontal, y en el
instante en que el cohete sale del
plano, sus motores se apagan y
queda sujeto solamente a la gravedad (se puede ignorar la resistencia del
aire). Determine a) la altura máxima sobre el suelo a la que llega el co-
hete, y b) el alcance máximo horizontal del cohete más allá del punto A.
3.48. Atletismo en Marte. En el salto de longitud, una atleta se lan-
za en ángulo por encima del suelo y cae a la misma altura, tratando de
alcanzar la máxima distancia horizontal. Suponga que en la Tierra, ella
se encuentra en el aire durante un tiempo T, alcanza una altura máxima
h y una distancia horizontal D. Si ella saltara exactamente de la misma
forma durante una competencia en Marte, donde gMarte es 0.379 del va-
lor de g en la Tierra, determine su tiempo en el aire, su altura máxima y
la distancia horizontal alcanzada. Exprese cada una de estas tres canti-
dades en términos de su valor en la Tierra. Ignore la resistencia del aire
en ambos planetas.
3.49. ¡Dinamita! Una cuadrilla de demolición usa dinamita para de-
rribar un edicio viejo. Los fragmentos del edicio salen disparados en
todas direcciones, y después se encuentran a distancias de hasta 50 m
de la explosión. Estime la rapidez máxima con que salieron disparados
los fragmentos. Describa todas las suposiciones que haga.
3.50. Espiral ascendente. Es común ver a las aves de presa ascen-
der en corrientes calientes de aire, por lo general describiendo una tra-
yectoria espiral. Se puede modelar un movimiento espiral como
movimiento circular uniforme combinado con una velocidad constante
hacia arriba. Suponga que un ave describe un círculo completo con ra-
dio de 8.00 m cada 5.00 s y asciende verticalmente a razón de 3.00 m>s.
Determine lo siguiente: a) la rapidez del ave relativa al suelo; b) la
aceleración del ave (magnitud y dirección); y c) el ángulo entre el vec-
tor de velocidad del ave y la horizontal.
3.51. Un veterinario de la selva provisto de una cerbatana cargada con
un dardo sedante y un mono astuto de 1.5 kg están a 25 m arriba del
suelo en árboles separados 90 m. En el momento justo en que el veteri-
nario dispara el dardo horizontalmente al mono, éste se deja caer del
árbol en un vano intento por escapar del dardo. ¿Qué velocidad de sali-
da mínima debe tener el dardo para golpear al mono antes de que éste
llegue al suelo?
3.52. Una doble de cine se deja caer desde un helicóptero que está 
a 30.0 m sobre el suelo y se mueve con velocidad constante, cuyas

g 5 4.0 m/s2.
b 5 1.6 m/s3a 5 2.4 m/s,vS 5 1a 2 bt2 2 d̂ 1 gtê,

aS 5 1 4.00d̂ 1 3.00ê 2  m/s2.

35.08

A

200.0 m

Figura 3.45 Problema 3.47.

3.37. Una “banda móvil” de un aeropuerto se mueve a 1.0 m>s y tiene
35.0 m de largo. Si una mujer entra en un extremo y camina a 1.5 m>s
relativa a la banda móvil, ¿cuánto tardará en llegar al otro extremo si
camina a) en la misma dirección en que se mueve la banda? b) ¿Y en 
la dirección opuesta?
3.38. Dos muelles, A y B, están situados en un río; B está 1500 m río
abajo de A (gura 3.44). Dos amigos deben ir de A a B y regresar. Uno
rema un bote con rapidez constante de 4.00 km>h relativa al agua; 
el otro camina en tierra a 4.00 km>h constantes. La velocidad del río 
es 2.80 km>h en la dirección de A a B. ¿Cuánto tardará cada persona 
en hacer el viaje redondo?


