CAPITULO 4

MOVIMIENTO
BIDIMENSIONAL
Y TRIDIMENSIONAL

Este capitulo presenta una combinacion o sintesis de los conceptos desarrollados en los
capitulos 2 y 3. Continuaremos ahora describiendo el movimiento de una particula en términos
de su posicién, velocidad, y aceleracién, como lo hicimos en el capltulo 2. Sin embargo,
eliminamos la restriccion impuesta en el capltulo 2 de que la particula se mueve sélo en linea
recta. Ahora permitimos que la particula se mueva a través de un sistema de coordenadas
tridimensional ordinario. El hecho de tener en cuenta las componentes x, y, y z del movimiento
se simplifica grandemente al usar una notacién basada en los vectores. Vemos que las
ecuaciones cinemdticas del capitulo 2 pueden aplicarse en el caso general simplemente
reemplazando a la variable unidimensional con el vector correspondiente. Se tratan dos
conocidos ejemplos del movimiento como aplicaciones de la técnicas vectoriales: un proyectil
disparado bajo la accién de la gravedad terrestre con componentes de la velocidad tanto
horizontal como vertical, y un objeto que se mueve en una trayectoria circular.
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4-1 POSICION, VELOCIDAD,
YACELERACION =]

La figura 1 muestra una particula en el tiempo ¢ que se v !

mueve en una trayectoria curva en tres dimensiones. Su

posicion, o desplazamiento desde el origen, esta medida Tra;c;r—ia

por el vector r. La velocidad esta indicada por el vector v ' dela

el cual, como demostraremos enseguida, debe ser tangen- o partoui x

te a la trayectoria de la particula. La aceleracion esta

indicada por el vector a, cuya direccion, como veremos

explicitamente mds adelante, no guarda en lo general

ninguna relacién unica con la posicién de la particula o la

direccion de v. z

En coordenadas cartesianas, la particu]a se localiza por Figura 1 Vectores de posicidn, velocidad, y aceleracion de
X, ¥, y 2, las cuales son las componentes del vector r que una patticula que se mueve en una trayectoria arbitraria. Las
da la posicién de la particula: longitudes relativas de los tres vectores son independientes
entre si, como lo son sus direcciones relativas.

r=xi+yj+zk. (¢))

Supongamos que la particula se mueve de una posicion r, V= Ar . ?2)

en el tiempo ¢, a la posicién r, en el tiempo ¢,, como se At

muestra en la figura 2a. Su desplazamiento (cambio de En la ecuacién 2, el vector Ar esta multiplicado por el

posicién) en el intervalo At = t, - ¢, es el vector Ar =r, - escalar 1/At para dar el vector V. Entonces v debe tener la

r,, y la velocidad promedio v en el intervalo At es misma direccion que Ar.




60 Capitulo 4 Movimiento bidimensional y tridimensional

y
t =12
-
~
Ar
t=1t]
r2
-
n
) x
(@ =

y

T

-
t=t2
Ar t =1
r2
—
r
(7) x
) z

Figura2 (a)enelintervalo Ardez ar, la particula se
mueve de la posicién r, a la posicién r,. Su desplazamiento
en ese intervalo es Ar = r, - r,. (b) A medida que decrece el
intervalo, el vector desplazamiento tiende a la trayectoria real
de la particula.

Notese que los tres vectores, r,, Ar, y r, guardan la
misma relacién que los tres vectores a, b, y s de la figura 3
del capitulo 3. Esto es, usando el método grafico de
sumar cabeza-en-cola, Ar sumada a r, da la resultante r,.
Asi,r, = Ar +r;, y, por lo tanto, Ar = r, - r,.

Cuando se reduce el intervalo At, el vector Ar tiende a
la trayectoria real (como en la figura 2b), y resulta tangen-
te a la trayectoria en el limite Ar — 0, en cuyo caso la
velocidad promedio tiende a la velocidad instantinea v:

v = lim AF
v 3

Por una extension razonable de nuestra primera definicién
de la derivada (véase la Ec. 8 del capitulo 2), escribimos
la cantidad del lado derecho de la ecuacién 3 como la
derivada del vector r respecto al tiempo:

dr

v = a 4)

Al igual que el vector Ar en el limite At — 0, el vector v
es tangente a la trayectoria de la particula en cualquier
punto del movimiento.

La ecuacion 4, como todas las ecuaciones vectoriales,
es equivalente a tres ecuaciones escalares. Para explorar
esto, escribimos v en términos de sus componentes y los
sustituimos en la ecuacién 4 en lugar de r de la ecuacién 1:

vxi+vyj+vzk=%(xi+yj+zk)

dx dy, B dz

Ya que dos vectores solo pueden ser iguales si sus com-
ponentes correspondientes son iguales, al comparar los
lados izquierdo y derecho de la ecuacion 5 vemos que
_dx _dy _dz
—E, Dy—-a;, UZ_E (6)
Para resumir, la sola relacién vectorial de la ecuacién 4 es
totalmente equivalente a las tres relaciones escalares de la
ecuacion 6.

Extenderemos ahora directamente estos conceptos a la
aceleracién, como lo hicimos en la seccién 2-5. La acele-
racién promedio es

Ux

5= Av
o ()
y la aceleracion instantanea se obtiene del limite cuando
tiende a cero el intervalo de tiempo:
a= lim &
ar—0 At ° (8)
Una vez mas, la cantidad de la derecha puede expresarse
como una derivada respecto al tiempo, y asi

a = ﬂ
a’ 9)
donde, otra vez igualando componentes,
dv av dv
“=q W a’ TG (10)

Notese que las ecuaciones vectoriales sirven tanto para
simplificar la notacion (la ecuacion 9, por ejemplo, repre-
senta las tres relaciones dadas como ecuacién 10) como
para separar las componentes (a,, por ejemplo, no tiene
efecto sobre v, 0 sobre v,).

Igualmente, note de la ecuacion 9 que, a causa de que
Vv es un vector que tiene tanto direccion como magnitud,
un cambio en la direccidn de la velocidad puede producir
una aceleracion, aun si la magnitud de la velocidad no
cambia. El movimiento a velocidad constante puede ser
un movimiento acelerado. Esto es, puesto que v? = v? +
v2 + v?, las componentes pueden cambiar de tal manera
que la magnitud de v permanezca constante. El ejemplo
mas conocido de este caso es el movimiento circular
uniforme, que estudiaremos en la seccion 4-4.

Problema muestra 1 Una particula se mueve en un plano xy
de modo tal que sus coordenadas x y y varfan con el tiempo de
acuerdo con x(£) = £ - 32ty y(f) = 5£ + 12. Aqui x y y estdn en
unidades de metros cuando t estéd en unidades de segundos.
Halle la posicién, la velocidad, y la aceleracion de la patticula

cuando t = 3 s.

Solucién La posicion estd dada por la ecuacion 1, e insertando
las expresiones dadas para x(f) y y(f), obtenemos

r=xi+ = —320)i + (5¢2 + 12)}.
Evaluando esta exptesion para t = 3 s nos da
r=—69i+ 57j,

donde las componentes estdn en unidades de metros.
Las componentes de la velocidad se hallan de la ecuacién 6:

dx _d . a2
v, T (3 — 32t) = 312 — 32,
B= = (5.2 4+ 12) = 10¢.

Usando la ecuacidn 5, obtenemos
v=u,i+0,j= (32— 32)i + 104,
y para ¢ = 3 s hallamos a
v=—5i + 30j

en unidades de m/s.
Las componentes de la aceleracién son:

_an_d o o
N (32— 32) =61,
dv, d
=50 X =
a=—'= (10) = 10.
La aceleracion parat =3 ses
a=18i+ 10j

en unidades de m/s’.

La figura 3 muestra la trayectoria de la particula desde ¢ = 0
hasta t = 4 s. Se han trazado en ella los vectores de posicion,
velocidad, y aceleracion para ¢ = 3 s. NStese que v es tangente
a la trayectoria para 7 = 3 s, y también que la direccion de a no
tiene una relacion particular con la direccion yaseaderodev.

4-2 MOVIMIENTO CON
ACELERACION CONSTANTE

Consideraremos ahora el caso especial del movimiento
con aceleracién constante. Al moverse la particula, la
aceleracion a no varia ni en magnitud ni en direccion. Por
lo tanto, las componentes de a tampoco varian. Tenemos
entonces una situacion que puede describirse como la
suma de tres componentes del movimiento que se presen-
tan en forma simultdnea con una aceleracion constante a
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Figura3 Problema muestra 1. Se muestra la trayectoria de
una particula en movimiento, y se indican sus posiciones
parar=0,1,2,3,y4s. Parat =3 s, se muestran los vectores
que representan su posicion, su velocidad, y su aceleracion.
Noétese que no existe una telacion particular entre las
direccionesder, v,y a.

lo largo de cada una de las tres direcciones perpendicula-
res. La particula se mueve, en general, a lo largo de una
trayectoria curva. Esto puede ser asi, aun si una de las
componentes de la aceleracion, digamos a,, es cero, ya
que entonces la componente correspondiente de la velo-
cidad, digamos v, tiene un valor constante que pudiera no
ser cero. Un ejemplo de esta ultima situacion es el movi-
miento de un proyectil que sigue una trayectoria curva en
un plano vertical y, despreciando los efectos de la resis-
tencia del aire, estd sujeto a una aceleracion constante g
dirigida hacia abajo a lo largo del eje vertical solamente.
Podemos obtener las ecuaciones generales para el mo-
vimiento con a constante simplemente haciendo que

a, = constante, a,= constante, y a,= constante

La particula comienza en ¢ = 0 con una posicion inicial r,
= X,i + yJ + zk y una velocidad inicial v, = vl + vj +
v,.k. Procedamos ahora como lo hicimos en la seccion 2-6
y desarrollemos, en analogia con la ecuacion 15 del capi-
tulo 2, tres ecuaciones escalares: v, = U,y + al, U, = U5+
at,yv,=v,tayg, las cuales escribimos como la ecuacion

vectorial unica
v=v,+at (11)

Cuando usemos ésta o cualquier otra ecuacion vectorial,
recordemos que representa a tres ecuaciones escalares
independientes.

El segundo término del lado derecho de la ecuacion 11
implica la multiplicacién de un vector por un escalar.
Como discutimos en la seccion 3-5, esto da un vector de
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TABLA 1 ECUACIONES VECTORIALES PARA EL MOVIMIENTO CON

ACELERACION CONSTANTE
Niimero de Contiene

la ecuacidn Ecuacién r Yo v a t
11 v=yv,+at X v v v v
12 r=ry+ vy + 4ar? v v X v v
13! Vev=vyvo+2a-(r—ry) v v v v X
14 r=ry+4vo+ v}t v v v X v
15 r=ry+ vt — jar? v X v v v

! Esta ecuaciodn incluye el producto escalar o producto punto de dos vectores, que ya hemos visto en la seccion 3-5.

longitud at que apunta en la misma direccién que el vector
original a.

Continuando como lo hicimos en la seccién 2-6, podemos
desarrollar cinco ecuaciones que describan el movimiento
en tres dimensiones con aceleracién constante. Estas cinco
ecuaciones se muestran en la tabla 1, la cual debera compa-
rarse con las cinco ecuaciones unidimensionales correspon-
dientes en la tabla 2 del capitulo 2. Con excepcién de la
ecuacion 13, que incluye vectores aunque es una ecuacién
escalar, cada ecuacion de la tabla 1 representa a tres ecua-
ciones escalares independientes. Las componentes x de las
ecuaciones 11, 12, 14,y 15 son precisamente las ecuaciones
correspondientes listadas en la tabla 2 del capitulo 2. Ya que
la ecuacion 13 es una ecuacién escalar, no tiene componente
x (o cualquier otra).

Problema muestra 2 Un esquiador desciende por una pen-
diente plana de la ladera de una montafia. La pendiente de
descenso (norte-sur) forma un angulo de 10° con la horizontal.
Un viento que sopla desde el oeste da al esquiador una acelera-
cion lateral de 0.54 m/s? (véase la Fig. 4). En la esquina noroeste
de la pendiente, el esquiador sale con una componente de la

0%,

5m

L5
vy = 22.5 m/s

Figura4 Problema muestra 2,

velocidad de 9.0 m/s cuesta abajo y una componente lateral de
cero. La pendiente sin friccion tiene 125 m de longitud y 25 m
de ancho. (a) ;Dénde deja el esquiador la pendiente? (b) ;Cual
es la velocidad del esquiador en este punto? (Sugerencia: La
aceleracion gravitatotia a lo largo de un plano que se inclina en
un dngulo O es g sen 6.)

Solucién (a) Elijamos el origen en la esquina noroeste, con el
eje x cuesta abajo y el eje y lateral. Las componentes de la
aceleracidn son

a,=gsen 10° = 1.70 m/s?,
a,=0.54 m/s

Nétese que estas componentes son evaluadas independiente-
mente. La componente a, es la aceleracion cuesta abajo que
resultarfa aun si no hubiese viento lateral, y similarmente a,
es la aceleracion lateral que tesultaria del viento, aun cuando
no hubiese una pendiente. El manejo de estas dos componen-
tes de manera independiente es la esencia de la aritmética
vectorial.

Tomemos 1 = 0 como el tiempo en que el esquiador se empuja,
y se nos da que v,, = 9.0 m/s y que v, = 0. Entonces

Uy = Uyo + a,t = 9.0 m/s + (1.70 m/s?)t,
v, = v, + a,t =0+ (0.54 m/s%),
X=Xy + vt +3a,t> =0+ (9.0 m/s)t + (0.85 m/s?)s?,
Y=y, + vt +4a,>=0+ 0+ (0.27 m/s?),
Suponemos por ahora que el esquiador llega al fondo de la
pendiente antes de dejar el borde lateral. (Podemos comprobar

esta hipdtesis mds adelante.) Primero hallamos el tiempo en que
esto ocurre (esto es, cuando x = 125 m):

125 m = (9.0 m/s)t + (0.85 m/s?)%.

Resolviendo la cuadrética, tenemos que t = 7.94 s 0 -18.5 s.
Considerando por el momento sélo la raiz positiva, evaluamos
la coordenada y cotrespondiente:

y=1(0.27 m/s*)2 = (0.27 m/s2X7.94 s = 17.0 m.

El desplazamiento lateral de 17.0 m es realmente menor que la
anchura de la pendiente (25 m), como hemos supuesto. El
esquiador, por lo tanto, deja el fondo de 1a pendiente en un punto
a 17.0 m del borde oeste.
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(b) Las componentes de la velocidad pueden obtenerse direc-
tamente para f = 7.94 s:

v, = 9.0 m/s + (1.70 m/s?)(7.94 s) = 22.5 m/s,
v, = (0.54 m/s?)(7.94 5) = 4.3 m/s.

Notese que pata resolver este problema hemos elegido que los
ejes x y y estén en el plano de la pendiente, reduciendo por lo
tanto un problema tridimensional a dos dimensiones. De haber
escogido trabajar en un sistema de coordenadas en que el plano
xy fuera horizontal y el eje z fuera vertical, la aceleracién tendrfa
tres componentes y el problema habtfa sido méds complicado.
Al resolver problemas, usualmente estamos en libertad de elegir
la direccion de los ejes de cootdenadas y la ubicacion del origen
a nuestra conveniencia, siempre que mantengamos de manera
fija nuestra eleccion a través de toda la solucién del problema.

(Qué pasa con la rafz negativa, t = -18.5 s? Escribimos
nuesttas ecuaciones originales del movimiento comenzando en
el tiempo 0, de modo que son tiempos positivos aquellos que
describen el movimiento siguiente del esquiador al bajar la
pendiente, y los tiempos negativos deben, por lo tanto, describir
el movimiento del esquiador antes de pasar por la esquina de la
pendiente que definimos como el origen. La solucion negativa
nos recuerda que pudiera haber habido una trayectoria previa
que el esquiador pudiera haber seguido para pasar a través del
origen en ¢ = 0 con la velocidad correcta. Durante esta parte
previa del movimiento, el esquiador habria pasado a través de
x = 125 m (presumiblemente jesquiando cuesta arriba!) a los
18.5 s antes de llegar a la esquina noroeste. Calcule los compo-
nentes de la velocidad para ¢ = -18.5 s y halle lo concerniente
al movimiento del esquiador durante ese tiempo. ;Cual deberia
haber sido la coordenada y correspondiente a t = -18.5 s? jEs
esto razonable? ;Cuales hubieran sido las coordenadas x y y
minimas alcanzadas durante el tiempo entre t = -18.5sy r = 0?

La solucién matematica de un problema fisico a menudo tiene
un resultado inesperado, tal como el tiempo negativo en este
ejemplo. Si supusiéramos en este problema que el movimiento
del esquiador empezd en ¢ = 0, la raiz negativa catecerfa de
interés para nosotros, pero siempre es una buena practica exa-
minar el significado fisico de tales soluciones cuando éstas
aparecen.

4-3 MOVIMIENTO DE PROYECTILES

Un ejemplo de movimiento con aceleracién constante
es el movimiento de un proyectil. Se trata del movi-
miento bidimensional de una particula lanzada oblicua-
mente en el aire. El movimiento ideal de una pelota de
béisbol o de una pelota de golf es un ejemplo del movi-
miento de un proyectil. Suponemos por ahora que pode-
mos despreciar el efecto del aire en este movimiento. En
el capitulo 6 consideraremos el efecto (a menudo consi-
derable) de la resistencia del aire en el movimiento de un
proyectil.

El movimiento de un proyectil es aquél de aceleracion
constante g, dirigido hacia abajo. Aun cuando puede haber
una componente horizontal de la velocidad, no hay una
componente horizontal de la aceleracion. Si elegimos un

Figura 5 La trayectoria de un proyectil, mostrando la
velocidad inicial v, y sus componentes asi como también la
velocidad v y sus componentes en cinco tiempos posteriores.
Nétese que v, = v,, durante el vuelo. La distancia horizontal R
es el alcance del proyectil.

sistema de coordenadas con el eje y positivo verticalmente
hacia arriba, podemos poner a, = -g (como en el capitu-
lo 2, g es siempre un nimero positivo) y a, = 0. Mas
aun, suponemos que v, esta en el plano xy, de modo que
v,, = 0. Puesto que a, es también 0, la componente de la
ecuacion 11 nos dice que v, es cero en todo momento y
podemos, por tanto, centrar nuestra atencién a lo que
sucede en el plano xy.

Elijamos ademas que el origen de nuestro sistema de
coordenadas sea el punto en el cual el proyectil comienza
su vuelo (véase la Fig. 5). Por lo tanto, el origen es el punto
en que la pelota deja la mano del lanzador, por ejemplo.
Esta eleccion del origen implica que x, = y, = 0. La
velocidad en ¢ = 0, el instante en que el proyectil comienza
su vuelo, es v,, que forma un dngulo ¢, con la direccion x
positiva. Las componentes x y y de v, (véase la Fig. 5) son,
entonces,

Vo =0oC08 Py Y Uyo= 1, Sen ¢y. (16)

Ya que no hay una componente horizontal de la ace-
leracion, la componente horizontal de la velocidad es
constante. Para la componente x de la ecuacién 11 esta-
blecemos que a, = 0y v, = v, cos ¢,, obteniendo

Uy = Uy + a,l = 1, COS ¢py. a7

La componente horizontal de la velocidad retiene su valor
inicial durante el vuelo.

La componente vertical de la velocidad cambia con el
tiempo debido a la aceleracion constante hacia abajo. En
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la ecuacion 11, tomamos a las componentes y y estable-
cemos que a, = -8 Y Uy = U, Sen ¢,, de modo que

v, = Dy T a,l = v, sen ¢y — gt. (18)

La componente vertical de la velocidad es la de la caida
libre. (En efecto, si viéramos el movimiento de la figura 5
desde un marco de referencia que se mueva a la derecha
con una velocidad vy, el movimiento seria el de un objeto
lanzado vertical hacia arriba con una velocidad inicial v,
sen ¢,.)

La magnitud del vector resultante de la velocidad en
cualquier instante es

v=vovi+ 2. (19)

El angulo ¢ que el vector de la velocidad forma con la
horizontal en ese instante estd dado por

tan p =22 . (20)
X
El vector velocidad es tangente a la trayectoria de la
particula en todo punto, como se muestra en la figura 5.
La coordenada x de la posicion de la particula en cual-
quier momento, obtenida de la componente x de la ecua-
cion 12 (véase la tabla 1), conx, =0,a, =0,y v, = v,
cos ¢, es

X =X+ Uyt + 2a,t? = (v, cos o). (21)

La coordenada y, obtenida de la componente y de la
ecuacion 12 con y, =0, a, = -g,y v, = v, sen ¢, es

Y=ot vyt +3a,1* = (vy sen o)t — 381 (22)

Las ecuaciones 21 y 22 nos dan x y y en funcién del
parametro comun ¢, el tiempo de vuelo. Combinandolas y
eliminando a ¢ de ellas, obtenemos

&
2(vo c0s ¢ho)?

la cual relaciona a y conx y es la ecuacion de la trayectoria
del proyectil. Puesto que v,, ¢, ¥y g son constantes, esta
ecuacion tiene la forma

y = (tan ¢)x — x2, (23)

y=bx—cx?,

que es la ecuacién de una parabola. De aqui que la trayec-
toria de un proyectil sea parabdlica, como lo mostramos
en la figura 5.

El alcance horizontal R del proyectil, como se muestra
en la figura 5, se define como la distancia a lo largo de la
horizontal cuando el proyectil retorna al nivel desde el
cual fue lanzado. Podemos hallar el alcance poniendo y =
0 en la ecuacion 23. Cuando x = O surge una solucion
inmediata; la otra nos da el alcance:

Figura 6 Una fotografia estroboscépica de una pelota de
golf (que entra a la foto desde la izquierda) rebotando sobre
una superficie dura. Entre los impactos, la pelota muestra la
trayectoria parabdlica caracteristica del movimiento de un
proyectil. ;Por qué supone usted que la altura de los rebotes
sucesivos esta decreciendo? (Los capitulos 8 y 10 pueden dar
la respuesta.)

2 2
R=%Qsen b, cos ¢,

vg

sen 2¢,, 24
4

usando la identidad trigonométrica sen 26 = 2 sen 8 cos 6.
Nétese que, para una velocidad inicial dada, obtenemos el
alcance mdximo cuando ¢, = 45°, que es cuando sen 2¢, = 1.

Las soluciones que hemos obtenido representan una vi-
sién idealizada del movimiento de un proyectil. Hemos
considerado un efecto importante: la gravedad; pero existe
otro factor en el movimiento de un proyectil que a menudo
es importante, y es la resistencia del aire. La resistencia del
aire es un ejemplo de una fuerza dependiente de 1a velocidad,
cuanto mayor sea la velocidad mayor sera el efecto decele-
rante de la resistencia del aire. A baja velocidad, el efecto de
la resistencia del aire es usualmente despreciable, pero a alta
velocidad la trayectoria de un proyectil ya no describe una
parabola, como en la ecuacién 23, y el alcance puede ser
considerablemente menor que el dado por la ecuacion 24.
En el capitulo 6 consideraremos los efectos de la resisten-
cia del aire; por ahora supondremos que las ecuaciones
derivadas en esta seccién describen adecuadamente el mo-
vimiento de los proyectiles.

La figura 6 muestra un ejemplo de la trayectoria de un
proyectil que no es afectado severamente por la resisten-

Figura7 Labola I se deja caer desde el reposo en el mismo
instante en que la bola II es disparada hacia la derecha.
Nétese que ambas bolas caen a exactamente la misma tasa; el
movimiento horizontal de la bola II no afecta su tasa vertical
de caida. En esta fotografia estroboscopica, las exposiciones
fueron tomadas a intervalos de 1/30 s. ;Parece ser constante
la velocidad horizontal de la bola I1?

cia del aire. La trayectoria ciertamente parece de forma
parabdlica. La figura 7 muestra una comparacion de los
movimientos de un proyectil disparado horizontalmente
y otro dejado caer en forma simultanea en caida libre.
Aqui pueden verse directa las predicciones de las ecua-
ciones 21 y 22 cuando ¢, = 0. Notese que (1) el movimien-
to horizontal del primer proyectil responde realmente a la
ecuacion 21: su coordenada x aumenta cantidades iguales
en intervalos de tiempo iguales, independientemente del
movimiento en y, y (2) los movimientos y de los dos
proyectiles son idénticos: los aumentos verticales de la
posicién de los dos proyectiles es la misma, indepen-
dientemente del movimiento horizontal de uno de ellos.

Disparo hacia un blanco en caida

En una magnifica demostracion durante una conferencia,
una pistola de aire es apuntada hacia un blanco elevado,
el cual se deja caer en caida libre por un mecanismo de
disparo mientras la “bala” sale de la boca del arma.
Independientemente de la velocidad inicial de la bala,
siempre da en el blanco mientras éste cae.

La manera mas sencilla de entender esto es la siguiente.
Si no existiera la aceleracion debida a la gravedad, el
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Figura8 En el movimiento de un proyectil, su
desplazamiento desde el origen para cualquier tiempo ¢ puede
considerarse como la suma de dos vectores: v,,2, dirigido a lo
largo de v,,, y 381, dirigido hacia abajo.

blanco no caeria y la bala se moveria a lo largo de la linea
de mira directa hacia el blanco (Fig. 8). El efecto de la
gravedad es causar que cada cuerpo acelere hacia abajo a
la misma tasa desde la posicion que de otro modo habria
tenido. Por lo tanto, en el tiempo ¢, la bala caera a una
distancia de ig#* desde la posicion que tendria a lo largo de
la linea de mira y el blanco caeria la misma distancia
desde su posicion inicial. Cuando la bala alcanza la li-
nea de caida del blanco, estara a la misma distancia abajo
de la posicion inicial del blanco, y de aqui la colision. Si
la bala se mueve mas rapido de lo que se muestra en la
figura (v, mas grande), tendria un alcance mayor y cruza-
ria la linea de caida en un punto mas alto; pero puesto que
llega alli mas pronto, el blanco caera una distancia corres-
pondiente mas pequeiia en el mismo tiempo y chocara con
ella. Un argumento similar sirve también para velocidades
mas lentas.
Para un analisis equivalente, usemos la ecuacion 12

r=r,+ vyt + jar?

para describir las posiciones del proyectil y del blanco en
cualquier tiempo ¢. Para el proyectil P, r,=0ya=g,y
tendremos que

Tp = Vopt + 4gt2

Para el blanco T, ry = r,, v, = 0,y a = g, conduciendo a

rr = ror + igt%

Si hay una colision, debemos tener que r, = r,. La inspec-
cion demuestra que esto siempre ocurrira en un tiempo ¢
dado por r, = v,t, esto es, en el tiempo #(= r,,/v ;) que le
tomaria a un proyectil no acelerado viajar a la posicion
del blanco a lo largo de la linea de mira. A causa de que
multiplicar un vector por un escalar nos da otro vector en
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la misma direccion, la ecuacion ry; = v, nos dice que ry,
y v,p deben estar en la misma direccion. Esto es, el arma
debe ser apuntada hacia la posicién inicial del blanco.

Problema muestra 3 En un concurso para dejar caer un
paquete sobre un blanco, el aeroplano de uno de los concursan-
tes esta volando horizontalmente a una velocidad constante de
155 km/h y auna altura de 225 m hacia un punto directamente
arriba del blanco. ;A qué angulo de mira o deberia ser soltado
el paquete para que éste dé en el blanco (Fig. 9)?

Solucién Elegimos un marco de referencia fijo con respecto
a la Tierra, siendo su origen O el punto de liberacion. El
movimiento del paquete en el momento de la liberacién es
el mismo que el del aeroplano. Por tanto, la velocidad inicial v,
del paquete es horizontal y su magnitud es 155 km/h. El dngu-
lo de proyeccidn ¢, es cero.

Hallamos el tiempo de la caida por medio de la ecuacién 22.
Con=¢,=0yy=-225m esto nos da

2y \/ (2X—225 m)
1= J——z — e,
2 98 m/s? 6.78 s.

Notese que el tiempo de caida no depende de la velocidad del
aeroplano con una proyeccion hotizontal. (Véase, sin embargo,
el problema 38.)

La distancia horizontal recorrida por el paquete en este tiem-
po esta dada por la ecuacion 21:

X = v, = (155 km/h)1 h/3600 s)(6.78 s)
=0.292 km = 292 m,

de modo que el dngulo de mira (Fig. 9) seria

i-tan" 292 m

a=tan"! ==
v 225 m

= 52°,

(Parecera parabélico el movimiento del paquete cuando es visto
desde un marco de referencia fijo tespecto al aeroplano? (;Pue-
de usted recordar haber visto peliculas en que las bombas
cafan desde un aeroplano, tomadas pot una camara, ya sea desde
ese aeroplano o desde otro aeroplano que volara en un curso
paralelo con la misma velocidad?)

Problema muestra 4 Un jugador de fiitbol soccer patea un
balén con un angulo de 36° respecto a la hotizontal y una veloci-
dad inicial de 15.5 m/s. Suponiendo que el balén se mueva en
un plano vertical, halle (a) el tiempo f, en que el balén llega al
punto mas alto de su trayectoria, (b) su altura maxima, (c) su
alcance y tiempo de vuelo, y (d) su velocidad cuando llega al suelo.

Soluciéq (a) En el punto mds alto, 1a componente vettical de
la velocidad v, es cero. Resolviendo la ecuacion 18 para t,
obtenemos:

_ bosen ¢p—,
e
Con
v, =0, v = 15.5 m/s,

¢o=36°, g=9.8m/s?

tenemos que

Figura9 Problema muestra 3.

_ (15.5 m/s)(sen36°)
4 9.8 m/s? =0.93s.
(b) La altura méxima es alcanzada en ¢ = 0.93 s. Usando la
ecuacion 22,

y = (v, sen Go)t — 4gr,
tenemos
Yoix = (15.5 m/s)(sen 36°)(0.93 s) - %(9.8 m/s*)(0.93 s)?
=42m

(c) El alcance R puede ser obtenido por la ecuacidn 24:

v2 (15.5 m/s)?
R=-=2 2, = —— L7
2 5 2= s

Ponemos y = 0 en la ecuacioén 22 y hallamos el tiempo ¢, en
que el baldn retorna al suelo. Obtenemos

sen 72° =23.3 m.

_ 2vsen &0  2(15.5 m/s)(sen 36°)
g 9.8 m/s?

Nc.')tesc que £, = 2t,, lo cual debe ocutrit porque se requiere el
mismo tiempo para que el balon suba (llegue a su maxima altura
desde el suelo) que el requerido para que el balon baje (llegue
al suelo desde su maxima altura).

Podemos verificar estos resultados para que exista compati-
bilidad con x = x, + v,yt. Cuando ¢ = 7,, x sera igual a R. Entonces,
segiin la ecuacion 21, R = v, = (v, cos ¢yt,) = 23.3 m, como se
esperaba.

(d) Para hallar la velocidad del balén cuando llegue al suelo,
usemos la ecuacién 17 para obtener v, la cual permanece
constante durante todo el trayecto:

y = 1.86s.

v, = U, €08 by = (15.5 m/s)cos 36°) = 12.5 m/s,
¥y, segun la ecuacién 18, obtenemos v, para t = ¢,.
v, = vy sen ¢y — g = (15.5 m/s)(sen 36°) — (9.8 m/s?)(1.86 s)
=—9.1 m/s. ‘

Asi pues, la velocidad tiene una magnitud dada por

v=vVo2+ v =V(12.5 m/s)* + (—9.1 m/s)> = 15.5 m/s,

y una direccion dada por
tan ¢ = v, /v, = —9.1/12.5,

de maneta que ¢ = -36° o sea 36°en el sentido horario del eje x.
Nétese que ¢ = -¢,, como esperabamos de la simetria (Fig. 5).

La velocidad final resulta ser igual a la velocidad inicial.
Lgu_edc usted explicatlo? ¢ Es una coincidencia?

4-4 MOVIMIENTO CIRCULAR
UNIFORME

En el movimiento de proyectiles la aceleracion es cons-
tante tanto en magnitud como en direccién, pero la ve-
locidad cambia tanto en magnitud como en direccion.
Examinaremos ahora el caso especial en que una parti-
cula se mueve a velocidad constante en una trayectoria
circular. Como veremos, tanto la velocidad como la
aceleracion son de magnitud constante, pero ambas cam-
bian de direccién continuamente. Esta situacién se llama
movimiento circular uniforme. Entre los ejemplos de esta
clase de movimiento se incluyen a los satélites dc la
Tierra y a puntos de rotores que giran, tales como venti-
ladores, discos de fondgrafo y discos de computadora.
De hecho, hasta el punto en que podemos vernos a
nosotros mismos como particulas, participamos en un
movimiento circular uniforme a causa de la rotacién de
la Tierra.

En la figura 10a se muestra la situacion. Sea P, la
posicion de la particula en el tiempo ¢, y P, su posicion en
el tiempo ¢, = ¢, + At. La velocidad en P, es v, un vector
tangente a la curva en P,. La velocidad en P, es v,, un
vector tangente a la curva en P,. Los vectores v, y v, tienen
la misma magnitud v, ya que la velocidad es constante,
pero sus direcciones son diferentes. La longitud de la
trayectoria descrita durante At es la longitud del arco P, P,
, que es igual a r¢ (donde ¢ estd medido en radianes) y
también a v Az, Entonces tenemos que

ré =vAt. (25)
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Podemos ahora trazar a los vectores v, y v,, como en la
figura 10b, de modo que se originen en un punto comun.
Tenemos la libertad de hacerlo en tanto que la magnitud y la
direccion de cada vector sean las mismas que en la figu-
ra 10a. La figura 10b nos permite ver claramente el cambio
en la velocidad al moverse la particula desde P, hasta P,. Es-
te cambio, v, - v, = Av, es el vector que debe sumarse a v,
para obtener v,. Si representamos el cambio en la velocidad
en el intervalo P,P, trazando Av desde el punto medio del
arco P, P,, entonces Av apuntaria hacia el centro del circulo.

Ahora el triangulo OQ,Q, formado por v, v,, y Av es
semejante al triangulo CP,P, (Fig. 10c) formado por la
cuerda P,P, y los radios CP, y CP,. Esto se debe a que
ambos son triangulos isdsceles que tienen el mismo angu-
lo en el vértice; el angulo 6 entre v, y v, es el mismo que
el angulo P,CP, porque v, es perpendicular a CP,y v, es
perpendicular a CP,. Trazando una bisectriz del angulo 8
en la figura 10b, hallamos que

1Av = vsen g . (26)

Expresemos ahora la magnitud de la aceleracién pro-
medio en el intervalo usando los resultados obtenidos en
las ecuaciones 25 y 26 para Av y At

_ Av  2vsen(6/2) _ v?sen(6/2) @7

- At ré/v r 6/2

Ahora deseamos hallar la aceleracion instantdnea to-
mando el limite de esta expresion como At —0. Cuando
At es muy pequenia, el angulo 8 es pequeiio. En este caso
podemos usar la aproximacion de un dngulo pequerio,
sen x = x. (Esto es valido solamente cuando el angulo esta
en radianes; por ejemplo, cuando x = 5° = 0.0873 rad,
sen x = 0.0872.) Entonces, para angulos pequeiios sen
(6/2) = 6/2, y la segunda fraccion del lado derecho de la
ecuacion 27 tiende a 1. Notese también que, en la primera
fraccién del lado derecho de la ecuacion 27, ni v ni r
dependen de At y asi el valor de esta fraccion no es
afectado por el limite. Por lo tanto, podemos obtener para
la magnitud de la aceleracion instantanea

2
o= tim A0 iy V250 OD) _ i 300102

Qo

/a\
7N

Q" Av Qi

_———a

(@) ()

(¢)

a—0 At a—o r 6/2 r a—o 0/2
Figura 10 Movimiento circular
uniforme. (a) La particula viaja

p alrededor de un circulo con velocidad
1

r constante. Se muestra su velocidad en
dos puntos P, y P,. (b) El cambio de
velocidad, que va de P, a P,, es Av.

P2 (¢) La particula viaja a lo largo del arco
P,P, durante el tiempo At.

C vAt
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Figura 11 En el movimiento circular uniforme, la
aceleracion a estd siempte dirigida hacia el centro del circulo
¥, pot lo tanto, siempte es perpendicular a v.

0 sea, usando la aproximacién del dngulo pequeiio para
reemplazar al limite restante por 1,

B (28)

Ya que la direccion de la aceleracion promedio es la
misma que la de Av, la direccion de a est4 siempre dirigida
hacia el centro del circulo o del arco circular en el que se
mueve la particula.

La figura 11 muestra la relacién instantdnea entre v ya
en varios puntos del movimiento. La magnitud de v es
constante, pero su direccién cambia continuamente. Esto
da lugar a una aceleracién a, que es también constante en
su magnitud pero cambia continuamente de direccién. La
velocidad v es siempre tangente al circulo en direccién del
movimiento; la aceleracion a esta siempre dirigida radial-
mente hacia adentro. Debido a esto, a se llama aceleracion
radial, o centripeta. Centripeta significa “que busca el
centro”. En la siguiente seccion se da una derivacion de
la ecuacion 28 usando vectores unitarios.

Tanto en caida libre como en el movimiento de un
proyectil, a tiene magnitud y direccién constantes, y po-
demos usar las ecuaciones desarrolladas para la acelera-
cion constante. No podemos usar estas ecuaciones para el
movimiento circular uniforme porque a varia de direccién
¥, por lo tanto, no es constante.

Las unidades de la aceleracion centripeta son las mis-
mas que las de una aceleracién como consecuencia de un
cambio en la magnitud de una velocidad. Dimensional-
mente, tenemos que

o === =

las cuales son las dimensiones usuales de la acelera-
cion. Las unidades pueden ser, por lo tanto, m/s?, km/h?,
o unidades similares de dimensién L/T2.

La aceleracién que resulta de un cambio en la direccién
de una velocidad es tan real y tan acelerada en esencia
como la que resulta de un cambio en la magnitud de una
velocidad. Por definicién, la aceleracion es la rapidez de

cambio de su velocidad con el tiempo, y la velocidad, por
ser un vector, puede cambiar tanto en direccién como en
magnitud. Si una cantidad fisica es un vector, sus aspectos
direccionales no pueden ser ignorados, ya que esos efec-
tos probaran ser en todos sentidos tan importantes y reales
como los producidos por lo cambios en la magnitud.

Vale la pena recalcar en este momento que no se nece-
sita que haya algiin movimiento en la direccién de una
aceleracion y que, en lo general, no existe una relacién fija
entre las direcciones de a y de v. En la figura 12 se dan
ejemplos en los que el dngulo entre v y a varia desde 0
hasta 180°. Sélo en un caso, 8 = 0°, est4 el movimiento en
la direccion de a.

Problema muestra 5 La Luna gira alrededor de la Tierra,
haciendo una revolucién completa en 27.3 dfas. Supongamos
que la 6rbita es circular y que tiene un radio de 238,000 millas.
(Cudl es la magnitud de la aceleracién de la Luna hacia la
Tierra?

Solucién Tenemos que r = 238,000 millas = 3.82 x 10* m. El
tiempo de una revolucién completa, llamado periodo, es T =
27.3 d = 2.36 x 10%. La velocidad de la Luna (supuesta como
constante) es, por lo tanto,

_2nr _2n(3.82 X 10°m) _
T T 236x100s 018 m/s

La aceleracion centripeta es

_v?_ (1018 m/s)?
r  3.82X10°m
=0.00271 m/s?, otansdlo2.76 X 104 g, .

a

Aqui g, (= 9.80665 m/s?) es un valor patrén de g aceptado
internacional. Representa el valor aproximado de la aceleracién
en caida libre al nivel del mar y a una latitud de 45°. Este valor
patron se usa a menudo como una medida alternativa de la
aceleracion. Por ejemplo, la aceleracion expetimentada por los
pilotos de aviones de propulsién a chotro o por los partoquianos
en los juegos de un parque de diversiones se expresa a menudo
de esta mailera.

Problema muestra 6 Calcule la velocidad de un satélite de la
Tietra, suponiendo que esta viajando a una altitud & de 210 km,
donde g = 9.2 m/s’. (Este valor es menor que 9.8 m/s?, porque g
decrece con la altitud sobre la Tierta, como estudiaremos en el
capitulo 16). El radio R de la Tierra es de 6370 km.

Solucién Al igual que cualquier objeto libre cercano a la
supetficie de la Tietra, el satélite tiene una aceleracion & hacia
el centro de la Tierra. Es esta aceleracion, junto con su velocidad
tangencial, la que causa que siga una trayectoria circular. De
aqui que la aceleracion centripeta sea g, y segiin la ecuacién 28,
a = v’[r, tenemos que, pataa =gy r=R + h,

vl
8= R+n

O sea
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9=180° | 180°>86>90° 6 = 90°

ORI B R

Movimiento

’ |g u,nzada Elevacién de
hacia arriba

90° > 6 > 0°

un proyectil circular uniforme un proyectil

9 =0° Figura 12 La relacion geométrica
entre v y a para varios movimientos.

oy .
SR A g T AN

Bola lanzada
hacia abajo

v = V(R + h)g = V(6580 km)©9.2 m/s?)(10* m/km)
=7780m/s 6 17,400 mi/h.

A esta velocidad, el satélite requiete 1.48 h para completar una
orbita.

4-5 VECTORES DE VELOCIDAD
Y DE ACELERACION EN EL
MOVIMIENTO CIRCULAR

(Opcional)*

Como dedujimos en la seccién anterior, una particula que se
mueva a velocidad constante a lo largo de un arco de un circulp
expetimenta una aceleracion centripeta. Aun cuando su veloci-
dad no sea constante, todavia debe de tener una acelqracmn
centripeta, pero también tendra una acclcraci_én tangenc1’al que
cause un cambio en su velocidad tangencial. Los métodos
vectoriales son itiles para relacionar las velocidades y _lz’ls
aceleraciones y para determinar la direccion de la aceleracion
resultante. o

Comenzaremos por rederivar la ecuacion 28 para la acele-
racién centripeta a velocidad constante usando técnicas vecto-
riales mas generales. La figura 13 muestra una particula en
movimiento circular uniforme con respecto al origen O de un
marco de referencia. Para este movimiento las coordenadas
polares planas r y ¢ son mas titiles que las coordcnfidas rectan-
gulares x y y porque r permanece constante a traves del movi-
miento y ¢ aumenta de una manera lineal slmplf: con el tiempo;
el comportamiento de x y y durante tal movimiento es mas
complejo. Los dos sistemas de coordenadas se relacionan por

r=vVx2+y? y ¢=tan"'(y/x) 29)
o por las relaciones reciprocas
x=rcos¢p y y=rsend. (30)

En los sistemas de coordenadas rectangulares usamos los
vectores unitarios i y j para describir al movimiento en el plano
xy. Aqui encontramos mas conveniente introducir dos nuevos

* El material de esta seccion puede omitirse o dejarse para mas
adelante, cuando estudiemos el movimiento de rotacién en el

capitulo 11.

vectores unitarios u, y u,. Estos, como | y j, tienen l-OIlgl!l,ld
unitatia y carecen de dimensiones; designan a la direccion
solamente. ] L
El vector unitario u, en cualquier punto esta en }a direccion
de r creciente en ese punto. Esta dirigido radial hacia afuera del
origen. El vector unitario u, en cuaqulcr punto esta en la
direccién ¢ creciente en ese punto. Es siempre tangente a un
circulo con el punto como centto en dlrfzccmn antihorario.
Como muestra, la figura 13a,u,y uf forman angulos rectos entre

si. Los vectotes unitatios u, y u, difieren de los vectotes iy j en

que las direcciones de u, y u, varian de punto a punto en el plano;
los vectores unitarios u, y u, no son, entonces, vectores cons-
tantes. Por tanto, cuando tomemos derivadas de expresiones que
impliquen a vectores unitarios, i y j pueden ser tratados como
constantes, peto u, y u, no pueden serlo. .

En términos de los vectotes unitatios i y j, poder_nos escribir
los vectores unitarios u, y u, (véase la Fig. 13b) asi:

u,=icos ¢ +jsen ¢, (31
u, = icos(¢ + n/2) +j sen(¢ + n/2)
=—isen ¢+ jcos ¢. (32)

Al escribir términos tales como i cos ¢, estamos ml_xlti_pthlp-

do un vector por un escalar, y el orden de la m’ultl_pllcacmn

no es importante. Podriamos igual expresar este término como
oS @)1. )

« Si¢l)a particula se mueve en un circulo a una \fcloc1dad

constante, no tiene una componente radial de la velogldaq, yel

vector de velocidad esta en la direccion de u, Maés aun, la

ug ¢+.;'

(@ ®)

Figura 13 (a) Una particula que se mueve en sentido
antihorario en un circulo de radio r. (b) Los vectores
unitarios u, y u, y su relacion con i y con j.
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magnitud de la velocidad es precisamente la velocidad constan-
te v, y, por lo tanto, podemos escribir que

V= (33)

Esto es, v es tangente al circulo y de magnitud constante pero
de direccién cambiante.
La aceleracion se deduce ahora directa;

av d
A==t u) = oD (34)

Nétese que la velocidad constante v pasa por la diferenciacion, Para
hallar la derivada del vector unitario u,, usamos la ecuacién 32:

duy _ _, dsend) , . dicos d)
dt a T4
— —icosd 3 _isene 9
icos¢ PR, seng Z
= (—icos ¢ — jsend) %
- 2
=—u= (35)
Nétese que en la tltima etapa hemos usado la ecuacién 31. Asi,
— %0
uv s (36)

La particula se mueve uniforme alrededor del circulo, y asi dgyd:
es precisamente la distancia angular cubierta en una revolucién
(2 = radianes) dividida por el tiempo de una revolucién (la
distancia 27r dividida por la velocidad v):

db _ 2n v

dt 2mrfv r° (37)
Por 1ltimo, sustituyendo la eccuacidén 37 en la ecuacion 36,
obtenemos

=-u—. (38)

Esta ecuacién nos dice que la aceleracion tiene la magnitud
constante de v*/r, como obtuvimos en la ecuacién 28, y que
apunta radialmente hacia adentro (esto es, opuesta a u,). Como
la particula viaja alrededor del citculo, las direcciones de u, y
de a cambian con relacién a los ejes de coordenadas xy porque
la direccién radial cambia.

@

Figura 14 (a) En el movimiento

circular no uniforme la velocidad es

variable. (b) El cambio de la velocidad
A . Avalirde P, a P,. (c) Existen dos
partes para Av: Av,, causada por el

/ A\
v2/ \vp . . -
/ \ cambio en la direccién de v, y Av,,

/ \ . .
/ Mé,,‘,’,’?,,ﬂ_y\ ! causada por el cambio en la magnitud
Avp/ 7 . de v. En el limite Ar -0, Av, apunta
/ AV | '
o { hacia el centro C del circulo y Av, es

| tangente a la trayectoria circular.

Aceleracion tangencial en el movimiento circular

Consideraremos ahora el caso mas general del movimiento
circular en el que la velocidad v de la particula en movimien-
to no es constante. De nuevo usaremos métodos vectoriales en
coordenadas polares planas.

Como antes, la velocidad esta dada por la ecuacidn 33, o sea

V=1,
excepto que, en este caso no solamente u, sino también la
magnitud v varia con el tiempo. Recordando la férmula para la
derivada de un producto, obtenemos para la aceleracion:

v _dwy) _ dvy o dv
a dt dt U tuy dar’ (39)

La ecuacion 34 no incluyd al segundo término del lado derecho
de la ecuacién 39 porque se supuso que v era constante. El
primer término del lado derecho de la ecuacion 39 se reduce,
como hemos derivado atriba, a ~u,(v?*/r). Podemos ahora escri-
bir la ecuacion 39 asi:

a=—u,ag + uyar, (40)

en la cual a; = v/r) y a, =duydt. El primet término, -u,a,, es la
componente vectorial de a dirigida radialmente hacia el centro
del circulo y surge como consecuencia de un cambio en la
direccidn de la velocidad en movimiento circular (véase la Fig.
14). El vector a, y su magnitud a, se llaman ambos aceleracidn
centripeta. El segundo término, u¢a,, es la componente vecto-
rial de a que es tangente a la trayectoria de la particula y
proviene de un cambio en la magnitud de la velocidad en mo-
vimiento circular (véase la Fig. 14). Al vector a,y a su magnitud
a, se les llama (a ambos) aceleracidn tangencial.
La magnitud de la aceleracién instantdnea es

a=vai+di. 41)

Si la velocidad es constante, entonces a, = du/dt = 0 y la
ecuacion 40 se reduce a la ecuacion 38. Cuando la velocidad v
no es constante, a, no es cero y a, vatia de punto a punto. La
velocidad v puede estar cambiando de tal manera que a, no sea
constarite, y entonces tanto a, como a, pueden variar de punto
a punto.

La figura 15 muestra el rastro dejado en una cimara de
burbujas de hidrégeno liquido por un electrén energético que
forma una espiral hacia adentro. El electtén disminuye su paso
a través del liquido de la cdmara de modo que su velocidad v
disminuye continuamente. Asi, existe en cada punto una acele-

Figura 15 Rastro dejado en una camara de burbujas de
hidrégeno liquido por un electrén. Existe una aceleracién
radial, causada por un campo magnético, que tiende a
producir una trayectotia circular, pero a causa de que el
electron también va aminorando el paso a causa de las
colisiones con los atomos de hidrégeno, experimenta también
una aceleracion tangencial. La trayectoria resultante es una
espiral.

racién tangencial a, dada por du/dt. Aun cuando el electrén no
estd viajando en una trayectoria circular, pequefios arcos de la
espiral se parecen mucho a los arcos de un circulo con un radio
r dado. La aceleracion centripeta a en cualquier punto esta
entonces dada por v¥/r, donde r es el radio de la trayectoria en
el punto en cuestion; tanto v como r resultan mas pequeiias al
perder energia la particula. La aceleracién radial del electrén se
produce por un campo magnético presente en la cdmara de
burbujas y forma dngulos rectos con el plano de la figura 15
(véase el capitulo 34). W

4-6 MOVIMIENTO RELATIVO

Supongamos que usted va en un automovil que corre en
una carretera recta a una velocidad constante de 55 mi/h.
Los demds pasajeros que van con usted se mueven a la
misma velocidad; aun cuando ésta, conrelacién al terreno,
es de 55 mi/h, su velocidad con relacidn a usted es cero.
En el automévil usted podria llevar a cabo una serie
normal de experimentos de fisica que no se verian afecta-
dos por el movimiento uniforme del automovil. Por ejem-
plo, podria lanzar directa hacia arriba una pelota (en su
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marco de referencia), y observaria que cae directa hacia
abajo. La pelota tiene un movimiento horizontal (a causa
del movimiento del automévil), pero usted tiene el mismo
movimiento horizontal y no existe un movimiento hori-
zontal relativo.

Para un observador en tierra, sin embargo, el resultado
es diferente. La pelota tiene una componente horizontal
hacia el frente de velocidad igual a 55 mi/h y una compo-
nente vertical del movimiento que usted le dio. Sabemos
que un proyectil dentro de la gravedad con tales compo-
nentes de la velocidad sigue una trayectoria parabdlica.
Usted y el observador en tierra usarian por lo tanto ecua-
ciones diferentes para describir el movimiento, pero usted
estaria en concordancia con las leyes fisicas seguidas por
la pelota; por ejemplo, los dos deducirian el mismo valor
de la aceleracion en caida libre.

Si después otro automavil corre a su lado y lo rebasa a
una velocidad constante de 57 mi/h, usted observaria que
este automovil (en relacion con su propio marco de refe-
rencia) se mueve lenta hacia adelante de usted a razon de
2 mi/h (= 57 mi/h - 55 mi/h). Dejemos de lado los
accidentes externos, es decir, el escenario que recorren, el
aire quieto contra el que tropieza el automévil en movi-
miento, las ondulaciones del camino, y el ruido del motor,
y consideremos unicamente a los dos automéviles. Usted
no tendria manera de decidir cual de ellos se estd movien-
do “realmente”. Por ejemplo, el automovil que le rebasa
pudiera estar en reposo y usted pudiera estar moviéndose
hacia atras a razén de 2 mi/h; el resultado observado seria
el mismo.

En esta seccion consideraremos la descripcion del mo-
vimiento de una sola particula por dos observadores que
estén en movimiento uniforme entre si. Los dos observa-
dores pudieran ser, por ejemplo, una persona que viaja en
un automovil a velocidad constante a lo largo de una recta
larga de una carretera y otra persona que esta parada en el
terreno. La particula que ambos estdan observando pudiera
ser una bola arrojada en el aire o en otro automoévil en
movimiento.

Llamaremos a estos dos observadores Sy §’. Cada uno
tiene un marco de referencia correspondiente que esta
unido a un sistema de coordenadas cartesianas. Por con-
veniencia, suponemos que los observadores estan ubi-
cados en los origenes de sus respectivos sistemas de
coordenadas. Hacemos s6lo una restriccion en esta situa-
cion: la velocidad relativa entre S 'y S' debe ser una
constante. Nos referimos aqui a constante en magnitud y
en direccion. Notese que esta restriccion no incluye al
movimiento de la particula que esta siendo observada por
Sy por S’. La particula no tiene necesariamente que estar
moviéndose a velocidad constante, y ademas la particula
bien pudiera estar acelerando.

La figura 16 muestra, en un tiempo particular ¢, los dos
sistemas de coordenadas que pertenecena Sy a . Conel
fin de simplificar, consideraremos al movimiento en dos
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Figura 16 Los observadores Sy ', que se estdan moviendo
uno con tespecto al otro, observan a la misma particula P en
movimiento. En el tiempo mostrado, ellos miden la posicién
de la particula con respecto a los otigenes de sus sistemas de
coordenadas, cuyas medidas son r, y r,, respectivamente.
En ese mismo instante, el observador S mide la posicion de
§' con respecto al otigen O, la cual es ry,.

dimensiones solamente, los planos comunes xy y x'y’
que se muestran en la figura 16. El origen del sistema S’
esta ubicado con respecto al origen del sistema S por el
vector ry. Noiese en particular el orden de los subindices
que usamos para marcar al vector: el primer subindice
indica el sistema que esté siendo ubicado (en este caso, el
sistema de coordenadas de S') y el segundo subindice
indica e} sistema con respecto al cual hacemos la ubica-
cion (en este caso, el sistema de coordenadas de S). El
vector rg se leeria entonces como “la posicién de S’ con
respectoa S.”

La figura 16 muestra también a una particula P en los
planos comunes xy y x'y’. Tanto S como S’ ubican a la
particula P con respecto a sus sistemas de coordenadas.
De acuerdo con S, la particula P esta en la posicién indi-
cada por el vector rps, mientras que de acuerdo con S’ la
particula P esta en ry,. De la figura 16 podemos deducir
la siguiente relacion entre los tres vectores:

Tps =Tgg + Ipy = tpg + Iy, (42)

donde hemos empleado la ley conmutativa de la suma de
vectores para intercambiar el orden de los dos vectores.
De nuevo, es preciso prestar mucha atencién al orden de
los subindices. En palabras, la ecuacién 42 nos dice: “la
posicion de P medida por S es igual a la posicién de P
medida por §’ mas la posicién de S’ medida por S.”
Supongamos que la particula P se mueve con velocidad
Vps de acuerdo con §'. ;Qué velocidad de la particula
mediria §? Para responder a esta pregunta, s6lo necesita-
mos tomar la derivada con respecto al tiempo de la ecua-
cion 42, lo cual da
drps —_ drps + drgs
dt dt da -

La razén de cambio de la posicion de cada vector da la
velocidad correspondiente, de modo que

Vps = Vpg + Vgg. 43)

Entonces, en cualquier instante, la velocidad de P segun
es medida por § es igual a la velocidad de P medida por
§’ mas la velocidad relativa de S’ con respecto a S. Aunque
hemos ilustrado las ecuaciones 42 y 43 para el movimien-
to en dos dimensiones, su aplicacién corresponde igual-
mente bien en tres dimensiones.

La ecuacion 43 es una ley de la transformacion de ve-
locidades. Nos permite transformar una medicién de
velocidad hecha por un observador en un marco de refe-
rencia, digamos §’, en otro marco de referencia, digamos
S, siempre y cuando conozcamos la velocidad relativa
entre los dos marcos de referencia. Es una ley basada
firmemente tanto en el sentido comun de la experiencia
cotidiana como en los conceptos de espacio y tiempo que
son esenciales en la fisica clasica de Galileo y de Newton.
De hecho, la ecuacién 43 se llama a menudo la forma
galileana de la ley de la transformacion de velocidades.

Consideraremos aqui sélo el caso especial muy impor-
tante en que los dos marcos de referencia se estan mo-
viendo a velocidad constante uno con respecto al otro.
Esto es, vy, es constante tanto en magnitud como en
direccion. Las velocidades v, y V,q, que S y S’ miden
para la particula P pudieran no ser constantes y, por
supuesto, no serian, en lo general, iguales una a la otra.
Sin embargo, si uno de los observadores, digamos S,
mide una velocidad que sea constante en el tiempo,
entonces ambos términos del lado derecho de la ecua-
cion 43 son independientes del tiempo y, por lo tanto, el
lado izquierdo de la ecuacién 43 debe también ser inde-
pendiente del tiempo. Entonces, si un observador conclu-
ye que la particula se mueve a velocidad constante,
entonces los demas observadores concluyen lo mismo,
siempre y cuando ellos estén en marcos de referencia que
se muevan a velocidad constante con respecto al marco
del primer observador.

Un resultado aun mas significativo se obtiene al dife-
renciar la ecuacidn 43:

dvps _ dvpg " dvgyg

dt ar dt

El ultimo término de la ecuacion 44 se anula, porque
suponemos que la velocidad relativa de los dos marcos de
referencia es una constante. Entonces

(44)

dvps _ dvps

dt dt

Reemplazando estas dos derivadas de la velocidad con las
aceleraciones correspondientes, obtenemos

ps = Apg. (45)

Las aceleraciones de P medidas por los dos observadores,
json jdénticas! y

En el siguiente capitulo hallaremos que la aceleracién
es fundamental en el comportamiento dindmico de un
objeto segtn la segunda ley de Newton F = ma, la cual
relaciona a la fuerza F, a 1a masa m, y a la aceleracion a.
La ecuacién 45 fue derivada en la circunstancia especial
de que los marcos de referencia S 'y S’ se mueven a una
velocidad relativa que es constante tanto en magnitud
como en direccién. Tales marcos, que pueden moverse
uno con relacién al otro pero en los cuales todos los
observadores hallan el mismo valor para la aceleracion de
una particula dada en movimiento, se llaman marcos
de referencia inerciales. En el siguiente capitulo veremos
que son especialmente importantes porque las leyes del
movimiento de Newton se cumplen sélo en tales marcos.

He aqui un ejemplo de una ley de fisica que puede ser
usada para probar los marcos de referencia inerciales. Ate
una masa a un extremo de una cuerda y mantenga el otro
extremo de la cuerda de modo que la masa cuelgue libre-
mente. La atraccion de la gravedad de la Tierra sobre la
masa tira de ella hacia el centro de la Tierra; la direccion
de la cuerda puede usarse para definir un eje vertical.
Ensaye ahora el experimento en su automdvil cuando se
mueve en linea recta a una velocidad constante de 55 mi/h.
El resultado es el mismo: la cuerda cuelga en la misma
direccidn vertical. El automévil, como el terreno, es un
marco de referencia inercial. Si usted ensaya de nuevo el
experimento cuando el automévil esté acelerando, frenan-
do, o tomando una curva, la cuerda se desvia de la vertical.
Estos marcos acelerados (aun con aceleracion centripeta)
son marcos no inerciales.

Enrealidad, la Tierra es un marco de referencia inercial
solo aproximadamente. A causa de la rotacién de la Tierra
sobre su eje, dos observadores en diferentes latitudes
tienen una velocidad tangencial relativa que cambia su
direccion con la rotacién. Este es un efecto pequeiio y es
despreciable en la mayoria de las circunstancias, aunque
debe tomarse en cuenta en los trabajos de precision y
puede tener incalculables consecuencias en circunstancia
a gran escala. Por ejemplo, la naturaleza no inercial del
marco de referencia de la superficie de la Tierra causa la
rotacion de los vientos con respecto a un centro de alta o
de baja presion que puede producir tormentas severas y
destructivas. En la seccion 6-8 estudiaremos otras conse-
cuencias de hacer observaciones en marcos de referencia
no inerciales.

Problema muestra 7 (a) La bnijula de un aeroplano indica
que va directo al este; el indicador de la velocidad del aire marca
215 km/h. Un viento continuo de 65 km/h est4 soplando directo
al norte. (a) ;Cual es la velocidad del aeroplano con respecto a
tierra? (b) Si el piloto desea volar ditecto al este, jhacia donde
debe enfilar? Esto es, ;qué debera leerse en la brijula?
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Figura 17 Problema muestra 7. (a) Un aeroplano, que vuela
hacia el este, es empujado por el viento hacia el norte. (b)
Para viajar hacia el este, el aeroplano debe volar hacia el
viento.

Solucién (a) En este problema la “particula” en movimiento
es el aeroplano P. Existen dos marcos de referencia, el suelo (G)
y el aite (4). Hagamos que el suelo sea nuestro sistema S y que
el aire sea el sistema §’, y por un simple cambio de notacién,
podemos reescribir la ecuacion 43 asi:

Vpg = Vps t+ V5.

La figura 17a muestra estos vectores, los cuales forman un
triangulo rectingulo. Los términos son, en secuencia, la veloci-
dad del aeroplano con respecto al suelo, la velocidad del aero-
plano con respecto al aite, y la velocidad del aire con respecto
al suelo (esto es, la velocidad del viento). Nétese la orientacion
del aeroplano, que es congtuente con la lectura ditecto al este
en la brijula.
La magnitud de la velocidad del suelo se halla de

Upg = V03, + vZs = V(215 km/h)? + (65 km/h)? = 225 km/h.
El angulo en la figura 17a se deduce de
Vag

=ta_|_=tan_l_6_5M=
=l 215 km/h

Entonces, con respecto al suelo, el aeroplano esta volando a
225 km/h en una direccion 16.8° NE. Notese que la velocidad
respecto al suelo es mayor que la velocidad respecto al aire.

(b) En este caso el piloto debe volar hacia el viento de modo
que la velocidad del aeroplano con respecto a tierra apunte hacia
el este. El viento permanece sin cambio y el diagrama vectorial
que representa a la ecuacion 43 es el que se muestra en la
figura 17b. Notese que los tres vectores todavia forman un
tridngulo rectangulo, como lo hicieron en la figura 17a, pero en
este caso la hipotenusa es v,, en lugar de v,

La velocidad del piloto respecto al suelo es ahota

16.8°.

vpg = V03 — D2g = V(215 km/h) — (65 km/h) = 205 km/h.

Como lo indica la orientacion del aeroplano en la figura 17b, el
piloto debe volar hacia el viento segin un angulo § dado por
1 246 _ gopr1 65 km/h _ 17.6°

p=sert s 215 kmy/h
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Nétese que, volando hacia el viento como el piloto lo ha hecho,
la velocidad respecto al terreno es ahora menor que la velocidad
tespecto al aire.

Movimiento relativo a alta velocidad (Opcional)
Los argumentos anteriores acerca del movimiento relativo for-
man la piedra angular de la mecanica newtoniana, que comen-
zaremos a estudiar en el capitulo 5. No imponen una restriccion
en la velocidad relativa de los marcos de referencia (mientras
sea constante) o en la velocidad del objeto que esta siendo
observado. Dos siglos después de Newton, Albert Einstein
traté de imaginar el resultado de aplicar la ecuacién 43 a un rayo
de luz que viaja a una velocidad de ¢ = 299,792,458 m/s en el
vacifo. Supongamos que el observador §' estd viendo un rayo de
luz que viaja a razén de c en la direccion x* positiva. Hagamos
que §’ se mueva con relacion a S, de nuevo en la direccion x’
positiva, a una velocidad v,S = 1 m/s. ;Qué velocidad observa-
ria § para el rayo de luz? La mecdnica newtoniana responderia
de acuerdo con la ecuacion 43: v, = 299,792,458 m/s + 1 m/s
= 299,792,459 m/s.
Einstein estudi6 a fondo sus libros de texto de fisica. Sabia
lo que la mecanica newtoniana tenia que decir acerca de los
observadores en movimiento relativo, mirando a los rayos de
luz. También sabfa que un rayo de luz no es un objeto ordinario
en movimiento. Un rayo de luz viaja de una manera especial.
La luz es una radiacion electromagnética y puede ser analizada
en términos de los campos magnético y eléctrico que la consti-
tuyen. Un campo eléctrico en movimiento crea un campo mag-
nético, y un campo magnético en movimiento crea a su vez un
campo eléctrico. Asi, los campos eléctrico y magnético de la
luz en movimiento esencialmente se autogeneran conforme el
rayo viaja. Si la ecuacion 43 fuera valida para los rayos de luz,
razono Einstein, el observador § podria emitir un tayo de luz en
direccioén x con velocidad c, y el observador ' podria viajar
en direccion x relativa a § a razén de vy, = ¢ Yy atrapar al rayo de
luz. Precisamente, como en el caso de un automévil que viajaba
a su lado a la misma velocidad que el automévil de usted, al
observador ' le parecerfa que el rayo de luz est en reposo. Para
Einstein esto fue una terrible contradiccion: (como podia un
rayo de luz, el cual estd constituido fundamentalmente de
campos electromagnéticos en movimiento, ser alguna vez ob-
servado “en reposo™?

Einstein propuso lo que para €| era una solucién obvia a este
dilema: ningin rayo de luz puede jamds ser observado “en
teposo”. Por lo tanto, se debe deducir absolutamente que la
ecuacion 43 es errénea cuando se aplica a velocidades cercanas
a c. Einstein llegé todavia un paso mas adelante: afirmé que
tanto S como 8’ deben medir precisamente el mismo valot
que el de la velocidad de la luz, ;sin importar cudles sean sus
velocidades relativas! Esta aseveracion parece contraria al sen-
tido comin y a las predicciones de la ecuacién 43; si dos
observadores se estdin moviendo a una velocidad relativa de
0.9999999c¢, ;cémo pueden ambos medir la misma velocidad
de ¢ para un rayo de luz emitido por uno de ellos?

Dejatemos hasta el capitulo 21 la descripcién matematica
completa de cémo sucede esto; por ahora, daremos una pista
breve en el caso especial de que todas las velocidades sean en
la direccion x (6 x’). He aqui ahora el resultado de Einstein
para la transformacion de las velocidades:

VUpgr + Vgrs

=_rs T Uss 4
1 + vpgvgg/c? (46)

Ups
Notese la belleza de este resultado. Cuando Upe Y UsS son
pequefias (comparadas con ¢), el denominador de la ecuacion 46
es muy cercano a 1y la ecuacion 46 se reduce a la ecuacion 43.
Con una velocidad baja, la transformacion galileana de la velo-
cidad arroja resultados aceptables. Cuando Ups = ¢ (8§ esta
observando un rayo de luz) entonces la ecuacion 46 da Ups = C
no importa cudl sea el valor de vyS. Todos los observadores
miden el mismo valor en la velocidad de un rayo de luz, no
importa cuales sean sus velocidades relativas.

La aseveracion de Einstein, y la cinematica y lamecanica que
se deducen de ella, no requieren que abandonemos la fisica
newtoniana. En su lugar, nos advierte que testrinjamos nuestros
cdlculos newtonianos a velocidades muy pequeiias en com-
paracion con c. Para los objetos en movimiento que normalmen-
te encontramos, vamos bien sin esta restriccion. Aun un cohete
dealta velocidad (v = 10¢m/s), uno de los artefactos mas rapidos
construidos por el ser humano, tiene una velocidad que es
mucho menor que ¢ (3 x 10* m/s), de modo que podemos usar
con seguridad la formula galileana sin un error significativo.
Las particulas tales como los electrones o los protones pueden,
sin embargo, ser aceleradas a velocidades que estan muy cerca
de c. A estas altas velocidades, debe usarse una nueva clase de
fisica, con nuevas ecuaciones de cinematica y de dinamica. Esta
nueva fisica es la base de la teoria especial de la relatividad, que
estudiaremos mas a fondo en el capitulo 21. m

PREGUNTAS

1. ;Puede la aceleracion de un cuetpo cambiar su direccién
sin haber un cambio de direccion en la velocidad?

2. Sean vy a representantes de la velocidad y de la acelera-
cion, respectivamente, de un automdvil. Desctiba las cir-
cunstancias en que (a) v y a son paralelos; (b) vy ason
antiparalelos; (¢) v y a son perpendiculares entre sf; (d) v
es cero pero a no lo es; (a) a es cero pero v no lo es.

3. En salto de anchura, llamado a veces salto largo, stiene
importancia qué tan alto se salte? ;Qué factores determi-
nan el trecho del salto?

4. Por qué el electrdn de un haz de un cafion de electrones
cae a causa de la gravedad tanto como una molécula de
agua en el chorro de una manguera? Supéngase un movi-
miento inicial horizontal en cada caso.

5. (En qué punto o puntos de su trayectoria tiene un proyectil
su minima velocidad? ;Y su maxima?

6. Lafigura 18 muestra la trayectoria seguida por un Learjet
de la NASA en una carrera disefiada para simular las
condiciones de baja gravedad durante un corto periodo de
tiempo. Dé un argumento que demuestre que, si el aero-

plano sigue una trayectotia parabdlica particular, los pa-
sajeros experimentardn la sensacién de ingravidez.

0
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Figura 18 Pregunta 6

7. Un obus es disparado desde el nivel del terreno. El angulo
de disparo que produciré el alcance mas largo es menor de
45° esto es, una trayectoria mas plana tiene un alcance
mas largo. Explique por qué. ‘

8. Consideremos un proyectil en la cima de su traycctonz?.
(@) {Cual es su velocidad en términos de v, y ¢0? b) .L’Cual
es su aceleracion? (c) {Cémo se relaciona la direccion de
su aceleracion con la de su velocidad?

9. Enlafigura 19 se muestran las trayectorias de tres bz.ilones
pateados. Escoja la trayectoria para la cual (a) el tiempo
de vuelo es el menor, (b) la componente vertical de la
velocidad al pateatlo es la mds grande, (b) la componente
horizontal de la velocidad al pateatlo es la mas granc‘ie, y
(d) la velocidad de despegue es la menor. Desprecie la
resistencia del aire.

Figura 19 Pregunta 9.

10. Un rifle es apuntado estando su cafién horizontal. De-
muestre que, pata el mismo alcance, el disparo sera dema-
siado alto cuando se disparate ya sea cuesta arriba o cuesta
abajo. (Véase “A Puzzle in Elementary Ballistics”, por
Ole Anton Haugland, The Physics Teacher, abril de 1983,
p.240).

11. En su libro Sport Science, Peter Brancazio, refiriéndose a
proyectiles tales como pelotas de béisbol y de go!f, escri-
be: “En igualdad de condiciones, un proyectil viajara més
lejos en un dia calutoso que en un dia frio, mas lejos en
una altitud elevada que al nivel del mar, mas lejos en aire
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himedo que en aire seco”. ;Cémo puede usted explicar
estas afirmaciones?

12. Una gréfica de altuta contra tiempo de un objeto !anzado
vertical hacia arriba es una parabola. La trayectoria de un
proyectil, lanzado hacia arriba pero no verticalmct}te bacia
arriba, es también una pardbola. ;Es esto una coinciden-
cia? Justifique su respuesta.

13. Las piezas de artillerfa de largo alcance no se c,olocan en
el angulo de “alcance maximo” de 45°, sino en angulos dc'
elevacion mds grandes, en el intervalo de 55°a 65°. ;Qué
hay de malo con los 45°?

14. En el movimiento de proyectiles en que la resistcnci.a
del aire sea despreciable, jes alguna vez necesario consi-
derar el movimiento tridimensional en lugar del bidimen-
sional?

15. ,Es posible acelerar cuando se estd viajando a velocic.lz?d
constante? ;Es posible rodear una curva con aceleracion
cero? ,Y con aceleracion constante?

16. Describa cualitativamente la aceleracion que actia sobre
un abalorio que, deslizindose a lo largo de un alambre sin
friccién, se mueve hacia adentro a velocidad constante a
lo largo de una espiral.

17. Demuestre que, tomando en cuenta la rotacién y la revo-
lucién de la Tierra, un libro que estd sobre la mesa se
mueve mas rapido durante la hoche que durante c! fiia. LEn
qué marco de refetencia es verdad esta aseveracion?

18. Un aviador, al salir después de descender en picada, sigue
el arco de un circulo y se dice que “se salié a 3g” al salir
del clavado. Explique lo que significa esto.

19. Podria estar representada la aceletacion de un proyectil en
términos de una componente radial y una componente
tangencial en cada punto del movimicntq?‘ De ser asi,
Jexiste alguna ventaja con esta representacion?

20. Una tuberia de forma rectangular con esquinas redondea-
das se coloca en un plano vertical, como se muestra en la
figura 20. Se introducen dos bolas de acero en la esquina
superior derecha. Una viaja por el conducto AB y la qtra
por el conducto CD. ;Cuél llegard mas pronto a la esquina
inferior izquierda?

21. Si la aceleracién de un cuerpo es constante en un marco
de referencia dado, jes necesaria constante en cualquier
otro marco de referencia?

22. Un muchacho que est4 sentado en un carro de ferrocarril
que se mueve a velocidad constante arroja una pelota’al
aire directa hacia arriba. ;Caera la pelota detras de é1?
Enfrente de é1? ;En sus manos? ;Qué sucede si el carro
acelera hacia adelante o pasa por una curva cuando la
pelota estd en el aire?

23. Una mujer que est4 en la plataforma trasera de un tren que
se mueve a velocidad constante deja caer una moneda
mientras se inclina sobre el batandal. Describir la trayec-
toria de la moneda segiin la ve (a) la mujer que va en el
tren, (b) una persona que esta parada sobre el suelo cerca
de la via, y (¢) una petsona que viaja en un segundo tren
que se mueve en la direccion opuesta al primer tren por
una via paralela.

24. Un elevador estd descendiendo a velocidad constan-
te. Un pasajero deja caer una moneda al suelo. {Qué ace-
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Figura 20 Pregunta 20.

25.

26.

27.

leracion observarian en la moneda (a) el pasajero y (b) una
petsona en reposo con respecto al pozo o base del ele-
vador.

Se estd recogiendo agua en una cubeta a partir de una
salida estable de una llave. ;Cambiata la razén a la que se
estd llenando la cubeta si comienza a soplar un viento
horizontal estable?

Un autobus tiene un parabrisas vertical y viaja bajo la
lluvia a una velocidad v,. Las gotas de lluvia caen vertj-
calmente con una velocidad terminal v,.;Con qué angulo
golpean las gotas de lluvia al parabrisas?

Durante una lluvia estable las gotas estin cayendo verti-
calmente. Con objeto de ir bajo la lluvia de un lugar a otro
de maneta tal que se tope con el menor niimero de gotas

Figura 21 Pregunta 28.

28.

29.

de luvia, ;se moveria usted a la mayor velocidad posible,
a la menor velocidad posible, o a una velocidad interme-
dia? (Véase “An Optimal Speed for Traversing a Constant
Rain”, por S. A. Stern, American Journal of Physics,
Septiembre de 1983, pag. 815).

({Cudl es el error de la figura 217 El bote estd navegando
con el viento.

La transformacion galileana de la velocidad, ecuacién 43,
es tan instintivamente conocida en la experiencia cotidia-
na que a veces se asegura que “es obviamente correcta, no
tequiere ser demostrada”. Muchas refutaciones de la teoria
de la relatividad asf llamadas se han basado en esta afir-
macién. ,Como podria usted refutar a alguien que hiciera
tal afirmacién?

PROBLEMAS

Seccion 4-1 Posicion, velocidad, y aceleracion

1.

Un aeroplano vuela 410 mi al este desde la ciudad A4 hasta
la ciudad B en 45 min y luego 820 mi al sur desde la ciudad
B hasta la ciudad C en 1 h 30 min. (a) ;Cudles son la
magnitud y la direccién del vector de desplazamiento que
representa a la totalidad del viaje? ;Cudles son (b) el
vector de la velocidad promedio y (c) la velocidad prome-
dio del viaje?

- La posicion de una particula que se mueve en un plano xy

estd dada por r = (2£° - 50)i + (6 - 7r*)j. Aqui r est4 en
metros y ¢ estd en segundos. Calcule (a) r, (B) v, y (¢) a
cuando? =2s.

En 3 h 24 min, un globo va a la deriva 8.7 km N, 9.7 km
E, y 2.9 km en elevacién desde el punto de salida sobre el
suelo. Halle (a) la magnitud de su velocidad promedio y
(b) el angulo que su velocidad promedio forma con la
horizontal.

S.

La velocidad de una particula que se mueve en el plano xy
estd dada por v = (61 - 4£°)i + 8j. Aqui v estd en metros por
segundo y #(>0) estd en segundos. (a) ;Cual es la acelera-
cién cuando ¢ = 3 s? (b) ;Cudndo, si alguna vez, es
la aceleracion cero? (¢) ;Cudndo (si sucede) es cero la
velocidad? (d) ;Cudndo (si sucede) es la rapidez igual a
10 m/s?

Seccion 4-2 Movimiento con aceleracién constante

En un tubo de rayos catédicos se proyecta un haz de
electrones horizontalmente a una velocidad de 9.6 x 10°
cm/s a una region entre un par de placas horizontales de
2.3 cm de longitud. Un campo eléctrico entre las placas
causa una aceleracién constante de los electrones hacia
abajo con magnitud de 9.4 x 10" cm/s?. Halle (a) el tiempo
requerido para que los electrones pasen a través de las
placas, (b) el desplazamiento vertical del haz al pasar por

las placas, y (c) las componentes horizontal y vertical de
]a velocidad del tayo cuando emerge de las placas.

6. Un velero sobre hielo se desliza sobre la superficie de
un lago congelado con una aceleracién constante produ-
cida por el viento. En cierto momento su velocidad es
6.30i - 8.42j en m/s. Tres segundos mds tarde el velero
se detiene instantidneamente. ;Cual es la aceleracién du-
rante este intervalo?

7. Una particula se mueve de modo que su posicion en
funcién del tiempo es, en unidades SI,

r(t) =i+ 4% + k.

Escriba las expresiones para (a) su velocidad y (b) su
aceleracion, ambas en funcién del tiempo. (¢) (Cudl es la
forma de la trayectotia de la particula?

8. Una particula sale del origen en ¢ = 0 a una velocidad
inicial v, = 3.6i, en m/s. Experimenta una aceleracién
constante a = -1.2i - 1.4j, en m/s*. (a) (En qué tiempo
llega la particula a su coordenada x maxima? (b) ;,Cual es
la velocidad de la particula en ese momento? (c) ;Dénde
estd la particula en ese momento?

9. Una particula A se mueve alo largo delalineay = d (30 m)
con una velocidad constante v(v = 3.0 m/s) dirigida para-
lelamente al eje x’ positivo (Fig. 22). Una segunda par-
ticula B comienza en el origen con velocidad cero y
aceleracién constante a (@ = 0.40 m/s?) en el mismo
instante en que la particula A pasa el eje y. ;Qué angulo 6
entre a y el eje y positivo resultarfa en una colisién entre
estas dos particulas?

Figura 22 Problema 9.

10. Una pelota se deja caer desde una altura de 39.0 m. El
viento estd soplando horizontalmente e imparte una ace-
leracion constante de 1.20 m/s a la pelata. (a) Demuestre
que la trayectoria de la pelota es una linea recta y halle los
valores de Ry de 0 en la figura 23. (b) ;,Qué tanto tiempo
le toma a la pelota llegar al suelo? (¢) }A qué velocidad
golpea la pelota al suelo?

Seccion 4-3 Movimiento de proyectiles

11. Una pelota rueda fuera del borde de una mesa horizontal
de 4.23 ft de altura. Golpea al suelo en un punto 5.11 ft
hotizontalmente lejos del borde de la mesa. (@) ;Durante
cudnto tiempo estuvo la pelota en el aire? (b) ,Cual era su
velocidad en el instante en que dejé la mesa?
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Figura 23 Problema 10.

12.

13.

Los electrones, como todas las formas de materia, caen
bajo la influencia de la gravedad. Si un electrén es proyec-
tado horizontalmente a una velocidad de 3.0 x 10’ m/s (un
décimo de la velocidad de la luz), ;qué tan lejos caerd al
atravesar 1 m de distancia horizontal?

Un dardo es arrojado hotizontalmente hacia el centro del
blanco, punto P del tableto, con una velocidad inicial de
10 m/s. Se clava en el punto Q del aro exterior, vertical-
mente abajo de P, 0.19 s mds tarde; véase la figura 24. (a)
(Cuil es la distancia PQ? (b) ;A qué distancia del tablero
estaba parado el jugador?

Figura 24 Problema 13.

14.

15.

16.

Unrifle se apunta horizontalmente hacia un blanco alejado
130 m. La bala golpea el blanco 0.75 in abajo del punto
de mira. (@) ;Cual es el tiempo de trayecto de la bala? (b)
(Cuil es la velocidad de la bala en la boca del arma?

Un proyectil se dispara horizontalmente desde un cafion
ubicado a 45.0 m sobre un plano horizontal con una
velocidad en la boca del caiion de 250 m/s. (@) {Cuanto
tiempo permanece el proyectil en el aire? (b) (A qué
distancia horizontal golpea el suelo? (¢) ;Cual es la mag-
nitud de la componente vertical de su velocidad al golpear
el suelo?

Una bola de béisbol deja 1a mano del lanzador horizontal-
mente a una velocidad de 92 mi/h. La distancia al bateador
esde 60.0 ft. (a) ;Cuanto tiempo le toma a la bola viajar los
primeros 30.0 ft horizontalmente? ;Los segundos 30 ft?
(b) (A qué distancia cae la bola bajo la accién de la
gravedad durante los primeros 30.0 ft de su viaje hotizon-
tal? (c) ; Durante los segundos 30.0 ft? (d) ;Por qué no son



