

Consultoría-para el desarrollo de un modelo de cálculo para la determinación del costo eficiente de la prestación del servicio de energía eléctrica a través de la atención a usuarios mediante soluciones aisladas centralizadas o individuales.

CONTRATO 2020-036: INFORME No 2

PRODUCTO 4: Unidades Constructivas y costos de inversión

Preparado para:

COMISIÓN DE REGULACION DE ENERGÍA Y GAS-CREG

Preparado por:

HART Energy & Control Consulting S.A.S Contacto: hernando.roa@hart-ecc.com Calle 79 N° 16A-20 Of. 504 Bogotá-Colombia Tel: +57 310 2551312 www.hart-ecc.com

Bogotá D.C., diciembre 29 de 2020

Tabla de Contenido

AB	REVI	ATURAS		5
1	Intro	oducción		6
	1.1			
2	Me [.]	todología		6
3		•	rencia	
•	3.1		solar fotovoltaica aislada	
4	Uni	dad Constr	uctiva	7
	4.1		onstructivas individuales	
		4.1.1	UC Panel solar	8
		4.1.2	UC Regulador de carga	10
		4.1.3	UC Baterías	12
		4.1.4	UC Inversor	14
	4.2	Unidades co	onstructivas agregadas	17
		4.2.1	UC estructura de soporte	18
		4.2.2	UC Red panel solar hasta gabinete	21
		4.2.3	UC Gabinete y protecciones	22
		4.2.4	UC Red gabinete a batería	24
		4.2.5	UC Puesta a tierra	25
		4.2.6	UC Red domiciliaria	27
5	Otro	os costos a	sociados al CAPEX	29
	5.1	Estimación o	de costos de instalación:	29
	5.2	Costos AIU		31
A١	IEXO	A- Base de	e datos conformación de unidades constructivas	32

Lista de Tablas

Tabla 1: Energía diaria generada Panel FV por nivel de radiación-Nivel de Servicio	9
Tabla 2: Energía diaria generada banco de paneles FV por nivel de radiación-Nivel de Servicio .	10
Tabla 3: Costos (COP\$)-UC Panel Solar FV	10
Tabla 4: Potencia pico máxima [Wp] Vs Voltaje DC del sistema	11
Tabla 5: Criterio de selección nivel de tensión en DC	11
Tabla 6: Pertinencia de la UC Regulador Vs Nivel de servicio	12
Tabla 7: Costos (COP\$) UC Regulador de Carga	12
Tabla 8: Costos (COP\$)-UC Baterías 18 Ah a 886 Ah	14
Tabla 9: Calculo del factor h curva de carga para inversor según demanda PIEC	15
Tabla 10: Energía diaria capaz de ser operadas por un inversor	16
Tabla 11: Tabla de pertinencia Inversor Vs Nivel de servicio	17
Tabla 12: Costos (COP\$)-UC-Baterías @ 12V	17
Tabla 13: Costos (COP\$)-UC Estructura Monopolo	18
Tabla 14: Tabla de pertinencia UC Estructura Monopolo Vs Nivel de Servicio	19
Tabla 15: Costos (COP\$) UC-estructura soporte tipo techo	20
Tabla 16: Selección de estructura techo según tamaño paneles fotovoltaicos	20
Tabla 17: Tabla de pertinencia estructura techo Vs Nivel de servicio	20
Tabla 18; Costos (COP\$)- UC Red Panel solar-gabinete	22
Tabla 19: Pertinencia UC Red Panel solar-gabinete Vs. Nivel de servicio	22
Tabla 20: Costos (COP\$) UC Gabinete y protecciones	23
Tabla 21: Pertinencia UC Gabinete Vs Nivel de servicio	24
Tabla 22: Costos (COP\$) UC Red gabinete a batería	25
Tabla 23: Tabla de pertinencia UC Red gabinete a batería Vs Nivel de servicio	25
Tabla 24: Costos UC Puesta a tierra	26
Tabla 25: Tabla de pertinencia UC Puesta a tierra Vs Nivel de Servicio	26
Tabla 26: Costos (COP\$)-UC Red domiciliaria	27
Tabla 27: Tabla de pertinencia UC Red domiciliaria Vs Nivel de servicio	28
Tabla 28: Estimación de costos de mano de obra de instalación y viáticos según nivel de serv	⁄icio
	30

Tabla 29: Estimación de costos de personal para la instalación	30
Tabla 30: Detalle estimación de costos viáticos y hospedaje	31
Tabla 31: Costos indicativos de AIU instalación SSFV	31
Lista de Figuras	
Figura 1:Instalación solar fotovoltaica aislada	7
Figura 2: Detalle UC Panel Solar FV	8
Figura 3: Curvas de carga tipo diaria (60 y 90 kWh/mes) para solución aislada individual	15
Figura 4: Estructura de soporte monopolo	18
Figura 5: Estructura de soporte tipo techo	19
Figura 5: Detalle UC Red Panel solar-gabinete	
Figura 6: Detalle UC Gabinete y protecciones	23
Figura 7: Detalle UC Red gabinete a batería	24
Figura 8: Detalle UC Puesta a tierra	26
Figura 9: Detalle UC Red domiciliaria	27

ABREVIATURAS

AC Corriente alterna Ah Amperios hora

CAPEX Costos de inversión COP\$ Pesos colombianos

CREG Comisión de Regulación de Energía y Gas

DC Corriente Continua

FV Fotovoltaico kWh Kilovatio hora

MPPT Rastreador de punto de máxima potencia (por sus siglas en inglés

Maximum Power Point Tracker)

NS Nivel de servicio

PIEC Plan indicativo de expansión de cobertura de energía eléctrica

SISFV Soluciones Individuales Sistemas Fotovoltaicos

UC Unidad Constructiva

UPME Unidad de Planeación Minero Energética

VA Voltamperios Wp Vatio pico

1 INTRODUCCIÓN

Este documento presenta la metodología y resultados del Producto 4, definido en los Términos de Referencia, en lo que tiene que ver con la identificación, conformación de las Unidades Constructiva y sus costos de inversión.

1.1 OBJETIVOS:

- Presentar los resultados del ejercicio de conformación de Unidades constructivas
- Exponer los resultados de la estimación de costos de inversión incluyendo los costos de los equipos (basados en los análisis de costo eficiencia) y costos de instalación.

2 METODOLOGÍA

Para lograr darle alcance al cumplimiento de los objetivos planteados en el apartado anterior se hizo mediante un trabajo interdisciplinario comprendido en 5 etapas. La primera etapa consistió en lograr una comprensión del concepto de Unidad Constructiva (UC) de acuerdo con las necesidades expresadas por la CREG. A la luz de este lineamiento se procedió en una segunda etapa a fraccionar conceptualmente una instalación solar fotovoltaica (marco de referencia) en dos grupos considerando la funcionalidad de los equipos principales integrados en el sistema como equipos o UC individual y UC agregados (elementos no menos importantes) necesarias desde el punto de vista técnico para la operación de los sistemas solares fotovoltaicos aislados.

En la tercera etapa para el primer grupo de UC (Panel solar FV, regulador de carga, baterías e inversor) se hicieron ejercicios analíticos en cuanto a capacidades (variable atributo) de cada uno de los equipos con el fin de contrastar con los Niveles de Servicio indicados en el Producto 2. Posteriormente en la etapa 4 se hizo la descripción de dichos equipos genéricos, conformando el nombre de cada UC y se consideraron tablas de pertinencia para cada uno de los niveles de servicio. A continuación, en la etapa 5 y para las UC agregadas se registró el costo eficiente y se elaboraron las tablas de pertinencia para cada nivel de servicio. En la última etapa se recogieron y documentaron otros costos asociados a los costos de inversión (CAPEX) como lo son a) los costos de instalación y b) costos de Administración, Imprevistos y Utilidad.

3 MARCO DE REFERENCIA

La conformación de las unidades constructivas debe enmarcarse dentro del concepto y definición de una instalación solar fotovoltaica aislada la cual se hace a continuación.

3.1 INSTALACIÓN SOLAR FOTOVOLTAICA AISLADA

Se refiere a sistemas solares fotovoltaicos autónomos que suministran energía eléctrica de modo rentable para la iluminación y/o el uso de electrodomésticos en establecimientos o viviendas sin conexión a la red eléctrica ubicadas en zonas rurales.

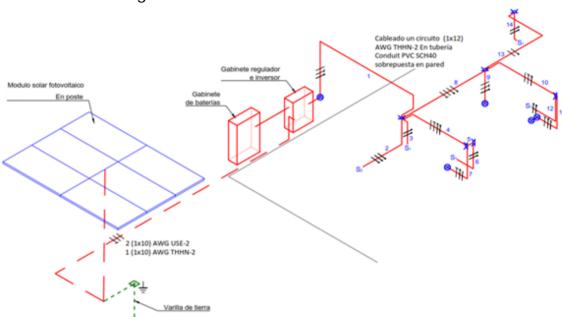


Figura 1:Instalación solar fotovoltaica aislada

Fuente: Elaboración propia

La figura anterior presenta un esquema general de una instalación solar fotovoltaica aislada enmarcada dentro de un espacio físico. A la izquierda de la figura se identifican a) los elementos integrados de generación y disposición de energía eléctrica (Desde la puesta a tierra hasta el gabinete que contiene el regulador y el inversor, b) la red domiciliaria que va desde el gabinete del regulador e inversor hasta los puntos de consumo de energía eléctrica (a la derecha de la imagen).

4 UNIDAD CONSTRUCTIVA

Con referencia al objeto de esta consultoría la unidad constructiva se define como elemento fundamental con una función determinada que integrada con otras unidades constructivas conforman una instalación solar fotovoltaica aislada.

Considerando lo anterior se definen dos grupos de unidades constructivas de acuerdo con generales funcionales los cuales son: a) Unidades constructivas individuales (de un solo componente) y b) Unidades constructivas agregadas, estos dos grupos se describen a continuación.

4.1 UNIDADES CONSTRUCTIVAS INDIVIDUALES

Estas unidades constructivas estás conformadas por cada uno de los cuatro componentes principales del sistema solar fotovoltaico aislado:

- Paneles solares
- Regulador de corriente (en este caso tecnología MPPT)
- Inversor de onda seno pura (que puede ser híbrido integrado con el regulador)
- Batería de ciclo profundo

4.1.1 UC Panel solar

Esta unidad está compuesta por un solo componente. El panel solar es un componente principal que depende de la radiación solar y su función es captar la energía proveniente del sol y convertirla en energía eléctrica en corriente continua (DC).

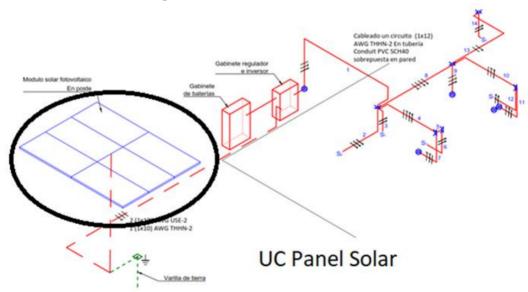


Figura 2: Detalle UC Panel Solar FV

Fuente: Elaboración propia

La grafica anterior muestra la ubicación de la UC Panel dentro de la solución solar fotovoltaica aislada. Esta es una unidad constructiva de un único elemento.

El atributo principal de los paneles solares es la potencia. Las unidades constructivas de paneles solares se construyen a partir de la selección de referencias de potencias disponibles en el mercado y que son eficientes en la construcción de las soluciones solares fotovoltaicas aisladas.

El Producto 2 contiene numerosas referencias de paneles solares entre los 20 y 440 Wp, proveniente de diferentes proveedores nacionales con precios mayoristas a nivel distribuidor. De este listado y a criterio del consultor se seleccionan las potencias pico por unidad más utilizadas en la instalación de soluciones aisladas, para estimar la capacidad de generación de energía que tendría cada uno de ellos con diferentes niveles de radiación registrados en Colombia.

Tabla 1: Energía diaria generada Panel FV por nivel de radiación-Nivel de Servicio

			kW	/h/(m²*día)				
Wp	3,0	3,5	4,0	4,5	5,0	5,5	6,0	
20	34	40	45	51	57	62	68	NS 1
40	68	79	91	102	113	125	136	NS 2
60	102	119	136	153	170	187	204	NS 3
80	136	159	182	204	227	250	272	
100	170	199	227	255	284	312	340	
150	255	298	340	383	426	468	511	
200	340	397	454	511	567	624	681	
250	426	497	567	638	709	780	851	
275	468	546	624	702	780	858	936	
320	545	636	726	817	908	999	1.090	
345	587	685	783	881	979	1.077	1.175	
380	647	755	863	970	1.078	1.186	1.294	
405	689	804	919	1.034	1.149	1.264	1.379	

Fuente: Elaboración propia

En la tabla anterior la columna de la izquierda contiene el atributo principal de este elemento la cual es Potencia Pico (Wp). Por su parte la fila superior de la tabla contiene niveles de radiación solar (de 3,0 a 6,0 kWh/m²/día) registrados en diferentes zonas de Colombia. Los valores al interior de la tabla corresponden a la estimación de cantidad de energía disponible diaria (Wh/día) para cada uno de los casos. Las celdas resaltadas en color ayudan a identificar el nivel de servicio que fue definido en el Producto 1. Para dar claridad en la comprensión de este primer ejercicio se hace el siguiente ejemplo: Un panel solar de 200 Wp puede satisfacer un nivel de demanda de 511 Wh/día en una zona con radiación solar de 4,5 kWh/(m²*día) promedio anual, el cual estaría dentro de un nivel de servicio 2.

Ahora bien, de la tabla anterior es claro que con empleando una sola unidad comercial con diferentes niveles de radiación es posible atender hasta el nivel de servicio No 3. Para ver como podrían atenderse los otros cuatro niveles de servicio se hizo el mismo ejercicio considerando conformar un banco de paneles fotovoltaicos de 320 Wp y 405 Wp de potencia y el resultado se presenta en la siguiente tabla.

Tabla 2: Energía diaria generada banco de paneles FV por nivel de radiación-Nivel de Servicio

	•	U			-	•				
	Combinacion	1				kWh/(m²*día	a)			
# Paneles	Wp panel	Wp Total	3,0	3,5	4,0	4,5	5,0	5,5	6,0	
2	320	640	1.090	1.271	1.453	1.634	1.816	1.998	2.179	NS 4
	405	810	1.379	1.609	1.839	2.068	2.298	2.528	2.758	NS 5
3	320	960	1.634	1.907	2.179	2.452	2.724	2.996	3.269	NS 6
	405	1215	2.068	2.413	2.758	3.103	3.447	3.792	4.137	NS 7
4	405	1620	2.758	3.218	3.677	4.137	4.597	5.056	5.516	
6	405	2430	4.137	4.826	5.516	6.205	6.895	7.584	8.274	
8	405	3240	5.516	6.435	7.355	8.274	9.193	10.113	11.032	
10	405	4050	6.895	8.044	9.193	10.342	11.492	12.641	13.790	
12	405	4860	8.274	9.653	11.032	12.411	13.790	15.169	16.548	
14	405	5670	9.653	11.262	12.870	14.479	16.088	17.697	19.306	
16	405	6480	11.032	12.870	14.709	16.548	18.386	20.225	22.064	
18	405	7290	12.411	14.479	16.548	18.616	20.685	22.753	24.822	
20	405	8100	13.790	16.088	18.386	20.685	22.983	25.281	27.580	
24	405	9720	16.548	19.306	22.064	24.822	27.580	30.338	33.096	
28	405	11340	19.306	22.523	25.741	28.959	32.176	35.394	38.611	

4.1.1.1 Costos de la UC Panel solar-

Tabla 3: Costos (COP\$)-UC Panel Solar FV

		<u> </u>	
Wp	Ref	Costo Eficiente [COP\$]	UC Panel Solar
20	PA 20	\$46.595,2	UC Panel solar 20 Wp
40	PA 40	\$84.101,3	UC Panel solar 40 Wp
60	PA 60	\$ 118.801,9	UC Panel solar 60 Wp
80	PA 80	\$ 151.797,5	UC Panel solar 80 Wp
100	PA 100	\$ 183.580,6	UC Panel solar 100 Wp
150	PA 150	\$ 259.326,7	UC Panel solar 150 Wp
200	PA 200	\$ 296.797,8	UC Panel solar 200 Wp
250	PA 250	\$ 358.940,8	UC Panel solar 250 Wp
275	PA 275	\$ 389.302,5	UC Panel solar 275 Wp
320	PA 320	\$ 442.955,5	UC Panel solar 320 Wp
345	PA 345	\$472.272,2	UC Panel solar 345 Wp
380	PA 380	\$512.795,2	UC Panel solar 380 Wp
405	PA 405	\$541.400,4	UC Panel solar 405 Wp

Fuente: Elaboración propia

4.1.2 UC Regulador de carga

El regulador dependerá del tamaño del panel solar y su función es regular la carga del sistema de acumulación de energía, el banco de baterías. Aunque el regulador físicamente se instala dentro del gabinete se considera como una UC Individual.

El atributo principal de los reguladores es la capacidad de manejo de corriente o sea su capacidad en Amperios (A). Las unidades constructivas de reguladores se construyen a partir de la selección de referencias de capacidades en amperios disponibles en el mercado y que son eficientes en la construcción de las soluciones solares fotovoltaicas aisladas.

El Producto 2 referencias de reguladores (MPPT únicamente) entre los 10 y 100 A, proveniente de diferentes proveedores nacionales con precios mayoristas a nivel distribuidor. De este listado se construyen las UC de Regulador para formar soluciones costo eficientes. Las capacidades en amperios seleccionadas corresponden con los reguladores más utilizadas en la construcción de las soluciones. Aun cuando la oferta es variada las capacidades en amperios en se establecen para los rangos más comunes.

Con el fin de enlazar esta unidad constructiva con la UC del aparado anterior, el Consultor desarrolló la tabla siguiente la cual indica la potencia máxima de panel solar o banco de paneles fotovoltaicos capaz de operar con la capacidad en corriente por regulador comercial (columna de corriente) según la tensión o voltaje de operación del sistema.

Tabla 4: Potencia pico máxima [Wp] Vs Voltaje DC del sistema

Corriente	Voltaje DC- Sistema					
I [A]	12	24	48			
10	120	240	-			
15	180	360	-			
20	240	480	-			
30	360	720	-			
40	480	960	-			
50	600	1.200	-			
60	720	1.440	2.880			
70	840	1.680	3.360			
80	960	1.920	3.840			
100	-	2.400	4.800			

Fuente: Elaboración propia

La siguiente tabla se presenta como herramienta para el lector que ayuda a determinar qué tipo de unidad constructiva o combinación de varias unidades constructivas debe ser utilizada para una determinada potencia de arreglo solar.

Tabla 5: Criterio de selección nivel de tensión en DC

Voltaje	Potencia	Energia	Inversor
VDC	<wp< th=""><th>< Wh/día</th><th><va< th=""></va<></th></wp<>	< Wh/día	<va< th=""></va<>
12	800	1.000	800
24	2.500	4.000	3.000
48	10.000	20.000	10.000

Fuente: Elaboración propia

A manera de ejemplo de esta UC, se toma la potencia del ejemplo anterior de 200 vatios pico, y determinando que el voltaje en DC debe ser 12 voltios de la tabla de selección de voltajes, se establece la capacidad a utilizar de regulador en 20 amperios (menor a 240 Wp recomendada).

En la siguiente tabla se muestra la pertinencia de las unidades constructivas con las celdas que contienen '1'y el nivel de servicio de energía diaria atendido definido en el Producto 1.

Tabla 6: Perfinencia de la UC Regulador Vs Nivel de servicio

	Pontecia														
Regulador	(W)	67	100	233	500	667	1000	1500	2000	3000	4000	6000	10000	15000	20000
1	10	1	1	1											
2	15			1	1										
3	20				1	1	1								
4	30					1	1	1	1						
5	40							1	1						
6	50								1						
7	60														
8	70														
9	80														
10	100														

Fuente: Elaboración propia

Cabe anotar que por temas de costo eficiencia, solo se debe considerar instalar regulador para sistemas que estén acompañados de inversores inferiores a 1000 W. Lo anterior en razón a que inversores híbridos mayores a 1000 vatios tienen incorporados reguladores MPPT y el costo acumulado de la combinación inversor más regulador es superior al costo del inversor híbrido individual equivalente.

4.1.2.1 Costos de las UC Regulador de carga

Tabla 7: Costos (COP\$) UC Regulador de Carga

Corriente	Rangos de		Precio	
DC[A]	Voltaje	Ref	eficiente	UC Regulador
10	12V/24V	RG 10	\$ 179.258	UC Regulador de 10 A MPPT
15	12V/24V	RG 15	\$ 268.886	UC Regulador de 15 A MPPT
20	12V/24V	RG 20	\$358.515	UC Regulador de 20 A MPPT
30	12V/24V	RG 30	\$537.773	UC Regulador de 30 A MPPT
40	12V/24V	RG 40	\$717.031	UC Regulador de 40 A MPPT
50	12V/24V	RG 50	\$896.288	UC Regulador de 50 A MPPT
60	12V/24V/48V	RG 60	\$1.710.768	UC Regulador de 60 A MPPT
70	12V/24V/48V	RG 70	\$1.995.896	UC Regulador de 70 A MPPT
80	12V/24V/48V	RG 80	\$ 2.281.023	UC Regulador de 80 A MPPT
100	12V/24V/48V	RG 100	\$ 2.851.279	UC Regulador de 100 A MPPT

Fuente: Elaboración propia

4.1.3 UC Baterías

La función de la batería es almacenar la energía que viene de los paneles FV y esta ha sido descargada. Su atributo técnico por excelencia es su capacidad de almacenamiento de energía la cual se expresa en unidades de corriente hora {Ah] y debe considerarse el nivel de tensión en DC seleccionado. La escogencia de estas unidades depende de la demanda de energía y no

existe ninguna relación con el nivel de radiación solar. Estos elementos acumuladores deberán almacenarse en un gabinete separado. Importante tener en cuenta que la profundidad de descarga es determinante en su vida útil tal como se presentó en el Producto 2. Se define como una unidad constructiva de un único elemento.

Las unidades constructivas de Baterías se construyen a partir de la selección de referencias de disponibles en el mercado y que son eficientes en la construcción de las soluciones solares fotovoltaicas aisladas. Por temas de mantenimiento, se consideran únicamente baterías libres de mantenimiento. Los listados del Producto 2 contienen referencias de Baterías entre 10 y 1400 Ah provenientes proveedores nacionales con precios mayoristas a nivel distribuidor. De este listado se construyen las UC de Batería. Las capacidades en Ah seleccionadas corresponden con las baterías más utilizadas en la construcción de las soluciones.

El atributo principal de las baterías es su capacidad en amperios hora (AH). Sin embargo, para facilidad de comparación de diferentes tecnologías y por las características de las baterías se establecerá su capacidad en términos de energía al día (Wh) como se discutió en la sección 2.2.4.1 Análisis de Costos Eficientes del informe del Producto 2.

Adicionalmente al desarrollo del análisis de costo eficiente realizado, para la construcción de las unidades constructivas de batería es necesario establecer comparaciones de los costos para "bancos" a 12 voltios, que corresponde con el mínimo común múltiplo de los tres voltajes de operación de los sistemas solares: 12, 24 y 48 voltios. Así se establece un análisis de costos para unidades de almacenamiento comparables, no importa si el voltaje de la batería es de 2, 6 o 12 voltios.

Al ajustar los bancos a voltajes de 12 voltios, es necesario ajustar el valor de la energía disponible para el banco de acuerdo con su profundidad de descarga optima (30% o 50%). Este valor de energía corregido para el banco será el que deberá utilizarse para determinar la capacidad de la unidad constructiva. Para estos "bancos" a 12 voltios, se establece seguidamente el valor del CAPEX o costo de adquisición actual del banco, y se determina el costo eficiente o valor del kWh entregado en toda la vida útil de la batería. La escogencia del costo CAPEX de la UC Batería se hará tomando el costo del CAPEX ajustado del banco a 12 voltios para la batería que presente el menor costo eficiente del kWh entregado. Esto se hará para batería cuyos valores ajustados de energía sean comparables.

4.1.3.1 Costos de la UC Baterías

Tabla 8: Costos (COP\$)-UC Baterías 18 Ah a 886 Ah

Capacidad	E Disp a 12 VDC		CAPEX COP\$ banco a	
Ah	DOD Opt	Ref	12 VDC	UC Bateria
18	67	BA 18	137,000	UC Bateria 67 Wh/día @ DODopt
30	100	BA 30	222,612	UC Bateria 100 Wh/día @ DODopt
75	275	BA 75	409,293	UC Bateria 275 Wh/día @ DODopt
100	588	BA 100	510,000	UC Bateria 588 Wh/día @ DODopt
120	784	BA 120	969,713	UC Bateria 784 Wh/día @ DODopt
150	883	BA 150	720,000	UC Bateria 882.5 Wh/día @ DODopt
200	1177	BA 200	990,000	UC Bateria 1176.5 Wh/día @ DODopt
300	1765	BA 300	3,150,000	UC Bateria 1764.5 Wh/día @ DODopt
467	2353	BA 467	5,386,844	UC Bateria 2353 Wh/día @ DODopt
529	2941	BA 529	6,385,445	UC Bateria 2941.25 Wh/día @ DODopt
777	4412	BA 777	8,930,426	UC Bateria 4411.75 Wh/día @ DODopt
886	5882	BA 886	10,792,181	UC Bateria 5882.25 Wh/día @ DODopt

Fuente: Elaboración propia

4.1.4 UC Inversor

El atributo principal de los inversores es la potencia (VA). Las unidades constructivas de inversores se construyen a partir de la selección de referencias disponibles en el mercado y que son eficientes en la construcción de las soluciones solares fotovoltaicas aisladas. Por temas de ruido electrónico y calidad de la energía, se utilizan solamente inversores de onda seno pura. Como se mencionó anteriormente para inversores mayores o iguales a 1000 vatios de potencia de especifican inversores híbridos que incluyen regulador MPPT. Estos inversores son muy versátiles y además pueden instalarse en paralelo para aumentar la potencia de salida, formar redes bifásicas y trifásicas, y aumentar la capacidad de regulación de los paneles solares conectados.

El Producto 2 contienen referencias de inversores onda seno, inversores cargadores e inversores híbridos con potencias entre 250 y 10.000 vatios, provenientes de proveedores nacionales con precios mayoristas a nivel distribuidor. De este listado se construyen las UC de Inversor para formar soluciones costo eficientes. Las capacidades en potencia seleccionadas corresponden con los inversores más utilizadas en la construcción de las soluciones.

El inversor debe ser capaz de soportar la totalidad del consumo a cualquier hora. Debe tener además la capacidad para atender la máxima demanda en cualquier momento incluyendo demandas pico para arrancar algunos equipos. Esta demanda que puede oscilar entre 3 y 4 veces su consumo nominal.

Para determinar el tamaño del inversor a partir de la energía diaria demandada se deberá entonces considerar la potencia nominal de operación de los inversores, su capacidad de atender demanda pico, y la característica horaria del consumo. Esta información puede no estar

disponible. Por esta razón se ha establecido una formulación que permite aproximar la potencia a la demanda diaria.

Caracterización de inversores:

Debido a que los parámetros característicos de los inversores son las tensiones de entrada (DC) y de salida (AC), así como la potencia, no es posible caracterizar de manera absoluta alguno de estos parámetros con respecto una cantidad de energía específica a atender. Para esto, se asume como referencia la curva establecida por la UPME en el Plan Indicativo de Expansión de Cobertura de Energía Eléctrica PIEC 2019-2023, para el consumo de usuarios aislados individuales.

Figura 3: Curvas de carga tipo diaria (60 y 90 kWh/mes) para solución aislada individual.

Fuente: http://www.upme.gov.co/Siel/Siel/Portals/0/Piec/Informacion_Base_PIEC_Dic302019.pdf

Las dos curvas muestran el consumo de referencia para usuarios de 90 KWh y 60 KWh mes. A partir de estas, se puede asumir una relación para establecer el inversor necesario para atender la respectiva carga, asumiendo que toda esta se conecta en un sistema fotovoltaico.

Como el inversor debe ser capaz de soportar todo el consumo a cualquier hora, quiere decir que este debe tener la capacidad para atender la máxima demanda en cualquier momento. Entonces, a partir de esta información se puede establecer un factor equivalente en horas que determina una relación entre la energía diaria y la potencia máxima de carga:

Tabla 9: Calculo del factor h curva de carga para inversor según demanda PIEC

Energía (whd)	Wmax (w)	Factor (h)
3.000	210	14,2857143
2.000	140	14,2857143

Fuente: UPME y elaboración propia

De acuerdo con lo anterior, se define para efectos de este estudio, que el inversor asociado a una determinada cantidad de energía diaria a atender será el de valor nominal inmediatamente superior al valor de potencia que resulte de la expresión:

W_inv=(Energía diaria (wh))/14,3h

La siguiente tabla se puede utilizar como herramienta para determinar el tipo de unidad constructiva o combinación debe ser utilizada para una determinada cantidad de energía diaria capaz de ser operada por un inversor según su potencia VA.

Tabla 10: Energía diaria capaz de ser operadas por un inversor

		Potencia max	Factor		Valor ajustado para carga
	Max surge	nominal	seguridad	Factor Piec	conectada
	1.2	0.85	4	14.3	
ŗ	VA	W	W	Wh/día	Wh/día
DC					
300	360	255	64	911	500
500	600	425	106	1,518	1000
600	720	510	128	1,821	1500
800	960	680	170	2,429	2000
1,000	1,200	850	213	3,036	3,000
1,500	1,800	1,275	319	4,554	4,000
2,000	2,400	1,700	425	6,071	6,000
3,000	3,600	2,550	638	9,107	9,000
4,000	4,800	3,400	850	12,143	12,000
5,000	6,000	4,250	1,063	15,179	15,000
6,000	7,200	5,100	1,275	18,214	18,000
10,000	12,000	8,500	2,125	30,357	30,000
VA					

Fuente: Elaboración propia

La tabla anterior presenta el valor de la energía determinada a partir de las curvas de demanda del PIEC características para un sistema solar fotovoltaico aislado. La potencia nominal del inversor se afecta por un factor del 85% como rango de trabajo permanente. Seguidamente se afecta por un factor de seguridad de 4 para permitir el encendido de cargas eléctricas y otorgar autonomía de funcionamiento. Este valor en vatios se multiplica por las horas que se determinan del análisis de las curvas PIEC. Al lado se presenta un valor ajustado de la energía demanda diaria que es posible atender de acuerdo con condiciones de reales de operación.

La siguiente tabla se muestra la pertinencia de la unidad constructiva el nivel de energía diaria atendido:

Tabla 11: Tabla de pertinencia Inversor Vs Nivel de servicio

	Pontecia														
INVERSOR	(W)	67	100	233	500	667	1000	1500	2000	3000	4000	6000	10000	15000	20000
1	-	1	1												
2	300			1	1										
3	500			1	1										
4	600					1	1								
5	800					1	1	1	1						
6	1,000							1	1	1	1				
7	1,500									1	1				
8	2,000										1				
9	3,000											1			
10	4,000											1	1		
11	5,000												1	1	1
12	6,000													1	1
13	10,000													1	1

Los valores de la primera fila (en rojo) corresponden a los valores de energía diaria de los NS presentados en el Producto No 2

4.1.4.1 Costos de la UC-Batería

Tabla 12: Costos (COP\$)-UC-Baterías @ 12V

VA	Voltaje	Ref	Precio COP\$	UC Inversor
DC	DC	IN DC		Sin inversor, DC
300	12	IN 300	287,413	Inversor O Seno 300 VA
500	12	IN 500	428,109	Inversor O Seno 500 VA
600	12	IN 600	493,535	Inversor O Seno 600 VA
800	24	IN 800	573,575	Inversor O Seno 800 VA
1000	24	IN 1000	682,626	Inversor Hibrido 1000 VA
1500	24	IN 1500	936,566	Inversor Hibrido 1500 VA
2000	24	IN 2000	1,172,180	Inversor Hibrido 2000 VA
3000	48	IN 3000	3,139,968	Inversor Hibrido 3000 VA
4000	48	IN 4000	3,929,893	Inversor Hibrido 4000 VA
5000	48	IN 5000	4,677,062	Inversor Hibrido 5000 VA
6000	48	IN 6000	5,391,835	Inversor Hibrido 6000 VA
10000	48	IN 10000	8,031,276	Inversor Hibrido 10000 VA

Fuente: Elaboración propia

4.2 UNIDADES CONSTRUCTIVAS AGREGADAS.

Son paquetes o grupos funcionales de varios componentes que cumplen una función específica:

- Estructura de soporte para paneles solares ya sea para instalarlos directamente sobre la cubierta o estructura de soporte monopolo para instalación sobre poste.
- Red Panel solar hasta gabinete para conectar panel solar con los equipos
- Gabinete y protecciones
- Red Gabinete a Batería
- Puesta a tierra
- Red domiciliaria

 Módulo de monitoreo y recaudo. Este módulo se excluye de esta descripción ya que se considera independientemente como un elemento que hace parte de los costos de administración.

4.2.1 UC estructura de soporte

Las estructuras de soporte se clasifican en estructura monopolo y soporte tipo techo. Estos dos tipos de estructura se exponen a continuación.

4.2.1.1 Estructura Monopolo

La estructura de soporte monopolo está compuesta por una parrilla en hierro galvanizado sobre la cual se fijan de 1 y hasta 8 paneles solares. Esta estructura. La tiene una inclinación fija de aproximadamente 15 grados y está anclada a un poste en acero, galvanizado en caliente, o de fibra de vidrio, cuyo diámetro puede variar de acuerdo con la cantidad de paneles solares que pueda acomodar (3 a 10 pulgadas). El poste requiere cimentarse en el suelo para lo cual es necesario realizar una obra civil que comprende una excavación al menos a 1,5 metros de profundidad y relleno en concreto de alta resistencia. La unidad constructiva está compuesta de varios componentes e incluye los costos de los materiales de cimentación y mano de obra de construcción. Este tipo de estructura se utiliza en todas las soluciones de los niveles de servicio alto por su mayor costo.

Figura 4: Estructura de soporte monopolo

Fuente: https://www.solarpanelstore.com/collections/top-of-pole-mounts

En caso de contar con una cubierta con inadecuada capacidad de soporte o por condiciones contractuales especiales, se podrá especificar una estructura de soporte monopolo. Estas unidades vienen determinadas por el número de paneles que pueden acomodar y pueden utilizarse en múltiplos o combinaciones de una y otras para darle cabida a la totalidad de los paneles solares requeridos.

Tabla 13: Costos (COP\$)-UC Estructura Monopolo

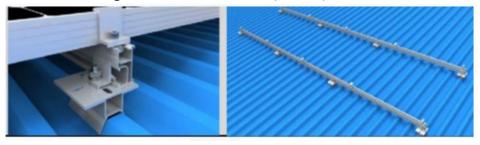
Cantidad			
Paneles	Ref	UC Estructura de soporte Mono Polo para panel mediano y	Costo CD
1	EM 1P	UC Estructura Mono Polo para panel 1 panel	844,054
2	EM 2P	UC Estructura Mono Polo para panel 2 paneles	1,009,806
3	EM 3P	UC Estructura Mono Polo para panel 3 paneles	1,401,249
4	EM 4P	UC Estructura Mono Polo para panel 4 paneles	1,908,262
6	EM 6P	UC Estructura Mono Polo para panel 6 paneles	2,906,678
8	EM 8P	UC Estructura Mono Polo para panel 8 paneles	3,661,448

Fuente: Elaboración propia

Esta UC debe seleccionarse de acuerdo con el número estimado de paneles solares que requiera la solución de acuerdo con el nivel de servicio. Debe utilizarse para instalar paneles grandes al menos 1 m * 1.6 m o más en tamaño. La siguiente tabla se muestra la pertinencia de la unidad constructiva el nivel de energía diaria atendido:

Tabla 14: Tabla de pertinencia UC Estructura Monopolo Vs Nivel de Servicio

Estructura															
Monopolo	Paneles	67	100	233	500	667	1000	1500	2000	3000	4000	6000	10000	15000	20000
1	1					1	1								
2	2						1	1	1						
3	3									1	1				
4	4									1	1				
5	6										1	1			
6	8											1	1	1	1


Fuente: Elaboración propia

Los valores de la primera fila (en rojo) corresponden a los valores de energía diaria de los NS presentados en el informe No 2

4.2.1.2 UC Estructura de soporte tipo techo

La estructura de soporte tipo techo está compuesta por dos rieles de aluminio sobre los cuales se fijan uno o más paneles solares. Contiene anclajes de fijación al riel para los extremos libres de los paneles y para la unión entre paneles solares. Incluye los anclajes necesarios para fijar los rieles al techo de la vivienda.

Figura 5: Estructura de soporte tipo techo

Fuente: Elaboración propia

Este tipo de estructura es liviana y se utiliza en todo tipo de tamaños del sistema solar. Su utilización depende de la capacidad de soporte de la cubierta. Por su menor costo, es la recomendada para soluciones de menor tamaños (niveles de servicio bajos).

Si la cubierta existente está en buenas condiciones y tiene una adecuada capacidad de soporte, los paneles solares pueden instalarse directamente sobre la misma. Para ello se utiliza una estructura de soporte compuesta básicamente por rieles de aluminio y elementos de anclaje. Todo arreglo puede instalarse directamente sobre cubierta si las condiciones lo permiten y constituye la opción de estructura de soporte más costo eficiente.

Tabla 15: Costos (COP\$) UC-estructura soporte tipo techo

Numero de			
paneles	Ref	Precio	UC Estructura de soporte Tipo Riel para panel standard
1	ER 1PP	87,526	UC Estructura de soporte Tipo Riel para 1 panel pequeño
2	ER 2PP	123,112	UC Estructura de soporte Tipo Riel para 2 paneles pequeños
1	ER 1PM	98,026	UC Estructura de soporte Tipo Riel para 1 panel mediano
2	ER 2PM	144,112	UC Estructura de soporte Tipo Riel para 2 paneles medianos
1	ER 1PG	119,026	UC Estructura de soporte Tipo Riel para 1 paneles grandes
2	ER 2PG	186,112	UC Estructura de soporte Tipo Riel para 2 paneles grandes
3	ER 3PG	269,197	UC Estructura de soporte Tipo Riel para 3 paneles grandes
4	ER 4PG	336,283	UC Estructura de soporte Tipo Riel para 4 paneles grandes
6	ER 6PG	336,283	UC Estructura de soporte Tipo Riel para 6 paneles grandes
8	ER 8PG	638,477	UC Estructura de soporte Tipo Riel para 8 paneles grandes
10	ER 10PG	756,648	UC Estructura de soporte Tipo Riel para 10 paneles grandes
12	ER 12PG	908,671	UC Estructura de soporte Tipo Riel para 12 paneles grandes

Estas unidades se permiten instalar paneles de tamaños pequeños, medianos y grandes en arreglos hasta 12 paneles solares. Sin embargo, también se pueden combinar unidades en múltiplos o combinaciones de unas y otras para acomodar arreglos de mayores tamaños según sea requerido.

Tabla 16: Selección de estructura techo según tamaño paneles fotovoltaicos

Ref	Tamaño panel	Rango Potencias	Tamaño medio	Numero de paneles
ER 1PP	Pequeños	Menor a 270 W	0,6 * 120	1
ER 2PP				2
ER 1PM	Medianos	270 - 310 Wp	1 * 1,6	1
ER 2PM				2
ER 1PG	Grandes	315 - 410 Wp	1 * 2	1
ER 2PG				2
ER 3PG				3
ER 4PG				4
ER 6PG				6
ER 8PG				8
ER 10PG				10
ER 12PG				12

Fuente: Elaboración propia

La siguiente tabla se muestra la pertinencia de la unidad constructiva el nivel de energía diaria atendido.

Tabla 17: Tabla de pertinencia estructura techo Vs Nivel de servicio

Estructura															
Riel	Paneles	67	100	233	500	667	1000	1500	2000	3000	4000	6000	10000	15000	20000
1	1	1	1	1	1	1	1								
2	2							1	1						
3	3								1	1	1				
4	4									1	1	1			
5	6										1	1	1	1	1
6	8											1	1	1	1
7	10												1	1	1
8	12												1	1	1

Fuente: Elaboración propia

Los valores de la primera fila (en rojo) corresponden a los valores de energía diaria de los NS presentados en el informe No 2

4.2.2 UC Red panel solar hasta gabinete

Comprende la red eléctrica que conecta la estructura de soporte con los paneles solares con la vivienda. Esta comprendida por cableado eléctrico, tubería de conducción y accesorios. Se compone de tres tramos. Uno tramo exterior adosado al poste del panel solar compuesto por tubería IMC resistente a la intemperie, un tramo enterrado en una zanja en conduit PVC y un último tramo en coraza flexible para llegar al gabinete. La longitud total puede variar entre 12 y 15 metros dependiendo del tamaño del arreglo solar. El calibre de los conductores eléctricos varía de acuerdo con la corriente generada por el panel solar y su voltaje de operación. Adicionalmente tiene una caja de paso para hacer la conexión de cables del arreglo solar, instalada bajo los paneles, y accesorios como uniones, adaptadores y curvas. La unidad constructiva está compuesta de varios componentes.

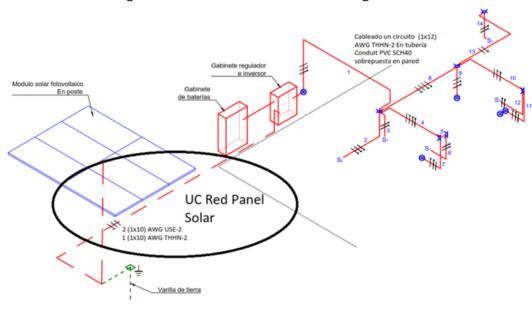


Figura 6: Detalle UC Red Panel solar-gabinete

Fuente: Elaboración propia

Comprende la red eléctrica que conecta la estructura de soporte de los paneles solares con la vivienda. Está comprendida por cableado eléctrico, tubería de conducción y accesorios. Esta unidad constructiva depende directamente del número de paneles solares conectados.

Tabla 18; Costos (COP\$)- UC Red Panel solar-gabinete

Ref	Ref	Costo Ef	UC Rd Panel solar gabinete
PP01	RP PP01	40,344	Panel pequeño
PP02	RP PP02	47,344	Panel Pequeño 2
PG11	RP PG11	157,261	Panel Grande 1 Serie 1 Paralelo
PG21	RP PG21	199,428	Panel Grande 2 serie 1 Paralelo
PG22	RP PG22	269,706	Panel Grande 2 serie 2 Paralelo
PG31	RP PG31	305,377	Panel Grande 3 serie 1 Paralelo
PG32	RP PG32	305,377	Panel Grande 3 serie 2 Paralelo
PG33	RP PG33	329,877	Panel Grande 3 serie 3 Paralelo
PG35	RP PG35	665,431	Panel Grande 3 serie 5 Paralelo
PG37	RP PG37	951,963	Panel Grande 3 serie 7 Paralelo
PG39	RP PG39	1,000,963	Panel Grande 3 serie 9 Paralelo

La siguiente tabla se muestra la pertinencia de la unidad constructiva el nivel de energía diaria atendido:

Tabla 19: Pertinencia UC Red Panel solar-gabinete Vs. Nivel de servicio

Red Panel															
Gabinete	Ref	67	100	233	500	667	1000	1500	2000	3000	4000	6000	10000	15000	20000
1	PP01	1	1												
2	PP02	1	1												
3	PG11			1	1										
4	PG21			1	1										
5	PG22					1	1								
6	PG31					1	1	1	1						
7	PG32							1	1	1	1				
8	PG33									1	1				
9	PG35										1	1	1	1	1
10	PG37											1	1	1	1
11	PG39												1	1	

Fuente: Elaboración propia

Los valores de la primera fila (en rojo) corresponden a los valores de energía diaria de los NS presentados en el informe No 2

4.2.3 UC Gabinete y protecciones

Esta unidad constructiva comprende el gabinete que recibe la red proveniente del panel solar y alberga los equipos electrónicos (inversor y o regulador), barrajes, desconexiones (*breakers* DC y AC, fusibles y porta fusibles) y protecciones como DPS para descargas eléctricas. Las capacidades de las protecciones y desconexiones dependerán de los valores de corriente y voltajes presentes y cumplen con la norma RETIE. Esta unidad constructiva está compuesta de varios componentes. Este gabinete debe presentar rejillas de ventilación.

Cableado un circuito (1x12)
AWG THINN 2 En huberia
Conduit PVC SCH40
Sobrepuests en pared

PVC Gabinete

UC Gabinete

1 (1x10) AWG USE-2
1 (1x10)

Figura 7: Detalle UC Gabinete y protecciones

Esta unidad constructiva comprende el gabinete que recibe la red proveniente del panel solar y alberga los equipos electrónicos, barrajes, desconexiones y protecciones. Esta unidad constructiva depende directamente de la potencia del inversor ya que este determina la corriente máxima que determina el tamaño de los componentes principales.

Tabla 20: Costos (COP\$) UC Gabinete y protecciones

Potencia			
Inversor	Ref	Costo CD	UC Red Bateria a Gabinete y accesorios
Sin Inversor	GA DC	223,321	UC Red Bateria Sistema DC
250	GA 250	418,347	UC Red Bateria inversor de 250
500	GA 500	522,365	UC Red Bateria inversor de 500
800	GA 800	636,955	UC Red Bateria inversor de 800
1000	GA 1000	764,963	UC Red Bateria inversor de 1000
1500	GA 1500	764,963	UC Red Bateria inversor de 1500
2000	GA 2000	764,963	UC Red Bateria inversor de 2000
3000	GA 3000	823,763	UC Red Bateria inversor de 3000
5000	GA 5000	1,647,526	UC Red Bateria inversor de 5000

Fuente: Elaboración propia

La siguiente tabla se muestra la pertinencia de la unidad constructiva el nivel de energía diaria atendido:

Tabla 21: Pertinencia UC Gabinete Vs Nivel de servicio

Gabinete y															
Proteccion															
es	Ref	67	100	233	500	667	1000	1500	2000	3000	4000	6000	10000	15000	20000
1	GA DC	1	1												
2	GA 250			1	1										
3	GA 500			1	1										
5	GA 800					1	1	1	1						
6	GA 1000							1	1	1	1				
7	GA 1500									1	1				
8	GA 2000										1				
9	GA 3000											1			
11	GA 5000												1	1	1

Los valores de la primera fila (en rojo) corresponden a los valores de energía diaria de los NS presentados en el informe No 2

4.2.4 UC Red gabinete a batería

Esta unidad constructiva comprende el gabinete para contener las baterías y aislarla del usuario. Incluye la red eléctrica de conexión de este gabinete con el gabinete de equipos electrónicos (incluidas la tubería conduit de conducción y sus accesorios), y la estructura o rack de soporte sobre para el gabinete sobre piso. Esta unidad constructiva está compuesta de varios componentes. Algunas soluciones soñares fotovoltaicas aisladas pueden requerir dos o más gabinetes. El número máximo baterías por gabinete dependerá de su tamaño. Este gabinete debe presentar rejillas de ventilación.

Cableado un circuito (1x12)
AWG THHN-2 En tubería
Conduir Ptv Schled
Sobrepuesta en pared

Gabinete de baterías

UC Gabinete de Batería

Batería

Batería

Batería

Batería

Batería

Figura 8: Detalle UC Red gabinete a batería

Fuente: Elaboración propia

Esta UC comprende el gabinete para contener las baterías y aislarla del usuario. Incluye la red eléctrica de conexión de este gabinete con el gabinete de equipos electrónicos. El diseño del cableado y ductos depende de la potencia de inversor que es normalmente la mayor potencia presente en este tramo.

Tabla 22: Costos (COP\$) UC Red gabinete a batería

Tamaño			
Inversor	Ref	Costo CD	UC Red Bateria a Gabinete y accesorios
Sin Inversor	RB DC	8,314	UC Red Bateria Sistema DC
250	RB 250	211,483	UC Red Bateria inversor de 250
500	RB 500	356,115	UC Red Bateria inversor de 500
800	RB 800	601,527	UC Red Bateria inversor de 800
1000	RB 1000	830,403	UC Red Bateria inversor de 1000
1500	RB 1500	830,403	UC Red Bateria inversor de 1500
2000	RB 2000	830,403	UC Red Bateria inversor de 2000
3000	RB 3000	1,629,976	UC Red Bateria inversor de 3000
5000	RB 5000	3,249,894	UC Red Bateria inversor de 5000

La siguiente tabla se muestra la pertinencia de la unidad constructiva el nivel de energía diaria atendido:

Tabla 23: Tabla de pertinencia UC Red gabinete a batería Vs Nivel de servicio

Red Baeria															
Gabinete	Ref	67	100	233	500	667	1000	1500	2000	3000	4000	6000	10000	15000	20000
1	RB DC	1	1												
2	RB 250			1	1										
3	RB 500			1	1										
5	RB 800					1	1	1	1						
6	RB 1000							1	1	1	1				
7	RB 1500									1	1				
8	RB 2000										1				
9	RB 3000											1			
11	RB 5000												1	1	1

Fuente: Elaboración propia

Los valores de la primera fila (en rojo) corresponden a los valores de energía diaria de los NS presentados en el informe No 2

4.2.5 UC Puesta a tierra

Esta unidad constructiva comprende una varilla de polo a tierra cobre - cobre de 2,4 m de longitud y diámetro de 9/16" y sus accesorios según norma RETIE. Una correcta puesta a tierra del sistema solar debe procurar conexión con la estructura de soporte de los paneles solares y los gabinetes de manera equipotencial. El conductor corresponderá con un calibre menor al máximo conductor de corriente de todo el sistema. Esta unidad constructiva está compuesta por varios componentes.

Cableado un circuito (1x12)
AWG THINL-2 En tuberia
Conduit PVC SCH40
sobrepuesta en pared
e inversor
e inversor

2 (1x10) AWG USE-2
(1510) AWG THINL-2

Varilla de lierra

Varilla de lierra

Varilla de lierra

Figura 9: Detalle UC Puesta a tierra

Esta unidad constructiva comprende la correcta puesta a tierra del sistema solar debe procurar conexión con la estructura de soporte de los paneles solares y los gabinetes de manera equipotencial.

Tabla 24: Costos UC Puesta a tierra

Ref	Costo CD	UC Puesta a Tierra
PT DC	144,431	UC Puesta a tierra sistema DC
PT P2	151,301	UC Puesta a tierra 1 a 2 Paneles
PT P4	165,289	UC Puesta a tierra 2 a 4 Paneles
PT P8	625,678	UC Puesta a tierra 6 a 8 paneles
PT P10	659,538	UC Puesta a tierra 10 a 16 paneles

Fuente: Elaboración propia

La siguiente tabla se muestra la pertinencia de la unidad constructiva el nivel de energía diaria atendido:

Tabla 25: Tabla de pertinencia UC Puesta a tierra Vs Nivel de Servicio

Puesta a															
Tierra	Ref	67	100	233	500	667	1000	1500	2000	3000	4000	6000	10000	15000	20000
1	PT DC	1	1	1	1										
2	PT P2					1	1	1							
3	PT P4								1	1					
5	PT P8										1	1			
6	PT P10												1	1	1

Los valores de la primera fila (en rojo) corresponden a los valores de energía diaria de los NS presentados en el informe No 2

4.2.6 UC Red domiciliaria

Esta unidad constructiva comprende la red eléctrica necesaria para distribuir los servicios eléctricos en la vivienda. Contiene cajas, accesorios de red, tubería metálica EMT (de ½ pulgada), interruptores, tomas dobles, plafones y bombillos led de 9 vatios. La red está establecida por valor unitario de un bombillo y ha sido calculada a partir de una red domiciliaria para 4 puntos de iluminación y 4 tomas eléctricas. Esta unidad constructiva puede conformarse para cada solución de acuerdo con el número de bombillos que requiera la solución solar fotovoltaica asilada. Esta unidad está compuesta por varios componentes ajustada para el numero de bombillos requeridos.

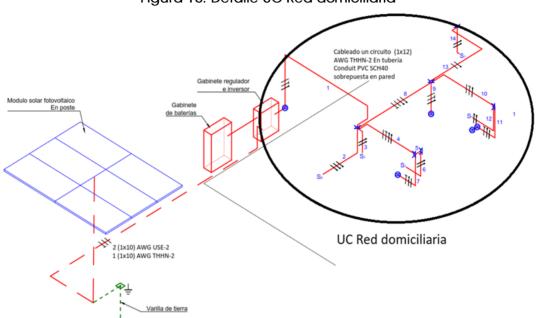


Figura 10: Detalle UC Red domiciliaria

Fuente: Elaboración propia

Esta UC comprende la red eléctrica necesaria para distribuir los servicios eléctricos en la vivienda. La red está establecida por número de bombillos (y tomas) esperados para satisfacer el nivel de servicio.

Costo en centro Ref distribucion **UC Red Domiciliaria RD 2DC** 64,473 UC Red Domiciliaria DC 2 Bombillos **RD 4DC** 128.946 UC Red Domiciliaria DC 4 Bombillos RD 2AC 238,883 UC Red domiciliaria AC 2 Bombillos 2 Toma Corrientes **RD 4AC** 477,765 UC Red domiciliaria AC 4 Bombillos 4 Toma Corrientes **RD 6AC** 716,648 UC Red domiciliaria AC 6 Bombillos 6 Toma Corrientes 955.530 UC Red domiciliaria AC 8 Bombillos 8 Toma Corrientes RD 8AC RD 10AC 1,194,413 UC Red domiciliaria AC 10 Bombillos 10 Toma Corrientes

Tabla 26: Costos (COP\$)-UC Red domiciliaria

Fuente: Elaboración propia

Nota: La red domiciliaria para sistemas DC está compuesta por elementos de iluminación led de 4 W y tendido en cable revestido en caucho y sin ductos.

La siguiente tabla se muestra la pertinencia de la unidad constructiva el nivel de energía diaria atendido:

Tabla 27: Tabla de pertinencia UC Red domiciliaria Vs Nivel de servicio

Red Ddomiciliar ia	Ref	67	100	233	500	667	1000	1500	2000	3000	4000	6000	10000	15000	20000
1	RD 2DC	1	1												
2	RD 4DC		1												
3	RD 2AC			1	1										
5	RD 4AC					1	1								
6	RD 6AC							1	1						
7	RD 8AC									1	1				
8	RD 10AC											1	1	1	1

Fuente: Elaboración propia

Los valores de la primera fila (en rojo) corresponden a los valores de energía diaria de los NS presentados en el informe No 2.

5 OTROS COSTOS ASOCIADOS AL CAPEX

La identificación de unidades constructivas ha permitido identificar aquellos elementos de costos eficiente que pueden ser utilizados para la conformación de las diferentes soluciones SISFV para la prestación del servicio en las zonas aisladas de Colombia, las cuales, con sus costos de transporte permiten disponer todos estos elementos en el sitio de prestación del servicio, esto es, en la ubicación del usuario.

Para poder hacer operativa la SISFV se debe proceder entonces a su instalación y montaje, para la cual el consultor procedió a hacer las estimaciones de manera porcentual, pues de otra manera requeriría tener al menos diseños básicos, los cuales no fueron considerados en la metodología de esta consultoría.

5.1 ESTIMACIÓN DE COSTOS DE INSTALACIÓN:

La identificación de unidades constructivas ha permitido identificar aquellos elementos de costos eficiente que pueden ser utilizados para la conformación de las diferentes soluciones SISFV para la prestación del servicio en las zonas aisladas de Colombia, las cuales, con sus costos de transporte permiten disponer todos estos elementos en el sitio de prestación del servicio, esto es, en la ubicación del usuario.

El consultor consultó el estudio de CORPOEMA¹ cuyo objetivo fue justamente la determinación de costos para Energías Renovables. En el capítulo de energía solar fotovoltaica se puede observar que el ítem de costo de Montaje Eléctrico, Mecánico e Instalación resulta aproximadamente el 10% de todo el valor total de la SISFV.

Ahora bien, un documento publicado por "National Renewable Energy Laboratory - NREL" ² también coincide en que como resultado del benchmarking para el sector residencial el costo de la instalación es del orden del 10%.

Se tuvo acceso a la tabla de resumen de los costos para una solución SISFV de 740 Wp de un estudio de mercado que adelanto el IPSE en este 2020. Al hacer la suma de todos los costos de Mano de obra y Equipos y Herramientas resulta ser exactamente 10% del valor total de los equipos.

Este valor porcentual se ha convertido en un estándar de la industria para la estimación del valor de la mano de obra. Sin embargo, se realizó un ejercicio para la estimación de los costos de instalación de acuerdo con rendimientos típicos en campo de una cuadrilla, que de acuerdo con el tamaño del sistema, puede contar con el siguiente personal:

- 1 a 2 Técnicos electricistas con experiencia en instalación fotovoltaica
- 1 a 2 Ayudantes de obra. Mano de obra no calificada que puede incluso se contratada localmente. 1 ingeniero para revisión final y visto bueno de la instalación y programación de equipos.

¹ Determinación de inversiones y gastos de administración, operación y mantenimiento para la actividad de generación en zonas no interconectadas utilizando recursos renovables. Diciembre de 2012

² U.S. Photovoltaic Prices and Cost Breakdowns: Q1 2015 Benchmarks for Residential, Commercial, and Utility-Scale Systems

Estos costos son estimados y pueden variar de acuerdo a las condiciones locales de la instalación.

Tabla 28: Estimación de costos de mano de obra de instalación y viáticos según nivel de servicio

Dias h	ombre	1A	1B	2A	2B	3A	3B	4A	4B	5A	5B	6A	6B	7A	76
Panel solar y Pu	esta a tierra														
Tecnico Electrici	sta	0.25	0.25	0.25	0.25	0.5	0.5	0.75	0.75	1	1	1.5	1.5	2	
ayudante local				0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.5	0.5	1	
Estructura de So	porte														
Tecnico Electrici	sta	0.25	0.25	0.25	0.25	0.25	0.25	0.5	0.5	0.5	0.5	1	1	2	
ayudante local				0.25	0.25	0.5	0.5	1	1	1	1	2	2	2	
Red Panel Gabir	nete														
Tecnico Electrici	sta	0.25	0.25	0.25	0.25	0.5	0.5	1	1	1.5	1.5	2	2	2	
ayudante local				0.25	0.25	0.5	0.5	1	1	1.5	1.5	2	2	2	
Gabinete															
Tecnico Electrici	sta	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	1	1		1.
ayudante local								0.25	0.25	0.25	0.25	1	1	1.5	1.
Red Gabinete y	Bateria														
Tecnico Electrici	sta	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.5	0.5	1	
ayudante local				0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.5	0.5	1	
Red Domiciliaria															
Tecnico Electrici	sta	0.25	0.25	0.5	0.5	0.75	0.75	0.75	0.75	0.75	0.75	1	1	1.5	1.
ayudante local				0.5	0.5	0.75	0.75	0.75	0.75	0.75	0.75	1	1	1.5	1.
Revision Ingenie	ero														
Ingeniero				0.25	0.25	0.25	0.25	0.25	0.25	0.5	0.5	0.75	0.75	1	
Totales															
Tecnico Electrici	sta	1.5	1.5	1.75	1.75	2.5	2.5	3.5	3.5	4.25	4.25	7	7		1
ayudante local		0	0	1.5	1.5	2.25	2.25	3.5	3.5	4	4		7		
Ingeniero	Dias Hombre	1.5	1.5	0.25 3.5	0.25 3.5	0.25	0.25	0.25 7.25	0.25 7.25	0.5 8.75	0.5 8.75	0.75 14.75	0.75 14.75		2
Viaticos Hospedaje	Dia Hombre Noche hombre	51,000	51,000	119,000	119,000	170,000	170,000	246,500	246,500	297,500	297,500	501,500	501,500	680,000 16	680,000
Total Viaticos +		51,000	51,000	119,000	119,000	170,000	170,000	246,500	246,500	297,500	297,500	1,165,500	1,165,500	2,008,000	2,008,000
мо															
Tecnico Electrici	sta	167,895	167,895	195,877	195,877	279,824	279,824	391,754	391,754	475,701	475,701	783,508	783,508	1,119,297	1,119,297
ayudante local		-	-	106,078	106,078	159,117	159,117	247,516	247,516	282,875	282,875	495,031	495,031	636,469	636,469
Ingeniero		-	-	52,256	52,256	52,256	52,256	52,256	52,256	104,513	104,513	156,769	156,769	209,025	209,025
Total MO Instal		167,895	167,895	354,211	354,211	491,198	491,198	691,526	691,526	863,089	863,089	1,435,308	1,435,308	1,964,790	1,964,790

Fuente: Elaboración propia

Los costos del personal se detallan en la siguiente tabla:

Tabla 29: Estimación de costos de personal para la instalación

CALCULO SALARIOS		22			días/mes	Factor Prestacional	
Honorarios en SMLV	1.0	1.7	2.0	2.0	4.4	Salud	9%
	ayudante	Tecnico					
	local	Electricista	SISO	Ing campo	Ing Master	Pensión	12%
Salario mínimo	908,526	1,500,000	1,800,000	3,000,000	4,000,000	ARP	7%
Auxilio de transporte	106,454	106,454				Caja	4%
Total	1,014,980	1,606,454	1,800,000	3,000,000	4,000,000	Cesantías	8%
Salario diario(*)	46,135	73,021	81,818	136,364	181,818	Intereses sobre cesantías	1%
Factor prestacional	24,583	38,909	43,597	72,661	96,882	Prima de servicios	8%
TOTAL DIARIO	70,719	111,930	125,415	209,025	278,700	Vacaciones	4%
TOTAL MENSUAL	1,555,812	2,462,453	2,759,130	4,598,550	6,131,400	Factor pestacional	53%

Fuente: Elaboración propia

Los costos de viáticos y hospedaje se detallan en la siguiente tabla:

Tabla 30: Detalle estimación de costos viáticos y hospedaje

Viaticos				Hospedaje /	Alimentación		
	Cantidad/día	Valor	Parcial	Cantidad/día		Valor	Parcial
Almuerzo	1	15,000	15,000	Hospedaje	1	60,000	60,000
Merienda	2	4,500	9,000	Desayuno	1	8,000	8,000
Transporte local	2	5,000	10,000	Comida	1	15,000	15,000
Dia persona			34,000	Dia persona			83,000

5.2 COSTOS AIU

El esquema que utiliza normalmente por las empresas es contratar las instalaciones de las soluciones mediante un contrato de instalación y montaje el cual genera unos costos relacionados con el denominado AIU del contratista.

A continuación. se presentan los datos tomados del estudio de CORPOEMA y del Estudio de Mercado de IPSE, junto con la recomendación del consultor sobre este concepto:

Tabla 31: Costos indicativos de AIU instalación SSFV

Ítem	CORPOEMA	IPSE	Referencia para el Estudio
Administración	10%	20%	15%
Imprevistos	5%	2%	2%
Utilidad	5%	5%	5%
Total	20%	27%	22%

Fuente: CORPOEMA, IPSEE y Elaboración propia

ANEXO A-Base de datos conformación de unidades constructivas

Se adjunta el archivo en MS Excel empleado para la construcción de las UC's, sus costos eficientes y los otros costos asociados al CAPEX

Nombre	Fecha de modificación	Tipo	Tamaño	
122920- Conformacion UC v01 FINAL 2030h		Hoia de cálculo d	818 KB	