DINAMICA DEL
MOVIMIENTO
ROTACIONAL

Al dar volteretas, este acrobata no es un
cuerpo rigido, y ello le permite variar su
rapidez rotacional en el aire. Si mueve
sus brazos y piernas hacia afuera, su rota-
cién se hace mas lenta; si los pega al
cuerpo, gira mas rapidamente.

Si el acrébata no esta tocando el
suelo, ;como puede alterar su rapidez de
rotacion? ; Qué principio fisico opera

aqui?

]: n los capitulos 4 y 5 aprendimos que una fuerza neta aplicada a un cuerpo im-
| _ parte una aceleracion a ese cuerpo. Sin embargo, ;qué se requiere para impar-
tir a un cuerpo una aceleracion angular? Es decir, (qué se necesila para poner a
girar un cuerpo estacionario o para detener un cuerpo que estd dando vueltas? Se
requiere una fuerza, pero debe aplicarse de tal manera que imprima una accion
de torcer o de dar vuelta.

En este capitulo definiremos una nueva cantidad fisica, momento de torsion,
gu= describe la accion de torsion o giro de una fuerza. Veremos que el momento
d= torsion neto que actia sobre un cuerpo rigido determina su aceleraciéon angu-
ar. 2si como la fuerza neta sobre un cuerpo determina su aceleracion lineal. Tam-
5:2n =xaminaremos el trabajo y la potencia en el movimiento rotacional a fin de
=nder los problemas del tipo de como el eje giratorio de un auto transmite ener-
&= Por altimo. desarrollaremos un nuevo principio de conservacion, la conserva-
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10.1 ;Cual de estas tres fuerzas de igual
magnitud tiene mayor probabilidad de
aflojar el perno apretado?

Activ
PR

7.1 Calculo de momentos de torsion

Momento de torsion =
(magnitud de fuerza) x (brazo de palanca)

)

F3 .
— accién
F tiene cero bra de Fy
de palanca
Brazo de palanca de
inca de
accion de F,

10.2 El momento de torsién de una fuerza
alrededor de un punto es el producto de

la magnitud de la fuerza y el brazo

de palanca.

Linea de

capiTurLo 10 | Dindmica del movimiento rotacional

cion de la cantidad de movimiento angular, que es muy util para entender la ro-
tacion de cuerpos tanto rigidos como no rigidos. Terminaremos el capitulo con el
estudio de los giréscopos, dispositivos giratorios que al parecer desafian el sentido
comun y no se caen cuando creemos que deberian hacerlo, aunque en realidad su com-
portamiento se ajusta perfectamente a la dinamica del movimiento rotacional.

10.1 | Momento de torsion

De qué depende la eficacia de una fuerza para causar o alterar un movimiento ro-
tacional? La magnitud y direccion de la fuerza son importantes, pero también lo
es la posicion del punto de aplicacion. Si tratamos de abrir una puerta pesada, es
mucho méas eficaz empujarla lejos del eje de rotacién (cerca de la perilla) que cer-
ca de ¢l (cerca de las bisagras). En la figuraﬂlO.l, se estd usando una llave de tuercas
para aflojar un perno apretado. La fuerza F, aplicada cerca del extremo del man-
g0, es mas eficaz que una fucrza igual F, aplicada cerca del perno. La fuerza F,
no sirve de nada. Se aplica en el mismo punto y tiene la misma magnitud que F, pero
esta dirigida a lo largo del mango.

La medida cuantitativa de la tendencia de una fuerza para causar o alterar la ro-
tacién de un cuerpo se denomina momento de torsion. La figura 10.2 muestra un
cuerpo que puede girar alrededor de un eje que pasa por cl punto O y es perpen-
dicular al plano de la figura. Sobre el cuerpo actuan tres fuerzas: F,,F,yFyenel
plano de la figura. La tendencia de F', a causar una rotacion alrededor de O depen-
de de su magnitud F; y también de la distancia perpendicular I entre la linea de
aceion de la fuerza (la linea sobre la que est el vector de fuerza) y O. Llamamos
al, el brazo de palanca (o brazo de momento) dc F, alrededor de O. El esfuer-
20 de torsion es directamente proporcional tanto a F y como a /;. Definimos el
momento de torsion (o momento) de F, respecto a O como el producto Fy/;. Usa-
remos la letra griega T (“tau”) para el momento de torsion. El momento de torsion
de una fucrza de magnitud F cuya linea de accién estd a una distancia perpendicu-
lar [ del punto O es

T = Fl (10.1)

Los fisicos prefieren el término “momento de torsién™; los ingenieros prefie-
ren el término “momento” solo (a menos que estén hablando de un eje giratorio,
en cuyo caso suelen usar el término “par motor”). Los dos grupos usan “brazo de
palanca” o “brazo de momento” para la distancia /.

El brazo de palanca de F, en la figura 10.2 es la distancia perpendicular O4 o
1,y el de F, es la distancia perpendicular OB o /,. La linea de accion de F5 pasa
por el punto de referencia O, asi que el brazo de palanca de F es cero y su mo-
mento de torsién respecto al punto O es cero. Por lo mismo, F . en la figura 10.1
tiene momento de torsion cero respecto a O,y F , tiene mayor momento de torsion
que F, porque su brazo de palanca es mayor.

0 Observe que el momento de torsion siempre se define con refe-
rencia a un punto especifico, que a menudo {aungue no siempre) es el origen
del sistema de coordenadas. Si cambiamos de posicion este punto, el momento de
torsion de cada fuerza puede cambiar. Por ejemplo, el momento de torsion
de ig en la figura 10.2 es cero respecto a O, pero no respecto a4 o 5. Al descri-
bir el momento de torsion de una fuerza, no basta llamarlo “el momento de
torsion de F"; debemos decir “el momento de torsion de F respecto al punto X"
o “el momento de torsién de F alrededor del punto X",
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10.1 | Momento de torsién

En la figura 10.2, la fuerza F, tiende a causar rotacion antihoraria alrededor de
O, mientras que F, tiende a causar rotacion horaria. Para distinguir entre estas dos
posibilidades, necesitamos escoger un sentido de rotacién positivo. Si escogemos
que los momentos de torsion antihorarios son positivos y los horarios son negati-
vos, los momentos de F, y ¥, respecto a O son

) = +F|l] Ty = —F212

A menudo usaremos el simbolo

+

para indicar el sentido de rotacion positivo que €scogimos.

La unidad del momento de torsidn en el Sistema Internacional es el newton-
metro. Al hablar de trabajo y energia llamamos a ésta combinacion joule, pero el
momenito de torsion so es trabajo ni energia, asi que debemos expresarlo en new-
tons-metro, #o joules. R

La figura 10.3 muestra una fuerza F que se aplica en un punto P descrito por
un vector de posicién 7 respecto al punto escogido O. Hay varias formas de calcu-
lar el momento de torsién de F. Una es determinar el brazo de palanca / y usar 7
= FI. O bien, podemos determinar el 4ngulo ¢ entre los vectores r'y F el brazo de
palanca es r sen ¢, asi que 7 = rF sen ¢. Un tercer método es representar F en tér-
minos de una componente radial F,4 en la direccion de 7 y una componente Fi,
perpendicular a 7. (Decimos “tangencial” porque, si el cuerpo gira. el punto en el
que actua la fuerza se mueve en un circulo, y ésta componente es tangente a ese
circulo.) Asi, F,, = F sen ¢ y 7 =r(F sen ¢) = F\,,r. La componente F 4 no tiene
momento de torsion respecto a O porque su brazo de palanca respecto a ese pun-
to es cero (compare con las fuerzas F de la figura 10.1 y F; de la figura 10.2. Re-
sumiendo estas expresiones de momento de torsion, tenemos

T =Fl=rFsen¢ = F,r (magnitud del momento de torsion) (10.2)

En la seccion 9.1, vimos que la velocidad y la aceleracion angulares pueden re-
presentarse como vectores; lo mismo sucede con el momento de torsion. Observe
que la cantidad 7F sen ¢ de la ecuacion (10.2) es la magnitud del producto vecto-
rial ¥ X F que definimos en la seccion 1.10. Repase esa definicion. Ahora gene-
ralizamos la definicién de momento de torsion asi: Siuna fuerza F actia en un punto
que tiene un vector de posicién F respecto a un origen O, como en la figural0.3,
el momento de torsién 7 de la fuerza respecto a O es la cantidad vectorial

F=FXF (definicién del vector de momento de torsién) (10.3)
El momento de torsion definido en la ecuacion (10.2) es solo la magnitud del vec-
tor de momento de torsion 7 X F. La direccion de 7 es perpendicular tanto a F y
F.En particular, si 7 y F estin en un plano perpendicular al eje de rotacion, como
en la figura 10.3, el vector de momento de torsién 7 = r X F tiene la dircecion
del eje de rotacion, y su sentido esta dado por la regla de la mano derecha (Fig.
1.20). Las relaciones de direccion se muestran en la figura 10.4.

En los diagramas en los que intervienen r, F y 7, es comun que uno de los vec-
tores esté orientado en una direccion perpendicular a la pagina. (De hecho, por la
naturaleza misma del producto cruz, # = 7 X F debe ser perpendicular al plano
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= brazo de palanca

10.3 El momento de torsion de la fuerza F
en torno al punto O se define como

7 =7 X F. La magnitud de 7 es 7F sen ¢.
Aqui, 7 y F estan en ¢l plano del papel;
por la regla de la mano derecha del pro-
ducto vectorial, 7 apunta afuera de la
pagina hacia el lector.

Enrosque los '—l
0

dedos de la man
derecha de la
direccién de 7
hacia la direccién
de I_"; el pulgar

estirado apunta en
la direccién de 7

Enrosque los dedos |
de la mano derecha de
la direccién de 7
hacia la direccién
de F’; el pulgar
estirado apunta ¢n

L]a direccion de 7

10.4 El vector de momento de torsion,

7 =7 X F se dirige sobre el eje del perno,
perpendicular tanto a 7 como a F. La di-
reccién de 7 esta dada por la regla de

la mano derecha. Vemos que los dedos

de la mano derecha se curvan en la direc-
cion de la rotacion que ¢l momento tiende
a causar.
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de los vectores F y F .) Usaremos un punto (e) para representar un vector que
apunta hacia afuera de la pagina (véase la Fig. 10.4) y una cruz (X ) para represen-
tar un vector que apunta hacia adentro de la pagina.

En las secciones siguientes, normalmente nos interesara la rotacion de un cuer-
po alrededor de un eje orientado en cierta direccion constante. En tal caso, s6lo in-
teresa la componente de momento de torsion sobre ese eje, que normalmente
llamaremos el momento de torsion respecto al eje especificado.

Ejemplo g — e
101 Aplicacion de un momento de torsion

Un plomero aficionado que no puede aflojar una junta ensarta un
tramo de tubo en el mango de su llave de tuercas v aplica todo su
peso de 900 N al extremo del tubo parandose en él. La distancia del
centro de la junta al punto donde actia el peso es de 0.80 m, y el
mango y el tubo forman un angulo de 19° con la horizontal (Fig.
10.5a). Calcule la magnitud y direccion del momento de torsion
que el plomero aplica en torno al centro de la junta.

SOLUCION
IDENTIFICAR y PLANTEAR: Usaremos la ecuacion (10.1) o la
(10.2) para obtener la magnitud del momento de torsion, y la regla de
la mano derecha con la ecuacion (10.3) para hallar su direccion. La
figura 10.5b muestra los vectores F y F y el angulo entre ellos (¢ =
109°).

EJECUTAR: Para usar la ecuacion (10.1), primero calculamos cl
brazo de palanca. Como muestra la figura 10.5b, / es la distancia
perpendicular de O a la linea de accion de la fuerza:

/= (0.80m) sen 109° = (0.80m) sen 71° = 0.76 m

La ecuacion (10.1) nos dice que la magnitud del momento de tor-
sién es

7= Fl = (900N)(0.76 m) = 680 N-m

O bien, por la ecuacion (10.2),
7=rFsen¢ = (0.80m) (900 N)(sen 109°) = 680 N-m

También podemos calcular F,,,, la componente tangencial de F, que
actlia perpendicular a F (o sea, perpendicular al tubo). El vector F es-
td a 19° de la horizontal, asi que una perpendicular a 7 esta orientada
a 19° de la vertical. Dado que Fes vertical, esto implica que F,,, =
F(cos 19°) = (900 N)(cos 19°) = 851 N. El momento de torsion es

7=F,r=1(81N)(0.80m) = 680 N-m

Si enrosca los dedos de su mano derecha de la direccion de 7 (en el
plano de la figura 10.5b, hacia la derecha y hacia arriba) a la direc-
cién de F (verticalmente hacia abajo), su pulgar derecho apuntara
hacia adentro del plano de la figura. Esta es la direccién del mo-
mento de torsién 7.

EVALUAR: Ya verificamos la magnitud obtenida de 7 calculandola
de tres formas distintas. Para verificar la direccion del momento de
torsion, obscrvamos que la fuerza de la figura 10.5 tiende a produ-
¢ir una rotacion horaria en torno a Q. Si enroscamos los dedos de la
mano derecha en direccion horaria, nuestro pulgar apuntara hacia
adentro del plano de la figura 10.5, es, en efecto, la direccion del
momento de torsion.

7 (hacia la pdgina)
® -
_ oS $ = 109°
T Pl
19°
O / []
(brazo de palanca) ¥
F=900N
(b)

10.5 (a) Un plomero aficionado trata de aflojar una junta pardndose en una extension del
mango de la llave de tuercas. (b) Diagrama vectorial para calcular el momento de torsién
respecto a 0.
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;Queé magnitud de fuerza hacia abajo tendria que ejercer el plomero aficionado
del ejemplo 10.1 para producir el mismo momento de torsién sin el tubo? La la-
ve de tuercas sola tiene una longitud de 25 cm.

10.2 | Momento de torsion y aceleracion

angular de un cuerpo rigido

Ahora podemos deducir la relacién fundamental de la dindmica rotacional de un cuer-
po rigido. Demostraremos que la aceleracion angular de un cuerpo rigido en rotacién
es directamente proporcional a la suma de las componentes de momento de torsidn so-
bre el eje de rotacion. El factor de proporcionalidad es el momento de inercia.

Para deducir ésta relacion, imaginamos otra vez que el cuerpo se compone de
un gran numero de particulas. Escogemos como eje de rotacion el gje z; la prime-
ra particula tiene masa m; y distancia », respecto a este eje (Fig. 10.6). La fuerza
neta que actia sobre la particula tiene una componente F,_4 en la direccion ra-
dial, una componente F ., tangente al circulo de radio ry en que se mueve la par-
ticula al girar el cuerpo, v una componente F,. sobre el eje de rotacioén. La
segunda ley de Newton para la componente tangencial es

(10.4)

Podemos expresar la aceleracion tangencial de la primera particula en términos de
la aceleracion angular o, usando la ecuacion (9.14): ay ,,, = 1. Con esta relacion
v multiplicando ambos miembros de la ecuacion (10.4) por r;, obtenemos

Flum = Qg

(10.5)

Por la ecuacion (10.2), F .7, no es mas que el momento de torsién de la fuerza
neta respecto al eje de rotacion (igual a la componente 7, del vector de momento
de torsion sobre dicho eje). El subindice z nos recuerda que ¢l momento de torsion
afecta al rotacion en torno al eje z, de la misma manera que el subindice de £, nos
recuerda que esta fuerza afecta el movimiento de la particula 1 a lo largo del gje z.

Las componentes F, 4 ¥ ;. no contribuyen al momento de torsion alrededor
del gje z, pues ninguna tiende a modificar la rotacion de la particula alrededor de
ese eje. Por tanto, 7,. = F| ;.7 es el momento de torsién total que actua sobre la
particula respecto al eje de rotacién. Ademas, m,r,” es [, el momento de inercia de
la particula alrededor del eje de rotacion. Con esto en mente, reescribimos la ecua-
cion (10.5) asi:

s 2
Flah = mna,

Tiz = [laz = mlrlzaz
Escribimos una ecuacion similar para cada particula del cuerpo y luego suma-
mos todas las ecuaciones:

2
T+ 7T + 0= La, + La, + -+ = mypie, + myrio, + o

es decir,

275_— = (zmirr'z)az

El miembro izquierdo de esta ecuacion es la suma de todos los momentos de tor-
<ion en torno al eje de rotacién que actiian sobre todas las particulas. El miembro
deracho es I = Im,r/?, el momento de inercia total alrededor del eje de rotacion,
=wlnplicado por la aceleracion angular e, que es la misma para todas las particu-
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Ejc de
rotacion

o e

10.6 Tres componentes de la fuerza neta
actuan sobre una de las particulas de un
cuerpo rigido. Solo Fi,y,, tiene una
componente = de momento de torsién
alrededor de O.

10.7 Para aflojar o apretar un tornillo, es
preciso impartirle una aceleracion angular
y, por tanto, aplicar un momento de tor-
sion. Esto se facilita si se usa un destorni-
llador con mango de radio grande, pues asi
se aumenta el brazo de palanca de la fuerza
que aplicamos con la mano.



Il

366

Los momentos de
torsion debidos a fuerzas
internas se cancelan:

Ty sobre 2 i3 T2 sobre | = 0

Linea de accién
de ambas fuerzas

Brazode |
palanca de
ambas fuerzas

F 2 sobre 1

i 1 5} '
Particula 1 =
T 1 sobre 2
(0]
&
T2 sobre 1

10.8 Dos particulas de un cuerpo rigido
ejercen fucrzas iguales y opuestas una so-
bre la otra. Si estas fuerzas actiian a lo lar-
go de la linea que va de una particula a la
otra, los brazos de palanca de las dos fuer-
zas son iguales y los momentos de torsion
causados por cllas son iguales y opucstos.
Sélo los momentos de torsion externos
afectan la rotacién de un cuerpo rigido.

e

N

Phys|cs

7.8 Rotojuego: enfoque de dinamica

7.9 Escalera que cae

7.10 Mujer y elevador de volante:
enfoque de dinamica

Estrategia para

resolver problemas

capriTuLo 10 | Dindmica del movimiento rotacional

las porque se trata de un cuerpo rigido. Asi, para el cuerpo entero, tenemos el and-
logo rotacional de la segunda ley de Newton:

ET: = I,

(analogo rotacional de la segunda ley de Newton para un cuerpo rigido)

(10.6)

Asi como la segunda ley de Newton dice que la fuerza neta que actua sobre una
particula es igual a la masa de la particula multiplicada por su aceleracion, la
ecuacion (10.6) dice que el momento de torsion neto que actia sobre un cuerpo ri-
gido es igual al momento de inercia del cuerpo alrededor del eje de rotacion mul-
tiplicado por su aceleracion angular (Fig. 10.7).

Subrayamos que la ecuacion (10.6) sélo es valida para cuerpos rigidos. Si el
cuerpo no es rigido, como un tanque de agua que gira o un remolino de aire, la
aceleracion angular a, es diferente para diferentes particulas del cuerpo, y la de-
duccién de la ecuacion (10.6) no es véalida. Ademas, como en la deduccion utili-
zamos la ecuacién (9.14), a,,, = ra., o, debe medirse en rad/ g2,

El momento de torsion que actia sobre cada particula se debe a la fuerza neta
que actiia sobre esa particula, la cual es la suma vectorial de fuerzas externas e in-
ternas (definidas en la seccion 8.2). Segiin la tercera ley de Newton, las fuerzas in-
ternas que cualquier par de particulas del cuerpo rigido ¢jercen una sobre la otra
son iguales y opuestas (Fig. 10.8). Si estas fuerzas actiian sobre la linea que une a
las particulas, sus brazos de palanca respecto a cualquier eje también serén iguales.
Asi, los momentos de torsién para tales fuerzas son iguales y opuestos, y suman ce-
ro. De hecho, todos los momentos de torsién internos suman cero, y la suma 27, de
la ecuacién (10.16) incluye solo los momentos de torsion de las fuerzas externas.

Es comim que una fuerza externa importante que actia sobre un cuerpo sea su
peso. Esta fuerza no se concentra en un punto: actiia sobre todas las particulas del
cuerpo. No obstante, resulta que, si el valor de g es el mismo en todos los puntos,
siempre obtenemos el momento de torsion correcto (alrededor de cualquier ¢je
dado) si suponemos que el peso se concentra en el centro de masa del cuerpo. De-
mostraremos esto en el capitulo 11, pero mientras lo usaremos en algunos proble-
mas de éste capitulo.

Dinamica rotacional de cuerpos rigidos

Nuestra estrategia para resolver problemas de dinamica rotacio-
nal es muy similar a la presentada en la seccion 5.1 para resol-
ver problemas en los que interviene la segunda ley de Newton.

IDENTIFICAR los conceptos relevantes: La ecuacion 27. = la,
es uitil en todos los casos en que momentos de torsion actian so-
bre un cuerpo rigido; es decir, siempre que fuerzas actiian sobre
un cuerpo rigido de manera tal que alteran el estado de rotacion
del cuerpo.

En algunos casos, podria preferirse un enfoque de energia,
como se hizo en la seccion 9.4. Sin embargo, cuando la incogni-
1a es: una fuerza, un momento de torsion, una aceleracion, una
aceleracion angular o un tiempo transcurrido, casi siempre es
mas eficiente usar X7, = la..

PLANTEAR el problema empleando estos pasos:

1.

2

Haga un dibujo de la situacién y escoja el cuerpo o cuer-
pos que analizara.

Dibuje un diagrama de cuerpo libre para cada cuerpo, ais-
lando el cuerpo e incluyendo todas las fuerzas que actlian
sobre €l (y sélo ellas), incluido el peso. Marque las cantida-
des desconocidas con simbolos algebraicos. Una nueva
consideracién es que se debe mostrar con exactitud la for-
ma del cuerpo, incluyendo todas las dimensiones y angulos
que se necesitaran para los calculos de momento de torsion.
Escoja ejes de coordenadas para cada cuerpo e indique un
sentido de rotacion positivo para cada cuerpo que gire. Si
hay una aceleracion lineal, lo mas sencillo suele ser esco-
ger un eje positivo en su direccion. Si ya conoce ¢l senti-
do de a,, se simplificaran los calculos si se escoge ése
como sentido de rotacion positivo. Si representa una fuer-
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za en términos de sus componentes, tache la fuerza origi-
nal para no incluirla dos veces.

EJECUTAR la solucion como sigie:

1. Para cada cuerpo del problema, decida si sufre movimien-
to: traslacional, movimiento rotacional, o ambos. Depen-
diendo del comportamiento del cuerpo, aplique
SF = md (como en la seccion 5.1), 0 27, = la., 0 ambas
al cuerpo. Escriba ccuaciones de movimiento aparte para
cada cuerpo.

Podria haber relaciones geométricas entre los movimien-
tos de dos o mas cuerpos, como cuando un hilo sc desenro-
lla de una polea girdndola o cuando un neurnatico gira sin
resbalar (lo que veremos en la seccion 10.3). Expréselas
en forma algebraica, por lo regular como relaciones cntre

S
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dos accleraciones lineales ¢ una aceleracion lineal y una
angular.

3. Verifique que el niimero de ecuaciones coincida con el
nimero de incognitas. Resuelva las ecuaciones para obte-
ner la o las incognitas.

EVALUAR lu respuesta: Compruebe que los signos algebraicos
de sus resultados scan 16gicos. Por ejemplo, suponga que el pro-
blema se refiere a un carrete de hilo. Si se esta sacando hilo del
carrete, las respuestas no deberén decirnos que el carrete gira en
el sentido en que el hilo se enrolla. Siempre que pueda, verifi-
que los resultados para casos especiales o valores extremos y
comparelos con lo que espera intuitivamente. Preguntese: “;Es

O3

logico este resultado?

Cable que se desenrolla

La figura 10.9a muestra la situacion que analizamos en el ejemplo
9.8 (seccion 9.4) usando métodos de energia. Se enrolla un cable
varias veces en un cilindro sélido uniforme de 50 kg con didmetro
de 0.120 m, que puede girar sobre su cje. Se tira del cable con una
fuerza de 9.0 N. Suponicndo que el cable se desenrolla sin estirarse
ni resbalar, ;qué aceleracion tiene?

IDENTIFICAR: La incdgnita cs la aceleracion del cable, que no po-
demos obtener directamente empleando el método de encrgia de la
seccion 9.4 (pues en él no interviene la aceleracion). En vez de ello,
aplicaremos dinamica rotacional al cilindro. Para obtener la acele-
racién del cable, buscaremos una relacién entre el movimiento del
cable y el movimiento del borde del cilindro.

et

i FE=9:0-N

0.060\n

Mg

(®)

10.9 (a) Cilindro y cable. (b) Diagrama de cuerpo libre para el
cilindro.

s —

PLANTEAR: La figura 10.9b muestra el diagrama de cuerpo libre del
cilindro de masa M = 50 kg. El cilindro gira en sentido horario cuan-
do sc tira del cable, asi que tomamos como sentido de rotacion posi-
tivo el horario. La fuerza neta que actua sokre el cilindro debe ser
cero porque su centro de masa no se mueve. El peso (de magnitud
Mg) y la fuerza normal (de magnitud #) ejercidos por los cojinetes
del cilindro actiian sobre lineas que pasan por el eje de rotacion y.
por lo tanto, no producen un momento de torsion respecto a ese eje.

EJECUTAR: El (inico momento de torsion alrededor del eje de rota-
¢ién se debe a la fuerza F, cuyo brazo de palanca es igual al radio R
del cilindro: /= R =0.060 m, asi que 7,= FR. (Este momento de tor-
sion es positivo porque tiende a producir una rotacién horaria.) Por
el ejemplo 9.8, el momento de inercia del cilindro en torno al cje de
rotacién es [ = %MRQ. Por tanto, la ecuacion (10.6) nos da la acele-
racion angular del cilindro:

Ty FR 2F

2(9.0N)

. =———=—= = 6.0 rad/s®
I MR¥2 MR (50kg)(0.060 m)

(Verifique que éstas unidades sean correctas. Podemos afiadir “rad”
a nuestro resultado porque el radién es una cantidad adimensional.)

Para obtener la aceleracion lineal del cable, necesitamos una re-
lacion cinemética. En la seccion 9.3 sefialamos que la aceleracion
de un cable que se desenrolla de un cilindro es igual a la componen-
te tangencial de aceleracion de un punto en la superficie del cilin-
dro donde ¢l cable es tangente a él. Dicha aceleracion tangencial
estd dada por la ecuacion (9.14):

a, = Ra = (0.060 m) (6.0 rad/s?) = 0.36 m/s* -

EVALUAR: ;Pucde usar este resultado, junto con una ecuacion del
capitulo 2, para determinar la rapidez del cable una vez que se ha
desenroltado 2.0 m? Inténtelo y compare su resultado con el ejem-
plo 9.8, donde obtuvimos &sta rapidez usando consideraciones de
trabajo y encrgia.
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Cable que se desenrolia Il

La figura 10.10a muestra la situacion que analizamos cn el ejemplo
9.9 (scccion 9.4) usando métodos de energia. Calcule la aceleracion
del objeto de masa m.

IDENTIFICAR: Aplicarcmos dindmica traslacional al objcto que
cuelga y dindmica rotacional al cilindro. Puesto que el cable no res-
bala sobre ¢l cilindro, existe una relacién entre la aceleracion lineal
del objeto que cuelga (nuestra incognita) y la aceleracién angular del
cilindro.

PLANTEAR: Debemos tratar los cuerpos por separado. La figura
10.10b muestra un diagrama de cuerpo libre para cada uno. Toma-
mos el sentido de rotacion antihorario como positivo para el cilin-
dro, y la direccién hacia abajo de la coordenada v como positiva
para el objcto.

EJECUTAR: La segunda ley de Newton aplicada al objcto da
EFJ, =mg+ (-T) = ma,

n

T

Cilindro \

W m Objeto — x
colgante
mg
h \
|
J ¥y
(a) (b)

10.10 (a) Cilindro, objeto y cable. (b) Diagramas de cuerpo libre
para el cilindro y cl objeto que cuelga. La masa del cable sc
supone despreciable.

En la figura 10.11a, un deslizador de masa iz, se mueve sin friccion
sobre un riel de aire horizontal, sujeto a un objeto de masa 1, con
un hilo sin masa. La polea es un cilindro hueco delgado (con rayos

cAPiTUGLO 10 | Dindmica del movimiento rotacional

Para el cilindro, ¢l peso Mg y la fuerza normal n (ejercida por el co-
jinete) no tienen momentos de torsion respecto al eje de rotacién
porque actian sobre lincas que pasan por ese eje, igual que en ¢l
gjemplo 10.2. El tnico momento de torsién es el debido a la tensién
del cable 7. Aplicando la ecuacion (10.6) al cilindro tenemos

-
>7,=RT=la, = MR,

Al igual que en el ¢jemplo 10.2, la aceleracion del cable es igual a
la aceleracion tangencial de un punto en el borde del cilindro, que,
segun la ecuacion (9.14), es @, = a,,, = Re.. Usamos esto para sus-
tituir (Re.) por &, en la ecuacion anterior y luego dividimos entre R;
el resullado es

1
T= Eﬂ«[a

Ahora sustituimos ésta expresion para T en la segunda ley de New-
ton para cl objeto y despejamos la aceleracion a,:

1
mg — — Ma, = ma,
8 — 5 Ma, = ma,

PO K1 LI
T+ MP2m
EVALUAR: La aceleracion es positiva (en la dircceion hacia abajo)
y menor que g, como debe ser dado que el cable esta frenando al
objeto. Para ver cuanta fuerza ejerce el cable, sustituimos nuestra
expresion para «, en la segunda ley de Newton para cl objeto, obte-
niendo asi 7:

mg
1+ 2miM

T= mg — Iﬂ(l_‘. =mg—m

13 M/Qm)

La tension en ¢l cable #o es igual al peso mg del objeto; si asi fue-
ra, el objeto no podria acelerar.

Revisemos algunos casos especificos. Si M es mucho mayor
que m, la tensioén es casi igual a mg, y por tanto la aceleracion es
mucho menor que g. Si M =0, T=0y a, = g; cl objeto cae libre-
mente. Si cl objeto parte de una altura /2 sobre el piso con rapidez
inicial vy, su rapidez v al golpear el piso estd dada por v? = pg? +
2a,h. Si parte del reposo, vy =0y

2gh
=Va.h=,|—2 _
v D EANT L mm

Este es ¢l mismo resultado que obtuvimos usando consideraciones
de energia ¢n el ejemplo 9.9.

)

Dos masas y una polea que gira

sin masa) de masa A y radio R, y el hilo la gira sin resbalar ni esti-
rarse. Calcule la aceleracion de cada cuerpo, la aceleracion angular
de la polea y la tensién en cada parte del hilo.
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IDENTIFICAR: Usaremos dinamica traslacional para describir el
movimiento del deslizador v del objeto que cuelga, y dinimica ro-
tacional para describir el movimiento de la polea. Dado que el hilo
no sc estira, tanto el deslizador como el objcto tienen la misma
magnitud de aceleracion; el borde de la polca tiene una aceleracion
rangencial con la misma magnitud porque el hilo no resbala.

PLANTEAR: La figura 10.11b muestra los diagramas de cuerpo li-
bre v los sistemas de coordenadas para los tres cuerpos. Con las
coordenadas que escogimos, el deslizador y el objeto aceleran en
sus direcciones positivas x y y, respectivamente. Asimismo escoge-
mos el sentido positivo de rotacién como el horario (el mismo que
la aceleracion angular de la polea). Tenemos cinco incognitas: la
aceleracion del deslizador (a,,), 1a aceleracion del objeto (as,), la ace-
leraci6n angular de la polea, a. y las dos tensioncs (7, y T3). A pri-
merz visza. el problema parece imponente, pero tendremos tantas
ecuzcionss como incognitas, v resolverlas serd mas facil de lo que
¢l lector imagma

PCUIDEDION -nsid=r=+os una situacion similar en el ejemplo
5.13 (s2¢cién 5.2). 2hi, =l hilo s= deslizabs sin friccion sobre una po-
lez fija, y Iz :2nsion ere la misma &n todo el hilo sin masa. Con una
polea giratoria, y friccion entre Ia polsz y el hilo para evitar desliza-
mientos, las dos tensiones T, y T no puedss ser iguales. Si lo fue-
ran, la polea no podria tener acsleracion angular. Marcar la tension
en ambas partes del hilo como T sefia un error arave. Cuidese de és-
te error en cualquier problema que impligue una polea gue gira.

EJECUTAR: Las ccuaciones de movimiento para el deslizador y el
objeto son

Deslizador: > F, =
Objeto: sz =

La fuerza normal desconocida n, actiia en una linea que pasa por el
eje de rotacién de la polea, asi que no tiene brazo de palanca ni mo-
mento de torsidn respecto a ese eje. De la tabla 9.2, el momento de
inercia de la polea sobre éste eje ¢s / = MR2. La ecuacion de movi-
miento de la polea es entonces

(10.7)
(10.8)

T, = may,

g + (—Ty) = moay,

Polea: 3.7, = LR + (~TiR) = I = (MR*)e,  (10.9)

Dado que el hilo no se estira ni resbala, tenemos las relaciones ci-
nematicas adicionales

(10.10)

ay, =y, = Re,

(Las aceleraciones del deslizador y el objeto tienen diferente direc-
cidn pero la misma magnitud.)

Las ecuaciones (10.7) a (10.10) son cinco ccuaciones simulta-
neas para las cinco incognitas a;,, @y, @ T, y T5. (La ecuacion
(10.10) es en realidad dos ecuaciones.) Primero usamos las ecua-
ciones (10.10) para eliminar a,, y ¢, de las ecuaciones (10.7) a
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(10.9). Ahora tenemos tres ecuaciones para las tres incognitas T,
Lva,

T] = My
a8 — Ty = matly,
T2 = T] = M[l]x

La forma mas facil de resolverlas cs sumarfas, eliminando 7 y 7,
y despejar a;,:
a8

my +my + M

Ay =

Por la ecuacién (10.10), la aceleracion a,, del objeto colgante es
igual a ay,, y la aceleracion angular «. de la polea es igual a @, di-
vidida entre R. Ahora podemos sustituir esto en las ecuaciones
(10.7) y (10.8) para obtener las tensiones. Los resultados son

Mg

(my + M)mag
o m +m, + M

2#ml+m2+M

EVALUAR: Revisemos algunos casos especiales para ver si estos re-
sultados son logicos. Primero. si 71, 0 M es mucho mayor que 71,
las aceleraciones son muy pequefias y 75 es aproximadamente r,g.
Pero si m» es mucho mayor que m, o que M, la aceleracion serad
aproximadamente g. Ambos resultados son lo que esperariamos. Si
M = 0. ;obtenemos el mismo resultado que en el ejemplo 5.13 (sec-
cién 3.2)7 ;Por qué si o por qué no? ;Se le ocurren otros casos €s-
peciales que verificar?

my T M

(a)

my
7
my —x
me
Deslizador Objeto
colgante

(b)

10.11 (a) Deslizador de riel de aire tirado por una masa que
cuelga sobre una polea. (b) Diagramas de cuerpo libre de los
tres cLerpos.
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10.12 El movimiento de un cuerpo rigido
como éste martillo lanzado es una combi-
nacion de traslacion del centro de masa y

rotacion alrededor de esc centro.

Eje de
rotacion

Velocidad ©; de una particula de un‘
cuerpo rigido en rotacion y ‘
traslacion = (velocidad o, del
centro de masa) mds (velocidad v, |
de la particula relativa al

i centro de masa)

10.13 Cuerpo rigido con movimiento
traslacional y rotacional.

capiTuro 10 | Dindmica del movimiento rotacional

Suponga que el sistema del ejemplo 10.4 esta inicialmente en movimiento, de mo-
do que el deslizador se mueve hacia la izquierda, el objeto colgante asciende y la
polea gira en sentido antihorario. En ésta situacion, ;qué aceleracion lineal tienen:
¢l deslizador y el objeto; y qué aceleracion angular tiene la polea?

10.3 | Rotacion de un cuerpo rigido sobre un eje movil

Podemos extender nuestro analisis de la dindmica del movimiento rotacional a algu-
nos casos en los que el eje de rotacion se mueve. En tal caso, el movimiento del cuer-
po es: traslacion y rotacion combinados. La clave para entender éstas situaciones
es la siguiente: cada posible movimiento de un cuerpo rigido puede representarse
como una combinacion de movimiento: traslacional del centro de masa vy rotacion
alrededor de un eje que pasa por el centro de masa. Esto se cumple aun si el centro
de masa se acelera, de modo que no est4 en reposo en ninglin marco inercial. Un
ejemplo grafico es el movimiento de un martillo lanzado hacia arriba (Fig. 10.12).
El centro de masa sigue una parabola, como si el martillo fuera una particula situa-
da en el centro de masa. Al mismo tiempo, el martillo gira con velocidad angular
constante alrededor del centro de masa (compare con el movimiento de la llave de
la figura 8.25). La traslacion del centro de masa y la rotacion alrededor de dicho
centro, pueden tratarse como problemas individuales pero relacionados. Otros ejem-
plos de ésto son: una pelota que rueda cuesta abajo y un yoyo que se desenrolla.

Traslacion y rotacion combinadas: relaciones de energia

Demostrar que el movimiento de un cuerpo rigido siempre puede dividirse en mo-
vimientos independientes de traslacién del centro de masa y rotacion alrededor
del centro de masa rebasa el alcance de este libro, pero podemos demostrar que es
cierto para la energia cinética de un cuerpo rigido con movimiento tanto traslacio-
nal como rotacional. En este caso, la energia cinética del cuerpo es la suma de una
parte %Mvcm2 asociada al movimiento del centro de masa y una parte %Icmcu2 aso-
ciada a la rotacion alrededor de un eje que pasa por el centro de masa:

I |
‘S EMvcm' + —2-Icmw2

( cuerpo rigido con traslacién y rotacién ) (10.11)
Para demostrar esto, imaginamos otra vez que el cuerpo rigido se compone de
particulas. Consideremos una particula representativa de masa m, (Fig. 10.13). Su

velocidad ¥ relativa a un marco inercial es la suma vectorial de la velocidad @,
del centro de masa y la velocidad v/ de la particula relativa al centro de masa:

U, = U, + T (10.12)
La encrgia cinética K; de csta particula en el marco inercial es im.v?2, que también
& i pRiLy b

podemos expresar como 3m (T, ;). Sustituyendo la ecuacion (10.12) en esto,
obtenemos

] = 2ty =% =ry
K, = Emi(vcm + U,-) : (vcm + vi)

1
N = oy =1
b= 2’":’(Ucm Ui o 2vcm U; + U; U,-)

]- — —
= 5’715(Ucm2 + 20, 8] + v?)
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La energia cinética total es la suma 2.K; para todas las particulas del cuerpo. Si ex-
presamos los tres términos de la ecuacion como sumas individuales, tenemos

K= YK = E(—;-m,-vcmz + (B T}) + 2 —l—miv,-a)

Los primeros dos términos tienen factores comunes que pueden sacarse de la su-
matoria:

1
Emiv{z) (10.13)

K = %(zmi)vcmz S5 6cm.(2'71i6;) iy 2

Ahora viene nuestra recompensa. En el primer término, %m; es la masa total M. El
segundo término es cero porque >, U] es M multiplicada por la velocidad del cen-
tro de masa relativa al centro de masa, que es cero por definicién. El tltimo térmi-
no es la suma de las energias cinéticas de las particulas, calculada usando sus
rapideces respecto al centro de masa; ésta es la energia cinética de rotacion alrede-
dor de ese centro. Siguiendo los mismos pasos que nos llevaron a la ecuacion
(9.17) para la energia cinética rotacional de un cuerpo rigido, podemos escribir es-
te tltimo término como 11,,,w?, donde ., es el momento de inercia con respecto al
eje que pasa por el centro de masa y w es la rapidez angular. Asi, la ecuacion
(10.13) se convierte en la ecuacion (10.11):

_1 2 1
K= EM e 5
Un caso importante de traslacion y rotaciéon combinadas es el de rodar sin des-
lizar, como el movimiento de la rueda que se muestra en la figura 10.14. La rueda
es simétrica, asi que su centro de masa esta en su centro geométrico. Visualizamos
el movimiento en un marco de referencia inercial en el que la superficie sobre la
que se rueda est4 en reposo. Aqui, el punto de la rueda que toca la superficie de-
be estar instantineamente en reposo para que no resbale. Por tanto, la velocidad ¥
del punto de contacto, relativa al centro de masa, debe tener la misma magnitud
pero direccion opuesta que la velocidad del centro de masa 0. Si el radio de la
rueda es Ry su rapidez angular alrededor del centro de masa es w, la magnitud de
U; es Rw; por tanto, debemos tener

5 me’l

Uen = Rw (condicién para rodar sin resbalar) (10.14)

Como muestra la figura 10.14, la velocidad de un punto en la rueda es la suma
vectorial de la velocidad del centro de masa y la velocidad del punto relativa al
centro de masa. Asi, mientras el punto 1 (el de contacto) esta momentianeamente

La rueda entera se traslada La rueda gira en torno al centro Rodamiento
con velocidad U, de masa, rapidez en el borde = v sin deslizamiento

-, = e
U3 = Cepy T; = L5
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Adtly.
Physics

7.11 Carrera entre un bloque
y un disco

10.14 El movimiento de una rueda es la
samz del movimiento traslacional del cen-
o de mass v 2l movimiento rotacional

de la rueda alrededor del centro de masa.
Si la rueda no resbala, la rapidez del borde
relativa al centro de masa debe ser igual a
la magnitud de 0., La rueda esta instanta-
neamente en reposo en el punto en que
hace contacto con el suelo.
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en reposo, el punto 3 en la parte de arriba se mueve hacia adelante con el doble de
la rapidez del centro de masa, y los puntos 2 y 4 a los lados tienen velocidades a
45° con la horizontal.

En un instante dado, podemos pensar que la rueda gira alrededor de un “eje de
rotacion instantdneo” que pasa por el punto de contacto con el suelo. La velocidad
angular w es la misma para éste eje que para un eje que pasa por el centro de ma-
sa; un observador en el centro de masa ve que el borde da el mismo nimero de re-
voluciones por segundo como un observador en el borde ve que el centro de masa
da alrededor de él. Si vemos asi el movimiento de la rueda de la figura 10.14, la
energia cinética de la rueda es K = 11,&?, donde I, es el momento de inercia de
la rueda alrededor de un eje que pasa por el punto 1. Sin embargo, por el teorema
de los ejes paralelos, ecuacion (9.19), I} = I, + MR?, donde M es la masa total de
larueda e I, es el momento de inercia respecto a un eje que pasa por el centro de ma-
sa. Usando la ecuacion (10.14), la energia cinética de la rueda es

1
K — 5[10)2

10.15 El humo que se alza de las ruedas

traseras de este coche de arrancones indica
que los neuméticos estan resbalando sobre
el pavimiento, asi que v, no es igual a Ro.

1 1 1 1
= Elcmwz + EMRng = 5 feme” + EMvcmz

que es igual a la ecuacion (10.11).

i DOV Es importante tener en cuenta que la relacion v, = Ro sélo se
cumple si hay rodamiento sin deslizamiento. Cuando un coche de “arrancones”
comienza a moverse, las ruedas traseras estan girando con gran rapidez mien-
tras que el vehiculo casi no se mueve, asi que Rw es mayor gue Vem (Fig. 10.15).
Si el conductor aplica los frenos con demasiada fuerza y el coche derrapa, las
ruedas casi no giraran y Rw sera menor que v,

Si un cuerpo rigido cambia de altura al moverse, también debemos considerar
la energia potencial gravitacional. Como vimos en la seccion 9.4, la energia po-
tencial gravitacional asociada a cualquier cuerpo extendido de masa M, rigido o
no, es la misma que si sustituimos el cuerpo por una particula de masa M situada
en el centro de masa del cuerpo. Esto es,

U= Mgy

o = S e == e o -

Ejemplo e
!10_‘5) Casco cilindrico que rueda

Un casco cilindrico hueco de masa My radio R rueda sin resbalar con
rapidez v, en una superficie plana. ;Qué energia cinética tiene?

IDENTIFICAR y PLANTEAR: Usaremos la ccuacion (10.11) para
obtener la energia cinética. El momento de inercia es /= MR*dela
tabla 9.2 y la rapidez angular es w = v /R porque se rueda sin res-
balar.

Rapidez de un yoyo burdo

Se hace un yoyo burdo enrollando un cordel varias veces alrededor
de un cilindro sélido de masa M y radio R (Fig. 10.16). Se sostiene
el extremo del cordel fijo mientras sc suelta el cilindro desde el re-
poso. El cordel se desenrolla sin resbalar ni estirarse al caer y girar

EJECUTAR: Sustituyendo estas expresiones en la ecuacion (10.11)
obtenemos
1 1
K= EMvcm2 + 5
= My’

s s |
(MR‘)(?)

EVALUAR: La energia cinética es el doble de la que seria si el cas-
co se estuviera deslizando con rapidez v, sin rodar. La mitad de la
energia cinética total es traslacional y la otra mitad es rotacional.

el cilindro. Use consideraciones de energia para calcular la rapidez
«m del centro de masa del cilindro s6lido después de caer una dis-
tancia k.
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10.16 Calculo de la rapidez de un yoyo burdo.

IDENTIFICAR: El extremo superior del cordel esta fijo, no se tira de
¢l hacia arriba, asi que la mano de la figura 10.16 no efectia traba-
jo sobre el sistema del cordel y cilindro. Al igual que en el ejemplo
9.8 (seccidn 9.4), hay friccion entre el cordel y €l cilindro pero, co-
mo el cordel no resbala, no se pierde energia mecanica y podemos
usar la conservacion de la energia mecénica.

Ejemplo i i -
110_1[7) Carrera de cuerpos rodantes

En una demostracion, un profesor pone a “competir” diversos cuer-
pos rigidos redondos soltindolos del reposo desde arriba de un pla-
no inclinado (Fig. 10.17). ;Qué forma debe tener un cuerpo para
llegar a la base primero?

IDENTIFICAR: Podemos usar conservacion de la cnergia porque los
cuerpos no resbalan sobre el plano inclinado. La friccion cinética
no efectiia trabajo si los cuerpos ruedan sin resbalar. También pode-
mos despreciar los efectos de la friccion de rodamiento, presentada
en la seccién 5.3, si los cuerpos y la superficie sobre la que ruedan
son perfectamente rigidos. (Mas adelante explicaremos por qué.)

10.17 ;Cudl cuerpo baja mas rapidamente y por quc?
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PLANTEAR: Las energias potenciales son U; = Mghy U, = 0. El
cordel no tiene energia cinética porque no tiene masa. La energia
cinética inicial del cilindro es K; = 0, y la final (X>) esta dada por la
ecuacion (10.11). El momento de inerciaes I = MR’y w=v_/R
porque el cilindro no resbala en el cordel.

EJECUTAR: Utilizando la ecuacion (10.11), la energia cinética en el

punto 2 es E
20
1 1 S\ Vem|”
—MR*

KZ - —Mvcmz S

L
2 2

3 Mo..2
= —MUcy
4

Entonces, la conservacion de la encrgia da

K1+U1=K2+U2

3
0+ Mgh = ZMucmz +0

4
Uem = -3_ gh

EVALUAR: Esta es menor que la rapidez V2gh que tendria un ob-
jeto que se deja caer, porque un tercio de la energia potencial libe-
rada aparece como energia cinética rotacional.

PLANTEAR: Cada cuerpo parte del reposo desde arriba de una pen-
diente de altura 4, asi que K; =0, U, = Mghy U, = 0. La energia ci-
nética en la base del plano esta dada por la ecuacion (10.11). Si los
cuerpos ruedan sin resbalar, w = v /R. Los momentos de inercia de
todos los cuerpos redondos de la tabla 9.2 (alrededor de cjes que
pasan por su centro de masa) pueden expresarse como Io, = cMR?,
donde ¢ es un nimero puro menor o igual que 1 que depende de la
forma del cuerpo. Nuestro objetivo es hallar el valor de ¢ que pro-
porciona al cuerpo la mas alta rapidez en la base del plano inclinado.

EJECUTAR: Por la conservacion dz iz enesgia.

K+ U =K +U

1 o TNy
0 + Mgh = S Mve + EC&IR“-RE)

1 5
= 5(1 + c)Mu;

asi que la rapidez en la base de la pendiente es

ycm:\/l+q
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EVALUAR: Este resultado es sorprendente; la rapidez no depende
de la masa M del cuerpo ni de su radio R. Todos los cilindros so6-
lidos uniformes tienen la misma rapidez abajo, aun si sus masas y
radios son diferentes, porque tienen la misma c. Todas las esferas
sélidas tienen la misma rapidez, etc. Cuanto menor sea ¢, mayor se-
ra la rapidez del cuerpo abajo (y en cualquier punto de la bajada).

Los cuerpos con ¢ pequefia siempre vencen a aquellos con ¢ gran-
de. porque menos de su energia cinética se dedica a rotacion y mas
a traslacion. Si leemos los valores de ¢ de la tabla 9.2, vemos que el
orden de llegada es: cualquier esfera solida, cualquier cilindro séli-
do, cualquier esfcra hueca de pared delgada y cualquier cilindro
hueco de pared delgada.

e R T —— —————

Traslacion y rotacién combinadas: dinamica

También podemos analizar el movimiento traslacional y rotacional combinado de
un cuerpo rigido desde la perspectiva de la dindmica. Mostramos en la seccion 8.5
que, para un cuerpo de masa total M, la aceleracion a.,, del centro de masa es igual
a la de una masa puntual M sobre la que actiian todas las fuerzas externas a las que
esta sujeto el cuerpo:

S =M (10.15)

El movimiento rotacional alrededor del centro de masa se describe mediante el
analogo rotacional de la segunda ley de Newton, ecuacion (10.6):

275 = Icmaz

donde /,,, es el momento de inercia respecto a un eje que pasa por el centro de ma-
say 27, incluye todos los momentos de torsién externos respecto a éste eje. No es
obvio que la ecuacion (10.16) sea aplicable al movimiento de un cuerpo rigido en
traslacién; después de todo, nuestra deduccion de 27, = e en la seccion 10.2 dio
por hecho que el eje de rotacion era estacionario. No obstante, 1a ecuacion (10.16)
es valida aun si el eje de rotacion se mueve, si se satisfacen estas condiciones:

(10.16)

10.18 El eje de una rueda de bicicleta pa-
sa por el centro de masa de la rueda y es
un eje de simetria. Por tanto, la rotacién de
la rueda esta descrita por la ecuacion
(10.16), siempre que la bicicleta no dé la
vuclta ni se¢ incline hacia un lado (lo cual
alteraria la orientacion del ¢je).

1. El gje que pasa por el centro de masa debe ser un eje de simetria.
2. El ¢je no debe cambiar de direccion.

Estas condiciones se satisfacen en muchos tipos de rotacion (Fig. 10.18). Cabe se-
fialar que en general éste eje de rotacion movil no esta en reposo en un marco de
referencia inercial.

Ahora podemos resolver problemas de dinamica en los que intervengan cuer-
pos rigidos con movimientos: traslacional y rotacional simultaneos, siempre que
el eje de rotaciéon cumpla las condiciones anteriores. La estrategia de resolucion
de problemas bosquejada en la seccion 10.2 es igualmente til aqui, y le recomen-
damos repasarla. Tenga presente que, si un cuerpo tiene movimiento traslacional
y rotacional al mismo tiempo, necesitamos dos ecuaciones de movimicnto inde-
pendientes para el mismo cuerpo. Una, la ecuacion (10.15), describe la traslacion
del centro de masa. La otra, ecuacion (10.16), describe la rotacion alrededor del
eje que pasa por el centro de masa.

Aceleracion de un yoyo burdo

Para el yoyo burdo del ejemplo 10.6, calcule la aceleracion hacia  dro. La figura 10.19 es un diagrama de cucrpo libre del yoyo, don-
abajo del cilindro y la tensién en el cordel. de se indican las direcciones de las coordenadas positivas. Con es-

tas coordenadas, la incognita es d,,.,.
SOLUCION —
AR: La ecuacion para la traslacion del centro de masa es
IDENTIFICAR y PLANTEAR: Usaremos las ecuaciones (10.15) y ’
(10.16). junio con la condici6én que el cordel no resbale en el cilin- EF,, =Mg+ (=T) = May,, (10.17)
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10.19 Diagrama de cucrpo libre de un yoyo burdo
(ver Fig. 10.16).

El momento de inercia para un eje que pasa por el centro de masa
esl, = %MRz. Sélo la fuerza de tensidn tiene un momento de tor-
s16n respecto a dicho eje, asi que la ecuacion para la rotacion alre-
dedor de él es
|
>, =TR= I, = SMR'a, (10.18)

El cordel se desenrolla sin resbalar, asi que v, = Rw por la ecua-
cion (10.14); 1a derivada de ¢sta relacion respecto a ¢ es
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(10.19)

ey = Ra:

Ahora usamos la ecuacién (10.19) para eliminar «. de la ecuacién
(10.18) y resolvemos las ecuaciones (10.17) v (10.18) simultanca-
mente para obtener Ty dc,,,. Los resultados son sencillisimos:

2 1
Qemy = ;;g 7= ;Mg

Usando la férmula de aceleracion constante vcm__vz =Uum Q,.Z +2a.,.h,
podemos demostrar que la rapidez del yoyo después de caer una dis-

tancia /i es v, = V3gh, como determinamos en el cjemplo 10.6.

EVALUAR: Desde el punto de vista dc la dindmica, la fuerza de ten-
sion es fundamental, pues hace que la aceleracion del yoyo sea menor
que g, y su momento de torsién hace girar al yoyo. No obstante,
cuando analizamos esta situacion en el ejemplo 10.6 usando méto-
dos de energia. ino tuvimos que considerar la tensién! Dado que no
se perdié ni gand energia mecanica, desde el punto de vista energe-
tico el cordel s6lo es importante porque ayuda a convertir parte de
la energia potencial gravitacional en energia cinética rotacional.

Ejemplo
10.9

Una bola de bolos solida rueda sin resbalar por la rampa de retorno
Jjunto a la mesa (Fig. 10.20a). La rampa forma un angulo £ con la
horizontal. ;Qué accleracion tienc la bola? Tratela como esfera s6-
lida uniforme, despreciando los agujeros.

IDENTIFICAR: Al igual que en el ejemplo 10.8, usaremos la ecua-
cion (10.15) para describir el movimiento traslacional, y la ecuacién
(10.16), para describir el movimiento rotacional. La incognita es la
aceleracion del centro de masa de la bola.

Aceleracion de una esfera rodante

PLANTEAR: La figura 10.20b es el diagrama de cuerpo libre, e in-
dica las direcciones de coordenadas positivas. De la tabla 9.2, el
momento de inercia de una esfera sélidaes 7, = %MRZ. Las ccua-
ciones de movimiento para traslacion y para rotacion alrededor del
eje que pasa por el centro de masa son, respectivamente,

EFI = Mgsen B + (—f) = Ma,, (10.20)

.
SNr.=fR=I,a= (?\{R:)a: (10.21)

1820 (2) Una bola de bolos baja rodando una rampa. (b) Diagrama de cuerpo libre de la bola.
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Sélo la fuerza de friccidn ftiene un momento de torsion respecto al
eje que pasa por ¢l centro de masa. Si la bola rucda sin resbalar, te-
nemos la misma relacidn cinematica ¢.,,,.. = Ree. que en el ejemplo
10.8. Usamos esto para elminar «. de la ecuacion (10.21):

2
fR = —MRq

5 Cm-x
Esta y la ecuacién (10.20) son dos ecuaciones para dos incognitas,
A, ¥ . Despejamos f de la ecuacion (10.20), sustituimos en la
ecuacién anterior para eliminar f; y despejamos @, para obtener

5]
aCl“—.l‘ = 7g sen B

La accleracion es 3 de lo que seria si la bola pudiera deslizarse sin
friccion por la rampa, como el tobogéan del cjemplo 5.9 (seccion
5.2). Sustituimos ésto en la ecuacion (10.20) y despejamos f

2
f= ;Mg sen 3
EVALUAR: Dado que la bola no resbala en el punto de contacto ins-

tantAneo con la rampa, f'es una fuerza de friccion estatica, evita el
deslizamiento y da a la bola su aceleracién angular. Podemos dedu-

cir una ecuacion para el coeficiente de friccion p, minimo necesa-
rio para evitar el deslizamiento. La fuerza normal es n = Mg cos .
La fuerza maxima de friccion cstatica es pg2, asi que u, debe ser de
por lo menos

/ %Mg sen 3
po==="———="tnpg

n Mgcos 8 i
Si el plano no estd muy inclinado, 8 es pequefia, y no se requiere un
1, grande para cvitar el deslizamiento. Al aumentar el dngulo, au-
menta el valor requerido de i, como indicaria la intuicion. Si la bo-
la comienza a resbalar, las ecuacionces (10.20) y (10.21) siguen
siendo vélidas, pero ya no se cumple que Vg, = R, ¥ don = Ra;
so6lo tenemos dos ecuaciones para tres incognitas (@q, ., & y.f). La
resolucion del problema de rodamiento con deslizamienio requiere
considerar la friccion cinética (ver problema de desafio 10.101).

Si la bola desciende una distancia vertical / al bajar por la ram-
pa, su desplazamiento sobre la rampa cs 4/sen S. El lector deberd
podcr demostrar que la rapidez de la bola en la base de la rampa se-
ria vy, = V¥ gh, que es el resultado que obtuvimos en el ejemplo
10.7conc = 3.

Si la bola rodara de subida, la fuerza de friccién también cstaria di-
rigida pendiente arriba, como en la figura 10.20b. ;Entiende por qué?

=

e — = = i S

Friccion de rodamiento

10.21 (a) Fuerzas sobre una esfera perfec-
tamente rigida que baja rodando una pen-
diente perfectamente rigida. (b) Si la esfera
o la pendiente es deformable, las fuerzas
de contacto actian en diferentes posicio-
nes. La fuerza normal produce un momen-
to de torsi6n antihorario que se opone a la
rotaci6n horana. La deformacion se mues-
ira muy exagerada.

En el ejemplo 10.7 dijimos que podemos despreciar la friccion de rodamiento si
tanto el cuerpo como la superficie sobre la que rueda son perfectamente rigidos.
En la figura 10.21a una esfera perfectamente rigida baja rodando una pendente
perfectamente rigida. La linea de accion de la fuerza normal pasa por el centro de
la esfera, asi que el momento de torsidn es cero; no hay deslizamiento en el punto
de contacto, asi que la friccion no efectiia trabajo. La figura 10.21b muestra una
situacion mas realista en la que la superficie se “amontona” delante de la esfera y
ésta rueda en una zanja somera o poco profunda. Debido a cstas deformaciones,
las fuerzas de contacto sobre la esfera ya no actian en un solo punto, sino ¢n una
area, concentrandose en el frente de la esfera como se muestra. En consecuencia,
la fuerza normal ejerce un momento de torsion que se opone a la rotacidn. Ade-

Superficie deformable;

> la fuerza normal produce
fuerza normal no produce un momento de torsién

momento de torsién que se opone a la rotacién

(@ (b)

Superficie rigida: la



10.4 | Trabajo y potencia en movimiento rotacional

maés, hay cierto deslizamiento de la esfera en la superficie debido a la deforma-
c16n, causando pérdida de energia mecanica. La combinacion de estos efectos es
el fendmeno de friccion de rodamiento, que también ocurre si el cuerpo que rue-
da es deformable, como un neumatico. Es comun que ¢l cuerpo que rueda vy la su-
perficie tengan la suficiente rigidez como para hacer caso omiso de la friccion de
rodamiento, y esto es lo que hemos hecho en los ejemplos de la seccion.

En el ejemplo 10.9, ;qué valor tendrian la aceleracion y la fuerza de friccion esta-
tica si la bola fuera una esfera hueca?

10.4 | Trabajo y potencia en movimiento rotacional

Cuando pedaleamos una bicicleta, aplicamos fuerzas a un cuerpo en rotacion y
efectuamos trabajo sobre él. Algo similar ocurre en otras situaciones de la vida
real, como el eje de un motor que impulsa una herramienta de potencia o a un ve-
hiculo. Podemos expresar el trabajo en términos del momento de torsién y despla-
zamiento angular. .

Suponga que una fuerza tangencial F,, actia en el borde de un disco pivoteado;
por ejemplo, una nifia que corre empujando un tiovivo (Fig. 10.22a). La rueda gira
un dngulo infinitesimal df alrededor de un eje fijo durante un tiempo infinitesimal
dr (Fig. 10.22b). El trabajo dW efectuado por F o Mientras un punto del borde se
mueve una distancia ds es dW = F,,, ds. Si df se mide en radianes, ds=R d6 y

dW = F,,Rd6

F R es el momento de torsién , debido a la fuerza F, s @S1 que
dWw = 7_do (10.22)

El trabajo total W efectuado por el momento de torsion durante un desplazamien-
to angular de 6, a 6, es

0,
W= f T.d6 ( trabajo efectuado por un momento de torsién) (10.23)
0

Si el momento de torsién es constante y el cambio de angulo es finito A =6, — 6,,

W=r1,6,—6,) =T1,A8 (10.24)

(trabajo efectuado por un momento de torsion constante)

El trabajo efectuado por un momento de torsion constante es el producto del mo-
mento de torsion y el desplazamiento angular. Si el momento de torsion se expre-
sa en N-m y el desplazamiento en radianes, el trabajo esta en joules. La ecuacion
(10.24) es el analogo rotacional de la ecuacion (6.1), W= Fs, y la ecuacion (10.23)
es el andlogo de la ecuacion (6.7), W = [ F, dx, para el trabajo realizado por una
fuerza en un desplazamiento rectilineo.

Si la fuerza de la figura 10.22 tuviera una componente axial o radial, dicha
componente no efectuaria trabajo porque el desplazamiento del punto de aplica-
<i0m solo tiene componente tangencial. Una componente de fuerza radial o axial
tzmpoco contribuiria al momento de torsion alrededor del eje de rotacion, asi que
ias ecuaciones (10.23) y (10.24) son correctas para cualquier fuerza, independien-
=menie de sus componentes.
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La nifia aplica una
fuerza tangencial

Vista superior
del tiovivo

(b)

10.22 Una fuerza tangencial aplcads 2 &
cuerpo en rotacion efciis abagn
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Si un momento de torsion efectia trabajo sobre un cuerpo rigido que gira, la
energia cinética cambia en una cantidad igual a ese trabajo. Podemos demostrar
esto usando exactamente el mismo procedimiento que en las ecuaciones (6.11) a
(6.13) para una particula. Primero representamos el momento de torsion neto so-
bre el cuerpo con 7., de modo que, por la ecuacion (10.6), 7. = Ja,. Al usar esta
ecuacion, estamos suponiendo que el cuerpo es rigido y, por tanto, tisne momen-
to de inercia constante. Transformamos el integrando de la ecuacion (10.23) en
una integral sobre w, asi:
do, de

=de =1

.df = )dl = —
1.d0 = (lo,) d6 T -

dw. = lw_do,

Dado que 7. es el momento de torsion neto, la integral de la ecuacion (10.23) es el
trabajo fotal efectuado sobre el cuerpo rigido en rotacion. Asi, la ecuacién se con-
vierte en

w 1 1
W, = f o, do, = o} = lof (10.25)

El cambio de energia cinética rotacional de un cuerpo rigido cs igual al trabajo
efectuado por fuerzas ejercidas desde afuera del cuerpo. Esta ecuacion es analogo
a la ecuacion (6.13), el teorema trabajo-energia para una particula.

;Qué hay con la potencia asociada al trabajo efectuado por un momento de torsion
sobre un cuerpo en rotacion? Si dividimos ambos miembros de la ecuacion (10.22) en-
tre el intervalo dr durante el que se da el desplazamiento angular, obtenemos

aw __do
dr i

Pero dW/dt es la rapidez con que se efectlia trabajo, o potencia P, y db/dt es velo-
cidad angular w,, asi que

P=ro, (10.26)

Si un momento de torsion 7, (respecto al eje de rotacion) actiia sobre un cuerpo
que gira con velocidad angular w,, su potencia (rapidez con que efectia trabajo)
es el producto de 7, y w.. Esto es el andlogo de la relacion P = F-o que desarro-
llamos en la seccion 6.4 para el movimiento de particulas.

s s —— —_— phupe N
I10,1|Do Potencia de motores y momento de torsion

La potencia desarrollada por el motor de un automovil se anuncia como
200 hp a 6000 rpm. Calcule el momento de torsién correspondiente.

IDENTIFICAR y PLANTEAR: Nos dan la potencia desarrollada Py
'z velocidad angular w,, asi que podemos obtener el momento de
zorsion con la ccuacion (10.26).

EJECUTAR: Primero debemos convertir la potencia a watts y la ve-
ocvizd angular a rad/s:
6 W

74 .
P = 200 hp = 200 hp(T) =149 X 10°W
P

6000 rev )(27r rad ) (1 min)

. = 6000 rev/min =
w, rev/min ( 60 s

= 628 rad/s

1 min 1 rev

Por la ecuacion (10.26),

1.49 X 10° N~
ot apde SO NG s
T wy 628 rad/s

EVALUAR: Podriamos aplicar este momento de torsién usando una
llave de tuercas de 0.25 m de largo y aplicando una fuerza de 948 N
al extremo de su mango. ;Podria el lector hacerlo?
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Un motor eléctrico ejerce un momento de torsion constante de 10
N-m sobre una piedra de amolar montada en un eje. El momento de
inercia de la piedra es 7 = 2.0 kg-m? y cl sistema parte del reposo.
Calcule el trabajo efectuado por el motor cn 8.0 segundos y la energia
cinética al final de este lapso. {Qué potencia media desarrollo el motor?

IDENTIFICAR y PLANTEAR: Usamos la version rotacional de la
segunda ley de Newton, 27, = Ie., para obtener la aceleracién an-
gular de la piedra. Después usarcmos las ccuaciones de cinematica
de la seccion 9.2 para calcular el angulo que la piedra giraen 8.0 s
(lo cual nos da, a través de la ecuacion (10.24), el trabajo efectua-
do) v la velocidad angular en ese momento (lo cual nos da la cner-
gia cinética). Obtenemos la potencia media dividiendo el trabajo
realizado entre el intervalo de tiempo.

EJECUTAR: Tenemos %7, = 10 N-m (el inico momento de torsion
que actiia se debe al motor) e /= 2.0 kg.m”. asi que, por X7, = [a..
la aceleracion angular es de 5.0 rad/s®. Por la ecuacién (9.11). el
angulo total que el sistema gira en 8.0 s es

1

2 1 ¢ 4 2
A6 = Sat’ = ;(5.0 rad/s’) (8.0s)* = 160 rad
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= E—

Calculo de potencia a partir del momento de torsion

y el trabajo total efectuado por el momento de torsion es
W=r,A8 = (10N-m)(160rad) = 1600 J

Por las ecuaciones (9.7) y (9.17), la velocidad angular y la energia
cinética en = 8.0 s son

w, = a,t = (5.0rad/s?)(8.0s) = 40 rad/s

| .
K= zlw; = 5(2.0 kg-m?) (40 rad/s)? = 1600]
La energia cinética inicial era cero, asi que el trabajo efectuado es
igual al incremento en la energia cinética [Véase ecuacion (10.35)].
La potencia media es

16007

med

8.0s

= 2001J/s =200 W

EVALUAR: Podemos comprobar el valor que obtuvimos para la po-
tencia media considerando la potencia instantanea, P = 7.w,. Ob-
serve que, dado que w, aumenta continuamente, P también aumenta
continuamente; su valor es cero en =0 y aumenta a (10 N-m)(40
rad's) = 400 W en 1 = 8.0 s. La velocidad angular y la potencia au-
menizn uniformemente con el tiempo, asi que la potencia media es
la mitad de este valor maximo, o sea 200 W.

B

Se aplican momentos de torsion iguales a dos cilindros distintos, uno de los cua-
les tiene un momento de inercia dos veces mayor que el del otro. Los dos cilindros
estan inicialmente en reposo. Después de una rotacion completa. ;cudl cilindro
tiene mayor energia cinética?

10.5 | Cantidad de movimiento angular

Todas las cantidades rotacionales que hemos visto en los capitulos 9 y 10 son an3-
logos de una cantidad en el movimiento traslacional de una particula. El anzlogo
de la cantidad de movimiento de una particula es la cantidad de movimiento an-
gular, una cantidad vectorial denotada con L. Su relacion con la cantidad de mo-
vimiento p (que a veces llamaremos cantidad de movimiento lineal por claridad)
es exactamente la misma que entre momento de torsién y fuerza, 7 = r X F. Pa-
ra una particula de masa constante m, velocidad v, cantidad de movimiento
P = mb, y vector de posicion 7 relativo al origen O de un marco inercial, defini-
mos la cantidad de movimiento angular L como

L=FXp=FXmb (10.27)
(cantidad de movimiento angular de una particula)

Elvalorde L depende del origen escogido, ya que en €l interviene el vector de po-
sicion de la particula relativo al origen. Las unidades de la cantidad de movimien-
1o angular son kg-m?/s.

En la figura 10.23, para una particula que se mueve en el plano xy; se muestran:
su vector de posicién 7 y su cantidad de movimiento p = mw. El vector de canti-

I=rsm¢_t

= caatidad de movimiento angular
de iz pamicula: perpendicular al

izmo del movimiento (si el origen O
= £sid =7 es< plano), la magnitud

de L = mwl

10.23 Calculo de la cantidad de movi-
miento angular L = 7 X mb = F X p de
una particula de masa m que se mueve en
el plano xy.



380

et

Tajada de
un cuerpo
rigido que
gira en torno
aleje z .

I:,- = cantidad de movimiento

/ angular dc la i-ésima

z particula del cuerpo
rigido; perpendicular
al plano del movimiento
(si el origen O estd en cse
plano}, la magnitud de
L= mug; = mrie

10.24 Calculo de la cantidad de movi-
miento angular de una particula de masa
en un cuerpo rigido que gira. (Compare
con la Fig. 10.23.) Cada particula se mue-
ve en un circulo alrededor del eje de rota-
¢i6n con la misma rapidez angular w.

capiTurLo 10 | Dindmica del movimiento rotacional

dad de movimicnto angular L es perpendicular al plano xy. La regla de la mano
derecha para productos vectoriales nos dice que su direccion es en el eje +z, y su
magnitud es

L = mursen ¢ = mvul (10.28)

donde / es la distancia perpendicular desde la linea de 0 a O. Esta distancia hace
las veces de “brazo de_.palanca” para el vector de cantidad de movimiento.

Si una fuerza neta F actia sobre una particula, su velocidad y cantidad de mo-
vimiento cambian, y también puede cambiar su canlidad de movimiento angular.
Podemos demostrar que la rapidez de cambio de la cantidad de movimiento angu-
lar es igual al momento de torsion de la fuerza neta. Derivamos la ecuacion
(10.27) respecto al tiempo usando la regla de la derivada de un producto:

dL dr _—
— =|— X mv
dt dt

El primer término s cero porque contiene ¢l producto vectorial de U= dr/dr con-

sigo mismo. En el segundo término sustituimos ma por la fuerza neta F, obteniendo

dv

+ |F % m—l?) = (6 x mv) + (F X ma)
G

dL -
dt
(para una particula sobre la que actia una fuerza F)

FxF=7 (10.29)

La rapidez de cambio de la cantidad de movimiento angular de una particula
es igual al momento de torsién de la fuerza neta que actiia sobre ella. Compa-
re este resultado con la ecuacion (8.3), que dice que ]a rapidez de cambio dp/dt de
la cantidad de movimiento lineal de una particula es igual a la fuerza neta que ac-
tha sobre ella.

Podemos usar la ecuacion (10.28) para calcular la cantidad de movimiento
angular total de un cuerpo rigido que gira sobre el eje z con velocidad angular
. Consideremos primero una rebanada del cuerpo que esta en el plano xy (Fig.
10.24). Cada particula de la rebanada se mueve en un circulo centrado en el origen,
y en cada instante su velocidad ¥, es perpendicular a su vector de posicién F;, como
se muestra. Asi, en la ecuacion (10.28), ¢ = 90° para toda particula. Una particu-
la de masa m;, que csta a una distancia r; de O tiene una rapidez v; igual a rw. Por la
ecuacion (10.28), la magnitud ; de su cantidad de movimiento angular es

L = m(r0)r, = mrio (10.30)

La direccion de la cantidad de movimiento angular de cada particula, dada por la
regla de la mano derecha para el producto vectorial, es sobre el gje +z.

La cantidad de movimiento angular total de la rebanada que esté en el plano xy
es la suma 31, de las cantidades de movimiento angulares L, de las particulas. Ha-
ciendo la sumatoria de la ecuacién (10.30), tenemos

L= DL = (Dmat)o = lo

donde I ¢s el momento de inercia de la rebanada alrededor del gje z.

Podemos efectuar este mismo calculo para las demas rebanadas del cuerpo, to-
das paralelas al plano xy. Para los puntos que no estan en ese plano, surge una
complicacion porque los vectores 7 tienen componente en la direccion z ademas
de las direcciones x y y; esto da a la cantidad de movimiento angular de cada par-
ticula una componente perpendicular al eje z. Pero si el eje z es un eje de simetria,
las componentes perpendiculares de particulas en lados opuestos de este ¢je su-
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man cero (Fig. 10.25). Asi, cuando un cuerpo gira alrededor de un eje de simetria,
su vector de cantidad de movimiento angular L queda sobre el eje de simetria y su
magnitud es L = fw.

El vector de velocidad angular @ también esta sobre ¢l gje de rotacion, como vimos
al final de la seccién 9.1. Asi, para un cuerpo rigido que gira alrededor de un eje de si-
metria, Ly @ tienen la misma direccion (Fig. 10.26), y tenemos la relacion vectorial

L=1Io
(para un cuerpo rigido que gira alrededor de un eje de simetria)

(10.31)

Por la ecuacion (10.29), la rapidez de cambio de la cantidad de movimiento an-
gular de una particula es igual al momento de torsién de la fuerza neta que actia
sobre ella. Para cualquier sistema de particulas (incluidos cuerpos rigidos y no ri-
gidos), la rapidez de cambio de la cantidad de movimiento angular fotal es igual a la
suma de los momentos de torsion de todas las fuerzas que actian sobre todas las
particulas. Los momentos de torsién de las fuerzas infernas suman cero si las fuer-
as actian sobre la linea que va de una particula a otra, como en la figura 10.8. asi
que la suma de momentos de torsion solo incluye los momentos de las fuerzas ex-
ternas. (Hubo una cancelacion similar cuando hablamos del movimiento del cen-
tro de masa en la seccién 8.5.) Si la cantidad de movimiento angular total del
sistema es L y la suma de momentos €xternos €s .7, entonces
( para cualquier sistema de particulas)  (10.32)

Por wiltimo, si el sistema de particulas es un cuerpo rigido que gira alrededor de
un eje de simetria (el eje z), L. = Iw. e I es constante. Si ¢l eje tiene direccion fija
en el espacio, los vectores Ly @ s6lo cambian en magnitud. En tal caso, dL./dt =
[ dw_ldt = Io, 0 sea,

272 = la,

que es otra vez nuestra relacién bésica para la dindmica de la rotacion de un cuerpo
rigido. Si el cuerpo #o €s rigido, I puede cambiar; en tal caso, L cambiara aun si @
es constante. La ecuacion (10.32) seguird siendo valida, pero la ecuacién (10.6) no.

Si el eje de rotacion no es un eje de simetria, 1a cantidad de movimiento angu-
lar en general no es paralela al cje (Fig. 10.27). Al girar el cuerpo, el vector de can-
tidad de movimiento an gular L describe un cono alrededor del eje de rotacion. Dado
gue L cambia, debe estar actuando un momento de torsién externo neto sobre el
~s=rpo aun si 1a magnitud de la velocidad angular w es constante. Si el cuerpo es
w== ueda desbalanceada de un coche, este momento de torsion provendra de la

10.25 Cantidad de movimiento angular de
dos particulas de un cuerpo rigido que gi-
ra. Las dos particulas tienen la misma ma-
sa y estan situadas simétricamente a cada
Jado del eje de rotacién. Aunque los vecto-
res de cantidad de movimiento angular L
y L, de las particulas individuales no estan
a lo largo del eje de rotacion, su suma vec-
torial f,, + Z2 si lo esta.

 Enrosque los

I

|

‘ dedos de la I

/l(i\’\\ mano derecha ‘ :

5 enla direcci(’m‘ 1
t—a | de 1a rotacion @;:1

apunta en la direcci6n

de ¢: siel eje de

3 | rotacion es un eje
de simetria, ésta es

| también la direccién |

de L

=TTy R I
El pulgar derecho | |I
I
|

10.26 En la rotacion alrededor de un cje
de simetria, @ y L son paralelas y estan
sobre el eje. Las direcciones estan dadas
por la regla de la mano derecha (compare
con la figura 9.5).

LZ

1El ¢je de rotacién no es un
eje de simetria del cuerpo; ]

I no estd en el eje de rotacién

&~

10.27 Si el eje de rotacién de un cuerpo
rigido no es un eje de simetria, L no esta
en general sobre cl eje de rotacién. Aun si
& es constante, la direccion de L cambia,
y s¢ requiere un momento de torsion neto
para mantener la rotacion.
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friccion en los cojinetes, que hace que éstos se desgasten. “Balancear” una rueda
implica distribuir la masa de modo que el eje de rotacion sea un eje de simetria;
asi, L apuntara a lo largo del eje de rotacion y no se requerira un momento de tor-
si6n neto para que la rueda siga girando.

En rotacién de eje fijo, podemos usar el término “cantidad de movimiento an-
gular del cuerpo” para referirnos solo a la componente de L sobre el eje de rota-
cion del cuerpo (el eje z en la Fig. 10.27), con un signo para indicar el sentido de
rotacién igual que con la velocidad angular.

Ejemplo 8 J. . 0o
J10_1p2 Cantidad de movimiento angular y momento de torsion

Una hélice de turbina del motor de un jez (Fig. 10.28) tiene un mo-
mento de inercia de 2.5 kg-m? alrededor de su cje de rotacion. Al
arrancar la turbina, su velocidad angular en funcion del tiempo es

= (40 rad/s*)r?

a) Calcule la cantidad de movimiento angular de la hélice en fun-
cién de ¢ y su valor en 1 = 3.0 s. b) Calcule el momento de torsién
neto que acttia sobre la hélice en funcion de 7, y su valoren7=3.0 s.

INENTIFICAR y PLANTEAR: Al igual que un ventilador, la hélice
de una turbina gira alrededor de un eje de simetria, asi que podemos
usar la ecuacion (10.31) para obtener L. a partir de w,, y la ecuacion
(10.32) para relacionar el momento de torsién neto con la derivada
de L, respecto al tiempo.

EJECUTAR:
a) La tinica componente de cantidad de movimicnto angular esta
sobre ¢l eje de rotacion (z):

L. = Io, = (2.5kg-m?) (40rad/s’) 2 = (100 kg-m?/s*)#

(Omitimos “rad” de la respuesta porque cl radi4n es una cantidad
adimensional.) En t=3.0s, L, = 900 kg-m’/s.

b) La direccién de la cantidad de movimiento angular no cambia,
asi que el momento de torsién también esté sobre el eje de rotacion.
Por la ecuacidn (10.32), su componente en ese eje es

dL. :
7. = 7{ = (100 kg-m¥/s>) (2t) = (200 kg-m?/s*)t

En el instante 1 =3.0 s,

= (200kg-m¥s*)(3.0s) = 600 kg-m*s’ = 600 N-m

EVALUAR: Para comprobar nuestro resultado, vemos que la ace-
leracién angular de la hélice es a. = dw,/dt = (40 rad/s?)(2f) = (80
rad/s?)z. Por el equivalente rotacional de la segunda ley de Newton,
el momento de torsion que actua sobre la hélice es 7. = Ja, = (2.5
kg -m?)(80 rad/s?)t = (200 kg-m?/s’)t, lo que coincide con nuestro
calculo anterior.

10.28 Se usauna hélice de turbina para meter aire en ¢l motor de
turbo-reaccion.

e e ——— = — ==

Una pelotita esté pegada al extremo de un cordel. Usted sostiene el cordel por el
otro extremo y da vueltas a la pelota sobre su mano. Si la rapidez de la pelotita es
constante, ;es constante su cantidad de movimiento lineal p? ;Es constante su
cantidad de movimiento angular L? ;A qué se debe la diferencia?

10.6 | Conservacion de la cantidad de movimiento angular

Acabamos de ver que la cantidad de movimiento angular puede servir para expre-
sar de otro modo el principio dindmico bésico del movimiento rotacional. Tam-
bién es la base del principio de conservacién de la cantidad de movimiento
angular. Al igual que la conservacion de la energia y de la cantidad de movimien-
to lineal, este principio es una ley de conservacién universal, vélida en todas las
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escalas. desde los sistemas atdmicos y nucleares hasta los movimientos de las ga-
laxias. Este principio es consccuencia directa de la ecuacion (10.32):
M7 = dL/du. SiyT = dL/dt =0y L ¢s constante. Si el momento de torsién
externo neto que actia sobre un sistema es cero, la cantidad de movimiento
aiigular total dei sistoma es constante (Se conserva).

Un trapecista, un clavadista y un patinador haciendo piruetas en la punta de un
patin aprovechan este principio. Suponga que una trapecista acaba de separarse de
un columpio con los brazos y piernas extendidos v girando en sentido antihorario
alrededor de su centro de masa. Al encoger los brazos v las piernas, su momento
de inercia /[, respecto a su centro de masa cambia de un valor grande /, a uno mu-
cho menor /,. La Uinica fuerza externa que actia sobre ella es su peso, que no tie-
ne momento de torsion respecto a un eje que pasa por su centro de masa. Asi, su
cantidad de movimiento angular L. = [, ,w. permanece constante. v su velocidad
angular w. aumenta al disminuir /.. Esto es,

r — T o onmmbn An bnanilien AvtnemA mata aa—n ) 1mNn2
ATV 1Hur L TIULICIItG Gl wod et —aans ves ade T (IO \11

Cuando una patinadora o bailarina gira con los brazos estirados v luego los enco-
ge, su velocidad angular aumenta al dismiauir su momento de inercia. En ambos
casos se conserva la cantidad de movimiento angular en un sistema en el que el
momento de torsion externo neto es cero.

Si un sisterna tiene varias partes, las fuerzas internas que esas partes ejercen
entre si causan cambios en sus cantidades de movimiento angulares, pero la can-
tidad de movimiento angular zoral no cambia. Por ejemplo, considere dos cuerpos
Ay B que interactiian entre si pero con nadie més, como los astronautas de la sec-
cion 8.2 (Fig. 8.7). Suponga que el cuerpo A ejerce una fuerza F, ;. 5 sobre el
cuerpo B; el momento de torsion correspondiente (respecto al punto que escoja-
MOS) €S T 4 copre 5- S€UN la ecuacién (10.32), este momento es igual a la rapidez de
cambio de la cantidad de movimiento angular de 5:

= dLy

T 4 sobre B = d t

Al mismo tiempo, B ejerce una fuerza F B sobre + SOUTC i CUEIPO A, con 1n molen-
to de toreidn correspondiente Ty e 4- v

(Ii',,

;B‘ bre 4 —
s0bre . (][

Por la tercera ley de Newton, Fig (. s = —F | qonre - Ademas, si las fuerzas actiian en
la misma linea, como en la figura 10.8, sus brazos de palanca respecto al eje escogido
son iguales. Asn los momentos de torsion de cstas fuerzas son iguales y opuestos, y

Theabre 4 = — 74 sobre p- POT 1anto, si sumamos las ecuaciones anteriores tenemos
dL, dL
A B
—2+—==0
dr dt

0, dado que iA + ZB es la cantidad de movimiento angular fotal L del sistema,

dL z

o = 0 (momento de torsion externo neto cero) (10.34)
2 «

Es decir. la cantidad de movimiento angular total del sistema es constante. Los

momenios de torsion de las fuerzas internas pueden transferir cantidad de movi-

mienio angular de un cuerpo al otro, pero no pueden cambiar la cantidad de mo-

vimieaio angular zoral del sistema (Fig. 10.29).

383
Ay
Physics

7.14 Laholale nega al hat

10.29 Un gato que cac tuerce diversas
partes de su cuerpo cn direcciones distintas
para caer parado. En todo momento duran-
te este proceso, la cantidad de movimiento
angular total del gato sigue siendo cero.

.
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Un &gil profesor de fisica se para en el centro de una mesita girato-
ria con Ins hrazos exrendidos horizontalmente y una mancuerna de
5.0 kg en cada mano (Fig. 10.30). Se le pone a girar sobre un ejc
vertical, dando una revolucidén cada 2.0 s. Calcule la nueva veloci-
dad angular del profesor si él lleva las mancuernas a su abdomen. ¢
indique el efecto de esto sobre su energia cinética. Su momento de
inercia (sin las mancuernas) cs de 3.0 kg - m? con los brazos estira-
dos, y bajaa 2.2 kg - m" si pone las manos en ¢l abdomen. Las man-
cuernas estan a 1.0 m del eje al principio y a 0.20 m al final; tratelas
como particulas.

[ SOLUCION.

'DFNT'F'(AR v PLANTFAR < ;L'cnrc-mamng la fricciAn an s wan

e ¥ TS A fArc1AT r\vfn»n,\ e - Y PR T
e gAY T GOWAIL GulelCt, u\,n i

vertical (z), asi que la cantidad de movimiento angular respecto a

10.30 Diversion con la conservacién de la cantidad de movimien-
to angular... si uno no se marea.

Todo mundo puede hailar ballet

ese ¢je serd constante v podremos usar la ccuacion (10.33) para caleu-

nvwv] Ve A

..A-\,l\..nd diigdldia

lar {a incs

EJECUTAR: El momento de inercia del sistema es / = /R -
Cada mancuerna de masa m aporta me=a [, .. donde r ¢s 1a distan-
cia perpendicular del ¢je de rotacidn a la mancuerna. Inicialmente.
tenemos
I, =30kg-m’ +2(5.0kg)(1.0m)* = 13 kg -’
I rev

20s

w. = = 0.50 rev/s

El momento de inercia final cs

as —= ARSI LD KE LU MY — LRy Cin

Por la ecuacion (10.33). la velocidad angular final es
I, 13 kg-m”

W, = —w. = ————=(0.50 rev/s) =
LT 26keemt

2.3 rev/s

Es decir, la velocidad angular aumenta en un factor de 3 en tantwo
que la cantidad de movimicnto angular se mantiene constante. Ob-
Serve que no tuvimos que cambiar “revoluciones™ a “radianes™ en
este calculo. ;Por qué no?

EVALUAR: Para calcular la energia cinética. debemos expresar w, v
w, en rad/s. (;Por qué?) Tenemos w, = (0.5 rev/s)(2+ radirev) =
3.14rad/sy wa. = (2.5 rev/s)(27 rad’rev) = 15.7 rad/s. La energia ci-
nética inicial es

1

Ky = ;I,w,f =—(13kg-m’)(3.14rad/s)> = 64 ]

N |

v 12 znergia cindtica final o
m*)(15.7 rad/s)? = 320 J

.De dénde salio la energia adicional?

Un “choque” rotacional |

La fizura 10.31 muestra dos discos. Uno es un volante de motor; el
&0, una placa de embrague sujeta a un eje de transmisién. Sus mo-
menios de inercia son [ e I,. Inicialmente, los discos estan girando
com velocidades angulares constantes w,, Y wg, respectivamente.
Lwego. juntamos los discos con fuerzas que actian sobre cl eje, a
“im &= no aplicar un momento de torsién a ningun disco. Los discos
s¢ Seaan v finalmente alcanzan una velocidad angular final comin
e Dedurca unza expresion para w.

IDENTIFICAR: Ll Ginico momento de torsion que actiia sobre cual-
quiera de los discos es cl aplicado por el otro disco; no hay momen-
tos externos. Asi, la cantidad de movimiento angular total del
sistema es la misma antes y después de juntarse los discos. Al final,
giran como un solo cuerpo con momento de inercia total 7=/, + I,
y velocidad angular w, que es nuestra incognita.
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EJECUTAR: La figura 10.31 muestra que todas las velocidades an-
gulares tienen la misma direccion. asi que podemos ver a w,, wp y
w comeo componentes de velocidad angular a lo Turgo del eje de ro-
SovaL tacion. La conservacion de la cantidad de movimiento angular da

i .
lyoy + gy = iy g

Lo, =1 rWh

I,

G0 =

EVALUAR: Este “choque™ entre dos discos es analogo a un choque
totalmente inelastico {seccion 8.3). Cuando se juntan dos objetos
en movimicnto traslacional a lo largo del mismo eje y quedan pega-
dos. la cantidad de movimiento lineal del sistema se conserva. En la
situacion de la figura 10.31, dos objetos en movimiento rofacional
a lo largo del mismo eje se juntan v adhieren. v la canudad de mo-

) ung;z/iur seconserva, En un chonne intaimenta inaiachien ia

Rl i a s VN M gy B
[ GO W | \._]\,Illl_».-_. PR T

[T sagrom cinfticaidalsistematdis
mos qué sucede con la energia cinética del “choque™ de dos discos
10.31 Si el momento de torsion externo neto s cero, la cantidad que giran.
de movimiento angular se¢ conserva. Las fuerzas mostradas estan
sobre ¢l eje de rotacidn y, por tanto, no ¢jercen un momento de

iorsion alrededor del eje sobre ningtm punto.

IERTS———————— AU Sl S 4 o e S T AT S L D 5T BT

Un “choque” rotacional I

En el ejemplo 10.14, suponga que el volante A tiene masade 2.0 kg, La energia cinética inicial es
radio de 0.20 m y rapidez angular inicial de 50 rad/s (unas 500

rpm), y que la placa de embrague B tiene masa de 4.0 kg, radio de K, = %1 i+ ;IBm[f
0.10 m y rapidez angular inicial de 200 rad/s. Calcule la rapidez an- 5 -
gular final comin w después de juntarse los discos. ;(Qué sucede i | (0.040 kg - m°) (50 rad/s )
con la energia cinética durante este proceso? - . )
1

5 {0020 ke -m) (200 rdrs )”
{0020 kg ) (200 radir

| SOLUCION |

45017

IDENTIFICAR y PLANTEAR: Usaremos el resultado del ejemplo R _'
10.14 y la expresion K = 3/w? para la energia cinética rotacional. La energia cinética final es
1 )
EJECUTAR: Los momentos de inercia de los discos son Yol i (I + Iy)w®
P R : 1 . . ;
I, = Em,,r,{ = 5(2.0 kg) (0.20 m)* = 0.040 kg-m* = 5—(().040 kg-m~ + 0.020 kg- m°) (100 rad/s)” = 3001
1

e ] l e .
Iy = Smgry ;(4.0 kg)(0.10 m)* = 0.020 kg-m"

EVALUAR: Se perdié un tercio de la encrgia cinética nicial duran.
te este “choque angular”, el analogo rotacional de un choque total

Del ejemplo 10.14 tenemos mente inelastico. No debemos esperar que s¢ conserve la energie

Lw, + Iyoy cinética, aunque la fuerza externa y momento de torsion resultante:

AR scan cero, porque actian fuerzas internas no conservadoras (d«
A B

friccion) al frotarse los discos y acercarse gradualmente a una velo

(0.040kg-m?) (50 radss) + (0.020 kg-m*) (200 rad/s)  cidad angular comun.

0.040 kg-m? + 0.020 kg-m’

100 rad/s
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gemplo [N s ffles. o
l10.1p5 Cantidad de movimiento angular en una accién policiaca

Una puerta de 1.00 m de anchura y masa de |5 kg tiene bisagras en un
costado de modo que puede girar sin friccion sobre un eje vertical.
La puerta no esta asegurada. Un policia dispara una bala de 10 g
con rapidez de 400 m/s al centro exacto de la puerta, en direccion
perpendicular al plano de la puerta (Fig. 10.32). Calcule la rapidez
angular de la puerta justo después de que la bala se incrusta. ;Se
conserva la energia cinética?

IDENTIFICAR: Consideramos la puerta y la bala como un sistema.
No hay momento de torsion externo alrededor del eje definido por
las bisagras, asi que la cantidad de movimicnto angular respecto a
esle {je se conserva.

PLANTEAR: La cantidad de movimiento angular inicial esta total-
mente en la bala y estd dada por la ecuacion (10.28). La cantidad de
movimiento angular final es la de un cuerpo rigido formado por la
puerta y la bala incrustada. Igualaremos estas dos cantidades y des-
pejaremos la rapidez angular w de la puerta y la bala inmediata-
mente después del choque.

Bala
5 Bala después
antes del| 0 50 m del impacto
impacto
\ 1.00m
- ——
v = 400 m/s

o |

PN B NS o =

10.32 Una puerta se abre con un disparo (vista superior). La bala
se incrusta en el centro de la puerta.

EJECUTAR: La cantidad de movimiento angular inicial de 1a bala es:
L = mvl = (0.010kg) (400 m/s)(0.50 m) = 2.0 kg-m?/s

La cantidad de movimiento angular final ¢s /w, donde / = Pt
tya1o- De la tabla 9.2, para una puerta de anchura d,

Md? I15kg)(1.0m)? :
puenaz%‘ = ( 5)3( _) =5.0kg-m*

El momento de increia de la bala (respecto al eje que pasa por las

bisagras) es

Jrgie = mi* = (0.010 kg) (0.50 m)? = 0.0025 kg - m?

La conservacion de la cantidad de movimiento angular evice que
mvl = [w, 0 sea.

2.0 ke-m%fs
= 7 = 0.40 rad/s
5.0kg-m” + 0.0025 kg-m-

muvl
w=— =
!

El choque de la bala con la puerta es inclastico porque durante
el impacto actian fuerzas no conservadoras. Por tanto, no espera-
mos que se conserve la energia cinética. Comprobamos esto calcu-
lando las energias cinéticas inicial y finai:

|| ] .
Ky = Smv* = - (0.010kg) (400 m/s)* = 800 J

. 1 5 2
K, = E[w- = 5(5,0025 kg-m®)(0.40 rad/s)?

=0401J

iLa energia cinética final es s6lo 1/2000 del valor inicial!

EVALUAR: La rapidez angular final de la puerta cs muy baja: a 0.40
rad/s, la puerta tardara 3.9 s en oscilar 90° (7/2 radianes). ;Le que-
da claro que la rapidez aumentaria al doble si la bala sc disparara
contra el borde de la puerta, cerca de la perilla?

Si los casquetes polares se derritieran totalmente por el calentamiento global, el
hielo derretido se redistribuiria en toda la Tierra. Use ideas de cantidad de movi-
miento angular para explicar cémo ese cambio afectaria la duracion del dia (el
tiempo que la Tierra tarda en girar sobre su eje). Suponga que el Sol, la Luna v los
planetas cjercen momentos de torsién despreciables sobre la Tierra.

10.7 | Girdscopos y precesion

En todas las situaciones que hemos examinado en este capitulo, el eje de rotacion
s¢ ha mantenido fijo o, si se ha movido, ha mantenido su direccion (como en el ro-
damiento sin deslizamiento). Diversos fenomenos fisicos nuevos, algunos inespe-
rados, se presentan si el eje de rotacion puede cambiar de direccidn. Por ejemplo,
consideremos un girdscopo de juguete apoyado en un extremo (Fig. 10.33). Si lo

j
)
;
:




10.7 1 Gir¢scopos y precesién

sostenemos con el eje del volante horizontal y lo soltamos, ¢l ext- 110 libre del eje
cae debido a la gravedad... si el volante no esti girando. Si el voiante gira, lo que
sucede es muy distinto. Una posibilidad es un movimiento circular uniforme del
eje en un plano horizontal, combinado con la rotacién del volante ilrededor del eje.
Este sorprendente movimiento del €je, no intuitivo, se denomia precesién. La
precesion se observa en la Naturaleza, no sélo en maquinas giratorias como los gi-
roscopos. En este momento la Tierra misma esté en precesion: su eje de rotacion
(que pasa por los polos norte y sur) cambia lentamente de di reccion, completando
un ciclo de precesion cada 26,000 afios.

Para estudiar este extrafio fenmeno, debemos recordar que la velocidad angu-
lar, la cantidad de movimiento angular y el momento de torsion son cantidades vec-
toriales. En particular, necesitamos la relacién general entre el momento de torsién
neto X7 que actiia sobre un cuerpo y la rapidez de cambio de la cantidad de movi-
miento angular del cuerpo L, dada por la ecuacién 27 = dL/dt. Apliquemos pri-
mero esta ecuacion al caso en que el volante no gira (Fig. 10.34a). Tomamos el
origen O en el pivote y suponemos que el volante es simétrico, con masa M y mo-
mento de inercia / alrededor de su eje. Este eje inicialmente esta sobre el gjex. Las
Unicas fuerzas externas que actian sobre el giroéscopo son la fuerza normal 7 que
actua en el pivote (donde suponemos que no hay friccion) y el peso w del volante
que actlia en su centro de masa, a una distancia » del pivote. La fuerza normal tie-
ne momento de torsién cero respecto al pivote, y el peso tiene un momento de tor-
si6n 7 en la direccion y (Fig. 10.34a). Al principio, no hay rotacién y la cantidad de
movimiento angular inicial ii es cero. Por la ecuacion (10.32), el cambio dL en la
cantidad de movimiento angular en un intervalo corto dr después de este instante es

dL = 7 dr (10.35)

Este cambio es en la direccién ¥, lade 7. Al transcurrir cada intgrvalo adicional dt,
la cantidad de movimiento angular cambia en incrementos dL en la direccion v
porque la direccién del momento de torsién es constante (Fig. 10.34b). El aumen-
1o constante de la cantidad de movimiento angular horizontal implica que el girés-
copo girara hacia abajo alrededor del eje y con rapidez creciente hasta tirar la base
0 golpear la mesa en la que ésta descansa.

Veamos ahora qué sucede si el volante estd girando inicialmente, de modo que
la cantidad de movimiento angular inicial Zi no es cero (Fig. 10.35a). Dado quc el
volante gira alrededor de su eje de simetria, L; est4 sobre el eje. Sin embargo, ca-
&z cambio de cantidad de movimiento angular dL es perpendicular al eje, porque ¢l
momento de torsion 7 = ¥ X w también lo es (Fig. 10.35b). Esto hace que cam-
bie la direccion de L pero no su magnitud. Los cambios dL, siempre estan en el

rCantidad de movimiento angular inicial |
| cero (L; = 0), momento de torsién
siempre en la misma direccién, todos

| los vectores dlenla misma direccién

J 3 TEFXW
n Fy -

y dLi\
dLA)
& x dLi = ||L;
| Volante inicialmente en ‘ dLJ\
I reposo: el momento de dL

Vista superior

é 7 torsién lo hace girar
| en torno al ejey (el gje

del volante cae) [

@ )
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Movimiento circular

del eje del volante , O ypa-o
(precesicn) g‘) / /

Y

@ JRotacién del
volante

10.33 Girdscopo apoyado en un extrermo.
Puesto que el volante gira con rapidez an-
gular w, el volante y el €je no caen, sino
que tienen un movimiento circular hori-
zontal llamado precesién. La rapidez angu-
lar de la precesion es Q.

10.34 (a) El volante no esté girando ini-
cialmente. El momento de torsion 7 se de-
be al peso w. (b) Vista directa hacia abajo
desde arriba del girdscopo. En cada inzer-
valo sucesivo de tiempo dr, el momento de
torsion produce un cambio dL = Fdren Iz
cantidad de movimiento angular. Fn esz=
caso, la cantidad de movimiento a=
final L; tiene la misma direccion gue =
y el gje del volante cae.
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10.35 (a) El volante esta girando inicial-
mente con cantidad de movimiento angular
L,. Las fuerzas (no s¢ muestran) son las
mismas que en la figura 10.34a. (b) Dado
que la cantidad de movimiento angular ini-
cial no es cero, cada cambio dL = Tdten
la cantidad de movimiento angular es per-
pendicular a L. El resultado es que la mag-
nitud de L no cambia, pero su direccion

cambia continuamente.
)P
L+dl dL
do .
0 i

10.36 Vista detallada de parte de la figura
10.35b. En un tiempo dt el vector de canti-
dad de movimiento angular y el eje del
volante precesan juntos un angulo d¢.

capiTuLro 10 | Dindmica del movimiento rotacional

Elay una cantidad de movimiento angular inicial |
|Li; el momento de torsién 7 s6lo altera la |
direccion de L (vectores dL perpendiculares a L)

W | Volante inicialmente en

| | rotacién: el momento de torsion |
| 1o hace precesar en tormo aleje z
LEel eje id volante no cae)

-

Vista superior

(a) (b)

plano horizontal xy, asi que el vector de cantidad de movimiento angular y el eje
del volante junto con el cual se mueve siempre son horizontales. En otras pala-
bras, el eje no cae; s6lo tiene precesion.

Sj esto todavia le parece misterioso, imagine upa pelota atada a un cordon. Si
la pelota esta en reposo y tiramos del cordon, la pelota se movera hacia nosotros.
Pero si la bola se estd moviendo inicialmente y tiramos continuameqte del cordon
en una direccion perpendicular al movimiento de la pelota, esta se movera en un
circulo alrededor de nuestra mano; no s¢ acercaré a ella. En el primer caso la pe-
lota tiene cero cantidad de movimiento lineal p al principio; cuando aplicamos
una fuerza F hacia nosotros durante un tiempo dt, la pelota adquiere un cantidad
de movimiento dp = F dt, también hacia nosotros. Pero si la pelota ya tiene una
cantidad de movimiento lineal p, un cambio de cantidad de movimiento dp per-
pendicular a 7 cambiara la direccion del movimiento, no la rapidez. Sustituya p
por Ly F por 7 en este argumento, y vera que la precesién no es sino el analogo
rotacional del movimiento circular uniforme.

En el instante que se muestra en la figura 10.35a, el girdscopo tiene cantidad
de movimiento angular 1. Un intervalo corto df despues, la cantidad de movimien-
to angular esL + dL;el cambio infinitesimal en cantidad de movimiento angular
esdl, = 7 di,perpendicular a L. Como muestra ¢l diagrama vectorial de la figura
10.36, esto implica que | el eje de volante del girdscopo gird un angulo pequefio d¢
dado porde = |dL|/|L|.La rapidez con que se mucve el eje, d/dt, se denomina
rapidez angular de precesion; denotando esta cantidad con ), tenemos

_dé _ \dil/\il . ML
dt R

Asi, la rapidez angular de precesion es inversamente proporcional a la rapidez an-
gular de giro alrededor del eje. Un girdscopo que gira rapidamente tiene precesion
lenta; si la friccion en su cojinete hace que el volante se frene, jla rapidez angular
de precesion aumenta! La rapidez angular de precesion de la Tierra es muy lenta
(1 rev/26,000 afios) porque su cantidad de movimiento angular de giro L. es gran-
de y el momento de torsion 7, debido a las influencias gravitacionales del Soly la
Luna es relativamente pequeiio.

Al precesar un girdscopo, su centro de masa describe un circulo de radio r en
un plano horizontal. La componente vertical de aceleracion es CETO, asi que la
fuerza normal hacia arriba 7 ejercida por ¢l pivote debe ser igual en magnitud al
peso. El movimiento circular del centro de masa con rapidez angular () requiere
una fuerza F dirigida hacia el centro del circulo, con magnitud F' = MQ?r. Esta
fuerza también debe ser proporcionada por el pivote.

0.3
Io Se
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10.7 | Giréscopos y precesién

Un supuesto clave que hicimos en nuestro analisis del giréscopo fue que cl vee-
tor de cantidad de movimiento angular L s6lo esta asociado a la rotacion del vo-
lante y es puramente horizontal. Sin embargo, también habra una componente
vertical de cantidad de movimiento angular asociada a la precesion del giréscopo.
Al hacer caso omiso de esto, hemos supuesto tacitamente que la precesion es lenta, es
decir, que la rapidez angular de precesion ) es mucho menor que la rapidez angu-
lar de rotacidon w. Como muestra la ecuacion (10.36), un valor grande de w automa-
ticamente produce un valor pequeiio de (3, asi que la aproximacion es razonable. Si
la precesion no es lenta, aparecen efectos adicionales, incluido un bamboleo verti-
cal o nutacion (vibracion) del eje del volante, superpuesto a la precesion. Podemos
ver la nutacién (vibracién) en un girdscopo cuando su rotacion se hace lenta, de mo-

do que {) aumenta y la componente vertical de L ya no puede despreciarse.

Ejemplo M S
10.17 Giréscopo en precesion

La figura 10.37a es una vista superior de una rueda de giréscopo ci-
lindrica que un motor eléctrico puso a girar. El pivote estaen Oy la
masa del cje es insignificante. a) Vista de arriba, ¢la precesion es
horaria o antihoraria? b) Si una revolucion de precesion tarda 4.0 s,
iqué rapidez angular tiene la rueda?

IDENTIFICAR y PLANTEAR: Determinaremos la direccion de pre-
cesion empleando la regla de 1a mano derecha como en la figura
10.35, que muestra ¢l mismo tipo de girdscopo que la figura 10.37.
Utilizaremos la relacién entre rapidez angular de precesion Q y la
rapidez angular de giro w, ecuacién (10.36), para obtener el valor
de w.

EJECUTAR: a) La regla de la mano derecha indica que @y Lsona
la izquierda (Fig. 10.37b). El peso w apunta hacia adentro de la pé-

gina, lo mismo que dLidt. La adicion de un pequerio dLalL que te-
nemos inicialmente altera la direccién de L como se muestra, asi
que la precesion es horaria vista desde arriba.

b) Tenga cuidado de no confundir @ y . Tenemos que = (1
rev)/(4.0 s) = (27 rad)/(4.0 s) = 1.57 rad/s. El peso es mg, y el
momento de inercia alrededor del eje de simetria de un cilindro so-
lido de radio R es I = 1mR?. Despejando w en la ecuacion (10.36)
tenemos

L. S .

TI0 (mR¥2)Q RO

_2(9.8m/s’)(2.0 X 1072 m)
(3.0 X 107> m)?(1.57 rad/s)

w

= 280 rad/s = 2600 rev/min

EVALUAR: La rapidez angular de precesion £ es mucho menor que
la rapidez angular de rotacion o, asi que tenemos un ejemplo de

gina en esta vista superior y actia en el centro de masa (denotado

A R i : ~ precesion lenta.
con X); el momento de torsion 7 = r X w es hacia arriba de la pa-

Ié— 2.0 cm%l

Vista superior

10.37 ;Qué direccion tiene la precesion
del giréscopo?

e ———— R S——— SR = -

Suponga que la masa del volante de la figura 10.35 se aumenta al doble pero to-
Zzs las demas dimensiones y la rapidez angular de rotacion no cambian. ;Que
=fzcto tendria esto sobre la rapidez angular de precesion?




