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particula de masa m es 7 = mra.

a) my=my=30kg
X1 =2xy=050m
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a) my =my =30kg
x1=0,x2= 3.0m

e) mq =40 kg, my =10 kg
x1=0,x=30m

A FIGURA 8.18 Momento de inercia
El momento de inercia depende de
la distribucién de la masa relativa

a un eje de rotaciéon dado y, en
general, tiene un valor distinto
para cada eje. Esta diferencia refleja
el hecho de que los objetos giran
mas o menos facilmente en torno

a ciertos ejes. Véase el ejemplo 8.10.

8.3 Dinamica rotacional

a) Describir el momento de inercia de un cuerpo rigido y b) aplicar la
forma rotacional de la segunda ley de Newton a situaciones fisicas.

Momento de inercia

El momento de fuerza es el analogo rotacional de la fuerza en un movimiento rectili-
neo, y un momento de fuerza neto produce movimiento rotacional. Para analizar esta
relacién, considere una fuerza neta constante que actda sobre una particula de masa
m en torno a un eje dado («figura 8.17). La magnitud del momento de fuerza sobre la
particula es

Toeto = 71 Frew = 7F . = rma, = mr*a  momento de fuerza sobre una particula  (8.4)

donde a, = a, = ra es la aceleracién tangencial (a;, ecuacién 7.13). Para analizar la ro-
tacion de un cuerpo rigido en torno a un eje fijo, aplicamos esta ecuacién a cada par-
ticula y obtener la sumatoria de los resultados en todo el cuerpo (n particulas), para
calcular el momento de fuerza total. Puesto que todas las particulas de un cuerpo rigi-
do en rotacion tienen la misma aceleracion angular, podemos sumar simplemente las
magnitudes de todos los momentos de fuerza individuales:

Theto — ETi=7-1-l_7-2—"_7-3—"_"'4_7-n

mria + mina + myria + - + m,ria
(myr? + myr3 + myrd + -+ + mr)a
_ 2
STheto = (E mm)a 8.5)

Sin embargo, en un cuerpo rigido, las masas (11,) y las distancias al eje de rotacién
(r;) no cambian. Por lo tanto, la cantidad entre paréntesis en la ecuacion 8.5 es constan-
te, y se denomina momento de inercia, I (para un eje dado):

I = Xmr?

Unidad SI de momento de inercia: kilogramo-metro al cuadrado (kg - m?)

momento de inercia (8.6)

Nos conviene escribir la magnitud del momento de fuerza neto como:
Tneto = lov momento de fuerza neto sobre un cuerpo rigido (8.7)

Esta es la forma rotacional de la sequnda ley de Newton (T, = I, en forma vectorial). Re-

cordemos que, al igual que las fuerzas netas, se requieren momentos de fuerza netos
(Theto) Para producir aceleraciones angulares.
Como podria inferirse al comparar la forma rotacional de la segunda ley de New-

ton con la forma traslacional (F,, = ma), el momento de inercia I es una medida de
la inercia rotacional: la tendencia de un cuerpo a resistir los cambios en su movimiento
rotacional. Aunque I es constante para un cuerpo rigido y es el andlogo rotacional de la
masa, debemos tener presente que, a diferencia de la masa de una particula, el mo-
mento de inercia de un cuerpo se refiere a un eje especifico y puede tener diferente va-
lor para diferentes ejes.

El momento de inercia también depende de la distribucién de masa del cuerpo re-
lativa a su eje de rotacién. Es mas facil (es decir, se requiere un momento de fuerza me-
nor) impartir a un objeto una aceleracion angular en torno a ciertos ejes que en torno a
otros. El ejemplo que sigue ilustra esto.

Ejemplo 8.10 = Inercia rotacional: distribucion de masa y eje de rotacién

Calcule el momento de inercia en torno al eje indicada para cada una de las configuracio-
nes unidimensionales de mancuerna de la «figura 8.18. (Considere insignificante la masa
de la barra conectora y exprese su respuesta con tres cifras significativas para efectuar
comparaciones.)

Razonamiento. Esta es una aplicacién directa de la ecuacién 8.6 a casos con masas y dis-
tancias diferentes. Mostrara que el momento de inercia de un objeto depende del eje de
rotacién y de la distribucion de masa relativa al eje de rotaciéon. La suma de I s6lo incluird
dos términos (dos masas).

Solucidn.

Dado: Valores de m y r de la figura Encuentre: 1= Smy?



Con I = myr3 + myr3:

a) I = (30kg)(0.50m)* + (30 kg)(0.50 m)* = 15.0 kg - m?
b) I = (40kg)(0.50 m)* + (10 kg)(0.50 m)* = 12.5 kg * m?
o) I=(30kg)(1.5m)* + (30kg)(1.5m)* = 135 kg m?
d) 1= (30kg)(0m)* + (30kg)(3.0m)? = 270 kg - m*

e) I=(40kg)(0m)? + (10kg)(3.0m)* = 90.0 kg - m?
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Este ejemplo muestra claramente que el momento de inercia depende de la masa y de
su distribucién relativa a un eje especifico de rotacién. En general, el momento de inercia
es mayor cuanto mas lejos esté la masa del eje de rotacion. Este principio es importante en
el disefio de volantes, que se usan en los automdviles para que el motor siga operando
suavemente entre encendidos de cilindros sucesivos. La masa del volante se concentra
cerca del borde, lo que le confiere un momento de inercia grande, el cual resiste cambios

en el movimiento.

Ejercicio de refuerzo. En los incisos d y e del ejemplo, ;los momentos de inercia serian

distintos si el eje de rotacién pasara por m,? Explique.

AN2@)I®) 81 ESTABILIDAD EN ACCION

FIGURA 1 Inclinarse contra la curva Al tomar una curva
o dar vuelta, el ciclista debe inclinarse hacia el centro de la
curva. (Este ciclista podria haber explicado el porqué.)

Cuando paseamos en una bicicleta y damos vuelta en una super-
ficie plana, instintivamente nos inclinamos hacia el centro de la
curva (figura 1). ;Por qué? Pareceria que, si nos inclinamos en
vez de mantenernos verticales, aumentara la probabilidad de
caernos. No obstante, la inclinacion en realidad aumenta la esta-
bilidad. Todo es cuestion de momentos de fuerza.

Cuando un vehiculo toma una curva circular horizontal, se
requiere una fuerza centripeta para mantener al vehiculo en el
camino, como vimos en el capitulo 7. Esta fuerza generalmente es
la fuerza de friccion estética entre los neumaticos y el pavimen-
to. Como se ilustra en la »figura 2a, la fuerza de reaccién R del
suelo sobre la bicicleta proporciona la fuerza centripeta requerida
(R, = E = f,) paratomar la curva, y la fuerza normal (R, = N).

Suponga que, cuando acttan estas fuerzas, el ciclista inten-
ta tomar la curva manteniéndose vertical, como en la figura 2a.
Vemos que la linea de accién de R no pasa por el centro de gra-
vedad del sistema (indicado con un punto). Como el eje de rota-
cién pasa por el centro de gravedad, habra un momento de
fuerza antihorario que tendera a hacer girar la bicicleta, de tal

manera que las ruedas resbalen hacia adentro. En cambio, si el ci-
clista se inclina hacia adentro con el dngulo adecuado (figura 2b),
tanto la linea de accion de R como el peso pasaran por el centro
de gravedad, y no habra inestabilidad rotacional (como bien sa-
bia el caballero de la bicicleta).

No obstante, sigue habiendo un momento de fuerza sobre el
ciclista inclinado. Efectivamente, cuando se inclina hacia el centro
de la curva, su peso produce un momento de fuerza en torno a un
eje que pasa por el punto de contacto con el suelo. Este momento
de fuerza, junto con el giro del manubrio, hace que la bicicleta dé
vuelta. Si la bicicleta no se estuviera moviendo, habria rotacion en
torno a este eje, y la bicicleta y el ciclista se caerfan.

La necesidad de inclinarse en las curvas es muy evidente
en las carreras de ciclismo y de motociclismo en pistas horizon-
tales. Las cosas pueden facilitarse para los competidores si la
pista se peralta de manera que ofrezca una inclinacién natural
(seccion 7.3).

FIGURA 2 Da la vuelta Véase el texto para una descripcion.
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A FIGURA 8.19 ;Mayor estabilidad
con un centro de gravedad

mas alto? Véase el ejemplo
integrado 8.11.

Ejemplo integrado 8.11 Equilibrismo: ubicacién del centro
de gravedad

a) Una varilla con una bola mévil, como la de la «figura 8.19, se equilibra mas facilmente si
la bola esta en una posicién mds alta. ;Esto se debe a que, cuando la bola estd mas alta, 1) el
sistema tiene un centro de gravedad mads alto y es mas estable; 2) el centro de gravedad se
aparta de la vertical, y el momento de fuerza y la aceleracién angular son menores; 3) el
centro de gravedad estd mas cerca del eje de rotacién, o 4) el momento de inercia en torno
al eje de rotacién es mayor? b) Suponga que la distancia entre la bola y el dedo, para la po-
sicion extrema de la figura 8.19, es de 60 cm; mientras que la distancia de la posicion mas
cercana es de 20 cm. Cuando la varilla gira, jcudntas veces mayor es la aceleracién angular
de la varilla con la bola en la posicion més cercana, que con la bola en la posicién més leja-
na? (Desprecie la masa de la varilla.)

a) Razonamiento conceptual. Con la bola en cualquier posicion y la varilla vertical, el sis-
tema estd en equilibrio inestable. En la seccién 8.2 vimos que los cuerpos rigidos con base
ancha y centro de gravedad bajo son més estables, asi que la respuesta 1) no es correcta.
Un leve movimiento hara que la varilla gire en torno a un eje que pasa por el punto de
contacto. Al estar el CG en una posicién mas alta y apartado de la vertical, el brazo de pa-
lanca serd mayor (y el momento de fuerza también serd mayor), asi que la 2) también es
incorrecta. Con la bola en una posicién mas alta, el centro de gravedad esta mus lejos del
eje de rotacién, de manera que la 3. también es incorrecta. Esto deja la 4) por proceso de
eliminacion, pero vamos a comprobar que sea correcta.

Alejar el CG del eje de rotacion tiene una consecuencia interesante: un mayor momen-
to de inercia, o resistencia a los cambios de movimiento rotacional y, por ende, una menor
aceleracion angular. Sin embargo, con la bola en una posicién més alta, cuando la varilla
comienza a girar el momento de fuerza es mayor. El resultado neto es el aumento en el mo-
mento de inercia produce una resistencia aun mayor al movimiento rotacional y, por lo
tanto, una menor aceleracién angular. [Note que el momento de fuerza (7 = rF sen 6) va-
ria con r, mientras que el momento de inercia (I = mrz) varia con 72, as{ que aumenta mas
al incrementarse r. ;Qué efecto tiene sen 6?] Entonces, cuanto mds pequena sea la acelera-
cién angular, mas tiempo tendremos para ajustar la mano bajo la varilla, para equilibrarla
alineando verticalmente el eje de rotacién y el centro de gravedad. Entonces, el momento
de fuerza seré cero y la varilla estara otra vez en equilibrio, aunque inestable. Por tanto, la
respuesta correcta es 4.

b) Razonamiento cuantitativo y solucion. Cuando se pregunta cudntas veces algo es ma-
yor o menor que otra cosa, por lo regular implica el uso de un cociente donde se cancelan
una o més cantidades que no se conocen. No nos dan la masa de la bola, que necesitaria-
mos para calcular el momento de fuerza gravitacional (7). Tampoco nos dan el angulo 6.
Por lo tanto, lo mejor es partir de las ecuaciones bésicas y ver qué sucede.

Dado: 1, =20cm Encuentre: cuantas veces es mayor la aceleracion angular de la
7 = 60 cm varilla con la bola en r1, en comparacién con r,

La aceleracién angular estd dada por la ecuacion 8.7, @ = 7,/ 1. Por lo tanto, nos fijamos
en el momento de fuerza 7, y en el momento de inercia I. Por las ecuaciones basicas del
capitulo, e, = 7, F = rF sen 6 (ecuacion 8.2) o Ty, = 1m1g sen 6, donde F = mg en este ca-
so, siendo m la masa de la bola. Asimismo, I = mr? (ecuacién 8.6). Por lo tanto,

Tnet rmg sen g sen
a = neto SE 0 _ gse 0
1 mr r

(Note que la aceleraciéon angular « es inversamente proporcional al brazo de palanca r; es
decir, cuanto mayor sea el brazo de palanca, menor sera la aceleracion angular.) Sen 6 no
ha desaparecido, pero observemos qué sucede cuando se forma el cociente de las acele-
raciones angulares:

a _ gsenf/r, _

Ty 60cm _ .
@  gsenf/r, r 20cm

o am=

Por lo tanto, la aceleracion angular de la varilla con la bola en la posicién superior es un
tercio de la aceleracién, cuando la bola esté en la posicién inferior.

Ejercicio de refuerzo. Al caminar sobre una barra delgada, como un riel de ferrocarril, el
lector seguramente habra notado que es mas facil si estira los brazos a los lados. Por lo
mismo, los equilibristas a menudo usan pértigas largas, como en la imagen con que inicia
el capitulo. ;Cémo ayuda esta postura a mantener el equilibrio?
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Como muestra el Ejemplo integrado 8.11, el momento de inercia es una considera-
cién importante en el movimiento rotacional. Si modificamos el eje de rotacién y la
distribucién relativa de la masa, podremos cambiar el valor de I y afectar el movi-
miento. Si el lector alguna vez jugé softbol o béisbol, probablemente le hicieron una
recomendacion en este sentido. Al batear, suele aconsejarse a los nifios que sujeten el
bate mas arriba.

Ahora sabemos por qué. Al hacerlo, el nifio acerca el eje de rotacién del bate al ex-
tremo mds masivo del bate (0 a su centro de masa). Esto reduce el momento de inercia
del bate (menor r en el término mr?). Entonces, al batear, la aceleracién angular serd
mayor. El bate oscila mas rdpidamente y aumenta la probabilidad de golpear la pelota
antes de que pase. El bateador s6lo dispone de una fraccion de segundo para hacer el
swing, y con 0 = %atz, la mayor « permite al bate girar mas rapidamente.

Teorema de ejes paralelos

Calcular el momento de inercia de la mayoria de los cuerpos rigidos extendidos re-
quiere matematicas que estdn mas alla del alcance de este libro. En la v figura 8.20 se
presentan los resultados para algunas formas comunes. Los ejes de rotacién general-

mente se hacen coincidir con ejes de simetria (ejes que pasan por el centro de masa), ¥ FIGURA 8.20 Momento de inercia
de algunos objetos de densidad

uniforme y formas comunes

Eje Eje Eje Eje

M \
‘ o N
ja L/L T
I = MR? =ML I=31Mi? [ = MR?
a) Particula b) Varilla delgada c) Varilla delgada d) Casco, aro o anillo
cilindrico delgado
Eje Eje Eje

D
2 4

1=1MR2 Eie
2 : I=1MR,2+R?

\ 2

_2 2 =2 2
I=:MR I=ZMR

e) Cilindro o disco sélido f) Cilindro anular g) Esfera solida en torno

a cualquier diametro

h) Casco esférico delgado

Eje Eje Eje
‘
iL/ L/
1= M@+ 1) k=L M kT =12

i) Placa rectangular

j) Lamina rectangular
delgada

k) Lamina rectangular
delgada
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Nota: / = Iy, el valor minimo de /,
cuando d = 0.

! M

=

I =Icy +Md?

A FIGURA 8.21 Teorema de ejes
paralelos El momento de inercia
en torno a un eje paralelo a otro que
pasa por el centro de masa de un
cuerpo es I = Iy + Md?, donde M
es la masa total del cuerpo y d es

la distancia entre los dos ejes.

A FIGURA 8.22 Momento de fuerza
en accién Véase el ejemplo 8.12.

para tener una distribucién simétrica de la masa. Una excepcién es la varilla con eje
de rotacién en un extremo (figura 8.20c). Este eje es paralelo a un eje de rotaciéon que
pasa por el centro de masa de la varilla (figura 8.20b). El momento de inercia en torno
a tal eje paralelo estd dado por un ttil teorema llamado teorema de ejes paralelos; a
saber,

I = I + Md? (8.8)

donde I es el momento de inercia en torno a un eje paralelo a uno que pasa por el centro
de masa y estad a una distancia d de él, I\ es el momento de inercia en torno a un eje
que pasa por el centro de masa y M es la masa total del cuerpo («figura 8.21). Si el eje pa-
sa por el extremo de la varilla (figura 8.20c), el momento de inercia se obtiene aplicando
el teorema de ejes paralelos a la varilla delgada de la figura 8.20b:

L 2
1 1 1 1
1= ICM + Mdz = ﬁMlz + M(—) = ﬁMLZ + ZMLZ = §MLZ

Aplicaciones de dindmica rotacional

La forma rotacional de la segunda ley de Newton nos permite analizar situaciones de
dindmica rotacional. Los ejemplos 8.12 y 8.13 ilustran esto. En tales situaciones, es muy
importante enumerar debidamente todos los datos, por el gran niimero de variables.

Ejemplo 8.12 = Abrir la puerta: momento de fuerza en accién

Un estudiante abre una puerta uniforme de 12 kg aplicando una fuerza constante de 40 N
a una distancia perpendicular de 0.90 m de las bisagras («figura 8.22). Si la puerta tiene
2.0 m de altura y 1.0 m de ancho, ;qué magnitud tendra su aceleracién angular? (Supon-
ga que la puerta gira libremente sobre sus bisagras.)

Razonamiento. Con la informacién dada, podemos calcular el momento de fuerza neto
aplicado. Para calcular la aceleracion angular de la puerta, necesitamos conocer su mo-
mento de inercia. Podemos calcularlo, porque conocemos la masa y las dimensiones de la
puerta.

Solucion. Con la informacién dada en el problema, elaboramos la lista:

Dado: M = 12kg Encuentre: o (magnitud de la aceleracién angular)
F=40N
r, =r=090m
h=20m (altura de la puerta)
w=10m (ancho de la puerta)

Necesitamos aplicar la forma rotacional de la segunda ley de Newton (ecuacién 8.7),
Tneto = 1o, donde [ es en torno al eje de las bisagras. 7, se calcula a partir de los datos,
de manera que el problema se reduce a determinar el momento de inercia de la puerta.
Examinando la figura 8.20, vemos que el caso (k) corresponde a una puerta (tratada
: : . . . — 1ar2 —
como rectangulo uniforme) que gira sobre bisagras, asi que I = 3 ML?, donde L = w, el an-
cho de la puerta. Entonces,

Theto — la

Ejercicio de refuerzo. En este ejemplo, si se aplicara el momento de fuerza constante a
lo largo de una distancia angular de 45° y luego se dejara de aplicar, ;cuanto tardaria la
puerta en abrirse totalmente (90°)?

En problemas con poleas en el capitulo 4, siempre despreciamos la masa (y la iner-
cia) de la polea para simplificar. Ahora sabemos cémo incluir tales cantidades y pode-
mos tratar las poleas de forma mas realista, como en el siguiente ejemplo.



Ejemplo 8.13 Las poleas también tienen masa: consideracién
de lainercia de una polea

Un bloque de masa m cuelga de una cuerda que pasa por una polea sin friccién, con forma
de disco, de masa M y radio R, como se muestra en la »figura 8.23. Si el bloque desciende
desde el reposo bajo la influencia de la gravedad, ;qué magnitud tendra su aceleracién li-
neal? (Desprecie la masa de la cuerda.)

Razonamiento. Las poleas reales tienen masa e inercia rotacional, lo que afecta su movi-
miento. La masa suspendida (con la cuerda) aplica un momento de fuerza a la polea. Aqui
usaremos la forma rotacional de la segunda ley de Newton para obtener la aceleracién an-
gular de la polea y, luego, su aceleracion tangencial, la cual tiene la misma magnitud que la
aceleracién lineal del bloque. (;Por qué?) Como no se dan valores numéricos, la respuesta
quedard en forma de simbolos.

Solucion. La aceleracién lineal del bloque depende de la aceleracién angular de la polea,
asi que examinaremos primero el sistema de la polea. Tratamos a la polea como un disco,

asi que su momento de inercia es I = 3 MR? (figura 8.20e). Un momento de fuerza debido

a la fuerza de tensién en la cuerda (T) actia sobre la polea. Con 7 = I« (considerando sélo
el recuadro superior de la figura 8.23), obtenemos

Toeto = 7L F = RT = Ia = (MR?)ar

de manera que
2T
“7T MR
La aceleracién lineal del bloque y la aceleracién angular de la polea estén relacionados
por a = Ra, donde 7 es la aceleracion tangencial, y

o

= R
a a M

()
Sin embargo, no conocemos T. Si examinamos la masa en descenso (el recuadro inferior)
y sumamos las fuerzas en la direccion vertical (positivas en la direccién del movimiento),
tendremos

mg — T = ma
es decir,
T =mg — ma 2)
Ahora usamos la ecuacién 2 para eliminar T de la ecuacién 1:
2T _ 2(mg — ma)
g="—="___7
M M
Despejando a,
2mg
a=——" 3
(2m + M) ®)
Vemos que si M — 0 (como en el caso de las poleas ideales sin masa de capitulos anterio-
res), | - 0y a = g (por la ecuacién 3). Aqui, sin embargo, M # 0, asi que tenemos a < g.
(¢Por qué?)
Ejercicio de refuerzo. Es posible caracterizar de forma incluso més realista las poleas. En
este ejemplo, despreciamos la friccién, pero en la practica existe un momento de fuerza
de friccion () que debe incluirse. ;Qué forma tendria la aceleraciéon angular (similar a la
ecuacién 3) en este caso? Demuestre que su resultado es dimensionalmente correcto.

En ejercicios de poleas, también despreciamos la masa de la cuerda. Es una estra-
tegia que da una buena aproximacién si la cuerda es relativamente ligera. Si toméara-
mos en cuenta la masa de la cuerda, tendriamos una masa continuamente variable que
cuelga de la polea, y el momento de fuerza producido seria variable. Un problema asi
rebasa el alcance de este libro.

Suponga que tenemos masas suspendidas de ambos lados de una polea. En este
caso, habria que calcular el momento de fuerza neto. Si no conocemos los valores de
las masas o el sentido en que girara la polea, tan s6lo suponemos una direccién. Al
igual que en el caso lineal, si el resultado sale con el signo opuesto, indicara que supu-
simos la direccién equivocada.

8.3 Dinamica rotacional 275

mg

T negativa T positiva

X

A FIGURA 8.23 Polea con inercia
Si tomamos en cuenta la masa
(inercia rotacional) de una polea,
seremos capaces de describir de
manera mas realista el movimiento.
Véase el ejemplo 8.13.

Exploracion 10.3 Momento de fuerza
y momento de inercia

Exploracion 10.4 Momento de fuerza

sobre una polea debido a la tensién
de dos cuerdas
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Sugerencia para resolver problemas

7
\ Eje instantaneo

de rotacion

A FIGURA 8.24 Tirar de la cuerda
del yo-yo Véase el ejemplo
conceptual 8.14.

> FIGURA 8.25 El angulo hace la
diferencia a) Si la linea de accion
estd a la izquierda del eje instanta-

neo, el yo-yo rodard hacia la derecha.

b) Con un angulo critico 0, la linea
de accién pasa por el eje, y el yo-yo
estard en equilibrio. ¢) Cuando la
linea de accién esta a la derecha
del eje, el yo-yo rueda hacia la
izquierda. Véase el ejemplo
conceptual 8.14.

En problemas como los de los ejemplos 8.13 y 8.14, que se ocupan de movimientos ro-
tacionales y traslacionales acoplados, debemos tener en cuenta que, si la cuerda no res-
bala, las magnitudes de las aceleraciones generalmente estan relacionadas por a = ra;
mientras que v = rw relaciona las magnitudes de las velocidades en cualquier instan-
te. Si aplicamos la segunda ley de Newton (en forma rotacional o lineal) a diferentes
partes del sistema, obtendremos ecuaciones que pueden combinarse utilizando tales
relaciones. También en el caso de rodamiento sin deslizamiento, 2 = ra y v = rw relacio-
nan las cantidades angulares con el movimiento rectilineo del centro de masa.

Otra aplicacién de la dindmica rotacional es el andlisis del movimiento de objetos

que pueden rodar.

Ejemplo conceptual 8.14 = Aplicacion de otro momento de fuerza:

¢en qué sentido rueda el yo-yo?

Se tira de la cuerda de un yo-yo que descansa en una superficie horizontal, como se mues-
tra en la «figura 8.24. ;El yo-yo rodard a) hacia la persona o b) en la direccién opuesta?

Razonamiento y respuesta. Apliquemos a la situacion los principios de fisica que acabamos
de estudiar. Vemos que el eje instantdneo de rotacion esta en la linea de contacto entre el yo-yo
y la superficie. Si tuviéramos una vara parada verticalmente donde esta el vector T y tirdra-
mos de una cuerda sujeta a la parte superior de la vara, en la direccion de F, jen qué senti-
do giraria la vara? En sentido horario (alrededor de su eje instantdneo de rotacion), desde
luego. El yo-yo reacciona de forma similar; es decir, rueda en la direccion de la traccion, asi
que la respuesta es a. (Si el lector no esta convencido, consiga un yo-yo y pruébelo.)

Esta situacién tiene otros aspectos interesantes en fisica. La fuerza de tracciéon no es
la tinica fuerza que actda sobre el yo-yo; hay otras tres. ; Aportan momentos de fuerza?
Identifiquemos las fuerzas. Tenemos el peso del yo-yo y la fuerza normal de la superficie.
También hay una fuerza horizontal de friccién estética entre el yo-yo y la superficie. (Si
no la hubiera, el yo-yo resbalaria en lugar de rodar.) Sin embargo, las lineas de accién de
estas tres fuerzas pasan por la linea de contacto, que es el eje instantaneo de rotacion, asi
que no hay momentos de fuerza. (;Por qué?)

;Qué sucederia si aumentaramos el angulo de la cuerda, es decir, de la fuerza de trac-
cién (relativo a la horizontal) como se muestra en la «figura 8.25a? El yo-yo seguiria
rodando hacia la derecha. Como se aprecia en la figura 8.25b, con cierto angulo critico 6,
la linea de fuerza pasa por el eje de rotacion y el momento de fuerza neto sobre el yo-yo
es cero, asi que el yo-yo no rueda.

Si rebasamos este dngulo critico (figura 8.25¢), el yo-yo comenzara a rodar en senti-
do antihorario, es decir, hacia la izquierda. Note que la linea de accién de la fuerza esta al
otro lado del eje de rotacién, en comparacién con la figura 8.26a, y el brazo de palanca
(r,) cambi6 de direccion, asi que se invirtio la direccion del momento de fuerza neto.

Ejercicio de refuerzo. Suponga que la cuerda del yo-yo esta en el éngulo critico y se pasa
sobre una barra redonda horizontal que esta a una altura adecuada. Se cuelga un peso del
extremo de la cuerda, de manera que suministre la fuerza necesaria para la condicién de
equilibrio. ;Qué sucedera si ahora tiramos del yo-yo hacia nosotros, alejandolo de su po-
sicién de equilibrio, y lo soltamos?

7 ’
Linea de accion 5 Eje instantaneo N / Llneta,
de la fuerza de rotacion Eje Eie’ de accion
a) Rueda a la derecha b) 6 = 6, c) 0> 0
en equilibrio rotacional, rueda a la izquierda
no rueda

(r, ala derecha)
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8.4 Trabajo rotacional y energia cinética

Analizar, explicar y usar las formas rotacionales de a) el trabajo, b) la
energia cinética y c) la potencia.
En esta seccién presentaremos los analogos rotacionales de diversas ecuaciones del
movimiento rectilineo asociadas con el trabajo y la energia cinética, para momentos de
fuerza constantes. Como su desarrollo es similar al de sus contrapartes rectilineas, no
lo explicaremos detalladamente. Al igual que en el capitulo 5, W es el trabajo neto si
dos 0 mas fuerzas o momentos de fuerza actiian sobre un objeto.

Trabajo rotacional Podemos pasar directamente del trabajo efectuado por una fuer-  Trabajo rotacional
za al trabajo efectuado por un momento de fuerza, pues los dos estan relacionados

(r = r,F). En movimiento rotacional, el trabajo rotacional W = Fs efectuado por una

sola fuerza F que actda tangencialmente a lo largo de un arco s es

W =Fs=F(r,0) =10
donde 6 estd en radianes. Asi, para un solo momento de fuerza que actia durante un
angulo de rotacién 6,

W =16  (unasola fuerza) (8.9)

En este libro, los vectores tanto del momento de fuerza () como del desplazamiento
angular () casi siempre estaran sobre el eje fijo de rotacién, de manera que no hay que
preocuparse por componentes paralelos, como en el caso del trabajo traslacional. El
momento de fuerza y el desplazamiento angular podrian tener direcciones opuestas,
en cuyo caso el momento de fuerza efectuara trabajo negativo y frenara la rotacién del
cuerpo. Esta situacion es similar a la del movimiento traslacional cuando F y d tienen
direcciones opuestas.

Potencia rotacional De la ecuacion 8.9 es facil deducir una expresion para la poten- Potencial rotacional
cia rotacional instantdnea, el analogo rotacional de la potencia (rapidez de realizacion
de trabajo):
144 0
P = T = T(;) = Tw (8.10)

Teorema trabajo-energia y energia cinética

Podemos deducir la relacion entre el trabajo rotacional neto efectuado sobre un cuerpo
rigido (acttia més de una fuerza) y el cambio de energfa cinética rotacional del cuer-
po, partiendo de la ecuacién para trabajo rotacional:

Wheto = 70 = laf
Puesto que suponemos que nuestros momentos de fuerza se deben exclusivamente a
fuerzas constantes, « es constante. Sin embargo, por la cinematica rotacional del capi-
tulo 7, sabemos que para una aceleracién angular constante, @ = @} + 2a0, y

2

2 _
Wneto = I<w > wO) = %I(I)Z - %I(l)(z)

Por la ecuacion 5.6 (trabajo-energia), sabemos que W,,o;, = AK. Por lo tanto,

Wieto = %Iw2 - %Iw?, =K - K, = AK (8.11)  Analogo rotacional del teorema
trabajo-energia
Entonces, la expresion para la energia cinética rotacional, K, es

K =jle? (8.12)  Energia cinética rotacional
Asi, el trabajo rotacional neto efectuado sobre un objeto es igual al cambio de energia cinética rotacio-
nal del objeto (con cero energia cinética rectilinea). Por lo tanto, si queremos alterar la ener-
gia cinética rotacional de un objeto, tendremos que aplicar un momento de fuerza neto.
Es posible deducir directamente la expresién para la energia cinética de un cuerpo
rigido en rotacién (en torno a un eje fijo). La sumatoria de las energias cinéticas instan-
taneas de las particulas individuales del cuerpo, relativas al eje fijo, da

1 1 1
K = 33mpl = 3(ESmi})o’ = 51’

donde, para cada particula del cuerpo, v; = r;w. Asi, la ecuacion 8.12 no representa una
nueva forma de energia; mas bien es s6lo otra expresion para la energia cinética, en
una forma mds conveniente para estudiar la rotacién de cuerpos rigidos.
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TABLA 8.1 Cantidades y ecuaciones traslacionales y rotacionales

Traslacional Rotacional

Fuerza: F Momento de fuerza (magnitud): 7 = rF sen 6

Masa (inercia): m Momento de inercia: I= Emﬂ',2

Segunda ley de Newton: Fo = ma Segunda ley de Newton: Treto = la

Trabajo: W = Fd Trabajo: W =76

Potencia: P =Fv Potencia: P =10

Energfa cinética: K = %mv2 Energia cinética: K = %Ia)2

Teorema trabajo-energia: Wieto = %mv2 - %mv(z, = AK  Teorema trabajo-energia: Wieto = %Im2 - %Iw(z, = AK
Cantidad de movimiento lineal: p = mv Cantidad de movimiento angular: L = [»

Nota: un cuerpo rodante tiene
energia cinética tanto traslacional
como rotacional.

llustracién 11.3 Energia cinética
rotacional y traslacional

En la tabla 8.1 se resumen los andlogos traslacionales y rotacionales. (Aparece
también la cantidad de movimiento angular, que veremos en la seccién 8.5.)

Cuando un objeto tiene movimiento tanto traslacional como rotacional, su energia
cinética total podria dividirse en partes que reflejen los dos tipos de movimiento. Por
ejemplo, para un cilindro que rueda sin resbalar en una superficie horizontal, el movi-
miento es puramente rotacional relativo al eje instantdneo de rotacién (el punto o linea
de contacto), que estd instantdneamente en reposo. La energia cinética total del cilin-
dro rodante es

=172
K =3Lw
donde I; es el momento de inercia en torno al eje instantaneo. Este momento de inercia

alrededor del punto de contacto (nuestro eje) estd dado por el teorema de ejes parale-
los (ecuacion 8.8), I = Iy + MR?, donde R es el radio del cilindro. Entonces,

K =350* = 5(Iey + MR*)0® = ;Ioye® + 5 MR*o

Sin embargo, como no hay deslizamiento, vcy = Rw, y

K = 3loye® + 2Moky  (rodamiento sin resbalar) (8.13)

total _ rotacional i translacional
KE KE KE
Aunque aqui usamos un cilindro como ejemplo, éste es un resultado general, valido
para cualquier objeto que rueda sin resbalar.
Asi, la energia cinética total de un objeto es la suma de dos aportaciones: la energia cinéti-
ca traslacional del centro de masa del objeto y la energia cinética rotacional del objeto relativa a
un eje horizontal que pasa por su centro de masa.

Ejemplo 8.15 Divisién de energia: rotacional y traslacional

Un cilindro sélido uniforme de 1.0 kg rueda sin resbalar con una rapidez de 1.8 m/s sobre
una superficie plana. a) Calcule la energia cinética total del cilindro. b) ;Qué porcentaje de
este total es energia cinética rotacional?

Razonamiento. El cilindro tiene energia cinética tanto rotacional como traslacional, asi
que podemos usar la ecuacién 8.13, cuyos términos estdn relacionados por la condicién
de rodar sin resbalar.

Solucion.

Dado: M =10kg Encuentre: a) K (energia cinética total)
= K
Yem 11'8 mz/ S ) b) —=(X 100%) (porcentaje de energia rotacional)
Icm = 3 MR*(de la figura 8.20e) ~ K
a) El cilindro rueda sin resbalar, asi que se cumple la condicién vcy = Rw. Entonces, la
energia cinética total es la suma de la energia cinética rotacional, K,, y la energia cinética
traslacional del centro de masa, K¢y (ecuacion 8.13):
eV

2
K = Hoyw? + 1Moy, = %(%MR2><?> + 3 Moty = {Mogy + 3 Moty

=3Moy = 2(1.0kg)(1.8 m/s)* = 2.4]
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b) La energia cinética rotacional K, del cilindro es el primer término de la ecuacion ante-
rior, asi que formamos un cociente en forma simbdlica para obtener
Lag2
Mo,
4 CM
— = = 1(x100%) = 33%
K SMozy °
4 CM

Asi, la energia cinética total del cilindro se compone de una parte rotacional y una trasla-
cional, siendo la rotacional la tercera parte del total.

En el inciso b no necesitamos el radio del cilindro ni la masa. Como usamos un co-
ciente, se cancelaron estas cantidades. Sin embargo, 10 hay que pensar que esta divisién
exacta de la energia es un resultado general. Es facil demostrar que el porcentaje es dis-
tinto para objetos con diferente momento de inercia. Por ejemplo, cabe esperar que una
esfera rodante tenga un porcentaje menor de energia cinética rotacional que un cilindro,
porque su momento de inercia es menor (I = %MRZ).

Ejercicio de refuerzo. Podemos incluir la energia potencial aplicando la conservacion de
la energfa a un objeto que rueda por un plano inclinado. En este ejemplo, suponga que el
cilindro sube por un plano inclinado de 20° sin resbalar. a) ;A qué altura vertical (medida
por la distancia vertical de su CM) en el plano se detendra el cilindro? b) Para calcular la
altura en el inciso a), el lector seguramente igualé la energia cinética inicial con la energia
potencial gravitacional final. Es decir, la energia cinética total se redujo por el trabajo efec-
tuado por la gravedad. Sin embargo, también acttia una fuerza de friccion (que evita el
deslizamiento). ;No efecttia trabajo también esa fuerza?

Ejemplo 8.16 Bajar rodando o resbalando: ;cual es mas rapido?

Un aro cilindrico uniforme se suelta desde el reposo a una altura de 0.25 m en un plano
inclinado, cerca de su parte superior (»figura 8.26). Si el cilindro baja rodando por el pla-
no sin resbalar y no se pierde energia por la friccién, ;qué rapidez lineal tiene el centro de
masa del cilindro en la base de la pendiente?

Razonamiento. Aqui, energia potencial gravitacional se convierte en energia cinética, tan-
to rotacional como traslacional. La energia (mecanica) se conserva, pues W; es cero.

Solucion.

Dado: h=025m

Iy = MR?

Encuentre: vcy (rapidez del CM)

(de la figura 8.20d)
Puesto que la energia mecdnica total del cilindro se conserva, se escribe
E,=E
o bien, como v, = 0 en la cima de la pendiente, y suponiendo que U = 0 en la base,
u,=K
Mgh = 1loyw? + 3 Moy
en la base de la pendiente

inicialmente en reposo

Si usamos la condicién para rodamiento, vcy = Rw, obtendremos

Do \2
Mgh = %(MR2)<%> + 1Moy = Moy

Despejamos vy,
vem = Vgh = V(9.8 m/s?)(0.25m) = 1.6 m/s

Aqui tampoco necesitamos mucha informacién numérica. Observe que el aro bajo ro-
dando desde la misma altura hasta la que subi6 el cilindro del ejercicio de refuerzo del
ejemplo 8.15, pero la rapidez del aro es menor que la del cilindro en la base de la rampa.
¢;Por qué? Por la diferencia en los momentos de inercia.

Ejercicio de refuerzo. Suponga que el plano inclinado de este ejemplo no tiene friccion y
el aro baja deslizdndose en vez de rodar. ;Cémo se compararia su rapidez en la base en
este caso? ;Por qué son distintas las rapideces?

A FIGURA 8.26 Movimiento rodante
y energia Cuando un objeto baja
rodando por un plano inclinado,
hay conversién de energia potencial
en energia cinética traslacional y
rotacional. Esto hace al rodamiento
mas lento que el deslizamiento

sin friccién. Véase el ejemplo 8.16.

Exploracién 1.3 Deslizamiento sobre
un plano inclinado

Ucm
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llustracién 10.3 Momento de inercia,

energia rotacional y cantidad de
movimiento angular

PHySLET

Exploracién 11.4 Momento de inercia
y cantidad de movimiento angular

Nota: repase la ecuacion 6.3 de
la seccion 6.1.

Carrera arreglada

Como muestra el ejemplo 8.16, para un objeto que se rueda hacia abajo sobre un plano
inclinado, sin resbalarse, vy es independiente de M y de R. Las masas y los radios se
cancelan, de manera que todos los objetos de una forma especifica (con la misma ecua-
cién de momento de inercia) ruedan con la misma rapidez lineal, sean cuales fueren su
tamafio y su densidad. Sin embargo, tal rapidez si varia con el momento de inercia,
que varfa dependiendo de la forma. Por lo tanto, cuerpos rigidos de diferente forma
ruedan con diferente rapidez. Por ejemplo, si soltamos un aro cilindrico, un cilindro
s6lido y una esfera uniforme al mismo tiempo desde la cima de un plano inclinado, la
esfera ganarfa la carrera para llegar a la base, seguida del cilindro, con el aro llegando
en ultimo lugar, jsiempre!

El lector puede ensayar este experimento con unas cuantas latas de alimentos
y otros recipientes cilindricos —uno lleno con algtin material sélido (efectivamente,
un cuerpo rigido) y otro vacio y con los extremos recortados— y una esfera sélida lisa.
Recuerde que ni las masas ni los radios importan. Pensariamos que un cilindro anular
(un cilindro hueco cuyos radios externo e interno difieren considerablemente; figura
8.20f) seria el posible ganador de una carrera asi, pero siempre pierde. La carrera ro-
dando cuesta abajo esta arreglada, aunque se varien las masas y los radios.

Otro aspecto del rodamiento se trata en la seccién A fondo 8.2: ;Resbalar o rodar
hasta parar?

8.5 Cantidad de movimiento angular

a) Definir cantidad de movimiento angular y b) aplicar el principio de
la conservacion de la cantidad de movimiento angular a situaciones
fisicas.

Otra cantidad importante en el movimiento rotacional es la cantidad de movimiento
angular. En la seccién 6.1 vimos cémo una fuerza altera la cantidad de movimiento li-
neal de un objeto. De forma andloga, los cambios en la cantidad de movimiento angu-
lar estan asociados al momento de fuerza. Como vimos, el momento de fuerza es el
producto de un brazo de palanca y una fuerza. Asimismo, la cantidad de movimiento
angular (L) es el producto de un brazo de palanca y una cantidad de movimiento li-
neal. Para una particula de masa m, la magnitud de la cantidad de movimiento lineal
es p = mv, donde v = rw. La magnitud de la cantidad de movimiento angular es

L=r,p=mr,v=mre cantidad de movimiento angular de una particula (8.14)

Unidad SI de cantidad de movimiento angular: kilogramo-metro
al cuadrado sobre segundo (kg - m?/s) donde v es la rapidez
de la particula, 7, es el brazo de palanca y w es la rapidez angular.

En un movimiento circular, r, = r, porque V es perpendicular a ¥. En un sistema
de particulas que constituyen un cuerpo rigido, todas las particulas describen circulos,
y la magnitud total de la cantidad de movimiento angular es

L= (Zmr})w = lo cantidad de movimiento angular de un cuerdo rigido (8.15)

que es, en el caso de rotacién en torno a un eje fijo (en notacion vectorial),
L=Io (8.16)

Asi pues, L tiene la direccién del vector de velocidad angular (). Esa direccién esta
dada por la regla de la mano derecha.

En movimiento rectilineo, el cambio de la cantidad de movimiento lineal total de
un sistema estd relacionado con la fuerza externa por F,, = AP/Atf. La cantidad
de movimiento angular estd relacionada de manera andloga con el momento de fuer-
za neto (en magnitud):

L lMw_ Alle) AL
Toeto = 1T TN T A T AY

Es decir,

_AL
neto ~ A t
Asi, el momento de fuerza neto es igual a la tasa de cambio de la cantidad de movimiento

angular con el tiempo. En otras palabras, un momento de fuerza neto produce un cam-
bio en la cantidad de movimiento angular.

T (8.17)
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8.2 (RESBALAR O RODAR HASTA PARAR?
FRENOS ANTIBLOQUEO

Durante una emergencia al conducir un vehiculo, el instinto nos
haria pisar a fondo el pedal del freno para intentar detener el ve-
hiculo rdpidamente, es decir, en la distancia mas corta. Sin em-
bargo, con las ruedas bloqueadas, el coche derrapa, deslizan-
dose hasta que se detiene, y muchas veces fuera de control. En
tal caso, la fuerza de friccion deslizante actiia sobre las ruedas.

Para evitar el derrape, nos ensefian a bombear los frenos pa-
ra detenernos rodando, no resbalando, sobre todo en un camino
mojado o con hielo. Muchos automéviles modernos cuentan con
un sistema computarizado de frenos que evita el bloqueo (ABS,
antilock braking system) haciendo eso automaticamente. Cuando
los frenos se aplican firmemente y el automévil comienza a des-
lizarse, sensores en las ruedas detectan el deslizamiento y una
computadora asume el control del sistema de frenado. Suelta
momentaneamente los frenos y luego varia la presién del fluido
de los frenos con una accién de bombeo (jhasta 13 veces por se-
gundo!), de manera que las ruedas sigan rodando sin derrapar.

Si no hay deslizamiento, acttian tanto la friccién rodante co-
mo la friccion estatica. Sin embargo, en muchos casos la fuerza de
friccién rodante es pequefia, y sélo hay que tomar en cuenta la fric-
cién estatica. E1 ABS trata de mantener la friccidn estatica cerca de
su valor maximo, f; = f, ., lo cual no es fécil hacer con el pedal.

¢Elhecho de resbalar en vez de rodar afecta mucho la distan-
cia de frenado de un automévil? Calculamos la diferencia supo-
niendo que la friccion de rodamiento es insignificante. Aunque la
fuerza externa de la friccion estatica no efectia trabajo al disipar
energia para detener un vehiculo (esto se hace internamente por
friccién con las zapatas), si determina si las ruedas se deslizan o
ruedan.

En el ejemplo 2.8, la distancia de frenado de un vehiculo

estaba dada por

v

x=—

2a
Por la segunda ley de Newton, la fuerza neta en la direcciéon
horizontal es F = f = uN = wmg = ma, y la desaceleracién es

a = ug. Por lo tanto,

v

=3 g 1)

Sin embargo, como sefalamos en el capitulo 4, el coefi-
ciente de friccion deslizante (cinética) generalmente es menor
que el de friccién estética; es decir, uy < . Podemos apreciar la
diferencia general entre la detencién rodante y la detencién
deslizante suponiendo la misma velocidad inicial v, en ambos
casos. Luego, utilizamos la ecuacion 1 para formar un cociente:

[ M
o Xrodante = ; Xdeslizante

s

Xrodante _ &

Xdeslizante  Ms

En la tabla 4.1 vemos que uy = 0.60 para caucho sobre concreto
hiimedo, y el valor de u, para estas superficies es 0.80. Si usamos
estos valores para comparar las distancias de frenado, obtenemos

0.60
Xrodante = (@)xdesﬁzante = (0'75)xdes].izante

Asi, el automovil se detiene rodando en el 75% de la distancia
requerida para parar resbalando; por ejemplo, 15 m en vez de
20 m. Aunque esto podria variar dependiendo de las condi-
ciones, podria ser una diferencia importante, incluso vital.

Conservacion de la cantidad de movimiento angular

La ecuacion 8.17 se dedujo utilizando 7, = Ia, que es valido para un sistema rigido
de particulas o un cuerpo rigido con momento de inercia constante. No obstante, la
ecuacion 8.17 es una ecuacién general que también es valida para un sistema no rigido
de particulas. En un sistema asi, podria haber un cambio en la distribucién de masa y
un cambio en el momento de inercia. Por ello, podria haber aceleracién angular inclu-
50 en ausencia de un momento de fuerza neto. ;Cémo es posible esto?

Si el momento de fuerza neto sobre un sistema es cero, entonces, por la ecuacién

8.17, Fpeo = AL/AE = 0,y
AL=L-L,=Io — L&, =0
o bien,

lo = [,o, (8.18)

Por lo tanto, la condicién para la conservacién de la cantidad de movimiento an-
gular es:

En ausencia de un momento de fuerza externo, no equilibrado, se conserva
(se mantiene constante) la cantidad de movimiento angular total (vectorial) de
un sistema.

Al igual que con la cantidad de movimiento lineal total, se cancelan los momentos de
fuerza internos que surgen de fuerzas internas.

En un cuerpo rigido con momento de inercia constante (es decir, I = I,), la rapidez
angular se mantiene constante (w = w,) en ausencia de un momento de fuerza neto.
No obstante, en algunos sistemas podria cambiar el momento de inercia, lo cual oca-
sionaria un cambio en la rapidez angular, como ilustra el siguiente ejemplo.

Conservacion de la cantidad de
movimiento angular

Nota: la cantidad de movimiento
angular se conserva cuando el
momento de fuerza neto es cero.
(L es fija.) Esta es la tercera ley
de conservacién en mecanica.
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> FIGURA 8.27 Conservacion de la
cantidad de movimiento angular
Cuando se tira de la cuerda hacia
abajo a través del tubo, acelera la
pelota que da vueltas. Véase el
ejemplo 8.17.

Ejemplo 8.17 = Tirén hacia abajo: conservacion de la cantidad
de movimiento angular

Una pelota pequena, sujeta a una cuerda que pasa por un tubo, se mueve en un circulo co-
mo se ilustra en la a figura 8.27. Cuando se tira de la cuerda hacia abajo a través del tubo,
aumenta la rapidez angular de la pelota. 2) ;Ese aumento en la rapidez angular se debe a
un momento de fuerza causado por la fuerza de traccién? b) Si la pelota gira inicialmente
conrapidez de 2.8 m/s en un circulo de 0.30 m de radio, ;qué rapidez tangencial tendra si
el radio se reduce a 0.15 m tirando de la cuerda? (Desprecie la masa de la cuerda.)

Razonamiento. a) Se aplica una fuerza a la pelota a través de la cuerda; pero hay que con-
siderar el eje de rotacién. b) En ausencia de un momento de fuerza neto, se conserva la
cantidad de movimiento angular (ecuaciéon 8.18) y la rapidez tangencial estd relaciona-
da con la rapidez angular por v = rw.

Solucion.

Dado: 1 =030m Encuentre: a) Causa del incremento en la rapidez angular
rn,=0.15m b) v, (rapidez tangencial final)
v, = 2.8m/s

a) El cambio de velocidad angular, o aceleracién angular, no se debe a un momento de
fuerza producido por la fuerza de traccién. La fuerza sobre la pelota, transmitida por la
cuerda (tensién) actiia pasando por el eje de rotacion, asi que su momento es cero. Puesto
que la porcién de la cuerda que gira se acorta, disminuye el momento de inercia de la
pelota (I = m#?, por la figura 8.20a). Como en ausencia de un momento de fuerza externo,
se conserva la cantidad de movimiento angular (Iw) de la pelota; y si se reduce I se debe
incrementar w.
b) Puesto que se conserva la cantidad de movimiento angular, igualamos las magnitudes
de las cantidades de movimiento angulares:

Iow, = low
Luego, utilizando I = mr? y @ = v/r, obtenemos

mri01 = Mmry0y

7 0.30
v, = <r_1>vl = (015 2)2.8 m/s = 5.6 m/s
» .

Cuando se acorta la distancia radial, la pelota se acelera.

Ejercicio de refuerzo. Examinemos la situacién de este ejemplo en términos de trabajo
y energia. Si la rapidez inicial es la misma y la fuerza de traccién vertical es 7.8 N, ;qué
rapidez final tendra la pelota de 0.10 kg?

El ejemplo 8.17 deberia ayudarnos a entender la ley de Kepler de areas iguales (ca-
pitulo 7) desde otro punto de vista. La cantidad de movimiento angular de un planeta
se conserva aproximadamente, ignorando el débil momento de fuerza gravitacional
de otros planetas. (La fuerza gravitacional del Sol sobre un planeta produce poco o
ningtin momento de fuerza sobre él. ;Por qué?) Por lo tanto, cuando un planeta esta
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mads cerca del Sol en su 6rbita eliptica, tiene un menor brazo de palanca y su rapidez es
mayor, por la conservacién de la cantidad de movimiento angular. [Este es el funda-
mento de la segunda ley de Kepler (ley de areas), seccién 7.6.] Asimismo, cuando la al-
tura de un satélite en 6rbita varia durante el curso de una 6rbita eliptica en torno a un
planeta, el satélite se acelera o se frena por el mismo principio.

Cantidad de movimiento angular en la vida real

En la vfigura 8.28a se muestra una demostracién muy utilizada de la conservacion de
la cantidad de movimiento angular. Un individuo sentado en un banco giratorio sos-
tiene pesas con los brazos extendidos y se le pone a girar lentamente. Alguien mas de-
be proporcionar un momento de fuerza exterior que inicie esta rotacién, porque el
individuo en el banco no puede iniciar el movimiento por si mismo. (;Por qué no?)
Una vez que esta girando, si acerca sus brazos al cuerpo, aumenta la rapidez angular y
gira con mucho mayor rapidez. Si vuelve a extender los brazos, nuevamente desacele-
rard. ;Puede el lector explicar este fendmeno?

Si L es constante, ;qué sucede con w cuando I se reduce disminuyendo r? La rapidez
angular debe aumentar para compensar la reduccién de I y mantener L constante. Los
patinadores en hielo giran con gran velocidad acercando sus brazos al eje de su cuerpo
para reducir su momento de inercia (figura 8.28b). De forma similar, un clavadista gira
durante un clavado alto acercando el tronco del cuerpo a sus extremidades, con lo que
reduce considerablemente su momento de inercia. Las enormes rapideces del viento en
los tornados y huracanes representan otro ejemplo del mismo efecto (figura 8.28c).

La cantidad de movimiento angular también es importante en los saltos de patinaje
artistico, en los cuales el patinador gira en el aire, como en un triple axel o un triple lutz.
Un momento de fuerza que se aplica al saltar imparte al patinador cantidad de mo-
vimiento angular, y los brazos y piernas se acercan al eje del cuerpo para reducir el
momento de inercia y aumentar la rapidez angular, para asi efectuar varios giros durante
el salto. Para aterrizar con menor rapidez angular, el patinador extiende los brazos y la
pierna que no tocara el hielo. Quizés el lector se haya fijado en que casi todos estos ate-
rrizajes siguen una trayectoria curva, la cual permite al patinador recuperar el control.

Exploracién 1.5 Conservacién de la
cantidad de movimiento angular

< FIGURA 8.28 Cambio en el momento de inercia

a) Girando lentamente con masas en los brazos extendidos,
el momento de inercia de este individuo es relativamente
grande. (Las masas estan lejos del eje de rotacién.) El hom-
bre esta aislado: no actiian sobre €l momentos de fuerza
externos (si despreciamos la friccién), asi que se conserva
su cantidad de movimiento angular, L = Iw. Cuando junta
los brazos al cuerpo, disminuye su momento de inercia.
(¢Por qué?) En consecuencia, w debe aumentar, y el giro

se hace vertiginoso. b) Los patinadores en hielo modifican
su momento de inercia para incrementar w al girar.

¢) El mismo principio ayuda a explicar la violencia de

los vientos que giran en torno al centro de un huracan.

Al precipitarse aire hacia el centro de la tormenta, donde
la presién es baja, su velocidad de rotaciéon debe aumentar
Ppara que se conserve la cantidad de movimiento angular.
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a) Brazos extendidos
(no esta a escala)

-

-

b) Brazos sobre

la cabeza

A FIGURA 8.29 Modelo de un

patinador Cambios en el momento

de inercia y en el giro. Véase el

ejemplo 8.18.

Ejemplo 8.18 Un patinador como modelo

Por lo general, las situaciones de la vida real son complejas, pero algunas se pueden ana-
lizar usando modelos simples. En la «figura 8.29 se ilustra un modelo para analizar el gi-
ro de un patinador, empleando un cilindro y dos varillas para representarlo. En el inciso
a el patinador inicia el giro con los “brazos” extendidos; mientras que en el inciso b los
“brazos” estan sobre la cabeza para lograr un giro mas rapido por la conservacién de la
cantidad de movimiento angular. Si la rapidez de giro inicial es 1 revolucién por 1.5 s,
¢cudl serd la rapidez angular cuando los brazos estdn pegados al cuerpo?

Razonamiento. El cuerpo y los brazos de un patinador se representan con un cilindro y
unas varillas, de manera que conozcamos los momentos de inercia (figura 8.20). Hay que
dar atencion especial al hecho de encontrar el momento de inercia de los brazos alrededor
del eje de rotacién (a través del cilindro). Esto puede hacerse aplicando el teorema del eje
paralelo (ecuacién 8.8).

Si se conserva la cantidad de movimiento angular, L = L, o o = I,w,, conociendo la
rapidez angular inicial y dadas las cantidades para evaluar los momentos de inercia (fi-
gura 8.29), es posible determinar la rapidez angular final.

Solucion. Se listan los datos (véase la figura 8.29):
Dado: w, = (1rev/15s)(27 rad/rev) = 42rad/s Encuentre: » (rapidez angular final)

M. = 75 kg (el cilindro o el cuerpo)

M, = 5.0 kg (una varilla o un brazo)
R =20cm = 020m
L =80cm = 0.80 m

Momento de inercia (a partir de la figura 8.20).
cilindro: I, = %MCR2 varilla: I, = %MrL2
Primero calculemos los momentos de inercia del sistema utilizando el teorema del eje pa-
ralelo, I = Iy + Md? (ecuacién 8.8).
Antes: El I del cilindro es una recta hacia delante (figura 8.20e):
I = IMR?* = (75 kg)(0.20 m)? = 1.5kg-m?

2

Refiriendo el momento de inercia de una varilla horizontal (figura 8.29a) al eje de rota-
cién del cilindro mediante el teorema del eje paralelo:
Ir = Icm(vari].la) + Md2

= %MrL2 + M,(R + L/2)* donde el eje paralelo a través del CM de la varilla es una dis-

tancia de R + L/2 a partir del eje de rotacién.

= %(5.0 kg)(0.80 m)* + (5.0kg)(0.20 m + 0.40 m)? = 2.1 kg -m?
Ademés, I, = I. + 2I, = 1.5kg-m? + 2(2.1 kg-m?) = 5.7 kg - m?
Después: En la figura 8.29b, al tratar la masa de un brazo como si su centro de masa aho-
ra estuviera a s6lo unos 20 cm del eje de rotacion, el momento de inercia de cada brazo es
I = M,R? (figura 8.20b), e

I =1 +2(MR? = 1.5kg-m* + 2(5.0 kg - m?)(0.20 m)* = 1.9 kg m?

Entonces, con la conservacién de la cantidad de movimiento angular, L = L, o I = I,w, y

I 5.7 kg -m?
o=|+|o,=|——]@2rad/s) = 13rad/s
I, 19 kg m

De manera que la rapidez angular se incrementa por un factor de 3.

Ejercicio de refuerzo. Suponga que un patinador con el 75% de la masa del patinador del
ejercicio realiza un giro. ;Cual seria la rapidez de giro w en este caso? (Considere que to-
das las masas se reducen al 75%.)

La cantidad de movimiento angular, L, es un vector, y cuando se conserva o es
constante, no deben cambiar su magnitud ni su direccion. Asi, cuando no actdan mo-
mentos de fuerza externos, la direccién de L es fija en el espacio. Este es el principio en
que se basa la precision de los pases en ftitbol americano, asi como el movimiento de
una brajula giroscépica (»figura 8.30). En fatbol americano, el balén generalmente se
lanza con una espiral. Este giro, o accién giroscopica, estabiliza el eje de rotacién del
balén en la direccion del movimiento. Asimismo, el acanalado del canén de un rifle
imparte un giro a las balas, con la finalidad de aumentar su estabilidad direccional.

En la brijula, el vector L de un giroscopio en rotacién se ajusta a una direccién dada
(generalmente el norte). En ausencia de momentos de fuerza externos, no cambia la di-
reccién de la brijula, aunque su portador (un avién o barco, por ejemplo) cambie de
direccién. Quizas el lector haya jugado con un giroscopio de juguete que se pone a girar
y se coloca sobre un pedestal. Cuando esta “dormido”, el giroscopio se mantiene ergui-
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> FIGURA 8.30 Direccién constante Eje
de la cantidad de movimiento vertical
angular Cuando se conserva la :
cantidad de movimiento angular,

su direccién permanece constante

en el espacio. a) Este principio

se observa al lanzar un balén.

b) También hay accién giroscopica

en un giroscopio: una rueda giratoria
montada universalmente en anillos
de modo que pueda girar libremente
en torno a cualquier eje. Cuando la
montura se mueve, la rueda mantiene
su direccién. Este es el principio de

la brjula giroscépica.

Eje
horizontal
b

do durante algtin tiempo, con su vector de cantidad de movimiento angular fijo en el
espacio. El centro de gravedad del giroscopio estd en el eje de rotacion, asi que no hay
un momento de fuerza neto debido al peso.

Sin embargo, a final de cuentas el giroscopio pierde aceleracién debido a la friccion, y
esto hace que L se incline. Al observar este movimiento, es posible que el lector haya no-
tado cémo el eje de rotacién da vueltas (en un movimiento llamado precesién) en torno al
eje vertical. Da vueltas inclinado, por decirlo de alguna manera (figura 8.30b). Por la pre-
cesion del giroscopio, el vector de cantidad de movimiento angular L ya no es constante
en cuanto a direccién, lo que indica que un momento de fuerza esta actuando para produ-
cir un cambio (AL) con el tiempo. Como se aprecia en la figura, el momento de fuerza
surge del componente vertical del peso, porque el centro de gravedad ya no esta directa-
mente arriba del punto de apoyo o en el eje vertical de rotacién. El momento de fuerza
instantaneo es tal que el eje del giroscopio se mueve, o “precesa”, en torno al eje vertical.

De forma similar, el eje de rotacién de la Tierra experimenta precesién. Dicho eje
tiene una inclinacién de 23.5° con respecto a una linea perpendicular al plano de su 6r-
bita en torno al Sol; el eje “precesa” en torno a esta linea (vfigura 8.31). La precesion se
debe a pequefios momentos de fuerza gravitacionales que el Sol y la Luna ejercen so-
bre la Tierra.

El periodo de precesién del eje terrestre es de aproximadamente 26 000 afios, asi
que la precesién no tiene un efecto cotidiano muy perceptible. No obstante, si tiene un
interesante efecto a largo plazo. Polaris no siempre serd (ni siempre ha sido) la Estrella
Polar, es decir, la estrella hacia la que apunta el eje de rotaciéon de la Tierra. Hace unos
5000 afnos, Alfa Draconis era la Estrella Polar, y dentro de 5000 afos lo sera Alfa Cefei-
da, que estad a una distancia angular de unos 68° de Polaris en el circulo descrito por la
precesion del eje terrestre.

< FIGURA 8.31 Precision

Un momento de fuerza externo
origina un cambio de cantidad de
movimiento angular. a) En un
giroscopio, el cambio es direccional,
y el eje de rotacion experimenta
precesion con una aceleracién

# Polaris

angular w;, en torno a una linea
vertical. (El momento de fuerza
debido al peso apuntaria hacia
afuera de la pagina en este dibujo,
lo mismo que AL.) Aunque hay un
momento de fuerza que haria que el
giroscopio estatico se desplomara,
un giroscopio en rotaciéon no se cae.
b) Asimismo, el eje de la Tierra tiene
precesién debido a momentos de
fuerza gravitacionales producidos
por el Sol y la Luna. No notamos
este movimiento porque su periodo
de precesion es de unos 26 000 anos.

a)
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V FIGURA 8.32 Diferentes rotores
Véase la descripcion en el texto.

Hay otros efectos de momento de fuerza que actiian a largo plazo sobre la Tierra y
la Luna. ;Sabia usted que la rapidez de rotacién diaria de la Tierra esta disminuyendo,
por lo cual los dias son cada vez mas largos? ;Sabia que la Luna se esté alejando de la
Tierra? Esto se debe primordialmente a la friccion de las mareas ocednicas, que produ-
ce un momento de fuerza. El resultado es que la cantidad de movimiento angular de
giro de la Tierra y, por ende, su rapidez de rotacion, esta cambiando. Esta desacelera-
cién de la rotacion hara que este siglo sea unos 25 segundos mds largo que el anterior.

Dicha desaceleracion, sin embargo, es un valor promedio. Ocasionalmente, la ro-
tacion de la Tierra se acelera durante periodos relativamente corto. Se cree que ello
tiene que ver con la inercia rotacional de la capa liquida del ntcleo terrestre. (Véase
la seccién A fondo 13.1 de la pagina 450.)

El momento de fuerza de las mareas se debe principalmente a la atraccién gravita-
cional de la Luna, que es la causa fundamental de las mareas oceanicas. Este momento
de fuerza es interno respecto al sistema Tierra-Luna, y se conserva la cantidad de movi-
miento angular total de ese sistema. Como la Tierra esta perdiendo cantidad de mo-
vimiento angular, la Luna debe estar ganando cantidad de movimiento angular para
que el total del sistema se mantenga constante. La Tierra pierde cantidad de movi-
miento angular de rotacién; en tanto que la Luna gana cantidad de movimiento angu-
lar orbital. Por ello, la Luna se aleja poco a poco de la Tierra y disminuye su rapidez
orbital. Tal alejamiento es de aproximadamente 4 cm por afio. Por lo tanto, la Luna
describe una espiral que se ensancha lentamente.

Por dltimo, un ejemplo comtn donde la cantidad de movimiento angular es una
consideracion importante es el helicoptero. ;Qué sucederia si un helicéptero solo
tuviera un rotor? Puesto que el motor que genera el momento de fuerza es interno,
la cantidad de movimiento angular se conserva. Inicialmente, L. = 0; por lo tanto,
para conservar la cantidad de movimiento angular total del sistema (rotor mas fuse-
laje), las cantidades de movimiento angulares individuales del rotor y el fuselaje de-
berian tener direcciones opuestas para cancelarse. Al despegar, el rotor giraria en un
sentido y el fuselaje del helicoptero giraria en el otro, lo cual es algo nada deseable.

Para que no se presente esta situacién, los helicépteros tienen dos rotores. Los he-
licopteros grandes tienen dos rotores traslapantes (vfigura 8.32a). Las cantidades de
movimiento angulares de los rotores, que giran en direcciones opuestas, se cancelan,
asi que el fuselaje no tiene que girar para cancelar la cantidad de movimiento angular.
Los rotores estdn a diferente altura para que sus aspas no choquen.

Los helicépteros pequefios con un solo rotor en la parte superior tienen un peque-
fio rotor en la cola para producir un momento de fuerza opuesto (figura 8.32b). Este ro-
tor genera un empuje como el de una hélice y el momento de fuerza correspondiente
compensa el momento de fuerza producido por el rotor principal. Ademas, el rotor de
cola también ayuda a guiar la nave y, al aumentar o reducir su empuje, hace que el he-
licoptero gire en un sentido o en el otro.

Rotor Rotor
delantero, trasero

a) SL=0 (vista superior)

Direccion del rotor
principal

Fuerza de reaccion del rotor
principal sobre el fuselaje

Empuje
del rotor de cola
sobre el helicoptero

b)
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En el movimiento traslacional puro, todas las particulas de
un cuerpo rigido tienen la misma velocidad instantédnea.

Traslacional +

v

v

En el movimiento rotacional puro (en torno a un eje fijo),
todas las particulas de un cuerpo rigido tienen la misma velo-
cidad angular instantdnea.

Rotacional =

v=rw

v =rw
Condicién para rodar sin resbalar:
Uem = T@ (8.1)

(os=r6 o ey = Ta)

Rodante

Punto de
contacto

El momento de fuerza (7), que es el andlogo rotacional de la
fuerza, es el producto de una fuerza y un brazo de palanca.
Momento de fuerza (magnitud):

7T=r,F=rFsenf (8.2)

(La direccién esti dada por la regla de la mano derecha)

El equilibrio mecanico requiere que la fuerza neta, o la su-
matoria de las fuerzas, sea cero (equilibrio traslacional); y que
el momento de fuerza neto, o sumatoria de los momentos de
fuerza, sea cero (equilibrio rotacional).

Condiciones para equilibrio mecdnico traslacional
y rotacional, respectivamente:

Fneta = Efl =0 y :r)neto = E?z =0 (83)

Un objeto estd en equilibrio estable si su centro de gravedad,
después de un pequeno desplazamiento, queda arriba y den-
tro de la base de soporte original del objeto.

Balanceado en una
base de soporte
ancha restaurador

Una perturbacion produce
un momento de fuerza

a) Equilibrio estable

El momento de inercia (I) es el andlogo rotacional de la masa
y esta dado por

I = Smg? (8.6)
Forma rotacional de la segunda ley de Newton:
Treto = 1 (8.7)
Teorema de ejes paralelos:
I = Iy + Md® (8.8)

I =gy +Md?
Trabajo rotacional:
W =10 (8.9)
Potencia rotacional:
P=1r0w (8.10)

Teorema trabajo-energia (rotacional):
Wiero = 310? — 21w? = AK (8.11)
Energia cinética rotacional:
K = 11w (8.12)
Energia cinética de un objeto rodante (sin deslizamiento):
K = floyw? + 1Moy (8.13)

La cantidad de movimiento angular: el producto de un bra-
z0 de palanca y una cantidad de movimiento lineal, o de un
momento de inercia y una velocidad angular.

Cantidad de movimiento angular de una particula en movimien-
to circular magnitud):

L=r,p=mr,v= mriw (8.14)
Cantidad de movimiento angular de un cuerpo rigido:
L=I® (8.16)

Momento de fuerza como cambio de cantidad de movimiento
angular (forma de magnitud:

= ! 8.17
Tneto — At ( . )
Conservacion de la cantidad de movimiento angular
(con 7, = 0):
L=L, o Iw=Ilwo, (8.18)

La cantidad de movimiento angular se conserva en la ausen-
cia de un momento de fuerza externo y no equilibrado.
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Ejercicios

Los ejercicios designados OM son preguntas de opcion miiltiple; los
ejercicios integrados. A lo largo del texto, muchas secciones de ejercicios incluirdn ejercicios “apareados”. Estos
pares de ejercicios, que se identifican con nimeros subrayados, pretenden ayudar al lector a resolver problemas
y aprender. El primer ejercicio de cada pareja (el de niimero par) se resuelve en la Guia de estudio, que puede con-
sultarse si se necesita ayuda para resolverlo. EIl sequndo ejercicio (de miimero impar) es similar, y su respuesta
se da al final del libro.

12.

OM En el movimiento rotacional puro de un cuerpo rigi-
do, a) todas las particulas del cuerpo tienen la misma ve-
locidad angular, b) todas las particulas del cuerpo tienen
la misma velocidad tangencial, c) la aceleracion siempre
es cero o d) siempre hay dos ejes de rotacién simultdneos.

OM Para un objeto s6lo con movimiento de rotacion, to-
das sus particulas tienen la misma a) velocidad instanta-
nea, b) velocidad promedio, c¢) distancia a partir del eje
de rotacion, d) velocidad angular instanténea.

OM La condicién para rodar sin resbalar es a) a, = r?,
b) vem = rw, ¢) F = maod) a. = v*/r.

OM Un objeto rodante a) tiene un eje de rotacion a través
del eje de simetria, b) tiene una velocidad cero en el pun-
to o linea de contacto, ¢) se deslizara si s = 16, d) todas las
opciones anteriores son verdaderas.

OM Para los neumaticos de un automévil que se derra-
Pa, a) vem = 1w, b) vy > rw, €) oy < rw, d) ninguna de
las anteriores.

Suponga que un compaiiero de su clase de fisica dice
que un cuerpo rigido puede tener movimiento traslacio-
nal y rotacional al mismo tiempo. ;Estaria de acuerdo?
Si lo esta, dé un ejemplo.

(Qué sucederia si la rapidez tangencial v de un ci-
lindro rodante fuera menor que r®? ;v puede ser mayor
que rw? Explique.

Sila parte mas alta de un neumético se mueve con ra-
pidez v, ;qué marcara el velocimetro del automévil?

® Una rueda va rodando uniformemente en un plano,
sin resbalar. Un poco de fango sale despedido de la rue-
da en la posicién correspondiente las 9:00 en un reloj
(parte trasera de la rueda). Describa el movimiento sub-
secuente del fango.

® Una cuerda pasa sobre una polea circular de 6.5 cm de
radio. Si la polea da cuatro vueltas sin que la cuerda res-
bale, ;qué longitud de cuerda pasara por la polea?

@ Una rueda da cinco vueltas sobre una superficie hori-
zontal sin resbalar. Si el centro de la rueda avanza 3.2 m,
(qué radio tendra la rueda?

0@ Una bola de bolos con un radio de 15.0 cm se desplaza
por la pista de manera que su centro de masa se mueve a
3.60 m/s. El jugador estima que realiza 7.50 revoluciones
completas en 2.00 segundos. ;Estd rodando sin deslizarse?
Pruebe su respuesta suponiendo que la observacion réa-
pida del jugador limita las respuestas a dos cifras signi-
ficativas.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

son preguntas conceptuales; y los El son

0@ Una esfera con 15 cm de radio rueda sobre una super-
ficie horizontal y la rapidez traslacional del centro de
masa es 0.25 m/s. Calcule la rapidez angular en torno al
centro de masa si la esfera rueda sin resbalar.

El @@ 2) Cuando un disco rueda sin resbalar, jel produc-
to rw deberia ser 1) mayor que, 2) igual a 0 3) menor que
vewm? b) Un disco de 0.15 m de radio gira 270° mientras
avanza 0.71 m. ;El disco rueda sin resbalar? Justifique su
respuesta.

@00 Una pelota de bocce (o bochas, un deporte popular
en Italia) con un didmetro de 6.00 cm rueda sin deslizar-
se sobre un césped horizontal. Tiene una rapidez angu-
lar inicial de 2.35 rad/s y llega al reposo después de
2.50 m. Suponiendo que la deceleracién es constante,
a) determine la magnitud de su deceleracion angular
y b) la magnitud de la aceleracién tangencial méxima
de la superficie de la pelota (indique dénde se localiza
esa parte).

@00 Un cilindro de 20 cm de didmetro rueda con rapi-
dez angular de 0.50 rad/s sobre una superficie hori-
zontal. Si el cilindro experimenta una aceleracién tan-
gencial uniforme de 0.018 m/s® sin resbalar hasta que
su rapidez angular sea de 1.25 rad/s, ;cudntas revolu-
ciones completas habrd efectuado el cilindro durante
su aceleracién?

OM Es posible tener un momento de fuerza neto cuando
a) todas las fuerzas acttian a través del eje de rotacién,
b) ZF, = 0, ¢) un objeto esta en equilibrio rotacional o
d) un objeto permanece en equilibrio inestable.

OM Si un objeto en equilibrio inestable se desplaza un
poco, a) su energia potencial disminuird, b) el centro de
gravedad estard directamente arriba del eje de rotacién,
c) no se efectuard trabajo gravitacional o d) entrard en
equilibrio estable.

OM Un momento de fuerza tiene las mismas unidades
que a) el trabajo, b) la fuerza, c) la velocidad angular o
d) la aceleracién angular.

Si levantamos objetos usando la espalda en vez de
las piernas, es comun que nos duela la espalda. ;Por
qué?

Una gimnasta sobre la barra de equilibrio se agacha
cuando siente que esta perdiendo el equilibrio. ;Por
qué?

Explique los actos de equilibrismo de la »figura 8.33.
;Dénde estd el centro de gravedad?



A FIGURA 8.33 Actos de equilibrismo Véase el ejercicio 22.
Izquierda: un mondadientes (palillo) en el borde de un vaso
sostiene un tenedor y una cuchara. Derecha: una ave de
juguete se equilibra en su pico.

23. “Reventar la rueda” es una acrobacia de motocicleta,
en la cual el extremo frontal de la moto se eleva del piso en
una salida rapida, y permanece en el aire durante cierta
distancia. Explique la fisica implicada en esta acrobacia.

24. En los casos tanto del equilibrio estable como del ines-
table, un pequeno desplazamiento del centro de gravedad
implica tener que realizar trabajo gravitacional. (Véase las
pelotas y los recipientes céncavos en la figura 8.11.) Sin
embargo, hay otro tipo de equilibrio donde el desplaza-
miento del centro de masa no implica trabajo gravitacio-
nal. Se le conoce como equilibrio neutro, en el que, en
esencia, el centro de gravedad desplazado se mueve en li-
nea recta. Dé un ejemplo de un objeto en equilibrio neutro.

25. @ En la figura 8.4a, si el brazo forma un dngulo de 37°
con la horizontal y se requiere un momento de fuerza
de 18 m - N, ;qué fuerza debe generar el biceps?

26. @ El tapon de vaciado del aceite en el motor de un auto-
mévil se apreté con un momento de fuerza de 25 m - N. Si
se emplea una llave inglesa para cambiar el aceite, ;cudl
serd la fuerza minima necesaria para aflojar el tapén?

27. @ En el ejercicio 26, a causa del limitado espacio para tra-
bajar, usted debe arrastrarse debajo del automévil. Por lo
tanto, no es posible aplicar la fuerza de forma perpendicu-
lar con respecto a la longitud de la llave inglesa. Si la fuer-
za aplicada forma un dngulo de 30° con respecto al mango
de la llave inglesa, ;cudl serd la fuerza que se requiere pa-
ra aflojar el tapén de vaciado del aceite?

28. @ ;Cudntas posiciones de equilibrio estable e inestable
distintas tiene un cubo? Considere cada superficie, arista
y esquina como una posicién diferente.

29. El @ Dos nifios estdn en extremos opuestos de un subibaja
uniforme de masa insignificante. 2) ;Puede equilibrarse el
balancin si los ninos tienen diferente masa? ;Cémo? b) Si
un nifno de 35 kg estd a 2.0 m del punto pivote (o fulcro),
;a qué distancia de ese punto, al otro lado, tendra que sen-
tarse su amiga de 30 kg para equilibrar el subibaja?

30. @ Una regla uniforme de un metro que pivotea sobre su
punto medio, como en el ejemplo 8.5, tiene una masa de
100 g colgada de la posicién de 25.0 cm. a) ;En qué posicién
deberia colgarse una masa de 75.0 g para que el sistema es-
té en equilibrio? b) ;Qué masa tendria que colgarse de la
posicién de 90.0 cm para que el sistema esté en equilibrio?

31.

32.

33.
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@@ Demuestre que la regla de un metro equilibrada del
ejemplo 8.5 estd en equilibrio rotacional estatico en torno
a un eje horizontal que pasa por la marca de 100 cm de la
escala.

El @@ Se permite que las lineas telefénicas y eléctricas
cuelguen entre postes, para que la tensién no sea excesiva
cuando algo golpee un cable o se pose en él. a) ;Las lineas
podrian ser perfectamente horizontales? ; Por qué? b) Su-
ponga que un cable se estira hasta quedar casi perfecta-
mente horizontal entre dos postes separados 30 m. Si un
péjaro de 0.25 kg se posa en el punto medio del cable y és-
te baja 1.0 cm, jqué tensién hay en el cable?

®e@ En la vfigura 8.34, ;qué fuerza F,, genera el musculo
deltoides para sostener el brazo extendido, si la masa del
brazo es de 3.0 kg? (F; es la fuerza de la articulacién sobre
el hueso del brazo, el hiimero.)

18 cm I mg

26 cm I

A FIGURA 8.34 Brazo en equilibrio estatico Véase
el ejercicio 33.

34.

35.

36.

@@ En la figura 8.4b, determine la fuerza que ejerce el
biceps, suponiendo que la mano esta sosteniendo una
pelota con una masa de 5.00 kg. Suponga que la masa
del antebrazo es de 8.50 kg con su centro de masa lo-
calizado a 20.0 cm de la articulacién del codo (el punto
negro en la figura). Suponga también que el centro de
masa de la pelota en la mano se localiza a 30.0 cm del
codo. (La insercién del musculo esta a 4.00 cm del codo,
ejemplo 8.2.)

@@ Una bola de bolos (con masa de 7.00 kg y radio de
17.0 cm) se avienta tan rdpido que derrapa sin rodar por
la pista (al menos por un momento). Suponga que la
bola derrapa hacia la derecha y que el coeficiente de fric-
cién de deslizamiento entre la bola y la superficie del
carril es 0.400. a) ;Cudl ser4 la direccién del momento de
fuerza ejercido por la friccién sobre la bola alrededor del
centro de masa de ésta? b) Determine la magnitud de es-
te momento de fuerza (de nuevo alrededor del centro de
masa de la bola).

@@ Una variacién de la tracciéon Russell (vfigura 8.35)
sostiene la pantorrilla enyesada. Suponga que la pierna y
el yeso tienen una masa combinada de 15.0 kg y que 1,
es 4.50 kg. a) ;Qué fuerza de reaccion ejercen los muscu-
los de la pierna contra la traccién? b) ;Qué valor debe te-
ner 11, para mantener horizontal la pierna?
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A FIGURA 8.35 Traccion estatica Véase el ejercicio 36.

37. @@ Al realizar su terapia fisica para una rodilla lesiona-
da, una persona levanta una bota de 5.0 kg como se ilus-
tra en la v figura 8.36. Calcule el momento de fuerza que
ejerce la bota para cada posicién mostrada.

m :T:':._O kg <
A FIGURA 8.36 Momento de fuerza en una terapia fisica
Véase el ejercicio 37.

38. @@ Un artista quiere construir el mévil de pajaros y abejas
que se muestra en la v figura 8.37. Si la masa de la abeja
de laizquierda es de 0.10 kg y cada hilo vertical tiene una
longitud de 30 cm, ;qué masa tendran la otra abeja y los
péjaros? (Ignore las masas de las barras y las cuerdas.)

15 cm

15 cm

msy
40 cm 20 cm

my =0.10 kg )

A FIGURA 8.37 P3jaros y abejas Véase el ejercicio 38.

39. Elee La ubicacion del centro de gravedad de una persona
en relacién con su altura se determina utilizando el mode-
lo de la »figura 8.38. Las bésculas se ajustaron inicialmente
a cero con la tabla sola. 2) ;Usted esperaria que la ubicaciéon
del centro de masa estuviera 1) a la mitad del camino entre
las basculas, 2) hacia la bascula situada debajo de la cabeza
de la persona o 3) hacia la béascula situada debajo de los
pies de la persona? ;Por qué? b) Localice el centro de grave-
dad de la persona en relacién con la dimensién horizontal.

T cG N
LN XL N

A FIGURA 8.38 Localizacion del centro de gravedad
Véase el ejercicio 39.

40. @@ 1) ;Cudntos libros uniformes idénticos de 25.0 cm de
ancho pueden apilarse en una superficie horizontal sin
que el montén se desplome, si cada libro sucesivo se des-
plaza 3.00 cm a lo ancho, en relacién con el libro inmedia-
to inferior? b) Si los libros tienen 5.00 cm de espesor, ;a
qué altura sobre la superficie horizontal estara el centro
de masa del montén?

41. @@ Si cuatro reglas de un metro cada una se apilan en una
mesa con 10, 15, 30 y 50 cm, respectivamente, proyectan-
dose maés alld del borde de la mesa, como se muestra en la
v figura 8.39, ;la regla de la parte superior permanecera
sobre la mesa?

0 50 cm

0 70 cm

0 85 cm

0 90 cm

100 cm

A FIGURA 8.39 ;Se caeran? Véase el ejercicio 41.

42. @@ Un cubo sélido y uniforme de 10.0 kg, de 0.500 m por
lado, descansa en una superficie horizontal. ;Qué trabajo
minimo se requiere para colocarlo en una posicion de
equilibrio inestable?

43. @@ Parado en una tabla larga que descansa sobre un an-
damio, un hombre de 70 kg pinta un muro, como se ob-
serva en la v figura 8.40. Sila masa de la tabla es de 15 kg,
;qué tan cerca de un extremo puede pararse el pintor sin
que la tabla se incline?

g

=\ o

ﬁ" b
0

i<—1.5 m—s»| 2bm

1.5m_.|

1] |

A FIGURA 8.40 iNo tan lejos! Véanse los ejercicios 43 y 46.



44.

@@ Una masa estd suspendida por dos cuerdas, como se
ilustra en la v figura 8.41. ;Cuadles son las tensiones en las
cuerdas?

46.

47.

48.

49.

50.

51.

cuerda 1

*
Y_Lcuerda 2

< FIGURA 8.41 Una
gran tensiéon Véanse
los ejercicios 44 y 45.

1.5 kg

@0 Si la cuerda sostenida de la pared vertical en la figura
8.41 estuviera en posicion horizontal (en vez de formar un
angulo de 30°), ;cudles serfan las tensiones en las cuerdas?

@00 Suponga que la tabla de la figura 8.40 pende de
cuerdas verticales sujetas a cada extremo, en vez de des-
cansar sobre un andamio. Si el pintor se para a 1.5 m de
un extremo de la tabla, ;qué tension habrd en cada cuer-
da? (Busque datos adicionales en el ejercicio 43.)

El @®@@ En un acto circense, una tabla uniforme (con lon-
gitud de 3.00 m y masa de 35.0 kg) estd suspendida de
una cuerda por un extremo, mientras que el otro extremo
descansa sobre un pilar de concreto. Cuando un payaso
(con masa de 75.0 kg) se sube a la tabla en su punto me-
dio, ésta se inclina de manera que el extremo de la cuer-
da queda a 30° con respecto a la horizontal y la cuerda
permanece vertical. 2) ;En qué situacién serd mayor la
tensién de la cuerda? 1) la tabla sin el payaso encima,
2) la tabla con el payaso encima o 3) no es posible deter-
minarlo a partir de los datos. b) Calcule la fuerza ejerci-
da por la cuerda en ambas situaciones.

El @®@ Las fuerzas que actiian sobre Einstein y la bicicleta
(figura 2 de la seccién A fondo en la p. 271) son el peso total
de Einstein y la bicicleta (1) en el centro de gravedad del
sistema, la fuerza normal (N) gjercida por el pavimento y la
fuerza de friccién estética (f;) que actiia sobre los neumati-
cos debido al pavimento. a) Para que Einstein mantenga el
equilibrio, ;la tangente del angulo de inclinacién 6 (tan 6)
deberia ser 1) mayor que, 2) igual a o 3) menor que f,/N?
b) El angulo 6 de la figura es de unos 11°. Calcule el coefi-
ciente minimo de friccion estdtica (us) entre las ruedas y
el pavimento? c) Si el radio del circulo es de 6.5 m, ;qué ra-
pidez méxima tendria la bicicleta? [Sugerencia: el momento
de fuerza neto en torno al centro de gravedad debe ser cero
para que haya equilibrio rotacional.]

OM El momento de inercia de un cuerpo rigido a) depen-
de del eje de rotacién, b) no puede ser cero, c) depende de
la distribucién de masa o d) todo lo anterior.

OM ;Qué de lo siguiente describe mejor la cantidad fisi-
ca llamada momento de fuerza? 2) Analogo rotacional de
la fuerza, b) energia debida a la rotacién, c) tasa de cam-
bio con respecto al tiempo de la cantidad de movimiento
lineal o d) fuerza tangente a un circulo.

OM En general, el momento de inercia es mayor cuando
a) mas masa estd mas lejos del eje de rotacion, b) mas masa es-
td mas cerca del eje de rotacién, c) en realidad esto no importa.

52.

53.

54.

55.

56.

57.

60.
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OM El momento de inercia en torno a un eje paralelo al
eje que pasa por el centro de masa depende de a) la masa
del cuerpo rigido, b) la distancia entre los ejes, ¢) el mo-
mento de inercia en torno al eje que pasa por el centro de
masa o d) todas las opciones anteriores.

a) ¢El momento de inercia de un cuerpo rigido de-
pende en algun sentido del centro de masa del cuerpo?
Explique. b) ;El momento de inercia de un cuerpo podria
tener un valor negativo? Si su respuesta es afirmativa,
explique el significado.

;Por qué el momento de inercia de un cuerpo rigido
tiene diferentes valores para diferentes ejes de rotacién?
:Qué significa esto fisicamente?

Cuando se imparte rdpidamente un momento de
fuerza (giro) a un huevo duro que estd sobre una mesa,
el huevo se levanta y gira sobre un extremo como un
trompo. Un huevo crudo no lo hace. ;A qué se debe la
diferencia?

¢Por qué una toalla de papel se desprende mejor de
un rollo si se le da un tirén, que si se tira de ella suave-
mente? ;La cantidad de papel en el rollo influye en los
resultados?

Los equilibristas estan en riesgo continuo de caer
(equilibrio inestable). Por lo general usan una pértiga o
vara larga mientras caminan por la cuerda floja, como se
observa en la imagen de inicio del capitulo. ;Cudl es la fi-
nalidad de la pértiga? (Cuando camina por una via de
tren o por una tabla angosta, quizas usted extienda sus
brazos por la misma razén.)

@ Un momento de fuerza neto de 6.4 m - N actiia sobre
una polea fija de 0.15 kg, en forma de disco sélido, con
radio de 0.075 m. Calcule la aceleracién angular de la
polea.

@ ;Qué momento de fuerza neto se requiere para impar-
tir una aceleracién angular de 20 rad /s a una esfera séli-
da uniforme de 0.20 m de radio y 20 kg?

@ Para el sistema de masa de la vfigura 8.42, calcule el
momento de inercia en torno a) al eje x, b) al eje y y ¢) un
eje que pasa por el origen y es perpendicular a la pagina
(eje z). Desprecie las masas de las varillas que conectan.

2.00 kg y 3.00 kg
3.00m .
0 P 4
1.00 kg
4.00 kg
| 5.00 m I

A FIGURA 8.42 Momentos de inercia en torno a diferentes
ejes Véase el ejercicio 60.
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61.

65.

@ Una regla ligera de un metro se carga con masas de 2.0
y 4.0 kg en las posiciones de 30 y 75 cm, respectivamente.
a) Calcule el momento de inercia en torno a un eje que
pasa por la posicion de 0 ecm. b) Determine el momento
de inercia en torno a un eje que pasa por el centro de ma-
sa del sistema. c) Use el teorema de ejes paralelos para
calcular el momento de inercia en torno a un eje que pasa
por la posicién de 0 cm y compare el resultado con el del
inciso b.

@@ Una rueda de la fortuna de 2000 kg acelera desde el
reposo hasta una rapidez angular de 2.0 rad/s en 12 s.
Considerando la rueda como un disco circular de 30 m
de radio, calcule el momento de fuerza neto sobre ella.

@@ Una esfera uniforme de 15 cm de radio y de 15 kg gi-
ra a 3.0 rad/s en torno a un eje tangente a su superficie.
Entonces, un momento de fuerza constante de 10 m - N
aumenta la rapidez de rotacién a 7.5 rad/s. ;Qué dngulo
gira la esfera mientras estd acelerando?

El @@ Dos objetos de diferente masa estan unidos por
una varilla ligera. a) ;El momento de inercia en torno al
centro de masa es el minimo o el maximo? ;Por qué? b) Si
las dos masas son de 3.0 y 5.0 kg, y la longitud de la vari-
1la es de 2.0 m, calcule los momentos de inercia del siste-
ma en torno a un eje perpendicular a la varilla, que pasa
por el centro de la varilla y por el centro de masa.

@@ Dos masas penden de una polea como se muestra en
la vfigura 8.43 (otra vez la mdquina de Atwood; véase el
capitulo 4, ejercicio 68). La polea tiene una masa de 0.20 kg,
un radio de 0.15 m y un momento de fuerza constante de
0.35m - N debido a la friccién que hay entre ella y su eje
al girar. ;Qué magnitud tiene la aceleracién de las masas
suspendidas si 1y = 0.40 kg y m1, = 0.80 kg? (Desprecie la
masa de la cuerda.)

< FIGURA 8.43 Otravez
la maquina de Atwood
Véase el ejercicio 65.

mag

66.

68.

@@ La puerta de un submarino se disefia de manera que
su placa rectangular gire sobre dos ejes rectangulares, co-
mo se muestra en la v figura 8.44. Cada eje tiene una ma-
sa de 50.0 kg y una longitud de 25.0 cm. La puerta tiene
una masa de 200 kg y mide 50 cm por 1.00 m. Calcule el
momento de inercia de este sistema puerta-ventanilla en-
torno a la linea de bisagras (que se representa con una li-
nea vertical punteada en la figura).

< FIGURA 8.44 Puertade
submarino (no esta a escala)
Véase el ejercicio 66.

g

@@ Para encender su podadora de césped, Julie tira de
una cuerda enrollada en una polea, la cual tiene un mo-
mento de inercia en torno a su eje central de I = 0.550 kg -
my y un radio de 5.00 cm. Hay un momento de fuerza
equivalente debido a la friccién de 7; = 0.430 m - N, que
dificulta el tirén de Julie. Para acelerar la polea a o = 4.55
rad /s?, a) ;qué momento de fuerza necesita aplicar Julie a
la polea? b) ;Cudanta tension debe ejercer la cuerda?

@0 Para el sistema de la vfigura 8.45, m; = 8.0 kg, my =
3.0 kg, 6 = 30° y el radio y la masa de la polea son 0.10 m
y 0.10 kg, respectivamente. 2) ;Qué aceleracion tienen las
masas? (Desprecie la friccion y la masa de la cuerda.) b) Si
la polea tiene un momento de fuerza de friccién constante
de 0.050 m - N cuando el sistema estd en movimiento ;qué
aceleracion tiene las masas? [Sugerencia: aisle las fuerzas.
Las tensiones en las cuerdas son distintas. ; Por qué?]

A FIGURA 8.45 Plano inclinado y polea Véase el ejercicio 68.

69.

70.

@@ Una regla de un metro que pivotea en torno a un eje
horizontal que pasa por la posicién de 0 cm se sostiene en
posicion horizontal y luego se suelta. a) ;Qué aceleracion
tangencial tiene la posiciéon de 100 cm? ;Le sorprende este
resultado? b) ;Qué posicion tiene una aceleracioén tangen-
cial igual a la aceleracién debida a la gravedad?

@@ Se colocan moneditas a cada 10 cm sobre una regla de
un metro. Un extremo de la regla se apoya en una mesa y
el otro se sostiene con el dedo, de manera que la regla esté
horizontal »figura 8.46. Si se quita el dedo, ;qué le sucede-
rd a las monedas?
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A FIGURA 8.46 ¢Dinero rezagado? Véase el ejercicio 70.

71.

e®ee Un cilindro uniforme de 2.0 kg y 0.15 m de radio
pende de dos cuerdas enrolladas en €l (v figura 8.47). Al
bajar el cilindro, las cuerdas se desarrollan. ;Qué acelera-
cién tiene el centro de masa del cilindro? (Desprecie la
masa de las cuerdas.)

T T
< FIGURA 8.47
I “]‘ :: Desenrollado con
o ik a gravedad Véase el
- — ejercicio 71.

72. ®®@ Una sonda espacial planetaria tiene forma cilindri-

ca. Para protegerla del calor en un lado (de los rayos so-
lares), los operadores en la Tierra la ponen en “forma de
asador”, es decir, hacen que gire sobre su largo eje. Para
lograr esto, colocan cuatro pequenios cohetes montados
tangencialmente como se observa en la vfigura 8.48 (la
sonda se ilustra con el frente hacia usted). El objetivo es
hacer que la sonda dé un giro completo cada 30 s, par-
tiendo de rotacién cero. Los operadores quieren lograr
esto encendiendo los cuatro cohetes durante cierto tiem-
po. Cada cohete ejerce una propulsién de 50.0 N. Supon-
ga que la sonda es un cilindro sélido uniforme con un
radio de 2.50 m y una masa de 1000 kg; ignore la masa
del motor de los cohetes. Determine el tiempo que los co-
hetes deben estar encendidos.

1=

A FIGURA 8.48 Sonda espacial en “forma de asador”
Véase el ejercicio 72.

73.

El ®@®@ Una esfera de radio R y masa M baja rodando por
una pendiente de angulo 6. a) Para que la esfera ruede sin
resbalar, ;la tangente del dngulo maximo de la pendiente
(tan 6) debe ser igual a 1) 3 us/2,2) 5 us/2,3) 7 pus/2 04) 9
1s/2? (s es el coeficiente de friccidn estdtica.) b) Si la esfera
es de madera, al igual que la superficie, ;qué angulo maxi-
mo puede tener la pendiente? [Sugerencia: véase la tabla 4.1.]

74.

75.

76.

77.

78.

79.

80.

81.

84.

85.

86.

Ejercicios 293

OM Dado que W = 76, la unidad de trabajo rotacional es
a) watt, b) N - m, ¢) kg - rads/s?, d) N - rad.

OM Una bola de bolos rueda sin resbalar por una super-
ficie horizontal. La bola tiene 2) energia cinética rotacio-
nal, b) energia cinética traslacional, c¢) energia cinética
tanto rotacional como traslacional o d) ni energia cinéti-
ca rotacional ni traslacional.

OM Un cilindro que rueda sobre una superficie horizontal
tiene a) energia cinética de rotacion, b) energia cinética de
traslacion, c) energia cinética de rotacién y de traslacion.

¢Es posible aumentar la energia cinética rotacional
de una rueda sin alterar su energia cinética traslacional?
Explique.

Para aumentar la eficiencia con que sus vehiculos uti-
lizan el combustible, los fabricantes de automéviles quie-
ren reducir al mdximo la energia cinética rotacional y
aumentar al maximo la energia cinética traslacional cuan-
do un coche avanza. Si usted tuviera que disehar ruedas
de cierto didmetro, jcémo las disenaria?

(Qué se requiere para producir un cambio en la ener-
gia cinética rotacional?

® Un momento de fuerza retardante constante de 12 m - N
detiene una rueda rodante de 0.80 m de didmetro en una
distancia de 15 m. ;Cudnto trabajo efectiia el momento de
fuerza?

@ Una persona abre una puerta aplicando una fuerza de
15 N perpendicular a ella, a 0.90 m de las bisagras. La
puerta se abre completamente (a 120°) en 2.0 s. 2) ;Cuanto
trabajo se efectu6? b) ;Qué potencia promedio se gener6?

@ Un momento de fuerza constante de 10 m - N se aplica
a un disco uniforme de 10 kg y 0.20 m de radio. Partien-
do del reposo, ;qué rapidez angular tiene el disco en tor-
no a un eje que pasa por su centro, después de efectuar
dos revoluciones?

@ Una polea de 2.5 kg y 0.15 m de radio pivotea en torno
a un radio que pasa por su centro. ;Qué momento de
fuerza constante se requiere para que la polea alcance
una rapidez angular de 25 rad/s, después de efectuar 3.0
revoluciones, si parte del reposo?

El @ En la figura 8.23, una masa m desciende una distan-
cia vertical desde el reposo. (Desprecie la friccién y la
masa de la cuerda.) a) Por la conservacion de la energia
mecanica, ;la rapidez lineal de la masa en descenso sera
1) mayor, 2) igual o 3) menor que V2gh? ;Por qué? b) Si
m=1.0kg, M =0.30kgyR = 0.15m, ;qué rapidez lineal
tiene la masa después de haber descendido una distancia
vertical de 2.0 m desde el reposo?

@@ Una esfera con radio de 15 cm rueda sobre una super-
ficie horizontal con rapidez angular constante de 10 rad/s.
¢Hasta qué altura en un plano inclinado de 30° subira
rodando la esfera antes de detenerse? (Desprecie las pér-
didas por friccién.)

@0 Estime la razén de la energia cinética de traslacion de la
Tierra en su 6rbita alrededor del Sol, con respecto a la ener-
gla cinética rotacional que realiza en torno a su eje N-S.
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87.

90.

91.

94.

95.

00 Usted desea acelerar un pequeio carrusel desde el
reposo hasta la rapidez de rotacién de un tercio de una
revolucion por segundo empujandolo tangencialmente.
Suponga que el carrusel es un disco con una masa de
250 kg y un radio de 1.50 m. Ignorando la friccién, ;qué
tan fuerte debe empujar tangencialmente para lograr es-
to en 5.00 s? (Utilice métodos de energia y suponga que
usted empuja de manera constante.)

0@ Una varilla delgada de 1.0 m de largo apoyada en un
extremo cae (gira) desde un posiciéon horizontal, partien-
do del reposo y sin friccion. ;Qué rapidez angular tiene
cuando queda vertical? [Sugerencia: considere el centro de
masa y use la conservacion de la energia mecanica.]

00 Una esfera uniforme y un cilindro uniforme con la
misma masa y radio ruedan con la misma velocidad jun-
tos por una superficie horizontal sin deslizarse. Si la esfe-
ra y el cilindro se acercan a un plano inclinado y suben
por él rodando sin deslizarse, jalcanzaran la misma altu-
ra cuando se detengan? Si no, ;qué diferencia porcentual
habra entre sus alturas?

@@ Un aro parte del reposo a una altura de 1.2 m sobre la
base de un plano inclinado y baja rodando bajo la in-
fluencia de la gravedad. ;Qué rapidez lineal tiene el cen-
tro de masa del aro, justo en el momento en que el aro
llega al pie de la pendiente y comienza a rodar por una
superficie horizontal? (Desprecie la friccién.)

@@ Un volante industrial con momento de inercia de 4.25 X
10% kg - m? gira con una rapidez de 7500 rpm. a) ;Cudn-
to trabajo se requiere para detenerlo? b) Si ese trabajo se
efectia uniformemente en 1.5 min, ;qué tanta potencia
se gastara?

@@ Un arco cilindrico, un cilindro y una esfera con el mis-
mo radio y masa se sueltan simultdneamente desde la ci-
ma de un plano inclinado. Utilice la conservacién de la
energia mecdnica para demostrar que la esfera siempre
llega primero a la base con la rapidez mads alta, y el aro
siempre llega tltimo con la rapidez mas baja.

@@ Para los siguientes objetos, todos los cuales ruedan
sin resbalar, determine la energia cinética rotacional en
torno al centro de masa, como porcentaje de la energia ci-
nética total: ) una esfera sélida, b) un casco esférico del-
gado y c) un casco cilindrico delgado.

000 En una secadora de ropa, el tambor cilindrico (con
radio de 50.0 cm y masa de 35.0 kg) gira una vez por se-
gundo. a) Determine su energia cinética rotacional en
torno a su eje central. b) Si parti6 del reposo y alcanzé esa
rapidez en 2.50 s, determine el momento de fuerza neto
promedio sobre el tambor de la secadora.

000 Una esfera de acero baja rodando por una pendien-
te y entra en un rizo de radio R (»figura 8.49a). a) ;Qué
rapidez minima debe tener la parte mas alta del rizo pa-
ra mantenerse en la pista? b) ;A qué altura vertical (h) en
la pendiente, en términos del radio del rizo, debe soltar-
se la esfera para que tenga esa rapidez minima necesaria
en la parte superior del rizo? (Desprecie las pérdidas por
friccién.) ¢) La figura 8.49a muestra el rizo de una mon-
tafia rusa. ;Qué sentiran los pasajeros si el carrito tiene la
rapidez minima en la parte superior del rizo, y si tiene
una rapidez mayor? [Sugerencia: si la rapidez es menor
que la minima, las correas en la cintura y hombros evita-
ran que los pasajeros se salgan.]

96.

97.

98.

99.

100.

101.

< FIGURA 8.49 Rizar
el rizo y rapidez
rotacional Véase

el ejercicio 95.

OM Las unidades de cantidad de movimiento angular
sona) N -m, b) kg - m/s?, c) kg»mz/s, d)J-m.

OM La rapidez orbital de la Tierra es la mayor a) el 21 de
marzo, b) el 21 de junio, c) el 21 de septiembre, d) el 21
de diciembre.

OM La cantidad de movimiento angular puede incre-
mentarse mediante a) la disminuciéon del momento de
inercia, b) la disminucién de la velocidad angular, c) el
incremento del producto de la cantidad de movimiento
angular y el momento de inercia, d) ninguna de las op-
ciones anteriores.

Un nifio se para en el borde de un pequefio carrusel
dejardin (de los que se empujan manualmente) que gira.
Luego comienza a caminar hacia el centro del carrusel, lo
cual origina una situacién peligrosa. ;Por qué?

La liberacion de grandes cantidades de diéxido de car-
bono podria elevar la temperatura promedio de la Tierra
por el llamado efecto invernadero, y hacer que se derritan
los casquetes polares. Si ocurriera esto y el nivel del mar
ascendiera sustancialmente, ;qué efecto tendrfa ello sobre
la rotacion terrestre y la longitud del dia?

En la demostracion de salon de clases que se ilustra
en la vfigura 8.50, una persona en un banquito giratorio
sostiene una rueda de bicicleta giratoria con mangos uni-
dos a la rueda. Cuando la rueda se sostiene horizontal-
mente, la persona gira en un sentido (horario visto desde
arriba). Cuando la rueda se voltea, la persona gira en la
direccién opuesta. Explique esto. [Sugerencia: considere
vectores de cantidad de movimiento angular.]

A FIGURA 8.50 Rotacion més rapida Véase el ejercicio 101.



102.

103.

104.

105.

106.

107.

Los gatos suelen caer parados, incluso si se les coloca
boca arriba y luego se les deja caer (vfigura 8.51). Mien-
tras el gato cae, no hay momento de fuerza externo y su
centro de masa cae como una particula. ;Cémo pueden
los gatos darse vuelta mientras caen?

< FIGURA 8.51 Doble
rotacion Véase el
ejercicio 102.

Dos patinadores sobre hielo (con pesos iguales)
avanzan uno hacia el otro, con igual rapidez en trayecto-
rias paralelas. Al pasar uno junto del otro, unen sus bra-
zos. a) ;Cudl es la velocidad de su centro de masa
después de que unen los brazos? b) ;Qué sucede con sus
energias cinéticas lineales iniciales?

® ;Qué cantidad de movimiento angular tiene una par-
ticula de 2.0 g que se mueve en direccion antihoraria (vis-
ta desde arriba), con una rapidez angular de 577 rad/s en
un circulo horizontal de 15 cm de radio? (Dé la magnitud
y direccion.)

@ Un disco giratorio de 10 kg y 0.25 m de radio tiene una
cantidad de movimiento angular de 0.45 kg - m?/s. ;Qué
rapidez angular tiene?

@@ Calcule la razén de las magnitudes de las cantidades
de movimiento angulares orbital y rotacional de la Tie-
rra. ;Estas cantidades de movimiento tienen la misma
direccion?

@@ E] periodo de rotacion de la Luna es igual a su perio-
do de revolucién: 27.3 dias (siderales). ;Qué cantidad de
movimiento angular tienen cada rotacién y revolucién?
(Por ser iguales los periodos, s6lo vemos un lado de la
Luna desde la Tierra.)

108.

109.

110.

111.

112.

> FIGURA 8.52
Golpe bajo Véase
el ejercicio 112.

113.

Ejercicios 295

El @@ En los embragues y las transmisiones de los automo-
viles se usan discos circulares. Cuando un disco giratorio
se acopla con uno estacionario por friccion, la energia del
disco giratorio se puede transferir al estacionario. a) ;La ra-
pidez angular de los discos acoplados es 1) mayor que,
2) menor que o 3) igual a la rapidez angular del disco gira-
torio original? ;Por qué? b) Si un disco que gira a 800 rpm
se acopla a uno estacionario cuyo momento de inercia es
del triple, ;qué rapidez angular tendra la combinacién?

@@ Un hombre sube a su pequeno hijo a un carrusel en
rotacion. En esencia, el carrusel es un disco con una masa
de 250 kg y un radio de 2.50 m que inicialmente comple-
ta una revolucién cada 5.00 segundos. Suponga que el ni-
fo tiene una masa de 15.0 kg y que el papd lo coloca (sin
que se deslice) cerca de la orilla del carrusel. Determine
la rapidez angular final del sistema nifio-carrusel.

@@ Un patinador tiene un momento de inercia de 100 kg - m?
con los brazos estirados, y de 75 kg - m? con los brazos pe-
gados al pecho. Si comienza a girar con una rapidez angu-
lar de 2.0 rps (revoluciones por segundo) con los brazos
estirados, ;qué rapidez angular tendra cuando los encoja?

@@ Una patinadora sobre hielo que gira con los brazos ex-
tendidos tiene una rapidez angular de 4.0 rad/s. Cuando
encoge los brazos, reduce su momento de inercia en un
7.5%. a) Calcule la rapidez angular resultante. b) ;En qué
factor cambia la energia cinética de la patinadora? (Des-
precie los efectos de friccion.) ¢) ;De dénde proviene la
energia cinética adicional?

@@ Una bola de billar en reposo es golpeada (como se
indica con la flecha gruesa en la vfigura 8.52) con un
taco que ejerce una fuerza promedio de 5.50 N durante
0.050 s. El taco hace contacto con la superficie de la bola,
de manera que el brazo de palanca mide la mitad del ra-
dio de la pelota, como se muestra. Si la bola tiene una
masa de 200 g y un radio de 2.50 cm, determine la rapi-
dez angular de la bola inmediatamente después del golpe.

®@e Un cometa se acerca al Sol como se ilustra en la v fi-
gura 8.53 y la atraccién gravitacional del Sol lo desvia.
Este suceso se considera un choque, y b es el llamado
pardmetro de impacto. Calcule la distancia de maxima apro-
ximacién (d) en términos del pardmetro de impacto y las
velocidades (v, lejos del Sol y v en la méaxima aproxima-
cién). Suponga que el radio del Sol es insignificante en
comparacién con d. (Como muestra la figura, la cola de
un cometa siempre “apunta” en direccién opuesta al Sol.)

Cometa

» FIGURA 8.53 Un “choque” de
cometa Véase el ejercicio 113.



296 CAPITULO 8 Movimiento rotacional y equilibrio

114.

115.

116.

PHySPET

@00 Al reparar su bicicleta, un estudiante la pone de ca-
beza de manera que la rueda frontal gira 2.00 rev/s. Su-
ponga que la rueda tiene una masa de 3.25 kg y que toda
la masa esta localizada en la montura, que tiene un radio
de 41.0 cm. Para frenar la rueda, el estudiante coloca su
mano sobre el neumatico, ejerciendo entonces una fuerza
tangencial de friccion sobre la rueda, que tarda 3.50 s en
llegar al reposo. Utilice el cambio en la cantidad de mo-
vimiento angular para determinar la fuerza que el estu-
diante ejerce sobre la rueda. Suponga que la fuerza de
friccién del eje es insignificante.

El ®@®@@ Un gatito estd parado en el borde de una bandeja
giratoria (tornamesa). Suponga que la bandeja tiene coji-
netes sin friccién y estd inicialmente en reposo. a) Si el
gatito comienza a caminar por la orilla de la bandeja, és-
ta 1) permanecerd estacionaria, 2) girard en la direcciéon
opuesta a la direccién en que el gatito camina o 3) girara
en la direccion en que camina el gatito. Explique. b) La
masa del gatito es de 0.50 kg; la bandeja tiene una masa
de 1.5 kg y un radio de 0.30 m. Si el gatito camina con
una rapidez de 0.25 m/s relativo al suelo, ;qué rapidez
angular tendrd la bandeja? c¢) Cuando el gatito haya dado
una vuelta completa a la bandeja, ;estara arriba del mis-
mo punto en el suelo que al principio? Si no es asi, ;dén-
de estd en relacién con ese punto? (Especule acerca de
qué sucederia si todos los habitantes de la Tierra de re-
pente comenzaran a correr hacia el este. ;Qué efecto po-
dria tener esto sobre la duracién del dia?)

En una exposicién de “arte moderno”, un carrete de ca-
ble industrial vacio y multicolor estd suspendido de dos
cables delgados como se observa en la »figura 8.54. El ca-
rrete tiene una masa de 50.0 kg, con un didmetro exte-
rior de 75.0 cm y un didmetro del eje interior de 18.0 cm.
Uno de los cables (# 1) estd atado tangencialmente al eje
y forma un angulo de 10° con la vertical. El otro cable
(#2) esta atado tangencialmente a la orilla externa y for-
ma un angulo desconocido, 6, con la vertical. Determine
la tensién sobre cada cable y el angulo 6.

117.

118.

119.

< FIGURA 8.54 Arte moderno
Véase el ejercicio 116.

Las pistas de bolos modernas tienen un sistema de retor-
no automatico de las bolas. La bola es alzada a una altura
de 2.00 m al final de la pista y, partiendo del reposo, rue-
da hacia abajo por una rampa. Luego contintia rodando
horizontalmente y, al final, sube rodando por una rampa
colocada en el otro extremo que estd a 0.500 m del piso.
Suponiendo que la masa de la bola de bolos es de 7.00 kg
y que su radio mide 16.0 cm, a) determine la tasa de rota-
cién de la bola durante su trayecto horizontal en medio
de la pista, b) su rapidez lineal durante ese trayecto hori-
zontal y ¢) la tasa de rotacién y la rapidez lineal finales.

Un patinador sobre hielo con una masa de 80.0 kg y un
momento de inercia (alrededor de su eje vertical central)
de 3.00 kg - m? atrapa una pelota de béisbol con su brazo
extendido. La atrapada se realiza a una distancia de 1.00 m
del eje central. La pelota tiene una masa de 300 g y viaja a
20.0 m/s antes de que la atrapen. a) ;Qué rapidez lineal
tiene el sistema (patinador + pelota) después de atra-
par la pelota? b) ;Cudl es la rapidez angular del sistema
(patinador + pelota) después de atraparla? c) ;Qué por-
centaje de la energia cinética inicial se pierde durante la
atrapada? Ignore la friccion con el hielo.

Un resorte (con constante de resorte de 500 N /m) es esti-
rado 10.0 cm tirando de él sobre una cuerda que pasa por
una polea (con un momento de inercia alrededor de su
eje de 0.550 kg - m? y un radio de 5.40 cm). La cuerda es-
td unida a una masa (de 1.50 kg) en su otro extremo. La
masa colgante se libera desde el reposo y se eleva. Deter-
mine la rapidez de la masa cuando el resorte esta en su
posicion relajada (sin estirar). Ignore la friccién.

Los siguientes problemas de fisica Physlet pueden utilizarse con este capitulo.

1.9, 11.10,13.2, 13.3, 13.6, 13.7, 13.8, 13.13

» 10.7,10.9, 10.10, 10.11, 10.12, 10.13, 10.14, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8,
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€CHOS DE FSICA

La fosa Mariana, ubicada en el Océano Pacifico,
es el punto de mayor profundidad en la Tierra.
Alcanza los 11 km (6.8 mi) por debajo del nivel
del mar. A esta profundidad, el agua del océano
ejerce una presion de 108 MPa (15 900 Ib/in?),
0 més de 1000 atmosferas de presion.

El dirigible alemén Hindenburg tenia un vo-
lumen de gas hidrégeno de 20 000 m®
(7.062 000 ft3). Se desplomé y se incendid en
1937 en Lakehurst, NJ. (El hidrégeno es alta-
mente inflamable.) La nave se disefig origi-
nalmente para utilizar helio, que no es infla-
mable. Pero la mayoria del helio se producfa
en Estados Unidos, y por esa época se decre-
t6 una ley que prohibfa la venta de helio a la
Alemania nazi.

Aunque el principio de flotabilidad se atribu-
ye a Arquimedes, es cuestionable si esto se
le ocurri6 en su tina de bafio mientras inten-
taba encontrar una manera de comprobar si la
corona del rey era de oro puro y no contenfa
plata, como cuenta la historia. De acuerdo
con una narracién romana, la solucion se le
ocurri6 cuando se metié en una tina de bafio
y el agua se desbordd. Se supone que can-
tidades de oro puro y plata iguales en peso a
la corona del rey se pusieron por separado,
en recipientes llenos de agua, y la plata pro-
voch que se derramara una mayor cantidad
de agua. Al hacer la prueba con la corona,
se desbordd mayor cantidad de agua que
la que desalojd el oro puro, lo que implicaba
Que la corona contenia plata. ¢Una corona
de oro puro? El oro puro es suave, malea-
ble (puede cortarse en hojas delgadas) y dic-
il (puede alargarse para formar hilos finos).

SOLIDOS Y FLUIDOS

ce posible el vuelo sin motor. Caminamos en la superficie solida de la Tierra y

a diario usamos objetos sélidos de todo tipo, desde tijeras hasta computadoras.
No obstante, estamos rodeados por fluidos (liquidos y gases), de los cuales depende-
mos. Sin el agua que bebemos, no sobreviviriamos mas de unos cuantos dias; sin el
oxigeno del aire que respiramos, no viviriamos mas de unos pocos minutos. De he-
cho, ni nosotros mismos somos tan sélidos como creemos. Por mucho, la sustancia
mads abundante en nuestro cuerpo es el agua, y es en el entorno acuoso de nuestras
células donde ocurren todos los procesos quimicos de los que depende la vida.

De acuerdo con distinciones fisicas generales, por lo general la materia se divi-
de en tres fases: solida, liquida y gaseosa. Un sdlido tiene forma y volumen defini-
dos. Un liquido tiene un volumen mds o menos definido; pero asume la forma del
recipiente que lo contiene. Un gas adopta la forma y el volumen de su recipiente.
Los solidos y liquidos también se conocen como materia condensada. Usaremos un
esquema de clasificacién distinto y consideraremos la materia en términos de soli-
dos y fluidos. Llamamos colectivamente fluidos a los gases y liquidos. Un fluido es
una sustancia que puede fluir; los liquidos y los gases fluyen, pero los sélidos no.

Una descripcién sencilla de los sélidos es que se componen de particulas lla-
madas atomos, los cuales se mantienen unidos rigidamente por fuerzas interat6-
micas. En el capitulo 8 usamos el concepto de cuerpo rigido ideal para describir
el movimiento rotacional. Los cuerpos solidos reales no son absolutamente rigi-
dos, porque las fuerzas externas pueden deformarlos eldsticamente. Cuando
pensamos en la elasticidad, por lo regular se nos vienen a la mente bandas de
caucho o resortes que recuperan sus dimensiones originales incluso después de su-
frir grandes deformaciones. En realidad, todos los materiales, hasta el acero mas
duro, son elasticos en algtin grado. Sin embargo, como veremos, tal deformacién
tiene un limite de elasticidad.

Los fluidos, en cambio, tienen poca o ninguna respuesta elastica a las fuerzas.
Una fuerza simplemente hace que un fluido no confinado fluya. En este capitulo

l zn la imagen se muestran montanas sélidas y un fluido invisible de aire que ha-
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A FIGURA 9.1 Un sélido elastico
La naturaleza elastica de las
fuerzas interatomicas se representa
de forma simplista como resortes
que, al igual que tales fuerzas,

se oponen a la deformacién.

> FIGURA 9.2 Esfuerzos de tension
y de compresion Los esfuerzos de
tension y de compresion se deben a
fuerzas que se aplican normalmente
a la superficie de los extremos de
los cuerpos. a) Una tension, o es-
fuerzo de tension, suele incrementar
la longitud de un objeto. b) Un
esfuerzo de compresién tiende a
acortar la longitud. AL =L — L,
puede ser positivo, como en a;

o negativo, como en b. En la
ecuacién 9.2 no se requiere el

signo, de manera que usamos

el valor absoluto |AL|.

daremos especial atencién al comportamiento de los fluidos, para aclarar interrogan-
tes, por ejemplo, cémo funcionan los elevadores hidraulicos, por qué flotan los icebergs
y los trasatlanticos, y qué significa la leyenda “10W-30" en una lata de aceite para mo-
tor. También descubriremos por qué la persona de la imagen no puede flotar como un
globo lleno de helio, ni volar como un colibri, pero con la ayuda de un trozo de plastico
con la forma adecuada, es capaz de elevarse como una aguila.

Debido a su fluidez, los liquidos y los gases tienen muchas propiedades en co-
mun, y resulta conveniente estudiarlos en conjuntos. También hay diferencias impor-
tantes. Por ejemplo, los liquidos no son muy compresibles, en tanto que los gases se
comprimen con facilidad.

9.1 Sdlidos y modulos de elasticidad

a) Distinguir entre esfuerzo y esfuerzo de deformacion y b) usar mé-
dulos de elasticidad para calcular cambios dimensionales.

Como expusimos, todos los materiales sélidos son eldsticos en mayor o menor grado;
es decir, un cuerpo que se deforma levemente por la aplicacién de una fuerza regresa a
sus dimensiones o forma original cuando deja de aplicarse la fuerza. En muchos mate-
riales quiza la deformacion no sea perceptible, pero existe.

Seria mas facil entender por qué los materiales son eldsticos, si pensamos en térmi-
nos del sencillo modelo de un sélido que se muestra en la «figura 9.1. Imaginamos que
los atomos de la sustancia sélida se mantienen unidos mediante resortes. La elasticidad
de los resortes representa la naturaleza eldstica de las fuerzas interatémicas. Los resor-
tes se oponen a una deformacioén permanente, al igual que las fuerzas entre los atomos.
Las propiedades eldsticas de los sélidos suelen describirse en términos de esfuerzo y
esfuerzo de deformacién. El esfuerzo es una medida de la fuerza que causa una defor-
macion. La deformacién es una medida relativa de qué tanto cambia la forma por un
esfuerzo. Cuantitativamente, el esfuerzo es la fuerza aplicada por unidad de drea transversal:

fuer _E 9.1)
esfuerzo =~ .

Unidad SI de esfuerzo: newton sobre metro cuadrado (N/m?)

Aqui, F es la magnitud de la fuerza aplicada normal (perpendicular) al drea transver-
sal. La ecuacién 9.1 indica que las unidades SI de esfuerzo son newtons sobre metro
cuadrado (N/ mz).

Como ilustra la vfigura 9.2, una fuerza aplicada a los extremos de una varilla
produce un esfuerzo de tension (una tension que alarga, AL > 0) o un esfuerzo de
compresion (una tensién que acorta, AL < 0), dependiendo de la direccién de la fuerza.
En ambos casos, la deformacion es la razon del cambio de longitud (AL = L — L,) en-
tre la longitud original (L,) sin tomar en cuenta el signo, de manera que usamos el
valor absoluto, |AL|:

|cambio de longitud| _ |AL]| _ IL — Ly 92
longitud original L, L, 62

deformacién =

La deformacién es una cantidad adimensional positiva

| L |
\ ) 5 A
: v
I IAL|
[ [
T t—( D—pF
a) Esfuerzo de tension
| |
I Lo \
! =04
I IAL|
[ ™
F o 0€¢——F

b) Esfuerzo de compresion
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Asi, la deformacion es el cambio fraccionario de longitud. Por ejemplo, si la deformacién
es de 0.05, la longitud del material habra cambiado 5% respecto a su longitud original.

Por lo tanto, la deformacién resultante depende del esfuerzo aplicado. Si el esfuer-
70 es relativamente pequeno, la proporcion es directa (o lineal); esto es, deformacion «
esfuerzo. La constante de proporcionalidad, que depende de la naturaleza del mate-
rial, se denomina médulo de elasticidad. Asi,

esfuerzo = moédulo de elasticidad X deformaciéon
o bien,

médulo de elasticidad = Lerz?’ 9.3)
deformacion

Unidad SI del médulo de elasticidad: newton sobre metro cuadrado (N/m?)

El médulo de elasticidad es el esfuerzo dividido entre la deformacién, y tiene las mis-
mas unidades que el esfuerzo. (;Por qué?)

Hay tres tipos generales de médulos de elasticidad asociados a esfuerzos que pro-
ducen cambios de longitud, forma o volumen. Se les denomina médulo de Young, modu-
lo de corte y médulo de volumen, respectivamente.

Cambio de longitud: médulo de Young

La vfigura 9.3 es una grafica de esfuerzo de tensioén contra deformacion para una vari-
lla metdlica comtn. La curva es una linea recta hasta un punto llamado limite proporcio-
nal. Més alla de este punto, la deformacién aumenta mas rapidamente hasta llegar a
otro punto critico llamado limite de elasticidad. Si la tensién se elimina en este punto,
el material recuperara su longitud original. Si se aumenta la tension mas alla del limi-
te de elasticidad y luego se retira, el material se recuperara hasta cierto punto, aunque
habra cierta deformacién permanente.

La parte de linea recta de la grafica muestra una proporcionalidad directa entre
esfuerzo y deformacién. En 1678, el fisico inglés Robert Hooke fue el primero en for-
malizar esta relacién, que ahora se conoce como ley de Hooke. (Es la misma relacion ge-
neral que la dada para un resorte en la seccion 5.2; véase la figura 5.5.) El médulo de
elasticidad para una tensién o compresién se denomina médulo de Young (Y):*

F (AL _ F/A
Z = Y( LO ) o Y = ‘AL/LO (9-4)

esfuerzo  deformacion

Unidad st del médulo de Young: newton sobre metro cuadrado (N/m?)

Esfuerzo Fractura < FIGURA 9.3 Esfuerzoy
/ — deformacién Una grafica de
/ Limite de )
e esfuerzo contra deformacién
elasticidad . 1 .

) o para una varilla metalica comuin
Comportamiento elastico es una linea recta hasta el limite
(esfuerzo proporcional . .

a la deformacion) proporcional. Luego contintia la
deformacion elastica hasta que
<—— Compresion Tension —» se alcance el limite de elasticidad.
- Mas alla de eso, la varilla sufrira
/ Deformacion una deformacién permanente y
en algiin momento se rompera.

*Thomas Young (1773-1829) fue el fisico y médico inglés que también demostr6 la naturaleza on-
dulatoria de la luz. Véase el experimento de doble rendija de Young en la seccion 24.1.
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ARSI B Modulos de elasticidad para diversos materiales (en N/m?)

Sustancia Mddulo de Young (Y) Mddulo de corte (S) Mddulo de volumen (B)
Sélidos

Aluminio 7.0 X 10" 2.5 X 10 7.0 X 10%°
Hueso (de extrem.) Tensién: 1.5 X 10 1.2 x 10"

Compresion: 9.3 X 10°

Latén 9.0 x 10 3.5 X 10" 7.5 x 101
Cobre 11 x 10" 3.8 x 10'° 12 x 10"
Vidrio 5.7 X 10" 2.4 % 10" 4.0 x 10
Hierro 15 x 10% 6.0 X 10" 12 x 10"
Nylon 5.0 X 10° 8.0 X 10°

Acero 20 x 10" 8.2 x 10 15 X 10"
Liquidos

Alcohol etilico 1.0 X 10°
Glicerina 45 x 10°
Mercurio 26 X 10°
Agua 22 % 10°

Las unidades del médulo de Young son las del esfuerzo, newtons sobre metro cuadra-
do (N/m?), pues la deformacién no tiene unidades. En la tabla 9.1 se dan algunos va-
lores representativos del médulo de Young.

Para entender mejor la idea o el significado fisico del moédulo de Young, despeje-
mos AL de la ecuacién 9.4:

AL—&l ALO(l
“\a)y ° Y

Por lo tanto, cuanto mayor sea el médulo de Young de un material, menor serd su cam-
bio de longitud (si los deméas pardmetros permanecen iguales).

Ejemplo 9.1 Extension del fémur: un esfuerzo considerable

El fémur (hueso del muslo) es el hueso mas largo y fuerte del cuerpo. Si suponemos que un
fémur tipico es aproximadamente cilindrico, con un radio de 2.0 cm, ;jcuénta fuerza se re-
querira para extender el fémur de un paciente en 0.010 por ciento?

Razonamiento. Vemos que la ecuacion 9.4 es la apropiada, pero, ;dénde queda el aumento
porcentual? Contestaremos esta pregunta si vemos que el término AL/L, es el incremen-
to faccionario de longitud. Por ejemplo, si tuviéramos un resorte de 10 cm de longitud (L,)
y lo estiraramos 1.0 cm (AL), entonces AL/L, = 1.0 cm/10 cm = 0.10. Este cociente se pue-
de convertir facilmente en un porcentaje, y diriamos que la longitud del resorte aument6
10%. Entonces, el incremento porcentual es tan sélo el valor del término AL/L, (multipli-
cado por 100 por ciento).

Solucion. Hacemos una lista de los datos,

Dado: r=20cm = 0.020 m Encuentre: F (fuerza de tension)
AL/L, = 0.010% = 1.0 X 10°*
Y = 1.5 X 10" N/m? (para hueso, de la tabla 9.1)
La ecuacién 9.4 nos da
F =Y(AL/L)A = Y(AL/L,)mr?
= (1.5 X 10" N/m?)(1.0 X 10*)7(0.020 m)* = 1.9 X 10°N

:Qué tanta fuerza es esto? Una fuerza considerable (mas de 400 1b). El fémur es un hueso
muy fuerte.
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Ejercicio de refuerzo. Una masa total de 16 kg se cuelga de un alambre de acero de 0.10 cm
de didmetro. a) ;Qué incremento porcentual de longitud tiene el alambre? b) La resistencia
ala tension de un material es el esfuerzo méaximo que un material aguanta antes de romper-
se o fracturarse. Si la resistencia a la tensién del alambre usado en a es de 4.9 X 10° N/m?,
(cuanta masa podria colgarse sin que se rompa el alambre? (Las respuestas de todos los Ejer-
cicios de refuerzo se dan al final del libro.)

La mayoria de los tipos de huesos consisten en fibras de colageno que estdn firmemente
unidas y se traslapan. El colageno muestra alta resistencia a la tensién y las sales de cal-
cio en aquél dan a los huesos mucha resistencia a la compresién. El coldgeno también
forma el cartilago, los tendones y la piel, los cuales tienen buena resistencia a la tension.

Cambio de forma: médulo de corte

Otra forma de deformar un cuerpo eléstico es con un esfuerzo cortante. En este caso, la
deformacién se debe a la aplicacién de una fuerza que es tangencial a la superficie (»fi-
gura 9.4a). Se produce un cambio de forma sin un cambio de volumen. La deformacién
de corte estad dada por x/I, donde x es el desplazamiento relativo de las caras y /i es la
distancia entre ellas.

La deformacién de corte a veces se define en términos del angulo de corte ¢.
Como se observa en la figura 9.4b, tan ¢ = x/h. Sin embargo, este angulo suele ser
muy pequefo, por lo que una buena aproximacién es tan ¢ ~ ¢ ~ x/h, donde ¢ esta
en radianes.”* (Si ¢ = 10°, por ejemplo, la diferencia entre ¢ y tan ¢ es de sélo el 1.0%.)
El médulo de corte (S) (también llamado mddulo de rigidez) es entonces

_FA _F/A

=h e (9.5)

Unidad SI de médulo de corte: newton sobre metro cuadrado (N /m?)

En la tabla 9.1 vemos que el médulo de corte suele ser menor que el médulo de Young.
De hecho, S es aproximadamente Y'/3 para muchos materiales, lo que indica que hay una
mayor respuesta a un esfuerzo cortante que a un esfuerzo de tensién. Observe también la
relacién inversa ¢ =~ 1/S, similar a la que sefialamos antes para el médulo de Young.

Un esfuerzo cortante podria ser del tipo torsional, que es resultado de la accién de
torsién de un momento de fuerza. Por ejemplo, un esfuerzo cortante torsional podria
cortar la cabeza de un tornillo que se esté apretando.

Los liquidos no tienen médulos de corte (ni médulos de Young); de ahi los huecos
en la tabla 9.1. No es posible aplicar eficazmente un esfuerzo cortante a un liquido ni a
un gas, porque los fluidos se deforman continuamente en respuesta. Suele decirse que
los fluidos no resisten un corte.

Cambio de volumen: médulo de volumen

Supongamos que una fuerza dirigida hacia adentro acttia sobre toda la superficie de
un cuerpo (vfigura 9.5). Semejante esfuerzo de volumen a menudo se aplica mediante
presion transmitida por un fluido. Un esfuerzo de volumen comprime un material
elastico; es decir, el material presenta un cambio de volumen, aunque no de forma ge-
neral, en respuesta a un cambio de presién Ap. (La presién es fuerza por unidad de
area, como veremos en la seccién 9.2.) El cambio de presién es igual al esfuerzo de vo-

F F
FQ A4 Y
\ N0
F m———>A 4 " F F ; I 4—?—1:
[
\ \\ | \\
F DN
F F
a) b)

*Véase la seccion Aprender dibujando de la pagina 219.
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A FIGURA 9.4 Esfuerzo cortante
y deformacioén a) Se produce un
esfuerzo cortante cuando una
fuerza se aplica tangencialmente a
una superficie. b) La deformacién
se mide en términos del desplaza-
miento relativo de las caras del
objeto, o del angulo de corte ¢.

< FIGURA 9.5 Esfuerzoy
deformacion de volumen

a) Se aplica un esfuerzo de volumen
cuando una fuerza normal actda
sobre toda una drea superficial,
como se muestra aqui con un cubo.
Este tipo de esfuerzo ocurre mas
comuinmente en gases. b) La
deformacion resultante es un
cambio
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lumen, o bien, Ap = F/A. La deformacién de volumen es la razén del cambio de volumen
(AV) entre el volumen original (V,). Entonces, el médulo de volumen (B) es

_ F/A Ap
C-AVV,  AV/V,

B (9.6)

Unidad SI de médulo de volumen: newton sobre metro cuadrado (N/m?)

Incluimos el signo menos para que B sea una cantidad positiva, ya que AV =V — V,
es negativo cuando aumenta la presion externa (cuando Ap es positivo). Al igual que
en las anteriores relaciones de médulos: AV o 1/B.

En la tabla 9.1 se dan los médulos de volumen de sélidos y liquidos selectos. Los
gases también tienen moédulos de volumen, ya que pueden comprimirse. En el caso
de los gases, es méds comun hablar del reciproco del médulo de volumen, llamado
compresibilidad (k):

1
k= B (compresibilidad de gases) 9.7)

Asi, el cambio de volumen AV es directamente proporcional a la compresibilidad k.
Los sélidos y los liquidos son relativamente incompresibles, por lo que sus valores

de compresibilidad son pequeiios. En cambio, los gases se comprimen facilmente y sus

valores de compresibilidad, que son altos, varian con la presién y la temperatura.

Ejemplo 9.2 Compresién de un liquido: esfuerzo de volumen
y médulo de volumen
;Qué cambio se requiere en la presion sobre un litro de agua para comprimirlo un 0.10
por ciento?
Razonamiento. Al igual que el cambio fraccionario de longitud, AL/L,, el cambio fraccio-
nario de volumen estd dado por —AV/V,, que puede expresarse como porcentaje. Asf, ob-
tenemos el cambio de presién con la ecuacion 9.6. Una compresién implica AV negativo.
Solucion.
Dado: —AV/V, = 0.0010 (0 0.10%) Encuentre: Ap
V, = 1.0 L = 1000 cm®
By,0 = 22 X 10° N/m’ (de la tabla 9.1)

Observe que —AV/V, es el cambio fraccionario de volumen. Dado que V, = 1000 cm?, el
cambio (la reduccién) de volumen es

—AV = 0.0010 V, = 0.0010(1000 cm®) = 1.0 cm®

Sin embargo, no necesitamos el cambio de volumen. El cambio fraccionario, como se listé
en los datos, se usa directamente en la ecuacién 9.6 para calcular el aumento de presion:

Ap = B< _é‘/) = (2.2 X 10° N/m?)(0.0010) = 2.2 X 10° N/m?

(Este incremento es unas 22 veces la presién atmosférica normal. No es muy compresible.)

Ejercicio de refuerzo. Sia medio litro de agua se aplica una presién adicional de 1.0 x 10°
N/m? a la presién atmosférica, ;qué cambio de volumen tendra el agua?

9.2 Fluidos: presion y el principio de Pascal

a) Explicar la relacion profundidad-presién y b) plantear el principio
de Pascal y describir su uso en aplicaciones practicas.
Podemos aplicar una fuerza a un sélido en un punto de contacto, pero esto no funcio-
na con los fluidos, pues éstos no resisten un corte. Con los fluidos, es preciso aplicar
una fuerza sobre una area. Tal aplicacién de fuerza se expresa en términos de presién:
la fuerza por unidad de drea:

p= v (9.8a)

Unidad SI de presién: newton sobre metro cuadrado (N/m?) o pascal (Pa)
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En esta ecuacién, se entiende que la fuerza actia de forma normal (perpendicular) a la
superficie. F podria ser el componente perpendicular de una fuerza que acttia inclina-
da respecto a la superficie (~figura 9.6).

Como muestra la figura 9.6, en el caso méds general deberiamos escribir:

_F, _ Fcos®
A A
La presién es una cantidad escalar (s6lo tiene magnitud) aunque la fuerza que la produce
sea un vector.
Las unidades SI de presién son newtons sobre metro cuadrado (N/m?) o pascal
(Pa) en honor del cientifico y filésofo francés Blaise Pascal (1623-1662), quien estudio
los fluidos y la presion. Por definicién,*

1Pa = 1 N/m?

En el sistema inglés, una unidad comtn de presién es la libra por pulgada cuadrada
(Ib/ in?0 psi). En aplicaciones especiales se utilizan otras unidades, que presentaremos
mas adelante. Antes de continuar, veamos un ejemplo “sélido” de la relacién entre
fuerza y presion.

(9.8b)

Ejemplo conceptual 9.3 Fuerza y presién: una siesta en una cama
de clavos

Suponga que usted se prepara para dormir la siesta y tiene la opcién para elegir entre
acostarse de espaldas en ) una cama de clavos, b) un piso de madera dura o ¢) un sofd.
;Cual escogeria por comodidad y por qué?

Razonamiento y respuesta. La opcion comoda es obvia: el sofa. Sin embargo, la pregunta
conceptual aqui es por qué.

Examinemos primero la posibilidad de acostarse en un lecho de clavos, un truco an-
tiguo que se origind en la India y que solia presentarse en las ferias y otros espectaculos
(véase la figura 9.27). En realidad no hay truco alguno, sélo fisica; a saber, fuerza y pre-
sién. Es la fuerza por unidad de érea, la presion (p = F/A), lo que determina si un clavo
perforara la piel o no. La fuerza depende del peso de la persona que se acuesta en los cla-
vos. El drea depende del &rea eficaz de contacto entre los clavos y la piel (sin considerar
la ropa de la persona).

Si sélo hubiera un clavo, éste no soportaria el peso de la persona y con tal drea pe-
quefia la presion serfa muy grande, y en una situacién asi el clavo perforaria la piel. En
cambio, cuando se usa un lecho de clavos, la misma fuerza (peso) se distribuye entre cien-
tos de clavos, asi que el drea de contacto eficaz es relativamente grande, y la presién se
reduce a un nivel en el que los clavos no perforan la piel.

Cuando nos acostamos en un piso de madera, el drea en contacto con nuestro cuer-
po es considerable y la presién se reduce, pero probablemente no nos sentiremos cémo-
dos. Partes del cuerpo, como el cuello y la parte baja de la espalda, no estdn en contacto
con la superficie, como lo estarian en un sofa blando, donde la presién es atin menor:
Cuanto mds baja sea la presion, mayor sera la comodidad (la misma fuerza sobre una area
mads extensa). Por lo tanto, ¢ es la respuesta.

Ejercicio de refuerzo. Mencione dos consideraciones importantes al construir una cama
de clavos para acostarse en ella.

Hagamos ahora un breve repaso de la densidad, que es una consideracién impor-
tante en el estudio de fluidos. En el capitulo 1 dijimos que la densidad (p) de una sus-
tancia se define como masa sobre unidad de volumen (ecuacion 1.1):

densidad = _masa_
volumen

_m

Py

Unidad SI de densidad: kilogramo sobre metro ctibico (kg/m?)
(unidad cgs comtn: gramo sobre centimetro ctibico, g/cm?)

En la tabla 9.2 se da la densidad de algunas sustancias comunes.

*Note que la unidad de presion es equivalente a la energfa por volumen, N/m? = N -m/m® = J/m’,
una densidad de energia.

~FL Fcose

A A

A FIGURA 9.6 Presién La presion
suele escribirse como p = F/A, y se
sobreentiende que F es la fuerza o
componente de fuerza normal a la
superficie. En general, entonces,

p = (Fcos6)/A.
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ANZ@)DI®) 91 LA OSTEOPOROSIS Y LA DENSIDAD MINERAL OSEA (DMO)

El hueso es un tejido vivo y en crecimiento. Nuestro cuerpo conti-
nuamente esta absorbiendo los antiguos huesos (reabsorcion) y fa-
bricando nuevo tejido 6seo. Durante los primeros anos de vida, el
crecimiento de los huesos es mayor que la pérdida. Este proceso
contintia hasta que se alcanza el maximo de la masa 6sea cuando se
es un adulto joven. Después, el crecimiento de los huesos adquiere
un ritmo mas lento como resultado de la pérdida de masa 6sea.
Con la edad, los huesos, naturalmente, se vuelven menos densos y
mas débiles. La osteoporosis (que significa “huesos porosos”) ocu-
rre cuando los huesos se deterioran hasta el punto en el que se frac-
turan con facilidad (figura 1).

La osteoporosis y la escasa masa 6sea asociada con ella afectan
a unos 24 millones de estadounidenses, la mayoria de los cuales
son mujeres. La osteoporosis da por resultado un mayor riesgo de
sufrir fracturas, particularmente en la cadera y la columna verte-
bral. Muchas mujeres toman complementos de calcio con la finali-
dad de prevenir esta condicién.

Para entender cémo se mide la densidad 6sea, primero vea-
mos la distincién entre hueso y tejido dseo. El hueso es un material
sélido compuesto de una proteina llamada matriz 6sea, la mayor

FIGURA 1 Pérdida de masa 6sea Una micrografia de rayos X
que muestra la estructura 6sea de una vértebra de una persona
de 50 afios (izquierda) y una de 70 afios (derecha). La osteo-
porosis, una condicién caracterizada por el debilitamiento

de los huesos provocado por la pérdida de masa 6sea,

es evidente en el caso de la vértebra de la derecha.

parte de la cual se ha calcificado. El tejido 6seo incluye los espacios
para la médula dentro de la matriz. (La médula es el tejido suave,
adiposo y vascular en el interior de las cavidades éseas y es un sitio
fundamental para la produccién de células sanguineas.) El volu-
men de la médula varfa segtn el tipo de hueso.

Si el volumen de un hueso intacto se mide (por ejemplo, me-
diante el desplazamiento de agua), entonces, es posible calcular la
densidad del tejido 6seo —comtinmente en gramos por centimetro cu-
bico—, después de que el hueso se pesa para determinar su masa.
Si se quema un hueso, se pesan las cenizas que quedan y se dividen
entre el volumen del hueso total (tejido 6seo), se obtiene la densi-
dad mineral del tejido 6seo, que comtinmente se conoce como densidad
mineral 6sea (DMO).

Para medir la DMO de los huesos en vivo, se mide la transmi-
si6n de ciertos tipos de radiacion a través del hueso, y el resultado
se relaciona con la cantidad de mineral 6seo presente. Ademas, se
mide un drea “proyectada” del hueso. Utilizando tales mediciones,
se calcula una DMO proyectada o zonal en unidades de mg/cm?
La figura 2 ilustra la magnitud del efecto de la pérdida de densidad
Osea con la edad.

El diagnostico de la osteoporosis se basa primordialmente en
la medicién de la DMO. La masa de un hueso, que se mide con una
prueba de DMO (también conocida como prueba de densitometria
dsea), por lo general se correlaciona con la fortaleza del hueso. Es
posible predecir el riesgo de fracturas, de la misma forma como las
mediciones de la presién sanguinea ayudan a predecir los riesgos
de sufrir un infarto cerebral. La prueba de densidad ésea se reco-
mienda a todas las mujeres de 65 afios en adelante y a mujeres de
menor edad con un alto riesgo de padecer osteoporosis. Esto tam-
bién se aplica a los hombres. Con frecuencia se piensa que la osteo-
porosis es una enfermedad propia de las mujeres, pero el 20% de
los casos de osteoporosis se presentan en hombres. Una prueba
de DMO no predice con certeza la posibilidad de sufrir una frac-
tura, sino que tan sélo predice el grado de riesgo.

Entonces, ;cémo se mide la DMO? Aqui es donde la fisica en-
tra en accién. Se emplean varios instrumentos, que se clasifican
en dispositivos centrales y dispositivos periféricos. Los dispositivos cen-
trales se utilizan principalmente para medir la densidad ésea de
la cadera y la columna vertebral. Los dispositivos periféricos son

1A= E.Se 2 Densidad de algunas sustancias comunes (en kg/m®)

Sdlidos Densidad (p) Liquidos Densidad (p) Gases* Densidad (p)
Aluminio 2.7 X 10° Alcohol etilico 0.79 X 10° Aire 1.29
Latén 8.7 x 10° Alcohol metilico 0.82 x 10° Helio 0.18
Cobre 8.9 x 10° Sangre entera 1.05 X 10° Hidrégeno 0.090
Vidrio 2.6 X 10° Plasma sanguineo 1.03 x 10° Oxigeno 1.43
Oro 19.3 x 10° Gasolina 0.68 X 10° Vapor (100°C) 0.63
Hielo 0.92 x 10° Queroseno 0.82 x 10°

Hierro (y acero) 7.8 X 10° (valor general) Mercurio 13.6 X 10°

Plomo 114 x 10° Agua de mar (4°C) 1.03 x 10°

Plata 10.5 x 10° Agua dulce (4°C) 1.00 x 10°

Madera, roble 0.81 x 10°

*A 0°Cy 1atm, a menos que se especifique otra cosa.
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FIGURA 2 Pérdida de densidad 6sea con la edad Una ilustra-
cién de cédmo se incrementa, con la edad, la pérdida normal de
densidad 6sea en el hueso de la cadera de una mujer (escala

de la derecha). La osteopenia se refiere a la calcificacion o densi-
dad 6sea decreciente. Una persona con osteopenia estd en riesgo
de desarrollar osteoporosis, una condicion que provoca que

los huesos se vuelvan quebradizos y proclives a fracturarse.

mas pequenos; se trata de maquinas portatiles que se emplean pa-
ra medir la densidad 6sea en lugares tales como los talones o los
dedos.

El dispositivo central de uso mas difundido se basa en la ab-
sorciometria de energia dual de rayos X (DXA), que utiliza imagenes
de rayos X para medir la densidad osea. (Véase la seccién 20.4
para una explicacion de los rayos X.) El escaner DXA produce dos
haces de rayos X de diferentes niveles de energia. La cantidad de
rayos X que pasan a través de un hueso se mide para cada haz; es-
tas cantidades varian de acuerdo con la densidad del hueso. La
densidad dsea calculada se basa en la diferencia entre los dos haces.
El procedimiento no es invasivo, tarda entre 10 y 20 minutos, y la

exposicion a los rayos X por lo general es de una décima parte de la
que implica una radiografia del térax (figura 3).

Un dispositivo periférico comun utiliza ultrasonido cuantitativo
(QUS, por las siglas de quantative ultrasound). En vez de rayos X,
la proyeccion de la densidad 6sea se realiza mediante ondas sono-
ras de alta frecuencia (ultrasonido). Las mediciones de QUS gene-
ralmente se realizan en el talon. La prueba toma apenas uno o dos
minutos, y los dispositivos para realizarla ahora se venden en algu-
nas farmacias. Su objetivo es indicar si una persona esta “en ries-
g0”, y si necesita someterse a una prueba DXA.

FIGURA 3 Prueba de osteoporosis mediante escaner Una
especialista realiza un analisis de los huesos mediante rayos X
en una paciente mayor, para determinar si padece osteoporosis.
Las imagenes de rayos X se despliegan en el monitor. Las iméa-
genes podrian confirmar la presencia de osteoporosis. Ademas,
tales pruebas de densitometria dsea sirven para diagnosticar
raquitismo, una enfermedad infantil caracterizada por el
reblandecimiento de los huesos.

El agua tiene una densidad de 1.00 X 10% kg/m? (1.00 g/cm?®), por la definicién

original de kilogramo (capitulo 1). El mercurio tiene una densidad de 13.6 X 10° kg/
m® (13.6 g/cm®). Por lo tanto, el mercurio es 13.6 veces mds denso que el agua. La ga-
solina, en cambio, es menos densa que el agua. (Véase la tabla 9.2.) (Nota: no confunda
el simbolo de densidad, p [letra griega rho], con el de presion, p.)

Decimos que la densidad es una medida de qué tan compacta es la materia de una
sustancia: cuanto mas alta sea la densidad, mas materia o masa habra en un volumen da-
do. Note que la densidad cuantifica la cantidad de masa por unidad de volumen. Para
una consideracién importante acerca de la densidad, véase la seccion A fondo 9.1 sobre la
osteoporosis y la densidad mineral 6sea (DMO).

Presion y profundidad

Si el lector ha buceado, sabe bien que la presién aumenta con la profundidad, y ha
sentido el aumento de presién en los timpanos. Sentimos un efecto opuesto cuando
viajamos en un avién o subimos una montafia en automovil. Al aumentar la altitud,
quizd sintamos que los oidos quieren “reventarse”, por la reduccion en la presién ex-
terna del aire.

La forma en que la presién en un fluido varfa con la profundidad se demuestra
considerando un recipiente de liquido en reposo. Imaginemos que aislamos una co-

Nota: p # p
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» FIGURA 9.7 Presion y profundidad
La presién adicional a una profun-
didad / en un liquido se debe al
peso del liquido que esta arriba:

p = pgh, donde p es la densidad del
liquido (que suponemos constante).
Esto se ilustra para una columna
rectangular imaginaria de liquido.

llustracidn 14.1 Presién en un liquido

Relacion presion-profundidad

v w=plAlg
p=q=rgh
A 4 A
1 h h
mg mg =

1

lumna rectangular de agua, como se muestra en la afigura 9.7. Entonces, la fuerza so-
bre el fondo del recipiente bajo la columna (o sobre la mano) es igual al peso del liqui-
do que constituye la columna: F = w = mg. Puesto que la densidad es p = m/V, la masa
de la columna es igual a la densidad multiplicada por el volumen; es decir, m = pV.
(Suponemos que el liquido es incompresible, asi que p es constante.)

El volumen de la columna aislada de liquido es igual a la altura de la columna

multiplicada por el rea de su base, o bien, V = hA. Por lo tanto, escribimos
F=w=mg=pVg = pghA

Como p = F/A, la presion a una profundidad /, debida al peso de la columna, es

p = pgh (9.9)
Este es un resultado general para liquidos incompresibles. La presién es la misma en
todos los puntos de un plano horizontal a una profundidad / (si p y g son constantes).
Observe que la ecuacion 9.9 es independiente del drea de la base de la columna rectan-
gular: podriamos tomar toda la columna cilindrica del liquido en el recipiente de la
figura 9.7 y obtendriamos el mismo resultado.

Al deducir la ecuacion 9.9 no tomamos en cuenta la aplicacién de una presién a la
superficie abierta del liquido. Este factor se suma a la presion a una profundidad / para
dar una presioén total de
(liquido incompresible
= p, + pgh .
P=Po T P8 de densidad constante) (9.10)

donde p, es la presién aplicada a la superficie del liquido (es decir, la presion en i = 0).
En el caso de un recipiente abierto, p, = p, (la presién atmosférica), es decir, el peso
(fuerza) por unidad de area de los gases atmosféricos que estan arriba de la superficie
del liquido. La presién atmosférica media en el nivel del mar se utiliza también como
unidad, llamada atmésfera (atm):

1atm = 101.325 kPa = 1.01325 X 10° N/m? ~ 14.7 Ib/in?

Mads adelante describiremos cémo se mide la presién atmosférica.

Ejemplo 9.4 Buzo: presion y fuerza

a) ;Cudl es la presion total sobre la espalda de un buzo en un lago a una profundidad de
8.00 m? b) Determine la fuerza aplicada a la espalda del buzo tinicamente por el agua, to-
mando la superficie de la espalda como un rectdngulo de 60.0 X 50.0 cm.
Razonamiento. a) Fsta es una aplicacién directa de la ecuacién 9.10, en la cual p, se toma
como la presion atmosférica p,. b) Si conocemos el drea y la presion debida al agua, calcu-
lamos la fuerza por la definicion de presién, p = F/A.
Solucidn.
Dado: h = 8.00m Encuentre: a) p (presion total)

A = 60.0cm X 50.0 cm b) F (fuerza debida al agua)

=0.600m X 0.500 m = 0.300 m*
pro = 1.00 X 10° kg/m® (de la tabla 9.2)

pa = 1.01 X 10° N/m?
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a) La presion total es la suma de la presion debida al agua y a la presion atmosférica (p,).
Por la ecuacién 9.10, esto es

p=pat pgh
= (1.01 X 10°N/m?) + (1.00 X 10° kg/m?)(9.80 m/s*)(8.00 m)
= (1.01 X 10°N/m?) + (0.784 X 10° N/m?) = 1.79 X 10° N/m? (o Pa)

(expresada en atmosferas) = 1.8 atm

También ésta es la presién en los timpanos del buzo.

b) La presién py,o debida sélo al agua es la porcién pgh de la ecuacién anterior, asi que
Pin,o = 0.784 X 10° N/m”.
Entonces, pyo = F/A, y

F = py,0A = (0.784 X 10°N/m?)(0.300 m?)
=235 X 10*N (0 5.29 X 10%Ib junas 2.6 toneladas!)

Ejercicio de refuerzo. La respuesta al inciso b de este ejemplo quizas haga dudar al lector.
(Coémo puede el buzo aguantar semejante fuerza? Para entender mejor las fuerzas que el
cuerpo puede resistir, calcule la fuerza que actda sobre la espalda del buzo en la superfi-
cie del agua (debida tiinicamente a la presién atmosférica). ;Cémo supone que el cuerpo
pueda soportar tales fuerzas o presiones?

Principio de Pascal

Cuando se incrementa la presion (digamos, la del aire) sobre toda la superficie abierta
de un liquido incompresible en reposo, la presién en cualquier punto del liquido o en
las superficies limitrofes aumenta en la misma cantidad. El efecto es el mismo si se
aplica presién con un pistén a cualquier superficie de un fluido encerrado (»figura 9.8).
Pascal estudio la transmisién de la presién en fluidos, y el efecto que se observa se de-
nomina principio de Pascal:

La presion aplicada a un fluido encerrado se transmite sin pérdida a todos los ‘
puntos del fluido y a las paredes del recipiente.

En el caso de un liquido incompresible, el cambio de presién se transmite de forma
practicamente instantdnea. En el caso de un gas, un cambio de presién por lo general
va acompafiado de un cambio de volumen o de temperatura (o de ambos); pero, una
vez que se ha reestablecido el equilibrio, es valido el principio de Pascal.

Entre las aplicaciones practicas méas comunes del principio de Pascal estan los sis-
temas de frenos hidraulicos de los automéviles. Al pisar el pedal del freno, se trans-
mite una fuerza a través de delgados tubos llenos de liquido hasta los cilindros de
frenado de las ruedas. Asimismo, se usan elevadores y gatos hidraulicos para levan-
tar automoviles y otros objetos pesados (vfigura 9.9).

V FIGURA 9.9 Elevador y amortiguador hidraulicos a) Dado que las presiones de entrada
y de salida son iguales (principio de Pascal), una fuerza pequena de entrada origina una
fuerza grande de salida, en proporcién al cociente de las dreas de los pistones. b) Vista ex-
puesta simplificada de un tipo de amortiguador. (Véase la descripcion en el ejercicio

de refuerzo 9.5.)
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A FIGURA 9.8 Principio de Pascal
La presion aplicada en el punto A
se transmite completamente a todas
las partes del fluido y a las paredes
del recipiente. También hay

presion debida al peso del fluido
que estd arriba de un punto dado

a diferentes profundidades (por
ejemplo, pgh/2 en Cy pgh en D).
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