

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERIA

SYLLABUS

PROYECTO CURRICULAR: INGENIERIA INDUSTRIAL

NOMBRE DEL DOCENTE:									
ESPACIO ACADÉMICO (Asign	atura): MECÁNICA								
APLICADA	OÓDIO CARA								
Obligatorio (X): Básico (X) Complementario ()	CÓDIGO:121							
Electivo (): Intrínsecas () Extrínsecas ()								
NUMERO DE ESTUDIANTES:	GRUPO: IV								
	NÚMERO DE CREDITOS: 2	2							
TIPO DE CURSO:	TEÓRICO PRACTICO	TEO-PRAC: X							
Alternativas metodológicas:									
Clase Magistral (X), Semina	ario (), Seminario – Taller	(), Taller (), Prácticas (X),							
Proyectos tutoriados (), Otro: I	Laboratorios								
HORARIO:									
DIA	HORAS	SALON							
I. JUSTII	FICACIÓN DEL ESPACIO AC	CADÉMICO							
Ante los procesos de industria	lización que se están dando	en el país y ante la creciente ola							
globalizante, se hace necesario, la creación de espacios académicos que discutan o que de alguna forma propongan soluciones practicas para la rápida solución de problemas de índole técnico que se presentan en la industria y mas concretamente en el sector de la manufactura									
Por esta simple razón se r contextualizada lo mas transvers		industrial reciba la información ación en esta área							

II. PROGRAMACION DEL CONTENIDO

OBJETIVO GENERAL

Al final del curso el estudiante debe tener la capacidad de aplicar de manera clara los conceptos de la mecánica a su ámbito profesional, con la posibilidad de hacer o diseñar procesos de producción y manufactura consistentes , que brinden la suficiente seguridad durante su operación

OBJETIVOS ESPECÍFICOS

- Que el estudiante relacione rápidamente y con la suficiente claridad los eventos mecánicos que se suscitan en los procesos de manufactura
- Que el estudiante tenga una total comprensión del concepto de potencia mecánica y el de transmisión de potencia.
- Que el estudiante sea capaz de participara o conceptuar en la selección de un sistema de transmisión de potencia

COMPETENCIAS DE FORMACIÓN:

Básicas El estudio de la materia le proporciona al estudiante conocimientos que podrían ser socialmente útiles

Cognitivas: Con los conocimientos básicos adquiridos, se pueden argumentar o proponer soluciones con pensamiento critico

Laborales o Especificas Diseño y desarrollo de procesos y procedimientos de fabricación consistentes y seguros que garanticen su estabilidad operativa

PROGRAMA SINTÉTICO: Horas de clase **TEMA A DESARROLLAR** 2 2 2 4 6 8 10 12 14 16 4 0 2 INTRODUCCIÓN. Como esta dividida la mecánica, conceptos básicos de Mecánica Newtoniana, Estática, Dinámica, relación que guarda la Mecánica de Materiales con la Estática Χ Sistema de fuerzas, Tipos de Fuerza, Momento de una Fuerza, Par, Resultante de sistemas de fuerza. Contextualizacion de la Mecánica de Materiales con la Ingeniería Industrial **EQUILIBRIO**: Condiciones de equilibrio, Aislamiento de un sistema mecánico (Diagrama Χ de Cuerpo Libre), Equilibrio bidimensional y Equilibrio tridimensional) ESTRUCTURAS: Estructuras simples, Cerchas o Armaduras características o condiciones que y X 3 deben cumplir. Marcos o Armazones Maquinas., Métodos de solución de estructuras (Nodos, Secciones) ESFUERZO Y DEFORMACION. CARGA **AXIAL**: Deformaciones simples, deformación normal bajo carga axial, Esfuerzos y deformaciones verdaderas, Ley de Hooke. Módulo de elasticidad. Comportamiento elástico contra comportamiento plástico, Χ Deformaciones de elementos sometidos a Problemas carga axial, estáticamente indeterminados, Relación de Poisson, Esfuerzo

Factor de

de rotura y esfuerzo admisible

seguridad

	Esfuerzo térmico y Deformaciones por									T		
	temperatura											
	ESFUERZO CORTANTE O DE											
	CIZALLAMIENTO Conceptos y definiciones ,											
5	contextualizacion del tema comparándolo con		Χ									
	aplicaciones de amplio uso en el ámbito		^									
	industrial como las juntas apernadas de un											
	acople , resolución de problemas modelo											
	ESFUERZO DE CONTACTO O											
6	APLASTAMIENTO Conceptos y definiciones		Χ									
	resolución de problemas modelo,											
	TORSION. Análisis preliminar de los esfuerzos											
	sobre un árbol o eje, Deformaciones en un											
	árbol circular, Esfuerzo en el intervalo elástico,											
7	Angulo de torsión en el intervalo elástico,			Χ								
	Momento polar de inercia Calculo de ejes											
	circulares. Calculo de potencia trasmitida,											
	Selección de un acople mecánico basado en el											
	troqué a trasmitir											
	FUERZAS DISTRIBUIDAS CENTROIDES											
	CENTRO DE GRAVEDAD Y MOMENTOS DE											
	INERCIA Definición, Ejes de simetría, Calculo		V									
8	del centro de gravedad de sección simple y de		Χ									
	una sección compuesta											
	Evaluación del momento de inercia , radio de giro , Teorema de los ejes paralelos											
	FLEXION. Análisis preliminar de los esfuerzos					+						\dashv
	en flexión pura, Deformaciones en un elemento											
9	sometido a flexión pura, Esfuerzos y			Х								
	deformaciones en una zona elástica,			,								
	Deformaciones en una sección transversal,											
	DEFLEXION EN VIGAS . Métodos de deflexión:											\exists
1	Energía, áreas de momentos, determinación de	,										
0	esfuerzos cortantes y momentos flectores ,	X										
	Método de la doble integración											
	COLUMNAS Definición ,Carga critica, Tipos de					\dagger				T		\dashv
1 1	Columnas, Apoyos en Columnas, pandeo en	Х										
	Columnas Formula de Euler, Formula de la											

	Secante y Formulas empíricas									
	Columnas cargadas excéntricamente									
1	DINAMICA Introducción , Conceptos									
2	importantes de la cinética del cuerpo rígido,		Χ					X		
_	Potencia Mecánica									
	CALCULO Y SELECCIÓN DE ELEMENTOS									
	DE MAQUINA									
	Reductores de velocidad definición, detalles									
	constructivos, selección.									
	Estudio de casos prácticos de la transmisión de									
	potencia y de los elementos que integran el									
1	sistema (Bandas transportadoras, Elevador de									
3	cangilones y Molinos de martillo etc.)		Χ							
J	Selección de coreas trapezoidales, selección									
	de cadenas de rodillos , Selección de cable									
	metálico									
	Rodamientos , Tipos de rodamientos y sus									
	aplicaciones									
	Engranajes, Tipos de engranajes, parámetros									
	de diseño y fabricación , trenes de engranaje									
	PRACTICAS:									
	1. Diseño, construcción y ensayo de prototipo									
	de aplicación de la asignatura y prueba del									
1	modelo mediante <u>FEA</u> (Análisis de elementos			X					X	x
4	finitos)									
	2. Diseño, calculo y ensayo de un elemento									
	sometido a diferentes tipos de cargas									

III. ESTRATEGIAS

Metodología Pedagógica y Didáctica:

- Presentación y socialización del contenido de cada tema Clase magistral
- Desarrollo de talleres en clase
- Trabajo dirigido (pequeños proyectos) Asesorías de tipo individual y grupal.

	Hora s			Horas	Horas	Total Horas	
				profesor/sema	Estudiante/sema	Estudiante/seme	
				na	na	stre	Créditos
Tipo de							
Curso	TD	TC	TA	(TD + TC)	(TD + TC +TA)	X 16 semanas	
Asignatura	2	2	2	4	6	96	2

IV. RECURSOS

Laboratorios Prácticos

PRACTICA DE	OR IETIVO	DURACION	SITIO	APORTE AL			
LABORATORIO	OBJETIVO	DURACION	31110	CONOCIMIENTO			
Laboratorio de Compresión de elementos cortos	El objetivo del ensayo de compresión es el estudio del procesos de compresión en los materiales metálicos y la determinación de la resistencias a las cargas de compresión	10 horas	Laborato rio de ensayo de materiale s de la Escuela Tecnológ ica de UDFJC	Desarrollara en el estudiante la capacidad de discernir cual propiedad mecánica le conviene mas a sus interese profesionales y la manera de evaluarla o determinarla para si poder confrontarla con la información de fabricantes y/o proveedores			
Laboratorio de Torsión en eje de sección circular	El propósito del experimento consiste en estudiar que dependencia existe entre la carga torsional y la deformación angular de la sección del eje , la	10 horas	Laborato rio de ensayo de materiale s de la Escuela Tecnológ ica de UDFJC	Desarrollara en el estudiante la capacidad de discernir cual propiedad mecánica le conviene mas a sus interese profesionales y la manera de evaluarla o determinarla para si poder confrontarla con			

	determinación del			la información de
	modulo G y los			fabricantes y/o
	esfuerzos			proveedores
	principales en la			
	capa exterior del			
	eje			
	Mediante el ensayo			Desarrollara en el
	de flexión plana se		Laborato	estudiante la
	investiga o		rio de	capacidad de discernir
	comprueba la ley		ensayo	cual propiedad
Laboratorio de	de distribuciones		de	mecánica le conviene
Flexión plana	de las tensiones		materiale	mas a sus interese
sobre vigas	normales en la	10 horas	s de la	profesionales y la
prismáticas o de	sección de la viga y		Escuela	manera de evaluarla o
sección circular	la determinación de		Tecnológ	determinarla para si
	los esfuerzos		i	poder confrontarla con
	principales en las		ca de	la información de
	fibras mas alejadas		UDFJC	fabricantes y/o
				proveedores

V. BIBLIOGRAFÍA								
TEXTOS GUÍAS								
R.D. Snayder y E.F. Byars Mc Graw Hill (edicid	ón internacional para estudiantes)							
ESTATICA Y RESISTENCIA DE MATERIALES	S							
Bedford Fowler Addison-Wesley	ESTATICA							
Bedford Fowler Addison-Wesley	DINAMICA							
Archie Higdon y Williams Stiles Ed.Prentice Hall	INGENIERIA MECANICA							
Egor P.Popov Ed.Prentice Hall	INTRODUCCION A LA MECANICA							
SÓLIDOS								
James O. Smith y Fred B. Seely Ed. Wiley	RESISTENCIA DE MATERIALES							
Andrew Pytel y Ferdinand L. Singer Ed. Alfaomega	RESISTENCIA DE MATERIALES							
R. C. Hibbeler cuarta edición Ed.Prentice Hall	MECANICA DE MATERIALLES							
W. Nash (Schaum) Mc Graw Hill	RESISTENCIA DE MATERIALES							
Agustín López Roa Ed. CIE Dossat 2000	CINTAS TRANSPORTADORAS							
Intermec Ltda. LA TRANSMICION	I DE POTENCIA POR CADENA DE							
RODILLOS								

DIRECCIONES DE INTERNET								
V. M. Faires	Montaner y Simón	S.A. <i>DISEÑO [</i>	E ELEMENTOS DE MAQUINA					
Joseph L. Sh	igley Charles Misc	nke Mc Graw Hill	FUNDAMENTO DE DISEÑO MECANIO	0				

WWW.INTERMEC.COM

WWW.WARNERELECTRIC.COM

WWW.BOSTONGEAR.COM

WWW.CROSS-MORSE.CO.UK

WWW.POLEASYBANDAS.COM

WWW.TECNOTRANSMICIONES.COM

WWW.REXNORD.COM

VI. EVALUACIÓN

Actividad	Porcentaje
Primer Parcial	25%
Segundo Parcial	25%
Examen Final	30%
Laboratorios (Informe & sustentación)	20%

ASPECTOS A EVALUAR DEL CURSO

- 1. Evaluación del desempeño docente
- 2. Evaluación del aprendizaje de los estudiantes mediante de la realización de pruebas escritas
- **3.** Evaluación de proyectos prácticos donde se aplican conceptos adquiridos durante el desarrollo de la asignatura .
- **4**. Evaluación de los laboratorios (Compresión , Flexión y Torsión)

DATOS DEL DOCENTE			
NOMBRE: PREGRADO: POSTGRADO:			
ASESORIAS: FIRMA DE ESTUD	DIANTES		
NOMBRE	FIRMA	CÓDIGO	FECHA
1.			
2.			
3.			
FIRMA DEL DOCENTE	I.		
FECHA DE ENTREGA:			